8sa1-gcc/gcc/tree-vect-patterns.c
Dorit Nuzman d29de1bf28 tree-vectorizer.h (vect_is_simple_reduction): Takes a loop_vec_info as argument instead of struct loop.
* tree-vectorizer.h (vect_is_simple_reduction): Takes a loop_vec_info
        as argument instead of struct loop.
        (nested_in_vect_loop_p): New function.
        (vect_relevant): Add enum values vect_used_in_outer_by_reduction and
        vect_used_in_outer.
        (is_loop_header_bb_p): New. Used to differentiate loop-header phis
        from other phis in the loop.
        (destroy_loop_vec_info): Add additional argument to declaration.

        * tree-vectorizer.c (supportable_widening_operation): Also check if
        nested_in_vect_loop_p (don't allow changing the order in this case).
        (vect_is_simple_reduction): Takes a loop_vec_info as argument instead
        of struct loop. Call nested_in_vect_loop_p and don't require
        flag_unsafe_math_optimizations if it returns true.
        (new_stmt_vec_info): When setting def_type for phis differentiate
        loop-header phis from other phis.
        (bb_in_loop_p): New function.
        (new_loop_vec_info): Inner-loop phis already have a stmt_vinfo, so just
        update their loop_vinfo.  Order of BB traversal now matters - call
        dfs_enumerate_from with bb_in_loop_p.
        (destroy_loop_vec_info): Takes additional argument to control whether
        stmt_vinfo of the loop stmts should be destroyed as well.
        (vect_is_simple_reduction): Allow the "non-reduction" use of a
        reduction stmt to be defines by a non loop-header phi.
        (vectorize_loops): Call destroy_loop_vec_info with additional argument.

        * tree-vect-transform.c (vectorizable_reduction): Call
        nested_in_vect_loop_p. Check for multitypes in the inner-loop.
        (vectorizable_call): Likewise.
        (vectorizable_conversion): Likewise.
        (vectorizable_operation): Likewise.
        (vectorizable_type_promotion): Likewise.
        (vectorizable_type_demotion): Likewise.
        (vectorizable_store): Likewise.
        (vectorizable_live_operation): Likewise.
        (vectorizable_reduction): Likewise. Also pass loop_info to
        vect_is_simple_reduction instead of loop.
        (vect_init_vector): Call nested_in_vect_loop_p.
        (get_initial_def_for_reduction): Likewise.
        (vect_create_epilog_for_reduction): Likewise.
        (vect_init_vector): Check which loop to work with, in case there's an
        inner-loop.
        (get_initial_def_for_inducion): Extend to handle outer-loop
        vectorization. Fix indentation.
        (vect_get_vec_def_for_operand): Support phis in the case vect_loop_def.
        In the case vect_induction_def get the vector def from the induction
        phi node, instead of calling get_initial_def_for_inducion.
        (get_initial_def_for_reduction): Extend to handle outer-loop
        vectorization.
        (vect_create_epilog_for_reduction): Extend to handle outer-loop
        vectorization.
        (vect_transform_loop): Change assert to just skip this case.  Add a
        dump printout.
        (vect_finish_stmt_generation): Add a couple asserts.

        (vect_estimate_min_profitable_iters): Multiply
        cost of inner-loop stmts (in outer-loop vectorization) by estimated
        inner-loop bound.
        (vect_model_reduction_cost): Don't add reduction epilogue cost in case
        this is an inner-loop reduction in outer-loop vectorization.

        * tree-vect-analyze.c (vect_analyze_scalar_cycles_1): New function.
        Same code as what used to be vect_analyze_scalar_cycles, only with
        additional argument loop, and loop_info passed to
        vect_is_simple_reduction instead of loop.
        (vect_analyze_scalar_cycles): Code factored out into
        vect_analyze_scalar_cycles_1. Call it for each relevant loop-nest.
        Updated documentation.
        (analyze_operations): Check for inner-loop loop-closed exit-phis during
        outer-loop vectorization that are live or not used in the outerloop,
        cause this requires special handling.
        (vect_enhance_data_refs_alignment): Don't consider versioning for
        nested-loops.
        (vect_analyze_data_refs): Check that there are no datarefs in the
        inner-loop.
        (vect_mark_stmts_to_be_vectorized): Also consider vect_used_in_outer
        and vect_used_in_outer_by_reduction cases.
        (process_use): Also consider the case of outer-loop stmt defining an
        inner-loop stmt and vice versa.
        (vect_analyze_loop_1): New function.
        (vect_analyze_loop_form): Extend, to allow a restricted form of nested
        loops.  Call vect_analyze_loop_1.
        (vect_analyze_loop): Skip (inner-)loops within outer-loops that have
        been vectorized.  Call destroy_loop_vec_info with additional argument.

        * tree-vect-patterns.c (vect_recog_widen_sum_pattern): Don't allow
        in the inner-loop when doing outer-loop vectorization. Add
        documentation and printout.
        (vect_recog_dot_prod_pattern): Likewise. Also add check for
        GIMPLE_MODIFY_STMT (in case we encounter a phi in the loop).

From-SVN: r127623
2007-08-19 09:39:50 +00:00

833 lines
26 KiB
C

/* Analysis Utilities for Loop Vectorization.
Copyright (C) 2006, 2007 Free Software Foundation, Inc.
Contributed by Dorit Nuzman <dorit@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "expr.h"
#include "optabs.h"
#include "params.h"
#include "tree-data-ref.h"
#include "tree-vectorizer.h"
#include "recog.h"
#include "toplev.h"
/* Function prototypes */
static void vect_pattern_recog_1
(tree (* ) (tree, tree *, tree *), block_stmt_iterator);
static bool widened_name_p (tree, tree, tree *, tree *);
/* Pattern recognition functions */
static tree vect_recog_widen_sum_pattern (tree, tree *, tree *);
static tree vect_recog_widen_mult_pattern (tree, tree *, tree *);
static tree vect_recog_dot_prod_pattern (tree, tree *, tree *);
static tree vect_recog_pow_pattern (tree, tree *, tree *);
static vect_recog_func_ptr vect_vect_recog_func_ptrs[NUM_PATTERNS] = {
vect_recog_widen_mult_pattern,
vect_recog_widen_sum_pattern,
vect_recog_dot_prod_pattern,
vect_recog_pow_pattern};
/* Function widened_name_p
Check whether NAME, an ssa-name used in USE_STMT,
is a result of a type-promotion, such that:
DEF_STMT: NAME = NOP (name0)
where the type of name0 (HALF_TYPE) is smaller than the type of NAME.
*/
static bool
widened_name_p (tree name, tree use_stmt, tree *half_type, tree *def_stmt)
{
tree dummy;
loop_vec_info loop_vinfo;
stmt_vec_info stmt_vinfo;
tree expr;
tree type = TREE_TYPE (name);
tree oprnd0;
enum vect_def_type dt;
tree def;
stmt_vinfo = vinfo_for_stmt (use_stmt);
loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
if (!vect_is_simple_use (name, loop_vinfo, def_stmt, &def, &dt))
return false;
if (dt != vect_loop_def
&& dt != vect_invariant_def && dt != vect_constant_def)
return false;
if (! *def_stmt)
return false;
if (TREE_CODE (*def_stmt) != GIMPLE_MODIFY_STMT)
return false;
expr = GIMPLE_STMT_OPERAND (*def_stmt, 1);
if (TREE_CODE (expr) != NOP_EXPR)
return false;
oprnd0 = TREE_OPERAND (expr, 0);
*half_type = TREE_TYPE (oprnd0);
if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*half_type)
|| (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*half_type))
|| (TYPE_PRECISION (type) < (TYPE_PRECISION (*half_type) * 2)))
return false;
if (!vect_is_simple_use (oprnd0, loop_vinfo, &dummy, &dummy, &dt))
return false;
return true;
}
/* Function vect_recog_dot_prod_pattern
Try to find the following pattern:
type x_t, y_t;
TYPE1 prod;
TYPE2 sum = init;
loop:
sum_0 = phi <init, sum_1>
S1 x_t = ...
S2 y_t = ...
S3 x_T = (TYPE1) x_t;
S4 y_T = (TYPE1) y_t;
S5 prod = x_T * y_T;
[S6 prod = (TYPE2) prod; #optional]
S7 sum_1 = prod + sum_0;
where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
same size of 'TYPE1' or bigger. This is a special case of a reduction
computation.
Input:
* LAST_STMT: A stmt from which the pattern search begins. In the example,
when this function is called with S7, the pattern {S3,S4,S5,S6,S7} will be
detected.
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
Note: The dot-prod idiom is a widening reduction pattern that is
vectorized without preserving all the intermediate results. It
produces only N/2 (widened) results (by summing up pairs of
intermediate results) rather than all N results. Therefore, we
cannot allow this pattern when we want to get all the results and in
the correct order (as is the case when this computation is in an
inner-loop nested in an outer-loop that us being vectorized). */
static tree
vect_recog_dot_prod_pattern (tree last_stmt, tree *type_in, tree *type_out)
{
tree stmt, expr;
tree oprnd0, oprnd1;
tree oprnd00, oprnd01;
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
tree type, half_type;
tree pattern_expr;
tree prod_type;
loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_info);
if (TREE_CODE (last_stmt) != GIMPLE_MODIFY_STMT)
return NULL;
expr = GIMPLE_STMT_OPERAND (last_stmt, 1);
type = TREE_TYPE (expr);
/* Look for the following pattern
DX = (TYPE1) X;
DY = (TYPE1) Y;
DPROD = DX * DY;
DDPROD = (TYPE2) DPROD;
sum_1 = DDPROD + sum_0;
In which
- DX is double the size of X
- DY is double the size of Y
- DX, DY, DPROD all have the same type
- sum is the same size of DPROD or bigger
- sum has been recognized as a reduction variable.
This is equivalent to:
DPROD = X w* Y; #widen mult
sum_1 = DPROD w+ sum_0; #widen summation
or
DPROD = X w* Y; #widen mult
sum_1 = DPROD + sum_0; #summation
*/
/* Starting from LAST_STMT, follow the defs of its uses in search
of the above pattern. */
if (TREE_CODE (expr) != PLUS_EXPR)
return NULL;
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
{
/* Has been detected as widening-summation? */
stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
expr = GIMPLE_STMT_OPERAND (stmt, 1);
type = TREE_TYPE (expr);
if (TREE_CODE (expr) != WIDEN_SUM_EXPR)
return NULL;
oprnd0 = TREE_OPERAND (expr, 0);
oprnd1 = TREE_OPERAND (expr, 1);
half_type = TREE_TYPE (oprnd0);
}
else
{
tree def_stmt;
if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
return NULL;
oprnd0 = TREE_OPERAND (expr, 0);
oprnd1 = TREE_OPERAND (expr, 1);
if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
|| TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
return NULL;
stmt = last_stmt;
if (widened_name_p (oprnd0, stmt, &half_type, &def_stmt))
{
stmt = def_stmt;
expr = GIMPLE_STMT_OPERAND (stmt, 1);
oprnd0 = TREE_OPERAND (expr, 0);
}
else
half_type = type;
}
/* So far so good. Since last_stmt was detected as a (summation) reduction,
we know that oprnd1 is the reduction variable (defined by a loop-header
phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
Left to check that oprnd0 is defined by a (widen_)mult_expr */
prod_type = half_type;
stmt = SSA_NAME_DEF_STMT (oprnd0);
gcc_assert (stmt);
stmt_vinfo = vinfo_for_stmt (stmt);
gcc_assert (stmt_vinfo);
if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_loop_def)
return NULL;
/* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
inside the loop (in case we are analyzing an outer-loop). */
if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
return NULL;
expr = GIMPLE_STMT_OPERAND (stmt, 1);
if (TREE_CODE (expr) != MULT_EXPR)
return NULL;
if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
{
/* Has been detected as a widening multiplication? */
stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
expr = GIMPLE_STMT_OPERAND (stmt, 1);
if (TREE_CODE (expr) != WIDEN_MULT_EXPR)
return NULL;
stmt_vinfo = vinfo_for_stmt (stmt);
gcc_assert (stmt_vinfo);
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_loop_def);
oprnd00 = TREE_OPERAND (expr, 0);
oprnd01 = TREE_OPERAND (expr, 1);
}
else
{
tree half_type0, half_type1;
tree def_stmt;
tree oprnd0, oprnd1;
oprnd0 = TREE_OPERAND (expr, 0);
oprnd1 = TREE_OPERAND (expr, 1);
if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0))
!= TYPE_MAIN_VARIANT (prod_type)
|| TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1))
!= TYPE_MAIN_VARIANT (prod_type))
return NULL;
if (!widened_name_p (oprnd0, stmt, &half_type0, &def_stmt))
return NULL;
oprnd00 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
if (!widened_name_p (oprnd1, stmt, &half_type1, &def_stmt))
return NULL;
oprnd01 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
if (TYPE_MAIN_VARIANT (half_type0) != TYPE_MAIN_VARIANT (half_type1))
return NULL;
if (TYPE_PRECISION (prod_type) != TYPE_PRECISION (half_type0) * 2)
return NULL;
}
half_type = TREE_TYPE (oprnd00);
*type_in = half_type;
*type_out = type;
/* Pattern detected. Create a stmt to be used to replace the pattern: */
pattern_expr = build3 (DOT_PROD_EXPR, type, oprnd00, oprnd01, oprnd1);
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "vect_recog_dot_prod_pattern: detected: ");
print_generic_expr (vect_dump, pattern_expr, TDF_SLIM);
}
/* We don't allow changing the order of the computation in the inner-loop
when doing outer-loop vectorization. */
if (nested_in_vect_loop_p (loop, last_stmt))
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "vect_recog_dot_prod_pattern: not allowed.");
return NULL;
}
return pattern_expr;
}
/* Function vect_recog_widen_mult_pattern
Try to find the following pattern:
type a_t, b_t;
TYPE a_T, b_T, prod_T;
S1 a_t = ;
S2 b_t = ;
S3 a_T = (TYPE) a_t;
S4 b_T = (TYPE) b_t;
S5 prod_T = a_T * b_T;
where type 'TYPE' is at least double the size of type 'type'.
Input:
* LAST_STMT: A stmt from which the pattern search begins. In the example,
when this function is called with S5, the pattern {S3,S4,S5} is be detected.
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
WIDEN_MULT <a_t, b_t>
*/
static tree
vect_recog_widen_mult_pattern (tree last_stmt,
tree *type_in,
tree *type_out)
{
tree expr;
tree def_stmt0, def_stmt1;
tree oprnd0, oprnd1;
tree type, half_type0, half_type1;
tree pattern_expr;
tree vectype;
tree dummy;
enum tree_code dummy_code;
if (TREE_CODE (last_stmt) != GIMPLE_MODIFY_STMT)
return NULL;
expr = GIMPLE_STMT_OPERAND (last_stmt, 1);
type = TREE_TYPE (expr);
/* Starting from LAST_STMT, follow the defs of its uses in search
of the above pattern. */
if (TREE_CODE (expr) != MULT_EXPR)
return NULL;
oprnd0 = TREE_OPERAND (expr, 0);
oprnd1 = TREE_OPERAND (expr, 1);
if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
|| TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
return NULL;
/* Check argument 0 */
if (!widened_name_p (oprnd0, last_stmt, &half_type0, &def_stmt0))
return NULL;
oprnd0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt0, 1), 0);
/* Check argument 1 */
if (!widened_name_p (oprnd1, last_stmt, &half_type1, &def_stmt1))
return NULL;
oprnd1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt1, 1), 0);
if (TYPE_MAIN_VARIANT (half_type0) != TYPE_MAIN_VARIANT (half_type1))
return NULL;
/* Pattern detected. */
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "vect_recog_widen_mult_pattern: detected: ");
/* Check target support */
vectype = get_vectype_for_scalar_type (half_type0);
if (!vectype
|| !supportable_widening_operation (WIDEN_MULT_EXPR, last_stmt, vectype,
&dummy, &dummy, &dummy_code,
&dummy_code))
return NULL;
*type_in = vectype;
*type_out = NULL_TREE;
/* Pattern supported. Create a stmt to be used to replace the pattern: */
pattern_expr = build2 (WIDEN_MULT_EXPR, type, oprnd0, oprnd1);
if (vect_print_dump_info (REPORT_DETAILS))
print_generic_expr (vect_dump, pattern_expr, TDF_SLIM);
return pattern_expr;
}
/* Function vect_recog_pow_pattern
Try to find the following pattern:
x = POW (y, N);
with POW being one of pow, powf, powi, powif and N being
either 2 or 0.5.
Input:
* LAST_STMT: A stmt from which the pattern search begins.
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
x * x
or
sqrt (x)
*/
static tree
vect_recog_pow_pattern (tree last_stmt, tree *type_in, tree *type_out)
{
tree expr;
tree type;
tree fn, base, exp;
if (TREE_CODE (last_stmt) != GIMPLE_MODIFY_STMT)
return NULL;
expr = GIMPLE_STMT_OPERAND (last_stmt, 1);
type = TREE_TYPE (expr);
if (TREE_CODE (expr) != CALL_EXPR)
return NULL_TREE;
fn = get_callee_fndecl (expr);
switch (DECL_FUNCTION_CODE (fn))
{
case BUILT_IN_POWIF:
case BUILT_IN_POWI:
case BUILT_IN_POWF:
case BUILT_IN_POW:
base = CALL_EXPR_ARG (expr, 0);
exp = CALL_EXPR_ARG (expr, 1);
if (TREE_CODE (exp) != REAL_CST
&& TREE_CODE (exp) != INTEGER_CST)
return NULL_TREE;
break;
default:;
return NULL_TREE;
}
/* We now have a pow or powi builtin function call with a constant
exponent. */
*type_out = NULL_TREE;
/* Catch squaring. */
if ((host_integerp (exp, 0)
&& tree_low_cst (exp, 0) == 2)
|| (TREE_CODE (exp) == REAL_CST
&& REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconst2)))
{
*type_in = TREE_TYPE (base);
return build2 (MULT_EXPR, TREE_TYPE (base), base, base);
}
/* Catch square root. */
if (TREE_CODE (exp) == REAL_CST
&& REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconsthalf))
{
tree newfn = mathfn_built_in (TREE_TYPE (base), BUILT_IN_SQRT);
*type_in = get_vectype_for_scalar_type (TREE_TYPE (base));
if (*type_in)
{
newfn = build_call_expr (newfn, 1, base);
if (vectorizable_function (newfn, *type_in, *type_in) != NULL_TREE)
return newfn;
}
}
return NULL_TREE;
}
/* Function vect_recog_widen_sum_pattern
Try to find the following pattern:
type x_t;
TYPE x_T, sum = init;
loop:
sum_0 = phi <init, sum_1>
S1 x_t = *p;
S2 x_T = (TYPE) x_t;
S3 sum_1 = x_T + sum_0;
where type 'TYPE' is at least double the size of type 'type', i.e - we're
summing elements of type 'type' into an accumulator of type 'TYPE'. This is
a special case of a reduction computation.
Input:
* LAST_STMT: A stmt from which the pattern search begins. In the example,
when this function is called with S3, the pattern {S2,S3} will be detected.
Output:
* TYPE_IN: The type of the input arguments to the pattern.
* TYPE_OUT: The type of the output of this pattern.
* Return value: A new stmt that will be used to replace the sequence of
stmts that constitute the pattern. In this case it will be:
WIDEN_SUM <x_t, sum_0>
Note: The widneing-sum idiom is a widening reduction pattern that is
vectorized without preserving all the intermediate results. It
produces only N/2 (widened) results (by summing up pairs of
intermediate results) rather than all N results. Therefore, we
cannot allow this pattern when we want to get all the results and in
the correct order (as is the case when this computation is in an
inner-loop nested in an outer-loop that us being vectorized). */
static tree
vect_recog_widen_sum_pattern (tree last_stmt, tree *type_in, tree *type_out)
{
tree stmt, expr;
tree oprnd0, oprnd1;
stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
tree type, half_type;
tree pattern_expr;
loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_info);
if (TREE_CODE (last_stmt) != GIMPLE_MODIFY_STMT)
return NULL;
expr = GIMPLE_STMT_OPERAND (last_stmt, 1);
type = TREE_TYPE (expr);
/* Look for the following pattern
DX = (TYPE) X;
sum_1 = DX + sum_0;
In which DX is at least double the size of X, and sum_1 has been
recognized as a reduction variable.
*/
/* Starting from LAST_STMT, follow the defs of its uses in search
of the above pattern. */
if (TREE_CODE (expr) != PLUS_EXPR)
return NULL;
if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
return NULL;
oprnd0 = TREE_OPERAND (expr, 0);
oprnd1 = TREE_OPERAND (expr, 1);
if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
|| TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
return NULL;
/* So far so good. Since last_stmt was detected as a (summation) reduction,
we know that oprnd1 is the reduction variable (defined by a loop-header
phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
Left to check that oprnd0 is defined by a cast from type 'type' to type
'TYPE'. */
if (!widened_name_p (oprnd0, last_stmt, &half_type, &stmt))
return NULL;
oprnd0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (stmt, 1), 0);
*type_in = half_type;
*type_out = type;
/* Pattern detected. Create a stmt to be used to replace the pattern: */
pattern_expr = build2 (WIDEN_SUM_EXPR, type, oprnd0, oprnd1);
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "vect_recog_widen_sum_pattern: detected: ");
print_generic_expr (vect_dump, pattern_expr, TDF_SLIM);
}
/* We don't allow changing the order of the computation in the inner-loop
when doing outer-loop vectorization. */
if (nested_in_vect_loop_p (loop, last_stmt))
{
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "vect_recog_widen_sum_pattern: not allowed.");
return NULL;
}
return pattern_expr;
}
/* Function vect_pattern_recog_1
Input:
PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
computation pattern.
STMT: A stmt from which the pattern search should start.
If PATTERN_RECOG_FUNC successfully detected the pattern, it creates an
expression that computes the same functionality and can be used to
replace the sequence of stmts that are involved in the pattern.
Output:
This function checks if the expression returned by PATTERN_RECOG_FUNC is
supported in vector form by the target. We use 'TYPE_IN' to obtain the
relevant vector type. If 'TYPE_IN' is already a vector type, then this
indicates that target support had already been checked by PATTERN_RECOG_FUNC.
If 'TYPE_OUT' is also returned by PATTERN_RECOG_FUNC, we check that it fits
to the available target pattern.
This function also does some bookkeeping, as explained in the documentation
for vect_recog_pattern. */
static void
vect_pattern_recog_1 (
tree (* vect_recog_func) (tree, tree *, tree *),
block_stmt_iterator si)
{
tree stmt = bsi_stmt (si);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
stmt_vec_info pattern_stmt_info;
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
tree pattern_expr;
tree pattern_vectype;
tree type_in, type_out;
tree pattern_type;
enum tree_code code;
tree var, var_name;
stmt_ann_t ann;
pattern_expr = (* vect_recog_func) (stmt, &type_in, &type_out);
if (!pattern_expr)
return;
if (VECTOR_MODE_P (TYPE_MODE (type_in)))
{
/* No need to check target support (already checked by the pattern
recognition function). */
pattern_vectype = type_in;
}
else
{
enum tree_code vec_mode;
enum insn_code icode;
optab optab;
/* Check target support */
pattern_vectype = get_vectype_for_scalar_type (type_in);
if (!pattern_vectype)
return;
optab = optab_for_tree_code (TREE_CODE (pattern_expr), pattern_vectype);
vec_mode = TYPE_MODE (pattern_vectype);
if (!optab
|| (icode = optab_handler (optab, vec_mode)->insn_code) ==
CODE_FOR_nothing
|| (type_out
&& (!get_vectype_for_scalar_type (type_out)
|| (insn_data[icode].operand[0].mode !=
TYPE_MODE (get_vectype_for_scalar_type (type_out))))))
return;
}
/* Found a vectorizable pattern. */
if (vect_print_dump_info (REPORT_DETAILS))
{
fprintf (vect_dump, "pattern recognized: ");
print_generic_expr (vect_dump, pattern_expr, TDF_SLIM);
}
/* Mark the stmts that are involved in the pattern,
create a new stmt to express the pattern and insert it. */
code = TREE_CODE (pattern_expr);
pattern_type = TREE_TYPE (pattern_expr);
var = create_tmp_var (pattern_type, "patt");
add_referenced_var (var);
var_name = make_ssa_name (var, NULL_TREE);
pattern_expr = build_gimple_modify_stmt (var_name, pattern_expr);
SSA_NAME_DEF_STMT (var_name) = pattern_expr;
bsi_insert_before (&si, pattern_expr, BSI_SAME_STMT);
ann = stmt_ann (pattern_expr);
set_stmt_info (ann, new_stmt_vec_info (pattern_expr, loop_vinfo));
pattern_stmt_info = vinfo_for_stmt (pattern_expr);
STMT_VINFO_RELATED_STMT (pattern_stmt_info) = stmt;
STMT_VINFO_DEF_TYPE (pattern_stmt_info) = STMT_VINFO_DEF_TYPE (stmt_info);
STMT_VINFO_VECTYPE (pattern_stmt_info) = pattern_vectype;
STMT_VINFO_IN_PATTERN_P (stmt_info) = true;
STMT_VINFO_RELATED_STMT (stmt_info) = pattern_expr;
return;
}
/* Function vect_pattern_recog
Input:
LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
computation idioms.
Output - for each computation idiom that is detected we insert a new stmt
that provides the same functionality and that can be vectorized. We
also record some information in the struct_stmt_info of the relevant
stmts, as explained below:
At the entry to this function we have the following stmts, with the
following initial value in the STMT_VINFO fields:
stmt in_pattern_p related_stmt vec_stmt
S1: a_i = .... - - -
S2: a_2 = ..use(a_i).. - - -
S3: a_1 = ..use(a_2).. - - -
S4: a_0 = ..use(a_1).. - - -
S5: ... = ..use(a_0).. - - -
Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
represented by a single stmt. We then:
- create a new stmt S6 that will replace the pattern.
- insert the new stmt S6 before the last stmt in the pattern
- fill in the STMT_VINFO fields as follows:
in_pattern_p related_stmt vec_stmt
S1: a_i = .... - - -
S2: a_2 = ..use(a_i).. - - -
S3: a_1 = ..use(a_2).. - - -
> S6: a_new = .... - S4 -
S4: a_0 = ..use(a_1).. true S6 -
S5: ... = ..use(a_0).. - - -
(the last stmt in the pattern (S4) and the new pattern stmt (S6) point
to each other through the RELATED_STMT field).
S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
remain irrelevant unless used by stmts other than S4.
If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
(because they are marked as irrelevant). It will vectorize S6, and record
a pointer to the new vector stmt VS6 both from S6 (as usual), and also
from S4. We do that so that when we get to vectorizing stmts that use the
def of S4 (like S5 that uses a_0), we'll know where to take the relevant
vector-def from. S4 will be skipped, and S5 will be vectorized as usual:
in_pattern_p related_stmt vec_stmt
S1: a_i = .... - - -
S2: a_2 = ..use(a_i).. - - -
S3: a_1 = ..use(a_2).. - - -
> VS6: va_new = .... - - -
S6: a_new = .... - S4 VS6
S4: a_0 = ..use(a_1).. true S6 VS6
> VS5: ... = ..vuse(va_new).. - - -
S5: ... = ..use(a_0).. - - -
DCE could then get rid of {S1,S2,S3,S4,S5,S6} (if their defs are not used
elsewhere), and we'll end up with:
VS6: va_new = ....
VS5: ... = ..vuse(va_new)..
If vectorization does not succeed, DCE will clean S6 away (its def is
not used), and we'll end up with the original sequence.
*/
void
vect_pattern_recog (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
unsigned int nbbs = loop->num_nodes;
block_stmt_iterator si;
tree stmt;
unsigned int i, j;
tree (* vect_recog_func_ptr) (tree, tree *, tree *);
if (vect_print_dump_info (REPORT_DETAILS))
fprintf (vect_dump, "=== vect_pattern_recog ===");
/* Scan through the loop stmts, applying the pattern recognition
functions starting at each stmt visited: */
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
stmt = bsi_stmt (si);
/* Scan over all generic vect_recog_xxx_pattern functions. */
for (j = 0; j < NUM_PATTERNS; j++)
{
vect_recog_func_ptr = vect_vect_recog_func_ptrs[j];
vect_pattern_recog_1 (vect_recog_func_ptr, si);
}
}
}
}