2320 lines
62 KiB
C
2320 lines
62 KiB
C
/* Dependency analysis
|
|
Copyright (C) 2000-2021 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* dependency.c -- Expression dependency analysis code. */
|
|
/* There's probably quite a bit of duplication in this file. We currently
|
|
have different dependency checking functions for different types
|
|
if dependencies. Ideally these would probably be merged. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "gfortran.h"
|
|
#include "dependency.h"
|
|
#include "constructor.h"
|
|
#include "arith.h"
|
|
|
|
/* static declarations */
|
|
/* Enums */
|
|
enum range {LHS, RHS, MID};
|
|
|
|
/* Dependency types. These must be in reverse order of priority. */
|
|
enum gfc_dependency
|
|
{
|
|
GFC_DEP_ERROR,
|
|
GFC_DEP_EQUAL, /* Identical Ranges. */
|
|
GFC_DEP_FORWARD, /* e.g., a(1:3) = a(2:4). */
|
|
GFC_DEP_BACKWARD, /* e.g. a(2:4) = a(1:3). */
|
|
GFC_DEP_OVERLAP, /* May overlap in some other way. */
|
|
GFC_DEP_NODEP /* Distinct ranges. */
|
|
};
|
|
|
|
/* Macros */
|
|
#define IS_ARRAY_EXPLICIT(as) ((as->type == AS_EXPLICIT ? 1 : 0))
|
|
|
|
/* Forward declarations */
|
|
|
|
static gfc_dependency check_section_vs_section (gfc_array_ref *,
|
|
gfc_array_ref *, int);
|
|
|
|
/* Returns 1 if the expr is an integer constant value 1, 0 if it is not or
|
|
def if the value could not be determined. */
|
|
|
|
int
|
|
gfc_expr_is_one (gfc_expr *expr, int def)
|
|
{
|
|
gcc_assert (expr != NULL);
|
|
|
|
if (expr->expr_type != EXPR_CONSTANT)
|
|
return def;
|
|
|
|
if (expr->ts.type != BT_INTEGER)
|
|
return def;
|
|
|
|
return mpz_cmp_si (expr->value.integer, 1) == 0;
|
|
}
|
|
|
|
/* Check if two array references are known to be identical. Calls
|
|
gfc_dep_compare_expr if necessary for comparing array indices. */
|
|
|
|
static bool
|
|
identical_array_ref (gfc_array_ref *a1, gfc_array_ref *a2)
|
|
{
|
|
int i;
|
|
|
|
if (a1->type == AR_FULL && a2->type == AR_FULL)
|
|
return true;
|
|
|
|
if (a1->type == AR_SECTION && a2->type == AR_SECTION)
|
|
{
|
|
gcc_assert (a1->dimen == a2->dimen);
|
|
|
|
for ( i = 0; i < a1->dimen; i++)
|
|
{
|
|
/* TODO: Currently, we punt on an integer array as an index. */
|
|
if (a1->dimen_type[i] != DIMEN_RANGE
|
|
|| a2->dimen_type[i] != DIMEN_RANGE)
|
|
return false;
|
|
|
|
if (check_section_vs_section (a1, a2, i) != GFC_DEP_EQUAL)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (a1->type == AR_ELEMENT && a2->type == AR_ELEMENT)
|
|
{
|
|
if (a1->dimen != a2->dimen)
|
|
gfc_internal_error ("identical_array_ref(): inconsistent dimensions");
|
|
|
|
for (i = 0; i < a1->dimen; i++)
|
|
{
|
|
if (gfc_dep_compare_expr (a1->start[i], a2->start[i]) != 0)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
/* Return true for identical variables, checking for references if
|
|
necessary. Calls identical_array_ref for checking array sections. */
|
|
|
|
static bool
|
|
are_identical_variables (gfc_expr *e1, gfc_expr *e2)
|
|
{
|
|
gfc_ref *r1, *r2;
|
|
|
|
if (e1->symtree->n.sym->attr.dummy && e2->symtree->n.sym->attr.dummy)
|
|
{
|
|
/* Dummy arguments: Only check for equal names. */
|
|
if (e1->symtree->n.sym->name != e2->symtree->n.sym->name)
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
/* Check for equal symbols. */
|
|
if (e1->symtree->n.sym != e2->symtree->n.sym)
|
|
return false;
|
|
}
|
|
|
|
/* Volatile variables should never compare equal to themselves. */
|
|
|
|
if (e1->symtree->n.sym->attr.volatile_)
|
|
return false;
|
|
|
|
r1 = e1->ref;
|
|
r2 = e2->ref;
|
|
|
|
while (r1 != NULL || r2 != NULL)
|
|
{
|
|
|
|
/* Assume the variables are not equal if one has a reference and the
|
|
other doesn't.
|
|
TODO: Handle full references like comparing a(:) to a.
|
|
*/
|
|
|
|
if (r1 == NULL || r2 == NULL)
|
|
return false;
|
|
|
|
if (r1->type != r2->type)
|
|
return false;
|
|
|
|
switch (r1->type)
|
|
{
|
|
|
|
case REF_ARRAY:
|
|
if (!identical_array_ref (&r1->u.ar, &r2->u.ar))
|
|
return false;
|
|
|
|
break;
|
|
|
|
case REF_COMPONENT:
|
|
if (r1->u.c.component != r2->u.c.component)
|
|
return false;
|
|
break;
|
|
|
|
case REF_SUBSTRING:
|
|
if (gfc_dep_compare_expr (r1->u.ss.start, r2->u.ss.start) != 0)
|
|
return false;
|
|
|
|
/* If both are NULL, the end length compares equal, because we
|
|
are looking at the same variable. This can only happen for
|
|
assumed- or deferred-length character arguments. */
|
|
|
|
if (r1->u.ss.end == NULL && r2->u.ss.end == NULL)
|
|
break;
|
|
|
|
if (gfc_dep_compare_expr (r1->u.ss.end, r2->u.ss.end) != 0)
|
|
return false;
|
|
|
|
break;
|
|
|
|
case REF_INQUIRY:
|
|
if (r1->u.i != r2->u.i)
|
|
return false;
|
|
break;
|
|
|
|
default:
|
|
gfc_internal_error ("are_identical_variables: Bad type");
|
|
}
|
|
r1 = r1->next;
|
|
r2 = r2->next;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Compare two functions for equality. Returns 0 if e1==e2, -2 otherwise. If
|
|
impure_ok is false, only return 0 for pure functions. */
|
|
|
|
int
|
|
gfc_dep_compare_functions (gfc_expr *e1, gfc_expr *e2, bool impure_ok)
|
|
{
|
|
|
|
gfc_actual_arglist *args1;
|
|
gfc_actual_arglist *args2;
|
|
|
|
if (e1->expr_type != EXPR_FUNCTION || e2->expr_type != EXPR_FUNCTION)
|
|
return -2;
|
|
|
|
if ((e1->value.function.esym && e2->value.function.esym
|
|
&& e1->value.function.esym == e2->value.function.esym
|
|
&& (e1->value.function.esym->result->attr.pure || impure_ok))
|
|
|| (e1->value.function.isym && e2->value.function.isym
|
|
&& e1->value.function.isym == e2->value.function.isym
|
|
&& (e1->value.function.isym->pure || impure_ok)))
|
|
{
|
|
args1 = e1->value.function.actual;
|
|
args2 = e2->value.function.actual;
|
|
|
|
/* Compare the argument lists for equality. */
|
|
while (args1 && args2)
|
|
{
|
|
/* Bitwise xor, since C has no non-bitwise xor operator. */
|
|
if ((args1->expr == NULL) ^ (args2->expr == NULL))
|
|
return -2;
|
|
|
|
if (args1->expr != NULL && args2->expr != NULL)
|
|
{
|
|
gfc_expr *e1, *e2;
|
|
e1 = args1->expr;
|
|
e2 = args2->expr;
|
|
|
|
if (gfc_dep_compare_expr (e1, e2) != 0)
|
|
return -2;
|
|
|
|
/* Special case: String arguments which compare equal can have
|
|
different lengths, which makes them different in calls to
|
|
procedures. */
|
|
|
|
if (e1->expr_type == EXPR_CONSTANT
|
|
&& e1->ts.type == BT_CHARACTER
|
|
&& e2->expr_type == EXPR_CONSTANT
|
|
&& e2->ts.type == BT_CHARACTER
|
|
&& e1->value.character.length != e2->value.character.length)
|
|
return -2;
|
|
}
|
|
|
|
args1 = args1->next;
|
|
args2 = args2->next;
|
|
}
|
|
return (args1 || args2) ? -2 : 0;
|
|
}
|
|
else
|
|
return -2;
|
|
}
|
|
|
|
/* Helper function to look through parens, unary plus and widening
|
|
integer conversions. */
|
|
|
|
gfc_expr *
|
|
gfc_discard_nops (gfc_expr *e)
|
|
{
|
|
gfc_actual_arglist *arglist;
|
|
|
|
if (e == NULL)
|
|
return NULL;
|
|
|
|
while (true)
|
|
{
|
|
if (e->expr_type == EXPR_OP
|
|
&& (e->value.op.op == INTRINSIC_UPLUS
|
|
|| e->value.op.op == INTRINSIC_PARENTHESES))
|
|
{
|
|
e = e->value.op.op1;
|
|
continue;
|
|
}
|
|
|
|
if (e->expr_type == EXPR_FUNCTION && e->value.function.isym
|
|
&& e->value.function.isym->id == GFC_ISYM_CONVERSION
|
|
&& e->ts.type == BT_INTEGER)
|
|
{
|
|
arglist = e->value.function.actual;
|
|
if (arglist->expr->ts.type == BT_INTEGER
|
|
&& e->ts.kind > arglist->expr->ts.kind)
|
|
{
|
|
e = arglist->expr;
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
return e;
|
|
}
|
|
|
|
|
|
/* Compare two expressions. Return values:
|
|
* +1 if e1 > e2
|
|
* 0 if e1 == e2
|
|
* -1 if e1 < e2
|
|
* -2 if the relationship could not be determined
|
|
* -3 if e1 /= e2, but we cannot tell which one is larger.
|
|
REAL and COMPLEX constants are only compared for equality
|
|
or inequality; if they are unequal, -2 is returned in all cases. */
|
|
|
|
int
|
|
gfc_dep_compare_expr (gfc_expr *e1, gfc_expr *e2)
|
|
{
|
|
int i;
|
|
|
|
if (e1 == NULL && e2 == NULL)
|
|
return 0;
|
|
else if (e1 == NULL || e2 == NULL)
|
|
return -2;
|
|
|
|
e1 = gfc_discard_nops (e1);
|
|
e2 = gfc_discard_nops (e2);
|
|
|
|
if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_PLUS)
|
|
{
|
|
/* Compare X+C vs. X, for INTEGER only. */
|
|
if (e1->value.op.op2->expr_type == EXPR_CONSTANT
|
|
&& e1->value.op.op2->ts.type == BT_INTEGER
|
|
&& gfc_dep_compare_expr (e1->value.op.op1, e2) == 0)
|
|
return mpz_sgn (e1->value.op.op2->value.integer);
|
|
|
|
/* Compare P+Q vs. R+S. */
|
|
if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
|
|
{
|
|
int l, r;
|
|
|
|
l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
|
|
r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2);
|
|
if (l == 0 && r == 0)
|
|
return 0;
|
|
if (l == 0 && r > -2)
|
|
return r;
|
|
if (l > -2 && r == 0)
|
|
return l;
|
|
if (l == 1 && r == 1)
|
|
return 1;
|
|
if (l == -1 && r == -1)
|
|
return -1;
|
|
|
|
l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op2);
|
|
r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op1);
|
|
if (l == 0 && r == 0)
|
|
return 0;
|
|
if (l == 0 && r > -2)
|
|
return r;
|
|
if (l > -2 && r == 0)
|
|
return l;
|
|
if (l == 1 && r == 1)
|
|
return 1;
|
|
if (l == -1 && r == -1)
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Compare X vs. X+C, for INTEGER only. */
|
|
if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
|
|
{
|
|
if (e2->value.op.op2->expr_type == EXPR_CONSTANT
|
|
&& e2->value.op.op2->ts.type == BT_INTEGER
|
|
&& gfc_dep_compare_expr (e1, e2->value.op.op1) == 0)
|
|
return -mpz_sgn (e2->value.op.op2->value.integer);
|
|
}
|
|
|
|
/* Compare X-C vs. X, for INTEGER only. */
|
|
if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_MINUS)
|
|
{
|
|
if (e1->value.op.op2->expr_type == EXPR_CONSTANT
|
|
&& e1->value.op.op2->ts.type == BT_INTEGER
|
|
&& gfc_dep_compare_expr (e1->value.op.op1, e2) == 0)
|
|
return -mpz_sgn (e1->value.op.op2->value.integer);
|
|
|
|
/* Compare P-Q vs. R-S. */
|
|
if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
|
|
{
|
|
int l, r;
|
|
|
|
l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
|
|
r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2);
|
|
if (l == 0 && r == 0)
|
|
return 0;
|
|
if (l > -2 && r == 0)
|
|
return l;
|
|
if (l == 0 && r > -2)
|
|
return -r;
|
|
if (l == 1 && r == -1)
|
|
return 1;
|
|
if (l == -1 && r == 1)
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Compare A // B vs. C // D. */
|
|
|
|
if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_CONCAT
|
|
&& e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_CONCAT)
|
|
{
|
|
int l, r;
|
|
|
|
l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
|
|
r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2);
|
|
|
|
if (l != 0)
|
|
return l;
|
|
|
|
/* Left expressions of // compare equal, but
|
|
watch out for 'A ' // x vs. 'A' // x. */
|
|
gfc_expr *e1_left = e1->value.op.op1;
|
|
gfc_expr *e2_left = e2->value.op.op1;
|
|
|
|
if (e1_left->expr_type == EXPR_CONSTANT
|
|
&& e2_left->expr_type == EXPR_CONSTANT
|
|
&& e1_left->value.character.length
|
|
!= e2_left->value.character.length)
|
|
return -2;
|
|
else
|
|
return r;
|
|
}
|
|
|
|
/* Compare X vs. X-C, for INTEGER only. */
|
|
if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
|
|
{
|
|
if (e2->value.op.op2->expr_type == EXPR_CONSTANT
|
|
&& e2->value.op.op2->ts.type == BT_INTEGER
|
|
&& gfc_dep_compare_expr (e1, e2->value.op.op1) == 0)
|
|
return mpz_sgn (e2->value.op.op2->value.integer);
|
|
}
|
|
|
|
if (e1->expr_type != e2->expr_type)
|
|
return -3;
|
|
|
|
switch (e1->expr_type)
|
|
{
|
|
case EXPR_CONSTANT:
|
|
/* Compare strings for equality. */
|
|
if (e1->ts.type == BT_CHARACTER && e2->ts.type == BT_CHARACTER)
|
|
return gfc_compare_string (e1, e2);
|
|
|
|
/* Compare REAL and COMPLEX constants. Because of the
|
|
traps and pitfalls associated with comparing
|
|
a + 1.0 with a + 0.5, check for equality only. */
|
|
if (e2->expr_type == EXPR_CONSTANT)
|
|
{
|
|
if (e1->ts.type == BT_REAL && e2->ts.type == BT_REAL)
|
|
{
|
|
if (mpfr_cmp (e1->value.real, e2->value.real) == 0)
|
|
return 0;
|
|
else
|
|
return -2;
|
|
}
|
|
else if (e1->ts.type == BT_COMPLEX && e2->ts.type == BT_COMPLEX)
|
|
{
|
|
if (mpc_cmp (e1->value.complex, e2->value.complex) == 0)
|
|
return 0;
|
|
else
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
if (e1->ts.type != BT_INTEGER || e2->ts.type != BT_INTEGER)
|
|
return -2;
|
|
|
|
/* For INTEGER, all cases where e2 is not constant should have
|
|
been filtered out above. */
|
|
gcc_assert (e2->expr_type == EXPR_CONSTANT);
|
|
|
|
i = mpz_cmp (e1->value.integer, e2->value.integer);
|
|
if (i == 0)
|
|
return 0;
|
|
else if (i < 0)
|
|
return -1;
|
|
return 1;
|
|
|
|
case EXPR_VARIABLE:
|
|
if (are_identical_variables (e1, e2))
|
|
return 0;
|
|
else
|
|
return -3;
|
|
|
|
case EXPR_OP:
|
|
/* Intrinsic operators are the same if their operands are the same. */
|
|
if (e1->value.op.op != e2->value.op.op)
|
|
return -2;
|
|
if (e1->value.op.op2 == 0)
|
|
{
|
|
i = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
|
|
return i == 0 ? 0 : -2;
|
|
}
|
|
if (gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1) == 0
|
|
&& gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2) == 0)
|
|
return 0;
|
|
else if (e1->value.op.op == INTRINSIC_TIMES
|
|
&& gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op2) == 0
|
|
&& gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op1) == 0)
|
|
/* Commutativity of multiplication; addition is handled above. */
|
|
return 0;
|
|
|
|
return -2;
|
|
|
|
case EXPR_FUNCTION:
|
|
return gfc_dep_compare_functions (e1, e2, false);
|
|
|
|
default:
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
|
|
/* Return the difference between two expressions. Integer expressions of
|
|
the form
|
|
|
|
X + constant, X - constant and constant + X
|
|
|
|
are handled. Return true on success, false on failure. result is assumed
|
|
to be uninitialized on entry, and will be initialized on success.
|
|
*/
|
|
|
|
bool
|
|
gfc_dep_difference (gfc_expr *e1, gfc_expr *e2, mpz_t *result)
|
|
{
|
|
gfc_expr *e1_op1, *e1_op2, *e2_op1, *e2_op2;
|
|
|
|
if (e1 == NULL || e2 == NULL)
|
|
return false;
|
|
|
|
if (e1->ts.type != BT_INTEGER || e2->ts.type != BT_INTEGER)
|
|
return false;
|
|
|
|
e1 = gfc_discard_nops (e1);
|
|
e2 = gfc_discard_nops (e2);
|
|
|
|
/* Inizialize tentatively, clear if we don't return anything. */
|
|
mpz_init (*result);
|
|
|
|
/* Case 1: c1 - c2 = c1 - c2, trivially. */
|
|
|
|
if (e1->expr_type == EXPR_CONSTANT && e2->expr_type == EXPR_CONSTANT)
|
|
{
|
|
mpz_sub (*result, e1->value.integer, e2->value.integer);
|
|
return true;
|
|
}
|
|
|
|
if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_PLUS)
|
|
{
|
|
e1_op1 = gfc_discard_nops (e1->value.op.op1);
|
|
e1_op2 = gfc_discard_nops (e1->value.op.op2);
|
|
|
|
/* Case 2: (X + c1) - X = c1. */
|
|
if (e1_op2->expr_type == EXPR_CONSTANT
|
|
&& gfc_dep_compare_expr (e1_op1, e2) == 0)
|
|
{
|
|
mpz_set (*result, e1_op2->value.integer);
|
|
return true;
|
|
}
|
|
|
|
/* Case 3: (c1 + X) - X = c1. */
|
|
if (e1_op1->expr_type == EXPR_CONSTANT
|
|
&& gfc_dep_compare_expr (e1_op2, e2) == 0)
|
|
{
|
|
mpz_set (*result, e1_op1->value.integer);
|
|
return true;
|
|
}
|
|
|
|
if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
|
|
{
|
|
e2_op1 = gfc_discard_nops (e2->value.op.op1);
|
|
e2_op2 = gfc_discard_nops (e2->value.op.op2);
|
|
|
|
if (e1_op2->expr_type == EXPR_CONSTANT)
|
|
{
|
|
/* Case 4: X + c1 - (X + c2) = c1 - c2. */
|
|
if (e2_op2->expr_type == EXPR_CONSTANT
|
|
&& gfc_dep_compare_expr (e1_op1, e2_op1) == 0)
|
|
{
|
|
mpz_sub (*result, e1_op2->value.integer,
|
|
e2_op2->value.integer);
|
|
return true;
|
|
}
|
|
/* Case 5: X + c1 - (c2 + X) = c1 - c2. */
|
|
if (e2_op1->expr_type == EXPR_CONSTANT
|
|
&& gfc_dep_compare_expr (e1_op1, e2_op2) == 0)
|
|
{
|
|
mpz_sub (*result, e1_op2->value.integer,
|
|
e2_op1->value.integer);
|
|
return true;
|
|
}
|
|
}
|
|
else if (e1_op1->expr_type == EXPR_CONSTANT)
|
|
{
|
|
/* Case 6: c1 + X - (X + c2) = c1 - c2. */
|
|
if (e2_op2->expr_type == EXPR_CONSTANT
|
|
&& gfc_dep_compare_expr (e1_op2, e2_op1) == 0)
|
|
{
|
|
mpz_sub (*result, e1_op1->value.integer,
|
|
e2_op2->value.integer);
|
|
return true;
|
|
}
|
|
/* Case 7: c1 + X - (c2 + X) = c1 - c2. */
|
|
if (e2_op1->expr_type == EXPR_CONSTANT
|
|
&& gfc_dep_compare_expr (e1_op2, e2_op2) == 0)
|
|
{
|
|
mpz_sub (*result, e1_op1->value.integer,
|
|
e2_op1->value.integer);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
|
|
{
|
|
e2_op1 = gfc_discard_nops (e2->value.op.op1);
|
|
e2_op2 = gfc_discard_nops (e2->value.op.op2);
|
|
|
|
if (e1_op2->expr_type == EXPR_CONSTANT)
|
|
{
|
|
/* Case 8: X + c1 - (X - c2) = c1 + c2. */
|
|
if (e2_op2->expr_type == EXPR_CONSTANT
|
|
&& gfc_dep_compare_expr (e1_op1, e2_op1) == 0)
|
|
{
|
|
mpz_add (*result, e1_op2->value.integer,
|
|
e2_op2->value.integer);
|
|
return true;
|
|
}
|
|
}
|
|
if (e1_op1->expr_type == EXPR_CONSTANT)
|
|
{
|
|
/* Case 9: c1 + X - (X - c2) = c1 + c2. */
|
|
if (e2_op2->expr_type == EXPR_CONSTANT
|
|
&& gfc_dep_compare_expr (e1_op2, e2_op1) == 0)
|
|
{
|
|
mpz_add (*result, e1_op1->value.integer,
|
|
e2_op2->value.integer);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_MINUS)
|
|
{
|
|
e1_op1 = gfc_discard_nops (e1->value.op.op1);
|
|
e1_op2 = gfc_discard_nops (e1->value.op.op2);
|
|
|
|
if (e1_op2->expr_type == EXPR_CONSTANT)
|
|
{
|
|
/* Case 10: (X - c1) - X = -c1 */
|
|
|
|
if (gfc_dep_compare_expr (e1_op1, e2) == 0)
|
|
{
|
|
mpz_neg (*result, e1_op2->value.integer);
|
|
return true;
|
|
}
|
|
|
|
if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
|
|
{
|
|
e2_op1 = gfc_discard_nops (e2->value.op.op1);
|
|
e2_op2 = gfc_discard_nops (e2->value.op.op2);
|
|
|
|
/* Case 11: (X - c1) - (X + c2) = -( c1 + c2). */
|
|
if (e2_op2->expr_type == EXPR_CONSTANT
|
|
&& gfc_dep_compare_expr (e1_op1, e2_op1) == 0)
|
|
{
|
|
mpz_add (*result, e1_op2->value.integer,
|
|
e2_op2->value.integer);
|
|
mpz_neg (*result, *result);
|
|
return true;
|
|
}
|
|
|
|
/* Case 12: X - c1 - (c2 + X) = - (c1 + c2). */
|
|
if (e2_op1->expr_type == EXPR_CONSTANT
|
|
&& gfc_dep_compare_expr (e1_op1, e2_op2) == 0)
|
|
{
|
|
mpz_add (*result, e1_op2->value.integer,
|
|
e2_op1->value.integer);
|
|
mpz_neg (*result, *result);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
|
|
{
|
|
e2_op1 = gfc_discard_nops (e2->value.op.op1);
|
|
e2_op2 = gfc_discard_nops (e2->value.op.op2);
|
|
|
|
/* Case 13: (X - c1) - (X - c2) = c2 - c1. */
|
|
if (e2_op2->expr_type == EXPR_CONSTANT
|
|
&& gfc_dep_compare_expr (e1_op1, e2_op1) == 0)
|
|
{
|
|
mpz_sub (*result, e2_op2->value.integer,
|
|
e1_op2->value.integer);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
if (e1_op1->expr_type == EXPR_CONSTANT)
|
|
{
|
|
if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
|
|
{
|
|
e2_op1 = gfc_discard_nops (e2->value.op.op1);
|
|
e2_op2 = gfc_discard_nops (e2->value.op.op2);
|
|
|
|
/* Case 14: (c1 - X) - (c2 - X) == c1 - c2. */
|
|
if (gfc_dep_compare_expr (e1_op2, e2_op2) == 0)
|
|
{
|
|
mpz_sub (*result, e1_op1->value.integer,
|
|
e2_op1->value.integer);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
|
|
{
|
|
e2_op1 = gfc_discard_nops (e2->value.op.op1);
|
|
e2_op2 = gfc_discard_nops (e2->value.op.op2);
|
|
|
|
/* Case 15: X - (X + c2) = -c2. */
|
|
if (e2_op2->expr_type == EXPR_CONSTANT
|
|
&& gfc_dep_compare_expr (e1, e2_op1) == 0)
|
|
{
|
|
mpz_neg (*result, e2_op2->value.integer);
|
|
return true;
|
|
}
|
|
/* Case 16: X - (c2 + X) = -c2. */
|
|
if (e2_op1->expr_type == EXPR_CONSTANT
|
|
&& gfc_dep_compare_expr (e1, e2_op2) == 0)
|
|
{
|
|
mpz_neg (*result, e2_op1->value.integer);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
|
|
{
|
|
e2_op1 = gfc_discard_nops (e2->value.op.op1);
|
|
e2_op2 = gfc_discard_nops (e2->value.op.op2);
|
|
|
|
/* Case 17: X - (X - c2) = c2. */
|
|
if (e2_op2->expr_type == EXPR_CONSTANT
|
|
&& gfc_dep_compare_expr (e1, e2_op1) == 0)
|
|
{
|
|
mpz_set (*result, e2_op2->value.integer);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (gfc_dep_compare_expr (e1, e2) == 0)
|
|
{
|
|
/* Case 18: X - X = 0. */
|
|
mpz_set_si (*result, 0);
|
|
return true;
|
|
}
|
|
|
|
mpz_clear (*result);
|
|
return false;
|
|
}
|
|
|
|
/* Returns 1 if the two ranges are the same and 0 if they are not (or if the
|
|
results are indeterminate). 'n' is the dimension to compare. */
|
|
|
|
static int
|
|
is_same_range (gfc_array_ref *ar1, gfc_array_ref *ar2, int n)
|
|
{
|
|
gfc_expr *e1;
|
|
gfc_expr *e2;
|
|
int i;
|
|
|
|
/* TODO: More sophisticated range comparison. */
|
|
gcc_assert (ar1 && ar2);
|
|
|
|
gcc_assert (ar1->dimen_type[n] == ar2->dimen_type[n]);
|
|
|
|
e1 = ar1->stride[n];
|
|
e2 = ar2->stride[n];
|
|
/* Check for mismatching strides. A NULL stride means a stride of 1. */
|
|
if (e1 && !e2)
|
|
{
|
|
i = gfc_expr_is_one (e1, -1);
|
|
if (i == -1 || i == 0)
|
|
return 0;
|
|
}
|
|
else if (e2 && !e1)
|
|
{
|
|
i = gfc_expr_is_one (e2, -1);
|
|
if (i == -1 || i == 0)
|
|
return 0;
|
|
}
|
|
else if (e1 && e2)
|
|
{
|
|
i = gfc_dep_compare_expr (e1, e2);
|
|
if (i != 0)
|
|
return 0;
|
|
}
|
|
/* The strides match. */
|
|
|
|
/* Check the range start. */
|
|
e1 = ar1->start[n];
|
|
e2 = ar2->start[n];
|
|
if (e1 || e2)
|
|
{
|
|
/* Use the bound of the array if no bound is specified. */
|
|
if (ar1->as && !e1)
|
|
e1 = ar1->as->lower[n];
|
|
|
|
if (ar2->as && !e2)
|
|
e2 = ar2->as->lower[n];
|
|
|
|
/* Check we have values for both. */
|
|
if (!(e1 && e2))
|
|
return 0;
|
|
|
|
i = gfc_dep_compare_expr (e1, e2);
|
|
if (i != 0)
|
|
return 0;
|
|
}
|
|
|
|
/* Check the range end. */
|
|
e1 = ar1->end[n];
|
|
e2 = ar2->end[n];
|
|
if (e1 || e2)
|
|
{
|
|
/* Use the bound of the array if no bound is specified. */
|
|
if (ar1->as && !e1)
|
|
e1 = ar1->as->upper[n];
|
|
|
|
if (ar2->as && !e2)
|
|
e2 = ar2->as->upper[n];
|
|
|
|
/* Check we have values for both. */
|
|
if (!(e1 && e2))
|
|
return 0;
|
|
|
|
i = gfc_dep_compare_expr (e1, e2);
|
|
if (i != 0)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Some array-returning intrinsics can be implemented by reusing the
|
|
data from one of the array arguments. For example, TRANSPOSE does
|
|
not necessarily need to allocate new data: it can be implemented
|
|
by copying the original array's descriptor and simply swapping the
|
|
two dimension specifications.
|
|
|
|
If EXPR is a call to such an intrinsic, return the argument
|
|
whose data can be reused, otherwise return NULL. */
|
|
|
|
gfc_expr *
|
|
gfc_get_noncopying_intrinsic_argument (gfc_expr *expr)
|
|
{
|
|
if (expr->expr_type != EXPR_FUNCTION || !expr->value.function.isym)
|
|
return NULL;
|
|
|
|
switch (expr->value.function.isym->id)
|
|
{
|
|
case GFC_ISYM_TRANSPOSE:
|
|
return expr->value.function.actual->expr;
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/* Return true if the result of reference REF can only be constructed
|
|
using a temporary array. */
|
|
|
|
bool
|
|
gfc_ref_needs_temporary_p (gfc_ref *ref)
|
|
{
|
|
int n;
|
|
bool subarray_p;
|
|
|
|
subarray_p = false;
|
|
for (; ref; ref = ref->next)
|
|
switch (ref->type)
|
|
{
|
|
case REF_ARRAY:
|
|
/* Vector dimensions are generally not monotonic and must be
|
|
handled using a temporary. */
|
|
if (ref->u.ar.type == AR_SECTION)
|
|
for (n = 0; n < ref->u.ar.dimen; n++)
|
|
if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR)
|
|
return true;
|
|
|
|
subarray_p = true;
|
|
break;
|
|
|
|
case REF_SUBSTRING:
|
|
/* Within an array reference, character substrings generally
|
|
need a temporary. Character array strides are expressed as
|
|
multiples of the element size (consistent with other array
|
|
types), not in characters. */
|
|
return subarray_p;
|
|
|
|
case REF_COMPONENT:
|
|
case REF_INQUIRY:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
static int
|
|
gfc_is_data_pointer (gfc_expr *e)
|
|
{
|
|
gfc_ref *ref;
|
|
|
|
if (e->expr_type != EXPR_VARIABLE && e->expr_type != EXPR_FUNCTION)
|
|
return 0;
|
|
|
|
/* No subreference if it is a function */
|
|
gcc_assert (e->expr_type == EXPR_VARIABLE || !e->ref);
|
|
|
|
if (e->symtree->n.sym->attr.pointer)
|
|
return 1;
|
|
|
|
for (ref = e->ref; ref; ref = ref->next)
|
|
if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Return true if array variable VAR could be passed to the same function
|
|
as argument EXPR without interfering with EXPR. INTENT is the intent
|
|
of VAR.
|
|
|
|
This is considerably less conservative than other dependencies
|
|
because many function arguments will already be copied into a
|
|
temporary. */
|
|
|
|
static int
|
|
gfc_check_argument_var_dependency (gfc_expr *var, sym_intent intent,
|
|
gfc_expr *expr, gfc_dep_check elemental)
|
|
{
|
|
gfc_expr *arg;
|
|
|
|
gcc_assert (var->expr_type == EXPR_VARIABLE);
|
|
gcc_assert (var->rank > 0);
|
|
|
|
switch (expr->expr_type)
|
|
{
|
|
case EXPR_VARIABLE:
|
|
/* In case of elemental subroutines, there is no dependency
|
|
between two same-range array references. */
|
|
if (gfc_ref_needs_temporary_p (expr->ref)
|
|
|| gfc_check_dependency (var, expr, elemental == NOT_ELEMENTAL))
|
|
{
|
|
if (elemental == ELEM_DONT_CHECK_VARIABLE)
|
|
{
|
|
/* Too many false positive with pointers. */
|
|
if (!gfc_is_data_pointer (var) && !gfc_is_data_pointer (expr))
|
|
{
|
|
/* Elemental procedures forbid unspecified intents,
|
|
and we don't check dependencies for INTENT_IN args. */
|
|
gcc_assert (intent == INTENT_OUT || intent == INTENT_INOUT);
|
|
|
|
/* We are told not to check dependencies.
|
|
We do it, however, and issue a warning in case we find one.
|
|
If a dependency is found in the case
|
|
elemental == ELEM_CHECK_VARIABLE, we will generate
|
|
a temporary, so we don't need to bother the user. */
|
|
|
|
if (var->expr_type == EXPR_VARIABLE
|
|
&& expr->expr_type == EXPR_VARIABLE
|
|
&& strcmp(var->symtree->name, expr->symtree->name) == 0)
|
|
gfc_warning (0, "INTENT(%s) actual argument at %L might "
|
|
"interfere with actual argument at %L.",
|
|
intent == INTENT_OUT ? "OUT" : "INOUT",
|
|
&var->where, &expr->where);
|
|
}
|
|
return 0;
|
|
}
|
|
else
|
|
return 1;
|
|
}
|
|
return 0;
|
|
|
|
case EXPR_ARRAY:
|
|
/* the scalarizer always generates a temporary for array constructors,
|
|
so there is no dependency. */
|
|
return 0;
|
|
|
|
case EXPR_FUNCTION:
|
|
if (intent != INTENT_IN)
|
|
{
|
|
arg = gfc_get_noncopying_intrinsic_argument (expr);
|
|
if (arg != NULL)
|
|
return gfc_check_argument_var_dependency (var, intent, arg,
|
|
NOT_ELEMENTAL);
|
|
}
|
|
|
|
if (elemental != NOT_ELEMENTAL)
|
|
{
|
|
if ((expr->value.function.esym
|
|
&& expr->value.function.esym->attr.elemental)
|
|
|| (expr->value.function.isym
|
|
&& expr->value.function.isym->elemental))
|
|
return gfc_check_fncall_dependency (var, intent, NULL,
|
|
expr->value.function.actual,
|
|
ELEM_CHECK_VARIABLE);
|
|
|
|
if (gfc_inline_intrinsic_function_p (expr))
|
|
{
|
|
/* The TRANSPOSE case should have been caught in the
|
|
noncopying intrinsic case above. */
|
|
gcc_assert (expr->value.function.isym->id != GFC_ISYM_TRANSPOSE);
|
|
|
|
return gfc_check_fncall_dependency (var, intent, NULL,
|
|
expr->value.function.actual,
|
|
ELEM_CHECK_VARIABLE);
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
case EXPR_OP:
|
|
/* In case of non-elemental procedures, there is no need to catch
|
|
dependencies, as we will make a temporary anyway. */
|
|
if (elemental)
|
|
{
|
|
/* If the actual arg EXPR is an expression, we need to catch
|
|
a dependency between variables in EXPR and VAR,
|
|
an intent((IN)OUT) variable. */
|
|
if (expr->value.op.op1
|
|
&& gfc_check_argument_var_dependency (var, intent,
|
|
expr->value.op.op1,
|
|
ELEM_CHECK_VARIABLE))
|
|
return 1;
|
|
else if (expr->value.op.op2
|
|
&& gfc_check_argument_var_dependency (var, intent,
|
|
expr->value.op.op2,
|
|
ELEM_CHECK_VARIABLE))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* Like gfc_check_argument_var_dependency, but extended to any
|
|
array expression OTHER, not just variables. */
|
|
|
|
static int
|
|
gfc_check_argument_dependency (gfc_expr *other, sym_intent intent,
|
|
gfc_expr *expr, gfc_dep_check elemental)
|
|
{
|
|
switch (other->expr_type)
|
|
{
|
|
case EXPR_VARIABLE:
|
|
return gfc_check_argument_var_dependency (other, intent, expr, elemental);
|
|
|
|
case EXPR_FUNCTION:
|
|
other = gfc_get_noncopying_intrinsic_argument (other);
|
|
if (other != NULL)
|
|
return gfc_check_argument_dependency (other, INTENT_IN, expr,
|
|
NOT_ELEMENTAL);
|
|
|
|
return 0;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* Like gfc_check_argument_dependency, but check all the arguments in ACTUAL.
|
|
FNSYM is the function being called, or NULL if not known. */
|
|
|
|
int
|
|
gfc_check_fncall_dependency (gfc_expr *other, sym_intent intent,
|
|
gfc_symbol *fnsym, gfc_actual_arglist *actual,
|
|
gfc_dep_check elemental)
|
|
{
|
|
gfc_formal_arglist *formal;
|
|
gfc_expr *expr;
|
|
|
|
formal = fnsym ? gfc_sym_get_dummy_args (fnsym) : NULL;
|
|
for (; actual; actual = actual->next, formal = formal ? formal->next : NULL)
|
|
{
|
|
expr = actual->expr;
|
|
|
|
/* Skip args which are not present. */
|
|
if (!expr)
|
|
continue;
|
|
|
|
/* Skip other itself. */
|
|
if (expr == other)
|
|
continue;
|
|
|
|
/* Skip intent(in) arguments if OTHER itself is intent(in). */
|
|
if (formal && intent == INTENT_IN
|
|
&& formal->sym->attr.intent == INTENT_IN)
|
|
continue;
|
|
|
|
if (gfc_check_argument_dependency (other, intent, expr, elemental))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Return 1 if e1 and e2 are equivalenced arrays, either
|
|
directly or indirectly; i.e., equivalence (a,b) for a and b
|
|
or equivalence (a,c),(b,c). This function uses the equiv_
|
|
lists, generated in trans-common(add_equivalences), that are
|
|
guaranteed to pick up indirect equivalences. We explicitly
|
|
check for overlap using the offset and length of the equivalence.
|
|
This function is symmetric.
|
|
TODO: This function only checks whether the full top-level
|
|
symbols overlap. An improved implementation could inspect
|
|
e1->ref and e2->ref to determine whether the actually accessed
|
|
portions of these variables/arrays potentially overlap. */
|
|
|
|
int
|
|
gfc_are_equivalenced_arrays (gfc_expr *e1, gfc_expr *e2)
|
|
{
|
|
gfc_equiv_list *l;
|
|
gfc_equiv_info *s, *fl1, *fl2;
|
|
|
|
gcc_assert (e1->expr_type == EXPR_VARIABLE
|
|
&& e2->expr_type == EXPR_VARIABLE);
|
|
|
|
if (!e1->symtree->n.sym->attr.in_equivalence
|
|
|| !e2->symtree->n.sym->attr.in_equivalence|| !e1->rank || !e2->rank)
|
|
return 0;
|
|
|
|
if (e1->symtree->n.sym->ns
|
|
&& e1->symtree->n.sym->ns != gfc_current_ns)
|
|
l = e1->symtree->n.sym->ns->equiv_lists;
|
|
else
|
|
l = gfc_current_ns->equiv_lists;
|
|
|
|
/* Go through the equiv_lists and return 1 if the variables
|
|
e1 and e2 are members of the same group and satisfy the
|
|
requirement on their relative offsets. */
|
|
for (; l; l = l->next)
|
|
{
|
|
fl1 = NULL;
|
|
fl2 = NULL;
|
|
for (s = l->equiv; s; s = s->next)
|
|
{
|
|
if (s->sym == e1->symtree->n.sym)
|
|
{
|
|
fl1 = s;
|
|
if (fl2)
|
|
break;
|
|
}
|
|
if (s->sym == e2->symtree->n.sym)
|
|
{
|
|
fl2 = s;
|
|
if (fl1)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (s)
|
|
{
|
|
/* Can these lengths be zero? */
|
|
if (fl1->length <= 0 || fl2->length <= 0)
|
|
return 1;
|
|
/* These can't overlap if [f11,fl1+length] is before
|
|
[fl2,fl2+length], or [fl2,fl2+length] is before
|
|
[fl1,fl1+length], otherwise they do overlap. */
|
|
if (fl1->offset + fl1->length > fl2->offset
|
|
&& fl2->offset + fl2->length > fl1->offset)
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Return true if there is no possibility of aliasing because of a type
|
|
mismatch between all the possible pointer references and the
|
|
potential target. Note that this function is asymmetric in the
|
|
arguments and so must be called twice with the arguments exchanged. */
|
|
|
|
static bool
|
|
check_data_pointer_types (gfc_expr *expr1, gfc_expr *expr2)
|
|
{
|
|
gfc_component *cm1;
|
|
gfc_symbol *sym1;
|
|
gfc_symbol *sym2;
|
|
gfc_ref *ref1;
|
|
bool seen_component_ref;
|
|
|
|
if (expr1->expr_type != EXPR_VARIABLE
|
|
|| expr2->expr_type != EXPR_VARIABLE)
|
|
return false;
|
|
|
|
sym1 = expr1->symtree->n.sym;
|
|
sym2 = expr2->symtree->n.sym;
|
|
|
|
/* Keep it simple for now. */
|
|
if (sym1->ts.type == BT_DERIVED && sym2->ts.type == BT_DERIVED)
|
|
return false;
|
|
|
|
if (sym1->attr.pointer)
|
|
{
|
|
if (gfc_compare_types (&sym1->ts, &sym2->ts))
|
|
return false;
|
|
}
|
|
|
|
/* This is a conservative check on the components of the derived type
|
|
if no component references have been seen. Since we will not dig
|
|
into the components of derived type components, we play it safe by
|
|
returning false. First we check the reference chain and then, if
|
|
no component references have been seen, the components. */
|
|
seen_component_ref = false;
|
|
if (sym1->ts.type == BT_DERIVED)
|
|
{
|
|
for (ref1 = expr1->ref; ref1; ref1 = ref1->next)
|
|
{
|
|
if (ref1->type != REF_COMPONENT)
|
|
continue;
|
|
|
|
if (ref1->u.c.component->ts.type == BT_DERIVED)
|
|
return false;
|
|
|
|
if ((sym2->attr.pointer || ref1->u.c.component->attr.pointer)
|
|
&& gfc_compare_types (&ref1->u.c.component->ts, &sym2->ts))
|
|
return false;
|
|
|
|
seen_component_ref = true;
|
|
}
|
|
}
|
|
|
|
if (sym1->ts.type == BT_DERIVED && !seen_component_ref)
|
|
{
|
|
for (cm1 = sym1->ts.u.derived->components; cm1; cm1 = cm1->next)
|
|
{
|
|
if (cm1->ts.type == BT_DERIVED)
|
|
return false;
|
|
|
|
if ((sym2->attr.pointer || cm1->attr.pointer)
|
|
&& gfc_compare_types (&cm1->ts, &sym2->ts))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Return true if the statement body redefines the condition. Returns
|
|
true if expr2 depends on expr1. expr1 should be a single term
|
|
suitable for the lhs of an assignment. The IDENTICAL flag indicates
|
|
whether array references to the same symbol with identical range
|
|
references count as a dependency or not. Used for forall and where
|
|
statements. Also used with functions returning arrays without a
|
|
temporary. */
|
|
|
|
int
|
|
gfc_check_dependency (gfc_expr *expr1, gfc_expr *expr2, bool identical)
|
|
{
|
|
gfc_actual_arglist *actual;
|
|
gfc_constructor *c;
|
|
int n;
|
|
|
|
/* -fcoarray=lib can end up here with expr1->expr_type set to EXPR_FUNCTION
|
|
and a reference to _F.caf_get, so skip the assert. */
|
|
if (expr1->expr_type == EXPR_FUNCTION
|
|
&& strcmp (expr1->value.function.name, "_F.caf_get") == 0)
|
|
return 0;
|
|
|
|
if (expr1->expr_type != EXPR_VARIABLE)
|
|
gfc_internal_error ("gfc_check_dependency: expecting an EXPR_VARIABLE");
|
|
|
|
switch (expr2->expr_type)
|
|
{
|
|
case EXPR_OP:
|
|
n = gfc_check_dependency (expr1, expr2->value.op.op1, identical);
|
|
if (n)
|
|
return n;
|
|
if (expr2->value.op.op2)
|
|
return gfc_check_dependency (expr1, expr2->value.op.op2, identical);
|
|
return 0;
|
|
|
|
case EXPR_VARIABLE:
|
|
/* The interesting cases are when the symbols don't match. */
|
|
if (expr1->symtree->n.sym != expr2->symtree->n.sym)
|
|
{
|
|
symbol_attribute attr1, attr2;
|
|
gfc_typespec *ts1 = &expr1->symtree->n.sym->ts;
|
|
gfc_typespec *ts2 = &expr2->symtree->n.sym->ts;
|
|
|
|
/* Return 1 if expr1 and expr2 are equivalenced arrays. */
|
|
if (gfc_are_equivalenced_arrays (expr1, expr2))
|
|
return 1;
|
|
|
|
/* Symbols can only alias if they have the same type. */
|
|
if (ts1->type != BT_UNKNOWN && ts2->type != BT_UNKNOWN
|
|
&& ts1->type != BT_DERIVED && ts2->type != BT_DERIVED)
|
|
{
|
|
if (ts1->type != ts2->type || ts1->kind != ts2->kind)
|
|
return 0;
|
|
}
|
|
|
|
/* We have to also include target-target as ptr%comp is not a
|
|
pointer but it still alias with "dt%comp" for "ptr => dt". As
|
|
subcomponents and array access to pointers retains the target
|
|
attribute, that's sufficient. */
|
|
attr1 = gfc_expr_attr (expr1);
|
|
attr2 = gfc_expr_attr (expr2);
|
|
if ((attr1.pointer || attr1.target) && (attr2.pointer || attr2.target))
|
|
{
|
|
if (check_data_pointer_types (expr1, expr2)
|
|
&& check_data_pointer_types (expr2, expr1))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
gfc_symbol *sym1 = expr1->symtree->n.sym;
|
|
gfc_symbol *sym2 = expr2->symtree->n.sym;
|
|
if (sym1->attr.target && sym2->attr.target
|
|
&& ((sym1->attr.dummy && !sym1->attr.contiguous
|
|
&& (!sym1->attr.dimension
|
|
|| sym2->as->type == AS_ASSUMED_SHAPE))
|
|
|| (sym2->attr.dummy && !sym2->attr.contiguous
|
|
&& (!sym2->attr.dimension
|
|
|| sym2->as->type == AS_ASSUMED_SHAPE))))
|
|
return 1;
|
|
}
|
|
|
|
/* Otherwise distinct symbols have no dependencies. */
|
|
return 0;
|
|
}
|
|
|
|
/* Identical and disjoint ranges return 0,
|
|
overlapping ranges return 1. */
|
|
if (expr1->ref && expr2->ref)
|
|
return gfc_dep_resolver (expr1->ref, expr2->ref, NULL, identical);
|
|
|
|
return 1;
|
|
|
|
case EXPR_FUNCTION:
|
|
if (gfc_get_noncopying_intrinsic_argument (expr2) != NULL)
|
|
identical = 1;
|
|
|
|
/* Remember possible differences between elemental and
|
|
transformational functions. All functions inside a FORALL
|
|
will be pure. */
|
|
for (actual = expr2->value.function.actual;
|
|
actual; actual = actual->next)
|
|
{
|
|
if (!actual->expr)
|
|
continue;
|
|
n = gfc_check_dependency (expr1, actual->expr, identical);
|
|
if (n)
|
|
return n;
|
|
}
|
|
return 0;
|
|
|
|
case EXPR_CONSTANT:
|
|
case EXPR_NULL:
|
|
return 0;
|
|
|
|
case EXPR_ARRAY:
|
|
/* Loop through the array constructor's elements. */
|
|
for (c = gfc_constructor_first (expr2->value.constructor);
|
|
c; c = gfc_constructor_next (c))
|
|
{
|
|
/* If this is an iterator, assume the worst. */
|
|
if (c->iterator)
|
|
return 1;
|
|
/* Avoid recursion in the common case. */
|
|
if (c->expr->expr_type == EXPR_CONSTANT)
|
|
continue;
|
|
if (gfc_check_dependency (expr1, c->expr, 1))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
|
|
/* Determines overlapping for two array sections. */
|
|
|
|
static gfc_dependency
|
|
check_section_vs_section (gfc_array_ref *l_ar, gfc_array_ref *r_ar, int n)
|
|
{
|
|
gfc_expr *l_start;
|
|
gfc_expr *l_end;
|
|
gfc_expr *l_stride;
|
|
gfc_expr *l_lower;
|
|
gfc_expr *l_upper;
|
|
int l_dir;
|
|
|
|
gfc_expr *r_start;
|
|
gfc_expr *r_end;
|
|
gfc_expr *r_stride;
|
|
gfc_expr *r_lower;
|
|
gfc_expr *r_upper;
|
|
gfc_expr *one_expr;
|
|
int r_dir;
|
|
int stride_comparison;
|
|
int start_comparison;
|
|
mpz_t tmp;
|
|
|
|
/* If they are the same range, return without more ado. */
|
|
if (is_same_range (l_ar, r_ar, n))
|
|
return GFC_DEP_EQUAL;
|
|
|
|
l_start = l_ar->start[n];
|
|
l_end = l_ar->end[n];
|
|
l_stride = l_ar->stride[n];
|
|
|
|
r_start = r_ar->start[n];
|
|
r_end = r_ar->end[n];
|
|
r_stride = r_ar->stride[n];
|
|
|
|
/* If l_start is NULL take it from array specifier. */
|
|
if (l_start == NULL && IS_ARRAY_EXPLICIT (l_ar->as))
|
|
l_start = l_ar->as->lower[n];
|
|
/* If l_end is NULL take it from array specifier. */
|
|
if (l_end == NULL && IS_ARRAY_EXPLICIT (l_ar->as))
|
|
l_end = l_ar->as->upper[n];
|
|
|
|
/* If r_start is NULL take it from array specifier. */
|
|
if (r_start == NULL && IS_ARRAY_EXPLICIT (r_ar->as))
|
|
r_start = r_ar->as->lower[n];
|
|
/* If r_end is NULL take it from array specifier. */
|
|
if (r_end == NULL && IS_ARRAY_EXPLICIT (r_ar->as))
|
|
r_end = r_ar->as->upper[n];
|
|
|
|
/* Determine whether the l_stride is positive or negative. */
|
|
if (!l_stride)
|
|
l_dir = 1;
|
|
else if (l_stride->expr_type == EXPR_CONSTANT
|
|
&& l_stride->ts.type == BT_INTEGER)
|
|
l_dir = mpz_sgn (l_stride->value.integer);
|
|
else if (l_start && l_end)
|
|
l_dir = gfc_dep_compare_expr (l_end, l_start);
|
|
else
|
|
l_dir = -2;
|
|
|
|
/* Determine whether the r_stride is positive or negative. */
|
|
if (!r_stride)
|
|
r_dir = 1;
|
|
else if (r_stride->expr_type == EXPR_CONSTANT
|
|
&& r_stride->ts.type == BT_INTEGER)
|
|
r_dir = mpz_sgn (r_stride->value.integer);
|
|
else if (r_start && r_end)
|
|
r_dir = gfc_dep_compare_expr (r_end, r_start);
|
|
else
|
|
r_dir = -2;
|
|
|
|
/* The strides should never be zero. */
|
|
if (l_dir == 0 || r_dir == 0)
|
|
return GFC_DEP_OVERLAP;
|
|
|
|
/* Determine the relationship between the strides. Set stride_comparison to
|
|
-2 if the dependency cannot be determined
|
|
-1 if l_stride < r_stride
|
|
0 if l_stride == r_stride
|
|
1 if l_stride > r_stride
|
|
as determined by gfc_dep_compare_expr. */
|
|
|
|
one_expr = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
|
|
stride_comparison = gfc_dep_compare_expr (l_stride ? l_stride : one_expr,
|
|
r_stride ? r_stride : one_expr);
|
|
|
|
if (l_start && r_start)
|
|
start_comparison = gfc_dep_compare_expr (l_start, r_start);
|
|
else
|
|
start_comparison = -2;
|
|
|
|
gfc_free_expr (one_expr);
|
|
|
|
/* Determine LHS upper and lower bounds. */
|
|
if (l_dir == 1)
|
|
{
|
|
l_lower = l_start;
|
|
l_upper = l_end;
|
|
}
|
|
else if (l_dir == -1)
|
|
{
|
|
l_lower = l_end;
|
|
l_upper = l_start;
|
|
}
|
|
else
|
|
{
|
|
l_lower = NULL;
|
|
l_upper = NULL;
|
|
}
|
|
|
|
/* Determine RHS upper and lower bounds. */
|
|
if (r_dir == 1)
|
|
{
|
|
r_lower = r_start;
|
|
r_upper = r_end;
|
|
}
|
|
else if (r_dir == -1)
|
|
{
|
|
r_lower = r_end;
|
|
r_upper = r_start;
|
|
}
|
|
else
|
|
{
|
|
r_lower = NULL;
|
|
r_upper = NULL;
|
|
}
|
|
|
|
/* Check whether the ranges are disjoint. */
|
|
if (l_upper && r_lower && gfc_dep_compare_expr (l_upper, r_lower) == -1)
|
|
return GFC_DEP_NODEP;
|
|
if (r_upper && l_lower && gfc_dep_compare_expr (r_upper, l_lower) == -1)
|
|
return GFC_DEP_NODEP;
|
|
|
|
/* Handle cases like x:y:1 vs. x:z:-1 as GFC_DEP_EQUAL. */
|
|
if (l_start && r_start && gfc_dep_compare_expr (l_start, r_start) == 0)
|
|
{
|
|
if (l_dir == 1 && r_dir == -1)
|
|
return GFC_DEP_EQUAL;
|
|
if (l_dir == -1 && r_dir == 1)
|
|
return GFC_DEP_EQUAL;
|
|
}
|
|
|
|
/* Handle cases like x:y:1 vs. z:y:-1 as GFC_DEP_EQUAL. */
|
|
if (l_end && r_end && gfc_dep_compare_expr (l_end, r_end) == 0)
|
|
{
|
|
if (l_dir == 1 && r_dir == -1)
|
|
return GFC_DEP_EQUAL;
|
|
if (l_dir == -1 && r_dir == 1)
|
|
return GFC_DEP_EQUAL;
|
|
}
|
|
|
|
/* Handle cases like x:y:2 vs. x+1:z:4 as GFC_DEP_NODEP.
|
|
There is no dependency if the remainder of
|
|
(l_start - r_start) / gcd(l_stride, r_stride) is
|
|
nonzero.
|
|
TODO:
|
|
- Cases like a(1:4:2) = a(2:3) are still not handled.
|
|
*/
|
|
|
|
#define IS_CONSTANT_INTEGER(a) ((a) && ((a)->expr_type == EXPR_CONSTANT) \
|
|
&& (a)->ts.type == BT_INTEGER)
|
|
|
|
if (IS_CONSTANT_INTEGER (l_stride) && IS_CONSTANT_INTEGER (r_stride)
|
|
&& gfc_dep_difference (l_start, r_start, &tmp))
|
|
{
|
|
mpz_t gcd;
|
|
int result;
|
|
|
|
mpz_init (gcd);
|
|
mpz_gcd (gcd, l_stride->value.integer, r_stride->value.integer);
|
|
|
|
mpz_fdiv_r (tmp, tmp, gcd);
|
|
result = mpz_cmp_si (tmp, 0L);
|
|
|
|
mpz_clear (gcd);
|
|
mpz_clear (tmp);
|
|
|
|
if (result != 0)
|
|
return GFC_DEP_NODEP;
|
|
}
|
|
|
|
#undef IS_CONSTANT_INTEGER
|
|
|
|
/* Check for forward dependencies x:y vs. x+1:z and x:y:z vs. x:y:z+1. */
|
|
|
|
if (l_dir == 1 && r_dir == 1 &&
|
|
(start_comparison == 0 || start_comparison == -1)
|
|
&& (stride_comparison == 0 || stride_comparison == -1))
|
|
return GFC_DEP_FORWARD;
|
|
|
|
/* Check for forward dependencies x:y:-1 vs. x-1:z:-1 and
|
|
x:y:-1 vs. x:y:-2. */
|
|
if (l_dir == -1 && r_dir == -1 &&
|
|
(start_comparison == 0 || start_comparison == 1)
|
|
&& (stride_comparison == 0 || stride_comparison == 1))
|
|
return GFC_DEP_FORWARD;
|
|
|
|
if (stride_comparison == 0 || stride_comparison == -1)
|
|
{
|
|
if (l_start && IS_ARRAY_EXPLICIT (l_ar->as))
|
|
{
|
|
|
|
/* Check for a(low:y:s) vs. a(z:x:s) or
|
|
a(low:y:s) vs. a(z:x:s+1) where a has a lower bound
|
|
of low, which is always at least a forward dependence. */
|
|
|
|
if (r_dir == 1
|
|
&& gfc_dep_compare_expr (l_start, l_ar->as->lower[n]) == 0)
|
|
return GFC_DEP_FORWARD;
|
|
}
|
|
}
|
|
|
|
if (stride_comparison == 0 || stride_comparison == 1)
|
|
{
|
|
if (l_start && IS_ARRAY_EXPLICIT (l_ar->as))
|
|
{
|
|
|
|
/* Check for a(high:y:-s) vs. a(z:x:-s) or
|
|
a(high:y:-s vs. a(z:x:-s-1) where a has a higher bound
|
|
of high, which is always at least a forward dependence. */
|
|
|
|
if (r_dir == -1
|
|
&& gfc_dep_compare_expr (l_start, l_ar->as->upper[n]) == 0)
|
|
return GFC_DEP_FORWARD;
|
|
}
|
|
}
|
|
|
|
|
|
if (stride_comparison == 0)
|
|
{
|
|
/* From here, check for backwards dependencies. */
|
|
/* x+1:y vs. x:z. */
|
|
if (l_dir == 1 && r_dir == 1 && start_comparison == 1)
|
|
return GFC_DEP_BACKWARD;
|
|
|
|
/* x-1:y:-1 vs. x:z:-1. */
|
|
if (l_dir == -1 && r_dir == -1 && start_comparison == -1)
|
|
return GFC_DEP_BACKWARD;
|
|
}
|
|
|
|
return GFC_DEP_OVERLAP;
|
|
}
|
|
|
|
|
|
/* Determines overlapping for a single element and a section. */
|
|
|
|
static gfc_dependency
|
|
gfc_check_element_vs_section( gfc_ref *lref, gfc_ref *rref, int n)
|
|
{
|
|
gfc_array_ref *ref;
|
|
gfc_expr *elem;
|
|
gfc_expr *start;
|
|
gfc_expr *end;
|
|
gfc_expr *stride;
|
|
int s;
|
|
|
|
elem = lref->u.ar.start[n];
|
|
if (!elem)
|
|
return GFC_DEP_OVERLAP;
|
|
|
|
ref = &rref->u.ar;
|
|
start = ref->start[n] ;
|
|
end = ref->end[n] ;
|
|
stride = ref->stride[n];
|
|
|
|
if (!start && IS_ARRAY_EXPLICIT (ref->as))
|
|
start = ref->as->lower[n];
|
|
if (!end && IS_ARRAY_EXPLICIT (ref->as))
|
|
end = ref->as->upper[n];
|
|
|
|
/* Determine whether the stride is positive or negative. */
|
|
if (!stride)
|
|
s = 1;
|
|
else if (stride->expr_type == EXPR_CONSTANT
|
|
&& stride->ts.type == BT_INTEGER)
|
|
s = mpz_sgn (stride->value.integer);
|
|
else
|
|
s = -2;
|
|
|
|
/* Stride should never be zero. */
|
|
if (s == 0)
|
|
return GFC_DEP_OVERLAP;
|
|
|
|
/* Positive strides. */
|
|
if (s == 1)
|
|
{
|
|
/* Check for elem < lower. */
|
|
if (start && gfc_dep_compare_expr (elem, start) == -1)
|
|
return GFC_DEP_NODEP;
|
|
/* Check for elem > upper. */
|
|
if (end && gfc_dep_compare_expr (elem, end) == 1)
|
|
return GFC_DEP_NODEP;
|
|
|
|
if (start && end)
|
|
{
|
|
s = gfc_dep_compare_expr (start, end);
|
|
/* Check for an empty range. */
|
|
if (s == 1)
|
|
return GFC_DEP_NODEP;
|
|
if (s == 0 && gfc_dep_compare_expr (elem, start) == 0)
|
|
return GFC_DEP_EQUAL;
|
|
}
|
|
}
|
|
/* Negative strides. */
|
|
else if (s == -1)
|
|
{
|
|
/* Check for elem > upper. */
|
|
if (end && gfc_dep_compare_expr (elem, start) == 1)
|
|
return GFC_DEP_NODEP;
|
|
/* Check for elem < lower. */
|
|
if (start && gfc_dep_compare_expr (elem, end) == -1)
|
|
return GFC_DEP_NODEP;
|
|
|
|
if (start && end)
|
|
{
|
|
s = gfc_dep_compare_expr (start, end);
|
|
/* Check for an empty range. */
|
|
if (s == -1)
|
|
return GFC_DEP_NODEP;
|
|
if (s == 0 && gfc_dep_compare_expr (elem, start) == 0)
|
|
return GFC_DEP_EQUAL;
|
|
}
|
|
}
|
|
/* Unknown strides. */
|
|
else
|
|
{
|
|
if (!start || !end)
|
|
return GFC_DEP_OVERLAP;
|
|
s = gfc_dep_compare_expr (start, end);
|
|
if (s <= -2)
|
|
return GFC_DEP_OVERLAP;
|
|
/* Assume positive stride. */
|
|
if (s == -1)
|
|
{
|
|
/* Check for elem < lower. */
|
|
if (gfc_dep_compare_expr (elem, start) == -1)
|
|
return GFC_DEP_NODEP;
|
|
/* Check for elem > upper. */
|
|
if (gfc_dep_compare_expr (elem, end) == 1)
|
|
return GFC_DEP_NODEP;
|
|
}
|
|
/* Assume negative stride. */
|
|
else if (s == 1)
|
|
{
|
|
/* Check for elem > upper. */
|
|
if (gfc_dep_compare_expr (elem, start) == 1)
|
|
return GFC_DEP_NODEP;
|
|
/* Check for elem < lower. */
|
|
if (gfc_dep_compare_expr (elem, end) == -1)
|
|
return GFC_DEP_NODEP;
|
|
}
|
|
/* Equal bounds. */
|
|
else if (s == 0)
|
|
{
|
|
s = gfc_dep_compare_expr (elem, start);
|
|
if (s == 0)
|
|
return GFC_DEP_EQUAL;
|
|
if (s == 1 || s == -1)
|
|
return GFC_DEP_NODEP;
|
|
}
|
|
}
|
|
|
|
return GFC_DEP_OVERLAP;
|
|
}
|
|
|
|
|
|
/* Traverse expr, checking all EXPR_VARIABLE symbols for their
|
|
forall_index attribute. Return true if any variable may be
|
|
being used as a FORALL index. Its safe to pessimistically
|
|
return true, and assume a dependency. */
|
|
|
|
static bool
|
|
contains_forall_index_p (gfc_expr *expr)
|
|
{
|
|
gfc_actual_arglist *arg;
|
|
gfc_constructor *c;
|
|
gfc_ref *ref;
|
|
int i;
|
|
|
|
if (!expr)
|
|
return false;
|
|
|
|
switch (expr->expr_type)
|
|
{
|
|
case EXPR_VARIABLE:
|
|
if (expr->symtree->n.sym->forall_index)
|
|
return true;
|
|
break;
|
|
|
|
case EXPR_OP:
|
|
if (contains_forall_index_p (expr->value.op.op1)
|
|
|| contains_forall_index_p (expr->value.op.op2))
|
|
return true;
|
|
break;
|
|
|
|
case EXPR_FUNCTION:
|
|
for (arg = expr->value.function.actual; arg; arg = arg->next)
|
|
if (contains_forall_index_p (arg->expr))
|
|
return true;
|
|
break;
|
|
|
|
case EXPR_CONSTANT:
|
|
case EXPR_NULL:
|
|
case EXPR_SUBSTRING:
|
|
break;
|
|
|
|
case EXPR_STRUCTURE:
|
|
case EXPR_ARRAY:
|
|
for (c = gfc_constructor_first (expr->value.constructor);
|
|
c; gfc_constructor_next (c))
|
|
if (contains_forall_index_p (c->expr))
|
|
return true;
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
for (ref = expr->ref; ref; ref = ref->next)
|
|
switch (ref->type)
|
|
{
|
|
case REF_ARRAY:
|
|
for (i = 0; i < ref->u.ar.dimen; i++)
|
|
if (contains_forall_index_p (ref->u.ar.start[i])
|
|
|| contains_forall_index_p (ref->u.ar.end[i])
|
|
|| contains_forall_index_p (ref->u.ar.stride[i]))
|
|
return true;
|
|
break;
|
|
|
|
case REF_COMPONENT:
|
|
break;
|
|
|
|
case REF_SUBSTRING:
|
|
if (contains_forall_index_p (ref->u.ss.start)
|
|
|| contains_forall_index_p (ref->u.ss.end))
|
|
return true;
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Determines overlapping for two single element array references. */
|
|
|
|
static gfc_dependency
|
|
gfc_check_element_vs_element (gfc_ref *lref, gfc_ref *rref, int n)
|
|
{
|
|
gfc_array_ref l_ar;
|
|
gfc_array_ref r_ar;
|
|
gfc_expr *l_start;
|
|
gfc_expr *r_start;
|
|
int i;
|
|
|
|
l_ar = lref->u.ar;
|
|
r_ar = rref->u.ar;
|
|
l_start = l_ar.start[n] ;
|
|
r_start = r_ar.start[n] ;
|
|
i = gfc_dep_compare_expr (r_start, l_start);
|
|
if (i == 0)
|
|
return GFC_DEP_EQUAL;
|
|
|
|
/* Treat two scalar variables as potentially equal. This allows
|
|
us to prove that a(i,:) and a(j,:) have no dependency. See
|
|
Gerald Roth, "Evaluation of Array Syntax Dependence Analysis",
|
|
Proceedings of the International Conference on Parallel and
|
|
Distributed Processing Techniques and Applications (PDPTA2001),
|
|
Las Vegas, Nevada, June 2001. */
|
|
/* However, we need to be careful when either scalar expression
|
|
contains a FORALL index, as these can potentially change value
|
|
during the scalarization/traversal of this array reference. */
|
|
if (contains_forall_index_p (r_start) || contains_forall_index_p (l_start))
|
|
return GFC_DEP_OVERLAP;
|
|
|
|
if (i > -2)
|
|
return GFC_DEP_NODEP;
|
|
|
|
return GFC_DEP_EQUAL;
|
|
}
|
|
|
|
/* Callback function for checking if an expression depends on a
|
|
dummy variable which is any other than INTENT(IN). */
|
|
|
|
static int
|
|
callback_dummy_intent_not_in (gfc_expr **ep,
|
|
int *walk_subtrees ATTRIBUTE_UNUSED,
|
|
void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
gfc_expr *e = *ep;
|
|
|
|
if (e->expr_type == EXPR_VARIABLE && e->symtree
|
|
&& e->symtree->n.sym->attr.dummy)
|
|
return e->symtree->n.sym->attr.intent != INTENT_IN;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Auxiliary function to check if subexpressions have dummy variables which
|
|
are not intent(in).
|
|
*/
|
|
|
|
static bool
|
|
dummy_intent_not_in (gfc_expr **ep)
|
|
{
|
|
return gfc_expr_walker (ep, callback_dummy_intent_not_in, NULL);
|
|
}
|
|
|
|
/* Determine if an array ref, usually an array section specifies the
|
|
entire array. In addition, if the second, pointer argument is
|
|
provided, the function will return true if the reference is
|
|
contiguous; eg. (:, 1) gives true but (1,:) gives false.
|
|
If one of the bounds depends on a dummy variable which is
|
|
not INTENT(IN), also return false, because the user may
|
|
have changed the variable. */
|
|
|
|
bool
|
|
gfc_full_array_ref_p (gfc_ref *ref, bool *contiguous)
|
|
{
|
|
int i;
|
|
int n;
|
|
bool lbound_OK = true;
|
|
bool ubound_OK = true;
|
|
|
|
if (contiguous)
|
|
*contiguous = false;
|
|
|
|
if (ref->type != REF_ARRAY)
|
|
return false;
|
|
|
|
if (ref->u.ar.type == AR_FULL)
|
|
{
|
|
if (contiguous)
|
|
*contiguous = true;
|
|
return true;
|
|
}
|
|
|
|
if (ref->u.ar.type != AR_SECTION)
|
|
return false;
|
|
if (ref->next)
|
|
return false;
|
|
|
|
for (i = 0; i < ref->u.ar.dimen; i++)
|
|
{
|
|
/* If we have a single element in the reference, for the reference
|
|
to be full, we need to ascertain that the array has a single
|
|
element in this dimension and that we actually reference the
|
|
correct element. */
|
|
if (ref->u.ar.dimen_type[i] == DIMEN_ELEMENT)
|
|
{
|
|
/* This is unconditionally a contiguous reference if all the
|
|
remaining dimensions are elements. */
|
|
if (contiguous)
|
|
{
|
|
*contiguous = true;
|
|
for (n = i + 1; n < ref->u.ar.dimen; n++)
|
|
if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
|
|
*contiguous = false;
|
|
}
|
|
|
|
if (!ref->u.ar.as
|
|
|| !ref->u.ar.as->lower[i]
|
|
|| !ref->u.ar.as->upper[i]
|
|
|| gfc_dep_compare_expr (ref->u.ar.as->lower[i],
|
|
ref->u.ar.as->upper[i])
|
|
|| !ref->u.ar.start[i]
|
|
|| gfc_dep_compare_expr (ref->u.ar.start[i],
|
|
ref->u.ar.as->lower[i]))
|
|
return false;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
/* Check the lower bound. */
|
|
if (ref->u.ar.start[i]
|
|
&& (!ref->u.ar.as
|
|
|| !ref->u.ar.as->lower[i]
|
|
|| gfc_dep_compare_expr (ref->u.ar.start[i],
|
|
ref->u.ar.as->lower[i])
|
|
|| dummy_intent_not_in (&ref->u.ar.start[i])))
|
|
lbound_OK = false;
|
|
/* Check the upper bound. */
|
|
if (ref->u.ar.end[i]
|
|
&& (!ref->u.ar.as
|
|
|| !ref->u.ar.as->upper[i]
|
|
|| gfc_dep_compare_expr (ref->u.ar.end[i],
|
|
ref->u.ar.as->upper[i])
|
|
|| dummy_intent_not_in (&ref->u.ar.end[i])))
|
|
ubound_OK = false;
|
|
/* Check the stride. */
|
|
if (ref->u.ar.stride[i]
|
|
&& !gfc_expr_is_one (ref->u.ar.stride[i], 0))
|
|
return false;
|
|
|
|
/* This is unconditionally a contiguous reference as long as all
|
|
the subsequent dimensions are elements. */
|
|
if (contiguous)
|
|
{
|
|
*contiguous = true;
|
|
for (n = i + 1; n < ref->u.ar.dimen; n++)
|
|
if (ref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
|
|
*contiguous = false;
|
|
}
|
|
|
|
if (!lbound_OK || !ubound_OK)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Determine if a full array is the same as an array section with one
|
|
variable limit. For this to be so, the strides must both be unity
|
|
and one of either start == lower or end == upper must be true. */
|
|
|
|
static bool
|
|
ref_same_as_full_array (gfc_ref *full_ref, gfc_ref *ref)
|
|
{
|
|
int i;
|
|
bool upper_or_lower;
|
|
|
|
if (full_ref->type != REF_ARRAY)
|
|
return false;
|
|
if (full_ref->u.ar.type != AR_FULL)
|
|
return false;
|
|
if (ref->type != REF_ARRAY)
|
|
return false;
|
|
if (ref->u.ar.type == AR_FULL)
|
|
return true;
|
|
if (ref->u.ar.type != AR_SECTION)
|
|
return false;
|
|
|
|
for (i = 0; i < ref->u.ar.dimen; i++)
|
|
{
|
|
/* If we have a single element in the reference, we need to check
|
|
that the array has a single element and that we actually reference
|
|
the correct element. */
|
|
if (ref->u.ar.dimen_type[i] == DIMEN_ELEMENT)
|
|
{
|
|
if (!full_ref->u.ar.as
|
|
|| !full_ref->u.ar.as->lower[i]
|
|
|| !full_ref->u.ar.as->upper[i]
|
|
|| gfc_dep_compare_expr (full_ref->u.ar.as->lower[i],
|
|
full_ref->u.ar.as->upper[i])
|
|
|| !ref->u.ar.start[i]
|
|
|| gfc_dep_compare_expr (ref->u.ar.start[i],
|
|
full_ref->u.ar.as->lower[i]))
|
|
return false;
|
|
}
|
|
|
|
/* Check the strides. */
|
|
if (full_ref->u.ar.stride[i] && !gfc_expr_is_one (full_ref->u.ar.stride[i], 0))
|
|
return false;
|
|
if (ref->u.ar.stride[i] && !gfc_expr_is_one (ref->u.ar.stride[i], 0))
|
|
return false;
|
|
|
|
upper_or_lower = false;
|
|
/* Check the lower bound. */
|
|
if (ref->u.ar.start[i]
|
|
&& (ref->u.ar.as
|
|
&& full_ref->u.ar.as->lower[i]
|
|
&& gfc_dep_compare_expr (ref->u.ar.start[i],
|
|
full_ref->u.ar.as->lower[i]) == 0))
|
|
upper_or_lower = true;
|
|
/* Check the upper bound. */
|
|
if (ref->u.ar.end[i]
|
|
&& (ref->u.ar.as
|
|
&& full_ref->u.ar.as->upper[i]
|
|
&& gfc_dep_compare_expr (ref->u.ar.end[i],
|
|
full_ref->u.ar.as->upper[i]) == 0))
|
|
upper_or_lower = true;
|
|
if (!upper_or_lower)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Finds if two array references are overlapping or not.
|
|
Return value
|
|
2 : array references are overlapping but reversal of one or
|
|
more dimensions will clear the dependency.
|
|
1 : array references are overlapping, or identical is true and
|
|
there is some kind of overlap.
|
|
0 : array references are identical or not overlapping. */
|
|
|
|
int
|
|
gfc_dep_resolver (gfc_ref *lref, gfc_ref *rref, gfc_reverse *reverse,
|
|
bool identical)
|
|
{
|
|
int n;
|
|
int m;
|
|
gfc_dependency fin_dep;
|
|
gfc_dependency this_dep;
|
|
bool same_component = false;
|
|
|
|
this_dep = GFC_DEP_ERROR;
|
|
fin_dep = GFC_DEP_ERROR;
|
|
/* Dependencies due to pointers should already have been identified.
|
|
We only need to check for overlapping array references. */
|
|
|
|
while (lref && rref)
|
|
{
|
|
/* The refs might come in mixed, one with a _data component and one
|
|
without. Look at their next reference in order to avoid an
|
|
ICE. */
|
|
|
|
if (lref && lref->type == REF_COMPONENT && lref->u.c.component
|
|
&& strcmp (lref->u.c.component->name, "_data") == 0)
|
|
lref = lref->next;
|
|
|
|
if (rref && rref->type == REF_COMPONENT && rref->u.c.component
|
|
&& strcmp (rref->u.c.component->name, "_data") == 0)
|
|
rref = rref->next;
|
|
|
|
/* We're resolving from the same base symbol, so both refs should be
|
|
the same type. We traverse the reference chain until we find ranges
|
|
that are not equal. */
|
|
gcc_assert (lref->type == rref->type);
|
|
switch (lref->type)
|
|
{
|
|
case REF_COMPONENT:
|
|
/* The two ranges can't overlap if they are from different
|
|
components. */
|
|
if (lref->u.c.component != rref->u.c.component)
|
|
return 0;
|
|
|
|
same_component = true;
|
|
break;
|
|
|
|
case REF_SUBSTRING:
|
|
/* Substring overlaps are handled by the string assignment code
|
|
if there is not an underlying dependency. */
|
|
return (fin_dep == GFC_DEP_OVERLAP) ? 1 : 0;
|
|
|
|
case REF_ARRAY:
|
|
|
|
/* For now, treat all coarrays as dangerous. */
|
|
if (lref->u.ar.codimen || rref->u.ar.codimen)
|
|
return 1;
|
|
|
|
if (ref_same_as_full_array (lref, rref))
|
|
return identical;
|
|
|
|
if (ref_same_as_full_array (rref, lref))
|
|
return identical;
|
|
|
|
if (lref->u.ar.dimen != rref->u.ar.dimen)
|
|
{
|
|
if (lref->u.ar.type == AR_FULL)
|
|
fin_dep = gfc_full_array_ref_p (rref, NULL) ? GFC_DEP_EQUAL
|
|
: GFC_DEP_OVERLAP;
|
|
else if (rref->u.ar.type == AR_FULL)
|
|
fin_dep = gfc_full_array_ref_p (lref, NULL) ? GFC_DEP_EQUAL
|
|
: GFC_DEP_OVERLAP;
|
|
else
|
|
return 1;
|
|
break;
|
|
}
|
|
|
|
/* Index for the reverse array. */
|
|
m = -1;
|
|
for (n = 0; n < lref->u.ar.dimen; n++)
|
|
{
|
|
/* Handle dependency when either of array reference is vector
|
|
subscript. There is no dependency if the vector indices
|
|
are equal or if indices are known to be different in a
|
|
different dimension. */
|
|
if (lref->u.ar.dimen_type[n] == DIMEN_VECTOR
|
|
|| rref->u.ar.dimen_type[n] == DIMEN_VECTOR)
|
|
{
|
|
if (lref->u.ar.dimen_type[n] == DIMEN_VECTOR
|
|
&& rref->u.ar.dimen_type[n] == DIMEN_VECTOR
|
|
&& gfc_dep_compare_expr (lref->u.ar.start[n],
|
|
rref->u.ar.start[n]) == 0)
|
|
this_dep = GFC_DEP_EQUAL;
|
|
else
|
|
this_dep = GFC_DEP_OVERLAP;
|
|
|
|
goto update_fin_dep;
|
|
}
|
|
|
|
if (lref->u.ar.dimen_type[n] == DIMEN_RANGE
|
|
&& rref->u.ar.dimen_type[n] == DIMEN_RANGE)
|
|
this_dep = check_section_vs_section (&lref->u.ar,
|
|
&rref->u.ar, n);
|
|
else if (lref->u.ar.dimen_type[n] == DIMEN_ELEMENT
|
|
&& rref->u.ar.dimen_type[n] == DIMEN_RANGE)
|
|
this_dep = gfc_check_element_vs_section (lref, rref, n);
|
|
else if (rref->u.ar.dimen_type[n] == DIMEN_ELEMENT
|
|
&& lref->u.ar.dimen_type[n] == DIMEN_RANGE)
|
|
this_dep = gfc_check_element_vs_section (rref, lref, n);
|
|
else
|
|
{
|
|
gcc_assert (rref->u.ar.dimen_type[n] == DIMEN_ELEMENT
|
|
&& lref->u.ar.dimen_type[n] == DIMEN_ELEMENT);
|
|
this_dep = gfc_check_element_vs_element (rref, lref, n);
|
|
if (identical && this_dep == GFC_DEP_EQUAL)
|
|
this_dep = GFC_DEP_OVERLAP;
|
|
}
|
|
|
|
/* If any dimension doesn't overlap, we have no dependency. */
|
|
if (this_dep == GFC_DEP_NODEP)
|
|
return 0;
|
|
|
|
/* Now deal with the loop reversal logic: This only works on
|
|
ranges and is activated by setting
|
|
reverse[n] == GFC_ENABLE_REVERSE
|
|
The ability to reverse or not is set by previous conditions
|
|
in this dimension. If reversal is not activated, the
|
|
value GFC_DEP_BACKWARD is reset to GFC_DEP_OVERLAP. */
|
|
|
|
/* Get the indexing right for the scalarizing loop. If this
|
|
is an element, there is no corresponding loop. */
|
|
if (lref->u.ar.dimen_type[n] != DIMEN_ELEMENT)
|
|
m++;
|
|
|
|
if (rref->u.ar.dimen_type[n] == DIMEN_RANGE
|
|
&& lref->u.ar.dimen_type[n] == DIMEN_RANGE)
|
|
{
|
|
if (reverse)
|
|
{
|
|
/* Reverse if backward dependence and not inhibited. */
|
|
if (reverse[m] == GFC_ENABLE_REVERSE
|
|
&& this_dep == GFC_DEP_BACKWARD)
|
|
reverse[m] = GFC_REVERSE_SET;
|
|
|
|
/* Forward if forward dependence and not inhibited. */
|
|
if (reverse[m] == GFC_ENABLE_REVERSE
|
|
&& this_dep == GFC_DEP_FORWARD)
|
|
reverse[m] = GFC_FORWARD_SET;
|
|
|
|
/* Flag up overlap if dependence not compatible with
|
|
the overall state of the expression. */
|
|
if (reverse[m] == GFC_REVERSE_SET
|
|
&& this_dep == GFC_DEP_FORWARD)
|
|
{
|
|
reverse[m] = GFC_INHIBIT_REVERSE;
|
|
this_dep = GFC_DEP_OVERLAP;
|
|
}
|
|
else if (reverse[m] == GFC_FORWARD_SET
|
|
&& this_dep == GFC_DEP_BACKWARD)
|
|
{
|
|
reverse[m] = GFC_INHIBIT_REVERSE;
|
|
this_dep = GFC_DEP_OVERLAP;
|
|
}
|
|
}
|
|
|
|
/* If no intention of reversing or reversing is explicitly
|
|
inhibited, convert backward dependence to overlap. */
|
|
if ((!reverse && this_dep == GFC_DEP_BACKWARD)
|
|
|| (reverse && reverse[m] == GFC_INHIBIT_REVERSE))
|
|
this_dep = GFC_DEP_OVERLAP;
|
|
}
|
|
|
|
/* Overlap codes are in order of priority. We only need to
|
|
know the worst one.*/
|
|
|
|
update_fin_dep:
|
|
if (identical && this_dep == GFC_DEP_EQUAL)
|
|
this_dep = GFC_DEP_OVERLAP;
|
|
|
|
if (this_dep > fin_dep)
|
|
fin_dep = this_dep;
|
|
}
|
|
|
|
/* If this is an equal element, we have to keep going until we find
|
|
the "real" array reference. */
|
|
if (lref->u.ar.type == AR_ELEMENT
|
|
&& rref->u.ar.type == AR_ELEMENT
|
|
&& fin_dep == GFC_DEP_EQUAL)
|
|
break;
|
|
|
|
/* Exactly matching and forward overlapping ranges don't cause a
|
|
dependency. */
|
|
if (fin_dep < GFC_DEP_BACKWARD && !identical)
|
|
return 0;
|
|
|
|
/* Keep checking. We only have a dependency if
|
|
subsequent references also overlap. */
|
|
break;
|
|
|
|
case REF_INQUIRY:
|
|
if (lref->u.i != rref->u.i)
|
|
return 0;
|
|
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
lref = lref->next;
|
|
rref = rref->next;
|
|
}
|
|
|
|
/* Assume the worst if we nest to different depths. */
|
|
if (lref || rref)
|
|
return 1;
|
|
|
|
/* This can result from concatenation of assumed length string components. */
|
|
if (same_component && fin_dep == GFC_DEP_ERROR)
|
|
return 1;
|
|
|
|
/* If we haven't seen any array refs then something went wrong. */
|
|
gcc_assert (fin_dep != GFC_DEP_ERROR);
|
|
|
|
if (identical && fin_dep != GFC_DEP_NODEP)
|
|
return 1;
|
|
|
|
return fin_dep == GFC_DEP_OVERLAP;
|
|
}
|