2012-09-03 Tobias Burnus <burnus@net-b.de> * class.c (gfc_find_derived_vtab): Disable ABI-breaking generation of the "_final" subroutine for now. From-SVN: r190872
1825 lines
56 KiB
C
1825 lines
56 KiB
C
/* Implementation of Fortran 2003 Polymorphism.
|
|
Copyright (C) 2009, 2010
|
|
Free Software Foundation, Inc.
|
|
Contributed by Paul Richard Thomas <pault@gcc.gnu.org>
|
|
and Janus Weil <janus@gcc.gnu.org>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
/* class.c -- This file contains the front end functions needed to service
|
|
the implementation of Fortran 2003 polymorphism and other
|
|
object-oriented features. */
|
|
|
|
|
|
/* Outline of the internal representation:
|
|
|
|
Each CLASS variable is encapsulated by a class container, which is a
|
|
structure with two fields:
|
|
* _data: A pointer to the actual data of the variable. This field has the
|
|
declared type of the class variable and its attributes
|
|
(pointer/allocatable/dimension/...).
|
|
* _vptr: A pointer to the vtable entry (see below) of the dynamic type.
|
|
|
|
For each derived type we set up a "vtable" entry, i.e. a structure with the
|
|
following fields:
|
|
* _hash: A hash value serving as a unique identifier for this type.
|
|
* _size: The size in bytes of the derived type.
|
|
* _extends: A pointer to the vtable entry of the parent derived type.
|
|
* _def_init: A pointer to a default initialized variable of this type.
|
|
* _copy: A procedure pointer to a copying procedure.
|
|
* _final: A procedure pointer to a wrapper function, which frees
|
|
allocatable components and calls FINAL subroutines.
|
|
|
|
After these follow procedure pointer components for the specific
|
|
type-bound procedures. */
|
|
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "gfortran.h"
|
|
#include "constructor.h"
|
|
|
|
|
|
/* Inserts a derived type component reference in a data reference chain.
|
|
TS: base type of the ref chain so far, in which we will pick the component
|
|
REF: the address of the GFC_REF pointer to update
|
|
NAME: name of the component to insert
|
|
Note that component insertion makes sense only if we are at the end of
|
|
the chain (*REF == NULL) or if we are adding a missing "_data" component
|
|
to access the actual contents of a class object. */
|
|
|
|
static void
|
|
insert_component_ref (gfc_typespec *ts, gfc_ref **ref, const char * const name)
|
|
{
|
|
gfc_symbol *type_sym;
|
|
gfc_ref *new_ref;
|
|
|
|
gcc_assert (ts->type == BT_DERIVED || ts->type == BT_CLASS);
|
|
type_sym = ts->u.derived;
|
|
|
|
new_ref = gfc_get_ref ();
|
|
new_ref->type = REF_COMPONENT;
|
|
new_ref->next = *ref;
|
|
new_ref->u.c.sym = type_sym;
|
|
new_ref->u.c.component = gfc_find_component (type_sym, name, true, true);
|
|
gcc_assert (new_ref->u.c.component);
|
|
|
|
if (new_ref->next)
|
|
{
|
|
gfc_ref *next = NULL;
|
|
|
|
/* We need to update the base type in the trailing reference chain to
|
|
that of the new component. */
|
|
|
|
gcc_assert (strcmp (name, "_data") == 0);
|
|
|
|
if (new_ref->next->type == REF_COMPONENT)
|
|
next = new_ref->next;
|
|
else if (new_ref->next->type == REF_ARRAY
|
|
&& new_ref->next->next
|
|
&& new_ref->next->next->type == REF_COMPONENT)
|
|
next = new_ref->next->next;
|
|
|
|
if (next != NULL)
|
|
{
|
|
gcc_assert (new_ref->u.c.component->ts.type == BT_CLASS
|
|
|| new_ref->u.c.component->ts.type == BT_DERIVED);
|
|
next->u.c.sym = new_ref->u.c.component->ts.u.derived;
|
|
}
|
|
}
|
|
|
|
*ref = new_ref;
|
|
}
|
|
|
|
|
|
/* Tells whether we need to add a "_data" reference to access REF subobject
|
|
from an object of type TS. If FIRST_REF_IN_CHAIN is set, then the base
|
|
object accessed by REF is a variable; in other words it is a full object,
|
|
not a subobject. */
|
|
|
|
static bool
|
|
class_data_ref_missing (gfc_typespec *ts, gfc_ref *ref, bool first_ref_in_chain)
|
|
{
|
|
/* Only class containers may need the "_data" reference. */
|
|
if (ts->type != BT_CLASS)
|
|
return false;
|
|
|
|
/* Accessing a class container with an array reference is certainly wrong. */
|
|
if (ref->type != REF_COMPONENT)
|
|
return true;
|
|
|
|
/* Accessing the class container's fields is fine. */
|
|
if (ref->u.c.component->name[0] == '_')
|
|
return false;
|
|
|
|
/* At this point we have a class container with a non class container's field
|
|
component reference. We don't want to add the "_data" component if we are
|
|
at the first reference and the symbol's type is an extended derived type.
|
|
In that case, conv_parent_component_references will do the right thing so
|
|
it is not absolutely necessary. Omitting it prevents a regression (see
|
|
class_41.f03) in the interface mapping mechanism. When evaluating string
|
|
lengths depending on dummy arguments, we create a fake symbol with a type
|
|
equal to that of the dummy type. However, because of type extension,
|
|
the backend type (corresponding to the actual argument) can have a
|
|
different (extended) type. Adding the "_data" component explicitly, using
|
|
the base type, confuses the gfc_conv_component_ref code which deals with
|
|
the extended type. */
|
|
if (first_ref_in_chain && ts->u.derived->attr.extension)
|
|
return false;
|
|
|
|
/* We have a class container with a non class container's field component
|
|
reference that doesn't fall into the above. */
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Browse through a data reference chain and add the missing "_data" references
|
|
when a subobject of a class object is accessed without it.
|
|
Note that it doesn't add the "_data" reference when the class container
|
|
is the last element in the reference chain. */
|
|
|
|
void
|
|
gfc_fix_class_refs (gfc_expr *e)
|
|
{
|
|
gfc_typespec *ts;
|
|
gfc_ref **ref;
|
|
|
|
if ((e->expr_type != EXPR_VARIABLE
|
|
&& e->expr_type != EXPR_FUNCTION)
|
|
|| (e->expr_type == EXPR_FUNCTION
|
|
&& e->value.function.isym != NULL))
|
|
return;
|
|
|
|
ts = &e->symtree->n.sym->ts;
|
|
|
|
for (ref = &e->ref; *ref != NULL; ref = &(*ref)->next)
|
|
{
|
|
if (class_data_ref_missing (ts, *ref, ref == &e->ref))
|
|
insert_component_ref (ts, ref, "_data");
|
|
|
|
if ((*ref)->type == REF_COMPONENT)
|
|
ts = &(*ref)->u.c.component->ts;
|
|
}
|
|
}
|
|
|
|
|
|
/* Insert a reference to the component of the given name.
|
|
Only to be used with CLASS containers and vtables. */
|
|
|
|
void
|
|
gfc_add_component_ref (gfc_expr *e, const char *name)
|
|
{
|
|
gfc_ref **tail = &(e->ref);
|
|
gfc_ref *next = NULL;
|
|
gfc_symbol *derived = e->symtree->n.sym->ts.u.derived;
|
|
while (*tail != NULL)
|
|
{
|
|
if ((*tail)->type == REF_COMPONENT)
|
|
{
|
|
if (strcmp ((*tail)->u.c.component->name, "_data") == 0
|
|
&& (*tail)->next
|
|
&& (*tail)->next->type == REF_ARRAY
|
|
&& (*tail)->next->next == NULL)
|
|
return;
|
|
derived = (*tail)->u.c.component->ts.u.derived;
|
|
}
|
|
if ((*tail)->type == REF_ARRAY && (*tail)->next == NULL)
|
|
break;
|
|
tail = &((*tail)->next);
|
|
}
|
|
if (*tail != NULL && strcmp (name, "_data") == 0)
|
|
next = *tail;
|
|
(*tail) = gfc_get_ref();
|
|
(*tail)->next = next;
|
|
(*tail)->type = REF_COMPONENT;
|
|
(*tail)->u.c.sym = derived;
|
|
(*tail)->u.c.component = gfc_find_component (derived, name, true, true);
|
|
gcc_assert((*tail)->u.c.component);
|
|
if (!next)
|
|
e->ts = (*tail)->u.c.component->ts;
|
|
}
|
|
|
|
|
|
/* This is used to add both the _data component reference and an array
|
|
reference to class expressions. Used in translation of intrinsic
|
|
array inquiry functions. */
|
|
|
|
void
|
|
gfc_add_class_array_ref (gfc_expr *e)
|
|
{
|
|
int rank = CLASS_DATA (e)->as->rank;
|
|
gfc_array_spec *as = CLASS_DATA (e)->as;
|
|
gfc_ref *ref = NULL;
|
|
gfc_add_component_ref (e, "_data");
|
|
e->rank = rank;
|
|
for (ref = e->ref; ref; ref = ref->next)
|
|
if (!ref->next)
|
|
break;
|
|
if (ref->type != REF_ARRAY)
|
|
{
|
|
ref->next = gfc_get_ref ();
|
|
ref = ref->next;
|
|
ref->type = REF_ARRAY;
|
|
ref->u.ar.type = AR_FULL;
|
|
ref->u.ar.as = as;
|
|
}
|
|
}
|
|
|
|
|
|
/* Unfortunately, class array expressions can appear in various conditions;
|
|
with and without both _data component and an arrayspec. This function
|
|
deals with that variability. The previous reference to 'ref' is to a
|
|
class array. */
|
|
|
|
static bool
|
|
class_array_ref_detected (gfc_ref *ref, bool *full_array)
|
|
{
|
|
bool no_data = false;
|
|
bool with_data = false;
|
|
|
|
/* An array reference with no _data component. */
|
|
if (ref && ref->type == REF_ARRAY
|
|
&& !ref->next
|
|
&& ref->u.ar.type != AR_ELEMENT)
|
|
{
|
|
if (full_array)
|
|
*full_array = ref->u.ar.type == AR_FULL;
|
|
no_data = true;
|
|
}
|
|
|
|
/* Cover cases where _data appears, with or without an array ref. */
|
|
if (ref && ref->type == REF_COMPONENT
|
|
&& strcmp (ref->u.c.component->name, "_data") == 0)
|
|
{
|
|
if (!ref->next)
|
|
{
|
|
with_data = true;
|
|
if (full_array)
|
|
*full_array = true;
|
|
}
|
|
else if (ref->next && ref->next->type == REF_ARRAY
|
|
&& !ref->next->next
|
|
&& ref->type == REF_COMPONENT
|
|
&& ref->next->type == REF_ARRAY
|
|
&& ref->next->u.ar.type != AR_ELEMENT)
|
|
{
|
|
with_data = true;
|
|
if (full_array)
|
|
*full_array = ref->next->u.ar.type == AR_FULL;
|
|
}
|
|
}
|
|
|
|
return no_data || with_data;
|
|
}
|
|
|
|
|
|
/* Returns true if the expression contains a reference to a class
|
|
array. Notice that class array elements return false. */
|
|
|
|
bool
|
|
gfc_is_class_array_ref (gfc_expr *e, bool *full_array)
|
|
{
|
|
gfc_ref *ref;
|
|
|
|
if (!e->rank)
|
|
return false;
|
|
|
|
if (full_array)
|
|
*full_array= false;
|
|
|
|
/* Is this a class array object? ie. Is the symbol of type class? */
|
|
if (e->symtree
|
|
&& e->symtree->n.sym->ts.type == BT_CLASS
|
|
&& CLASS_DATA (e->symtree->n.sym)
|
|
&& CLASS_DATA (e->symtree->n.sym)->attr.dimension
|
|
&& class_array_ref_detected (e->ref, full_array))
|
|
return true;
|
|
|
|
/* Or is this a class array component reference? */
|
|
for (ref = e->ref; ref; ref = ref->next)
|
|
{
|
|
if (ref->type == REF_COMPONENT
|
|
&& ref->u.c.component->ts.type == BT_CLASS
|
|
&& CLASS_DATA (ref->u.c.component)->attr.dimension
|
|
&& class_array_ref_detected (ref->next, full_array))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Returns true if the expression is a reference to a class
|
|
scalar. This function is necessary because such expressions
|
|
can be dressed with a reference to the _data component and so
|
|
have a type other than BT_CLASS. */
|
|
|
|
bool
|
|
gfc_is_class_scalar_expr (gfc_expr *e)
|
|
{
|
|
gfc_ref *ref;
|
|
|
|
if (e->rank)
|
|
return false;
|
|
|
|
/* Is this a class object? */
|
|
if (e->symtree
|
|
&& e->symtree->n.sym->ts.type == BT_CLASS
|
|
&& CLASS_DATA (e->symtree->n.sym)
|
|
&& !CLASS_DATA (e->symtree->n.sym)->attr.dimension
|
|
&& (e->ref == NULL
|
|
|| (strcmp (e->ref->u.c.component->name, "_data") == 0
|
|
&& e->ref->next == NULL)))
|
|
return true;
|
|
|
|
/* Or is the final reference BT_CLASS or _data? */
|
|
for (ref = e->ref; ref; ref = ref->next)
|
|
{
|
|
if (ref->type == REF_COMPONENT
|
|
&& ref->u.c.component->ts.type == BT_CLASS
|
|
&& CLASS_DATA (ref->u.c.component)
|
|
&& !CLASS_DATA (ref->u.c.component)->attr.dimension
|
|
&& (ref->next == NULL
|
|
|| (strcmp (ref->next->u.c.component->name, "_data") == 0
|
|
&& ref->next->next == NULL)))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Tells whether the expression E is a reference to a (scalar) class container.
|
|
Scalar because array class containers usually have an array reference after
|
|
them, and gfc_fix_class_refs will add the missing "_data" component reference
|
|
in that case. */
|
|
|
|
bool
|
|
gfc_is_class_container_ref (gfc_expr *e)
|
|
{
|
|
gfc_ref *ref;
|
|
bool result;
|
|
|
|
if (e->expr_type != EXPR_VARIABLE)
|
|
return e->ts.type == BT_CLASS;
|
|
|
|
if (e->symtree->n.sym->ts.type == BT_CLASS)
|
|
result = true;
|
|
else
|
|
result = false;
|
|
|
|
for (ref = e->ref; ref; ref = ref->next)
|
|
{
|
|
if (ref->type != REF_COMPONENT)
|
|
result = false;
|
|
else if (ref->u.c.component->ts.type == BT_CLASS)
|
|
result = true;
|
|
else
|
|
result = false;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* Build a NULL initializer for CLASS pointers,
|
|
initializing the _data component to NULL and
|
|
the _vptr component to the declared type. */
|
|
|
|
gfc_expr *
|
|
gfc_class_null_initializer (gfc_typespec *ts)
|
|
{
|
|
gfc_expr *init;
|
|
gfc_component *comp;
|
|
|
|
init = gfc_get_structure_constructor_expr (ts->type, ts->kind,
|
|
&ts->u.derived->declared_at);
|
|
init->ts = *ts;
|
|
|
|
for (comp = ts->u.derived->components; comp; comp = comp->next)
|
|
{
|
|
gfc_constructor *ctor = gfc_constructor_get();
|
|
if (strcmp (comp->name, "_vptr") == 0)
|
|
ctor->expr = gfc_lval_expr_from_sym (gfc_find_derived_vtab (ts->u.derived));
|
|
else
|
|
ctor->expr = gfc_get_null_expr (NULL);
|
|
gfc_constructor_append (&init->value.constructor, ctor);
|
|
}
|
|
|
|
return init;
|
|
}
|
|
|
|
|
|
/* Create a unique string identifier for a derived type, composed of its name
|
|
and module name. This is used to construct unique names for the class
|
|
containers and vtab symbols. */
|
|
|
|
static void
|
|
get_unique_type_string (char *string, gfc_symbol *derived)
|
|
{
|
|
char dt_name[GFC_MAX_SYMBOL_LEN+1];
|
|
sprintf (dt_name, "%s", derived->name);
|
|
dt_name[0] = TOUPPER (dt_name[0]);
|
|
if (derived->module)
|
|
sprintf (string, "%s_%s", derived->module, dt_name);
|
|
else if (derived->ns->proc_name)
|
|
sprintf (string, "%s_%s", derived->ns->proc_name->name, dt_name);
|
|
else
|
|
sprintf (string, "_%s", dt_name);
|
|
}
|
|
|
|
|
|
/* A relative of 'get_unique_type_string' which makes sure the generated
|
|
string will not be too long (replacing it by a hash string if needed). */
|
|
|
|
static void
|
|
get_unique_hashed_string (char *string, gfc_symbol *derived)
|
|
{
|
|
char tmp[2*GFC_MAX_SYMBOL_LEN+2];
|
|
get_unique_type_string (&tmp[0], derived);
|
|
/* If string is too long, use hash value in hex representation (allow for
|
|
extra decoration, cf. gfc_build_class_symbol & gfc_find_derived_vtab).
|
|
We need space to for 15 characters "__class_" + symbol name + "_%d_%da",
|
|
where %d is the (co)rank which can be up to n = 15. */
|
|
if (strlen (tmp) > GFC_MAX_SYMBOL_LEN - 15)
|
|
{
|
|
int h = gfc_hash_value (derived);
|
|
sprintf (string, "%X", h);
|
|
}
|
|
else
|
|
strcpy (string, tmp);
|
|
}
|
|
|
|
|
|
/* Assign a hash value for a derived type. The algorithm is that of SDBM. */
|
|
|
|
unsigned int
|
|
gfc_hash_value (gfc_symbol *sym)
|
|
{
|
|
unsigned int hash = 0;
|
|
char c[2*(GFC_MAX_SYMBOL_LEN+1)];
|
|
int i, len;
|
|
|
|
get_unique_type_string (&c[0], sym);
|
|
len = strlen (c);
|
|
|
|
for (i = 0; i < len; i++)
|
|
hash = (hash << 6) + (hash << 16) - hash + c[i];
|
|
|
|
/* Return the hash but take the modulus for the sake of module read,
|
|
even though this slightly increases the chance of collision. */
|
|
return (hash % 100000000);
|
|
}
|
|
|
|
|
|
/* Build a polymorphic CLASS entity, using the symbol that comes from
|
|
build_sym. A CLASS entity is represented by an encapsulating type,
|
|
which contains the declared type as '_data' component, plus a pointer
|
|
component '_vptr' which determines the dynamic type. */
|
|
|
|
gfc_try
|
|
gfc_build_class_symbol (gfc_typespec *ts, symbol_attribute *attr,
|
|
gfc_array_spec **as, bool delayed_vtab)
|
|
{
|
|
char name[GFC_MAX_SYMBOL_LEN+1], tname[GFC_MAX_SYMBOL_LEN+1];
|
|
gfc_symbol *fclass;
|
|
gfc_symbol *vtab;
|
|
gfc_component *c;
|
|
int rank;
|
|
|
|
if (as && *as && (*as)->type == AS_ASSUMED_SIZE)
|
|
{
|
|
gfc_error ("Assumed size polymorphic objects or components, such "
|
|
"as that at %C, have not yet been implemented");
|
|
return FAILURE;
|
|
}
|
|
|
|
if (attr->class_ok)
|
|
/* Class container has already been built. */
|
|
return SUCCESS;
|
|
|
|
attr->class_ok = attr->dummy || attr->pointer || attr->allocatable
|
|
|| attr->select_type_temporary;
|
|
|
|
if (!attr->class_ok)
|
|
/* We can not build the class container yet. */
|
|
return SUCCESS;
|
|
|
|
/* Determine the name of the encapsulating type. */
|
|
rank = !(*as) || (*as)->rank == -1 ? GFC_MAX_DIMENSIONS : (*as)->rank;
|
|
get_unique_hashed_string (tname, ts->u.derived);
|
|
if ((*as) && attr->allocatable)
|
|
sprintf (name, "__class_%s_%d_%da", tname, rank, (*as)->corank);
|
|
else if ((*as) && attr->pointer)
|
|
sprintf (name, "__class_%s_%d_%dp", tname, rank, (*as)->corank);
|
|
else if ((*as))
|
|
sprintf (name, "__class_%s_%d_%d", tname, rank, (*as)->corank);
|
|
else if (attr->pointer)
|
|
sprintf (name, "__class_%s_p", tname);
|
|
else if (attr->allocatable)
|
|
sprintf (name, "__class_%s_a", tname);
|
|
else
|
|
sprintf (name, "__class_%s", tname);
|
|
|
|
gfc_find_symbol (name, ts->u.derived->ns, 0, &fclass);
|
|
if (fclass == NULL)
|
|
{
|
|
gfc_symtree *st;
|
|
/* If not there, create a new symbol. */
|
|
fclass = gfc_new_symbol (name, ts->u.derived->ns);
|
|
st = gfc_new_symtree (&ts->u.derived->ns->sym_root, name);
|
|
st->n.sym = fclass;
|
|
gfc_set_sym_referenced (fclass);
|
|
fclass->refs++;
|
|
fclass->ts.type = BT_UNKNOWN;
|
|
fclass->attr.abstract = ts->u.derived->attr.abstract;
|
|
fclass->f2k_derived = gfc_get_namespace (NULL, 0);
|
|
if (gfc_add_flavor (&fclass->attr, FL_DERIVED,
|
|
NULL, &gfc_current_locus) == FAILURE)
|
|
return FAILURE;
|
|
|
|
/* Add component '_data'. */
|
|
if (gfc_add_component (fclass, "_data", &c) == FAILURE)
|
|
return FAILURE;
|
|
c->ts = *ts;
|
|
c->ts.type = BT_DERIVED;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->ts.u.derived = ts->u.derived;
|
|
c->attr.class_pointer = attr->pointer;
|
|
c->attr.pointer = attr->pointer || (attr->dummy && !attr->allocatable)
|
|
|| attr->select_type_temporary;
|
|
c->attr.allocatable = attr->allocatable;
|
|
c->attr.dimension = attr->dimension;
|
|
c->attr.codimension = attr->codimension;
|
|
c->attr.abstract = ts->u.derived->attr.abstract;
|
|
c->as = (*as);
|
|
c->initializer = NULL;
|
|
|
|
/* Add component '_vptr'. */
|
|
if (gfc_add_component (fclass, "_vptr", &c) == FAILURE)
|
|
return FAILURE;
|
|
c->ts.type = BT_DERIVED;
|
|
if (delayed_vtab
|
|
|| (ts->u.derived->f2k_derived
|
|
&& ts->u.derived->f2k_derived->finalizers))
|
|
c->ts.u.derived = NULL;
|
|
else
|
|
{
|
|
vtab = gfc_find_derived_vtab (ts->u.derived);
|
|
gcc_assert (vtab);
|
|
c->ts.u.derived = vtab->ts.u.derived;
|
|
}
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->attr.pointer = 1;
|
|
}
|
|
|
|
/* Since the extension field is 8 bit wide, we can only have
|
|
up to 255 extension levels. */
|
|
if (ts->u.derived->attr.extension == 255)
|
|
{
|
|
gfc_error ("Maximum extension level reached with type '%s' at %L",
|
|
ts->u.derived->name, &ts->u.derived->declared_at);
|
|
return FAILURE;
|
|
}
|
|
|
|
fclass->attr.extension = ts->u.derived->attr.extension + 1;
|
|
fclass->attr.alloc_comp = ts->u.derived->attr.alloc_comp;
|
|
fclass->attr.is_class = 1;
|
|
ts->u.derived = fclass;
|
|
attr->allocatable = attr->pointer = attr->dimension = attr->codimension = 0;
|
|
(*as) = NULL;
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/* Add a procedure pointer component to the vtype
|
|
to represent a specific type-bound procedure. */
|
|
|
|
static void
|
|
add_proc_comp (gfc_symbol *vtype, const char *name, gfc_typebound_proc *tb)
|
|
{
|
|
gfc_component *c;
|
|
|
|
if (tb->non_overridable)
|
|
return;
|
|
|
|
c = gfc_find_component (vtype, name, true, true);
|
|
|
|
if (c == NULL)
|
|
{
|
|
/* Add procedure component. */
|
|
if (gfc_add_component (vtype, name, &c) == FAILURE)
|
|
return;
|
|
|
|
if (!c->tb)
|
|
c->tb = XCNEW (gfc_typebound_proc);
|
|
*c->tb = *tb;
|
|
c->tb->ppc = 1;
|
|
c->attr.procedure = 1;
|
|
c->attr.proc_pointer = 1;
|
|
c->attr.flavor = FL_PROCEDURE;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->attr.external = 1;
|
|
c->attr.untyped = 1;
|
|
c->attr.if_source = IFSRC_IFBODY;
|
|
}
|
|
else if (c->attr.proc_pointer && c->tb)
|
|
{
|
|
*c->tb = *tb;
|
|
c->tb->ppc = 1;
|
|
}
|
|
|
|
if (tb->u.specific)
|
|
{
|
|
c->ts.interface = tb->u.specific->n.sym;
|
|
if (!tb->deferred)
|
|
c->initializer = gfc_get_variable_expr (tb->u.specific);
|
|
}
|
|
}
|
|
|
|
|
|
/* Add all specific type-bound procedures in the symtree 'st' to a vtype. */
|
|
|
|
static void
|
|
add_procs_to_declared_vtab1 (gfc_symtree *st, gfc_symbol *vtype)
|
|
{
|
|
if (!st)
|
|
return;
|
|
|
|
if (st->left)
|
|
add_procs_to_declared_vtab1 (st->left, vtype);
|
|
|
|
if (st->right)
|
|
add_procs_to_declared_vtab1 (st->right, vtype);
|
|
|
|
if (st->n.tb && !st->n.tb->error
|
|
&& !st->n.tb->is_generic && st->n.tb->u.specific)
|
|
add_proc_comp (vtype, st->name, st->n.tb);
|
|
}
|
|
|
|
|
|
/* Copy procedure pointers components from the parent type. */
|
|
|
|
static void
|
|
copy_vtab_proc_comps (gfc_symbol *declared, gfc_symbol *vtype)
|
|
{
|
|
gfc_component *cmp;
|
|
gfc_symbol *vtab;
|
|
|
|
vtab = gfc_find_derived_vtab (declared);
|
|
|
|
for (cmp = vtab->ts.u.derived->components; cmp; cmp = cmp->next)
|
|
{
|
|
if (gfc_find_component (vtype, cmp->name, true, true))
|
|
continue;
|
|
|
|
add_proc_comp (vtype, cmp->name, cmp->tb);
|
|
}
|
|
}
|
|
|
|
|
|
/* Returns true if any of its nonpointer nonallocatable components or
|
|
their nonpointer nonallocatable subcomponents has a finalization
|
|
subroutine. */
|
|
|
|
static bool
|
|
has_finalizer_component (gfc_symbol *derived)
|
|
{
|
|
gfc_component *c;
|
|
|
|
for (c = derived->components; c; c = c->next)
|
|
{
|
|
if (c->ts.type == BT_DERIVED && c->ts.u.derived->f2k_derived
|
|
&& c->ts.u.derived->f2k_derived->finalizers)
|
|
return true;
|
|
|
|
if (c->ts.type == BT_DERIVED
|
|
&& !c->attr.pointer && !c->attr.allocatable
|
|
&& has_finalizer_component (c->ts.u.derived))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Call DEALLOCATE for the passed component if it is allocatable, if it is
|
|
neither allocatable nor a pointer but has a finalizer, call it. If it
|
|
is a nonpointer component with allocatable components or has finalizers, walk
|
|
them. Either of them is required; other nonallocatables and pointers aren't
|
|
handled gracefully.
|
|
Note: If the component is allocatable, the DEALLOCATE handling takes care
|
|
of calling the appropriate finalizers, coarray deregistering, and
|
|
deallocation of allocatable subcomponents. */
|
|
|
|
static void
|
|
finalize_component (gfc_expr *expr, gfc_symbol *derived, gfc_component *comp,
|
|
gfc_expr *stat, gfc_code **code)
|
|
{
|
|
gfc_expr *e;
|
|
gfc_ref *ref;
|
|
|
|
if (comp->ts.type != BT_DERIVED && comp->ts.type != BT_CLASS
|
|
&& !comp->attr.allocatable)
|
|
return;
|
|
|
|
if ((comp->ts.type == BT_DERIVED && comp->attr.pointer)
|
|
|| (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
|
|
&& CLASS_DATA (comp)->attr.pointer))
|
|
return;
|
|
|
|
if (comp->ts.type == BT_DERIVED && !comp->attr.allocatable
|
|
&& (comp->ts.u.derived->f2k_derived == NULL
|
|
|| comp->ts.u.derived->f2k_derived->finalizers == NULL)
|
|
&& !has_finalizer_component (comp->ts.u.derived))
|
|
return;
|
|
|
|
e = gfc_copy_expr (expr);
|
|
if (!e->ref)
|
|
e->ref = ref = gfc_get_ref ();
|
|
else
|
|
{
|
|
for (ref = e->ref; ref->next; ref = ref->next)
|
|
;
|
|
ref->next = gfc_get_ref ();
|
|
ref = ref->next;
|
|
}
|
|
ref->type = REF_COMPONENT;
|
|
ref->u.c.sym = derived;
|
|
ref->u.c.component = comp;
|
|
e->ts = comp->ts;
|
|
|
|
if (comp->attr.dimension
|
|
|| (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
|
|
&& CLASS_DATA (comp)->attr.dimension))
|
|
{
|
|
ref->next = gfc_get_ref ();
|
|
ref->next->type = REF_ARRAY;
|
|
ref->next->u.ar.type = AR_FULL;
|
|
ref->next->u.ar.dimen = 0;
|
|
ref->next->u.ar.as = comp->ts.type == BT_CLASS ? CLASS_DATA (comp)->as
|
|
: comp->as;
|
|
e->rank = ref->next->u.ar.as->rank;
|
|
}
|
|
|
|
if (comp->attr.allocatable
|
|
|| (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
|
|
&& CLASS_DATA (comp)->attr.allocatable))
|
|
{
|
|
/* Call DEALLOCATE (comp, stat=ignore). */
|
|
gfc_code *dealloc;
|
|
|
|
dealloc = XCNEW (gfc_code);
|
|
dealloc->op = EXEC_DEALLOCATE;
|
|
dealloc->loc = gfc_current_locus;
|
|
|
|
dealloc->ext.alloc.list = gfc_get_alloc ();
|
|
dealloc->ext.alloc.list->expr = e;
|
|
|
|
dealloc->expr1 = stat;
|
|
if (*code)
|
|
{
|
|
(*code)->next = dealloc;
|
|
(*code) = (*code)->next;
|
|
}
|
|
else
|
|
(*code) = dealloc;
|
|
}
|
|
else if (comp->ts.type == BT_DERIVED
|
|
&& comp->ts.u.derived->f2k_derived
|
|
&& comp->ts.u.derived->f2k_derived->finalizers)
|
|
{
|
|
/* Call FINAL_WRAPPER (comp); */
|
|
gfc_code *final_wrap;
|
|
gfc_symbol *vtab;
|
|
gfc_component *c;
|
|
|
|
vtab = gfc_find_derived_vtab (comp->ts.u.derived);
|
|
for (c = vtab->ts.u.derived->components; c; c = c->next)
|
|
if (strcmp (c->name, "_final") == 0)
|
|
break;
|
|
|
|
gcc_assert (c);
|
|
final_wrap = XCNEW (gfc_code);
|
|
final_wrap->op = EXEC_CALL;
|
|
final_wrap->loc = gfc_current_locus;
|
|
final_wrap->loc = gfc_current_locus;
|
|
final_wrap->symtree = c->initializer->symtree;
|
|
final_wrap->resolved_sym = c->initializer->symtree->n.sym;
|
|
final_wrap->ext.actual = gfc_get_actual_arglist ();
|
|
final_wrap->ext.actual->expr = e;
|
|
|
|
if (*code)
|
|
{
|
|
(*code)->next = final_wrap;
|
|
(*code) = (*code)->next;
|
|
}
|
|
else
|
|
(*code) = final_wrap;
|
|
}
|
|
else
|
|
{
|
|
gfc_component *c;
|
|
|
|
for (c = comp->ts.u.derived->components; c; c = c->next)
|
|
finalize_component (e, c->ts.u.derived, c, stat, code);
|
|
}
|
|
}
|
|
|
|
|
|
/* Generate code equivalent to
|
|
CALL C_F_POINTER (TRANSFER (TRANSFER (C_LOC (array, cptr), c_intptr)
|
|
+ idx * STORAGE_SIZE (array)/NUMERIC_STORAGE_SIZE., c_ptr),
|
|
ptr). */
|
|
|
|
static gfc_code *
|
|
finalization_scalarizer (gfc_symbol *idx, gfc_symbol *array, gfc_symbol *ptr,
|
|
gfc_namespace *sub_ns)
|
|
{
|
|
gfc_code *block;
|
|
gfc_expr *expr, *expr2, *expr3;
|
|
|
|
/* C_F_POINTER(). */
|
|
block = XCNEW (gfc_code);
|
|
block->op = EXEC_CALL;
|
|
block->loc = gfc_current_locus;
|
|
gfc_get_sym_tree ("c_f_pointer", sub_ns, &block->symtree, true);
|
|
block->resolved_sym = block->symtree->n.sym;
|
|
block->resolved_sym->attr.flavor = FL_PROCEDURE;
|
|
block->resolved_sym->attr.intrinsic = 1;
|
|
block->resolved_sym->from_intmod = INTMOD_ISO_C_BINDING;
|
|
block->resolved_sym->intmod_sym_id = ISOCBINDING_F_POINTER;
|
|
gfc_commit_symbol (block->resolved_sym);
|
|
|
|
/* C_F_POINTER's first argument: TRANSFER ( <addr>, c_intptr_t). */
|
|
block->ext.actual = gfc_get_actual_arglist ();
|
|
block->ext.actual->next = gfc_get_actual_arglist ();
|
|
block->ext.actual->next->expr = gfc_get_int_expr (gfc_index_integer_kind,
|
|
NULL, 0);
|
|
|
|
/* The <addr> part: TRANSFER (C_LOC (array), c_intptr_t). */
|
|
|
|
/* TRANSFER. */
|
|
expr2 = gfc_get_expr ();
|
|
expr2->expr_type = EXPR_FUNCTION;
|
|
expr2->value.function.name = "__transfer0";
|
|
expr2->value.function.isym
|
|
= gfc_intrinsic_function_by_id (GFC_ISYM_TRANSFER);
|
|
/* Set symtree for -fdump-parse-tree. */
|
|
gfc_get_sym_tree ("transfer", sub_ns, &expr2->symtree, false);
|
|
expr2->symtree->n.sym->attr.flavor = FL_PROCEDURE;
|
|
expr2->symtree->n.sym->attr.intrinsic = 1;
|
|
gfc_commit_symbol (expr2->symtree->n.sym);
|
|
expr2->value.function.actual = gfc_get_actual_arglist ();
|
|
expr2->value.function.actual->expr
|
|
= gfc_lval_expr_from_sym (array);
|
|
expr2->ts.type = BT_INTEGER;
|
|
expr2->ts.kind = gfc_index_integer_kind;
|
|
|
|
/* TRANSFER's second argument: 0_c_intptr_t. */
|
|
expr2->value.function.actual = gfc_get_actual_arglist ();
|
|
expr2->value.function.actual->next = gfc_get_actual_arglist ();
|
|
expr2->value.function.actual->next->expr
|
|
= gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
|
|
expr2->value.function.actual->next->next = gfc_get_actual_arglist ();
|
|
|
|
/* TRANSFER's first argument: C_LOC (array). */
|
|
expr = gfc_get_expr ();
|
|
expr->expr_type = EXPR_FUNCTION;
|
|
gfc_get_sym_tree ("c_loc", sub_ns, &expr->symtree, false);
|
|
expr->symtree->n.sym->attr.flavor = FL_PROCEDURE;
|
|
expr->symtree->n.sym->intmod_sym_id = ISOCBINDING_LOC;
|
|
expr->symtree->n.sym->attr.intrinsic = 1;
|
|
expr->symtree->n.sym->from_intmod = INTMOD_ISO_C_BINDING;
|
|
expr->value.function.esym = expr->symtree->n.sym;
|
|
expr->value.function.actual = gfc_get_actual_arglist ();
|
|
expr->value.function.actual->expr
|
|
= gfc_lval_expr_from_sym (array);
|
|
expr->symtree->n.sym->result = expr->symtree->n.sym;
|
|
gfc_commit_symbol (expr->symtree->n.sym);
|
|
expr->ts.type = BT_INTEGER;
|
|
expr->ts.kind = gfc_index_integer_kind;
|
|
expr2->value.function.actual->expr = expr;
|
|
|
|
/* STORAGE_SIZE (...) / NUMERIC_STORAGE_SIZE. */
|
|
block->ext.actual->expr = gfc_get_expr ();
|
|
expr = block->ext.actual->expr;
|
|
expr->expr_type = EXPR_OP;
|
|
expr->value.op.op = INTRINSIC_DIVIDE;
|
|
|
|
/* STORAGE_SIZE (array,kind=c_intptr_t). */
|
|
expr->value.op.op1 = gfc_get_expr ();
|
|
expr->value.op.op1->expr_type = EXPR_FUNCTION;
|
|
expr->value.op.op1->value.function.isym
|
|
= gfc_intrinsic_function_by_id (GFC_ISYM_STORAGE_SIZE);
|
|
gfc_get_sym_tree ("storage_size", sub_ns, &expr->value.op.op1->symtree,
|
|
false);
|
|
expr->value.op.op1->symtree->n.sym->attr.flavor = FL_PROCEDURE;
|
|
expr->value.op.op1->symtree->n.sym->attr.intrinsic = 1;
|
|
gfc_commit_symbol (expr->value.op.op1->symtree->n.sym);
|
|
expr->value.op.op1->value.function.actual = gfc_get_actual_arglist ();
|
|
expr->value.op.op1->value.function.actual->expr
|
|
= gfc_lval_expr_from_sym (array);
|
|
expr->value.op.op1->value.function.actual->next = gfc_get_actual_arglist ();
|
|
expr->value.op.op1->value.function.actual->next->expr
|
|
= gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
|
|
expr->value.op.op2 = gfc_get_int_expr (gfc_index_integer_kind, NULL,
|
|
gfc_character_storage_size);
|
|
expr->value.op.op1->ts = expr->value.op.op2->ts;
|
|
expr->ts = expr->value.op.op1->ts;
|
|
|
|
/* Offset calculation: idx * (STORAGE_SIZE (...) / NUMERIC_STORAGE_SIZE). */
|
|
block->ext.actual->expr = gfc_get_expr ();
|
|
expr3 = block->ext.actual->expr;
|
|
expr3->expr_type = EXPR_OP;
|
|
expr3->value.op.op = INTRINSIC_TIMES;
|
|
expr3->value.op.op1 = gfc_lval_expr_from_sym (idx);
|
|
expr3->value.op.op2 = expr;
|
|
expr3->ts = expr->ts;
|
|
|
|
/* <array addr> + <offset>. */
|
|
block->ext.actual->expr = gfc_get_expr ();
|
|
block->ext.actual->expr->expr_type = EXPR_OP;
|
|
block->ext.actual->expr->value.op.op = INTRINSIC_PLUS;
|
|
block->ext.actual->expr->value.op.op1 = expr2;
|
|
block->ext.actual->expr->value.op.op2 = expr3;
|
|
block->ext.actual->expr->ts = expr->ts;
|
|
|
|
/* C_F_POINTER's 2nd arg: ptr -- and its absent shape=. */
|
|
block->ext.actual->next = gfc_get_actual_arglist ();
|
|
block->ext.actual->next->expr = gfc_lval_expr_from_sym (ptr);
|
|
block->ext.actual->next->next = gfc_get_actual_arglist ();
|
|
|
|
return block;
|
|
}
|
|
|
|
|
|
/* Generate the finalization/polymorphic freeing wrapper subroutine for the
|
|
derived type "derived". The function first calls the approriate FINAL
|
|
subroutine, then it DEALLOCATEs (finalizes/frees) the allocatable
|
|
components (but not the inherited ones). Last, it calls the wrapper
|
|
subroutine of the parent. The generated wrapper procedure takes as argument
|
|
an assumed-rank array.
|
|
If neither allocatable components nor FINAL subroutines exists, the vtab
|
|
will contain a NULL pointer. */
|
|
|
|
static void
|
|
generate_finalization_wrapper (gfc_symbol *derived, gfc_namespace *ns,
|
|
const char *tname, gfc_component *vtab_final)
|
|
{
|
|
gfc_symbol *final, *array, *nelem;
|
|
gfc_symbol *ptr = NULL, *idx = NULL;
|
|
gfc_component *comp;
|
|
gfc_namespace *sub_ns;
|
|
gfc_code *last_code;
|
|
char name[GFC_MAX_SYMBOL_LEN+1];
|
|
bool finalizable_comp = false;
|
|
gfc_expr *ancestor_wrapper = NULL;
|
|
|
|
/* Search for the ancestor's finalizers. */
|
|
if (derived->attr.extension && derived->components
|
|
&& (!derived->components->ts.u.derived->attr.abstract
|
|
|| has_finalizer_component (derived)))
|
|
{
|
|
gfc_symbol *vtab;
|
|
gfc_component *comp;
|
|
|
|
vtab = gfc_find_derived_vtab (derived->components->ts.u.derived);
|
|
for (comp = vtab->ts.u.derived->components; comp; comp = comp->next)
|
|
if (comp->name[0] == '_' && comp->name[1] == 'f')
|
|
{
|
|
ancestor_wrapper = comp->initializer;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* No wrapper of the ancestor and no own FINAL subroutines and
|
|
allocatable components: Return a NULL() expression. */
|
|
if ((!ancestor_wrapper || ancestor_wrapper->expr_type == EXPR_NULL)
|
|
&& !derived->attr.alloc_comp
|
|
&& (!derived->f2k_derived || !derived->f2k_derived->finalizers)
|
|
&& !has_finalizer_component (derived))
|
|
{
|
|
vtab_final->initializer = gfc_get_null_expr (NULL);
|
|
return;
|
|
}
|
|
|
|
/* Check whether there are new allocatable components. */
|
|
for (comp = derived->components; comp; comp = comp->next)
|
|
{
|
|
if (comp == derived->components && derived->attr.extension
|
|
&& ancestor_wrapper && ancestor_wrapper->expr_type != EXPR_NULL)
|
|
continue;
|
|
|
|
if (comp->ts.type != BT_CLASS && !comp->attr.pointer
|
|
&& (comp->attr.alloc_comp || comp->attr.allocatable
|
|
|| (comp->ts.type == BT_DERIVED
|
|
&& has_finalizer_component (comp->ts.u.derived))))
|
|
finalizable_comp = true;
|
|
else if (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
|
|
&& CLASS_DATA (comp)->attr.allocatable)
|
|
finalizable_comp = true;
|
|
}
|
|
|
|
/* If there is no new finalizer and no new allocatable, return with
|
|
an expr to the ancestor's one. */
|
|
if ((!derived->f2k_derived || !derived->f2k_derived->finalizers)
|
|
&& !finalizable_comp)
|
|
{
|
|
vtab_final->initializer = gfc_copy_expr (ancestor_wrapper);
|
|
return;
|
|
}
|
|
|
|
/* We now create a wrapper, which does the following:
|
|
1. Call the suitable finalization subroutine for this type
|
|
2. Loop over all noninherited allocatable components and noninherited
|
|
components with allocatable components and DEALLOCATE those; this will
|
|
take care of finalizers, coarray deregistering and allocatable
|
|
nested components.
|
|
3. Call the ancestor's finalizer. */
|
|
|
|
/* Declare the wrapper function; it takes an assumed-rank array
|
|
as argument. */
|
|
|
|
/* Set up the namespace. */
|
|
sub_ns = gfc_get_namespace (ns, 0);
|
|
sub_ns->sibling = ns->contained;
|
|
ns->contained = sub_ns;
|
|
sub_ns->resolved = 1;
|
|
|
|
/* Set up the procedure symbol. */
|
|
sprintf (name, "__final_%s", tname);
|
|
gfc_get_symbol (name, sub_ns, &final);
|
|
sub_ns->proc_name = final;
|
|
final->attr.flavor = FL_PROCEDURE;
|
|
final->attr.subroutine = 1;
|
|
final->attr.pure = 1;
|
|
final->attr.artificial = 1;
|
|
final->attr.if_source = IFSRC_DECL;
|
|
if (ns->proc_name->attr.flavor == FL_MODULE)
|
|
final->module = ns->proc_name->name;
|
|
gfc_set_sym_referenced (final);
|
|
|
|
/* Set up formal argument. */
|
|
gfc_get_symbol ("array", sub_ns, &array);
|
|
array->ts.type = BT_DERIVED;
|
|
array->ts.u.derived = derived;
|
|
array->attr.flavor = FL_VARIABLE;
|
|
array->attr.dummy = 1;
|
|
array->attr.contiguous = 1;
|
|
array->attr.dimension = 1;
|
|
array->attr.artificial = 1;
|
|
array->as = gfc_get_array_spec();
|
|
array->as->type = AS_ASSUMED_RANK;
|
|
array->as->rank = -1;
|
|
array->attr.intent = INTENT_INOUT;
|
|
gfc_set_sym_referenced (array);
|
|
final->formal = gfc_get_formal_arglist ();
|
|
final->formal->sym = array;
|
|
gfc_commit_symbol (array);
|
|
|
|
/* Obtain the size (number of elements) of "array" MINUS ONE,
|
|
which is used in the scalarization. */
|
|
gfc_get_symbol ("nelem", sub_ns, &nelem);
|
|
nelem->ts.type = BT_INTEGER;
|
|
nelem->ts.kind = gfc_index_integer_kind;
|
|
nelem->attr.flavor = FL_VARIABLE;
|
|
nelem->attr.artificial = 1;
|
|
gfc_set_sym_referenced (nelem);
|
|
gfc_commit_symbol (nelem);
|
|
|
|
/* Generate: nelem = SIZE (array) - 1. */
|
|
last_code = XCNEW (gfc_code);
|
|
last_code->op = EXEC_ASSIGN;
|
|
last_code->loc = gfc_current_locus;
|
|
|
|
last_code->expr1 = gfc_lval_expr_from_sym (nelem);
|
|
|
|
last_code->expr2 = gfc_get_expr ();
|
|
last_code->expr2->expr_type = EXPR_OP;
|
|
last_code->expr2->value.op.op = INTRINSIC_MINUS;
|
|
last_code->expr2->value.op.op2
|
|
= gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
last_code->expr2->ts = last_code->expr2->value.op.op2->ts;
|
|
|
|
last_code->expr2->value.op.op1 = gfc_get_expr ();
|
|
last_code->expr2->value.op.op1->expr_type = EXPR_FUNCTION;
|
|
last_code->expr2->value.op.op1->value.function.isym
|
|
= gfc_intrinsic_function_by_id (GFC_ISYM_SIZE);
|
|
gfc_get_sym_tree ("size", sub_ns, &last_code->expr2->value.op.op1->symtree,
|
|
false);
|
|
last_code->expr2->value.op.op1->symtree->n.sym->attr.flavor = FL_PROCEDURE;
|
|
last_code->expr2->value.op.op1->symtree->n.sym->attr.intrinsic = 1;
|
|
gfc_commit_symbol (last_code->expr2->value.op.op1->symtree->n.sym);
|
|
last_code->expr2->value.op.op1->value.function.actual
|
|
= gfc_get_actual_arglist ();
|
|
last_code->expr2->value.op.op1->value.function.actual->expr
|
|
= gfc_lval_expr_from_sym (array);
|
|
/* dim=NULL. */
|
|
last_code->expr2->value.op.op1->value.function.actual->next
|
|
= gfc_get_actual_arglist ();
|
|
/* kind=c_intptr_t. */
|
|
last_code->expr2->value.op.op1->value.function.actual->next->next
|
|
= gfc_get_actual_arglist ();
|
|
last_code->expr2->value.op.op1->value.function.actual->next->next->expr
|
|
= gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
|
|
last_code->expr2->value.op.op1->ts
|
|
= last_code->expr2->value.op.op1->value.function.isym->ts;
|
|
|
|
sub_ns->code = last_code;
|
|
|
|
/* Call final subroutines. We now generate code like:
|
|
use iso_c_binding
|
|
integer, pointer :: ptr
|
|
type(c_ptr) :: cptr
|
|
integer(c_intptr_t) :: i, addr
|
|
|
|
select case (rank (array))
|
|
case (3)
|
|
call final_rank3 (array)
|
|
case default:
|
|
do i = 0, size (array)-1
|
|
addr = transfer (c_loc (array), addr) + i * STORAGE_SIZE (array)
|
|
call c_f_pointer (transfer (addr, cptr), ptr)
|
|
call elemental_final (ptr)
|
|
end do
|
|
end select */
|
|
|
|
if (derived->f2k_derived && derived->f2k_derived->finalizers)
|
|
{
|
|
gfc_finalizer *fini, *fini_elem = NULL;
|
|
gfc_code *block = NULL;
|
|
|
|
/* SELECT CASE (RANK (array)). */
|
|
last_code->next = XCNEW (gfc_code);
|
|
last_code = last_code->next;
|
|
last_code->op = EXEC_SELECT;
|
|
last_code->loc = gfc_current_locus;
|
|
|
|
last_code->expr1 = gfc_get_expr ();
|
|
last_code->expr1->expr_type = EXPR_FUNCTION;
|
|
last_code->expr1->value.function.isym
|
|
= gfc_intrinsic_function_by_id (GFC_ISYM_RANK);
|
|
gfc_get_sym_tree ("rank", sub_ns, &last_code->expr1->symtree,
|
|
false);
|
|
last_code->expr1->symtree->n.sym->attr.flavor = FL_PROCEDURE;
|
|
last_code->expr1->symtree->n.sym->attr.intrinsic = 1;
|
|
gfc_commit_symbol (last_code->expr1->symtree->n.sym);
|
|
last_code->expr1->value.function.actual = gfc_get_actual_arglist ();
|
|
last_code->expr1->value.function.actual->expr
|
|
= gfc_lval_expr_from_sym (array);
|
|
last_code->expr1->ts = last_code->expr1->value.function.isym->ts;
|
|
|
|
for (fini = derived->f2k_derived->finalizers; fini; fini = fini->next)
|
|
{
|
|
if (fini->proc_tree->n.sym->attr.elemental)
|
|
{
|
|
fini_elem = fini;
|
|
continue;
|
|
}
|
|
|
|
/* CASE (fini_rank). */
|
|
if (block)
|
|
{
|
|
block->block = XCNEW (gfc_code);
|
|
block = block->block;
|
|
}
|
|
else
|
|
{
|
|
block = XCNEW (gfc_code);
|
|
last_code->block = block;
|
|
}
|
|
block->loc = gfc_current_locus;
|
|
block->op = EXEC_SELECT;
|
|
block->ext.block.case_list = gfc_get_case ();
|
|
block->ext.block.case_list->where = gfc_current_locus;
|
|
if (fini->proc_tree->n.sym->formal->sym->attr.dimension)
|
|
block->ext.block.case_list->low
|
|
= gfc_get_int_expr (gfc_default_integer_kind, NULL,
|
|
fini->proc_tree->n.sym->formal->sym->as->rank);
|
|
else
|
|
block->ext.block.case_list->low
|
|
= gfc_get_int_expr (gfc_default_integer_kind, NULL, 0);
|
|
block->ext.block.case_list->high
|
|
= block->ext.block.case_list->low;
|
|
|
|
/* CALL fini_rank (array). */
|
|
block->next = XCNEW (gfc_code);
|
|
block->next->op = EXEC_CALL;
|
|
block->next->loc = gfc_current_locus;
|
|
block->next->symtree = fini->proc_tree;
|
|
block->next->resolved_sym = fini->proc_tree->n.sym;
|
|
block->next->ext.actual = gfc_get_actual_arglist ();
|
|
block->next->ext.actual->expr = gfc_lval_expr_from_sym (array);
|
|
}
|
|
|
|
/* Elemental call - scalarized. */
|
|
if (fini_elem)
|
|
{
|
|
gfc_iterator *iter;
|
|
|
|
/* CASE DEFAULT. */
|
|
if (block)
|
|
{
|
|
block->block = XCNEW (gfc_code);
|
|
block = block->block;
|
|
}
|
|
else
|
|
{
|
|
block = XCNEW (gfc_code);
|
|
last_code->block = block;
|
|
}
|
|
block->loc = gfc_current_locus;
|
|
block->op = EXEC_SELECT;
|
|
block->ext.block.case_list = gfc_get_case ();
|
|
|
|
gfc_get_symbol ("idx", sub_ns, &idx);
|
|
idx->ts.type = BT_INTEGER;
|
|
idx->ts.kind = gfc_index_integer_kind;
|
|
idx->attr.flavor = FL_VARIABLE;
|
|
idx->attr.artificial = 1;
|
|
gfc_set_sym_referenced (idx);
|
|
gfc_commit_symbol (idx);
|
|
|
|
gfc_get_symbol ("ptr", sub_ns, &ptr);
|
|
ptr->ts.type = BT_DERIVED;
|
|
ptr->ts.u.derived = derived;
|
|
ptr->attr.flavor = FL_VARIABLE;
|
|
ptr->attr.pointer = 1;
|
|
ptr->attr.artificial = 1;
|
|
gfc_set_sym_referenced (ptr);
|
|
gfc_commit_symbol (ptr);
|
|
|
|
/* Create loop. */
|
|
iter = gfc_get_iterator ();
|
|
iter->var = gfc_lval_expr_from_sym (idx);
|
|
iter->start = gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
|
|
iter->end = gfc_lval_expr_from_sym (nelem);
|
|
iter->step = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
block->next = XCNEW (gfc_code);
|
|
block = block->next;
|
|
block->op = EXEC_DO;
|
|
block->loc = gfc_current_locus;
|
|
block->ext.iterator = iter;
|
|
block->block = gfc_get_code ();
|
|
block->block->op = EXEC_DO;
|
|
|
|
/* Create code for
|
|
CALL C_F_POINTER (TRANSFER (TRANSFER (C_LOC (array, cptr), c_intptr)
|
|
+ idx * STORAGE_SIZE (array), c_ptr), ptr). */
|
|
block->block->next = finalization_scalarizer (idx, array, ptr, sub_ns);
|
|
block = block->block->next;
|
|
|
|
/* CALL final_elemental (array). */
|
|
block->next = XCNEW (gfc_code);
|
|
block = block->next;
|
|
block->op = EXEC_CALL;
|
|
block->loc = gfc_current_locus;
|
|
block->symtree = fini_elem->proc_tree;
|
|
block->resolved_sym = fini_elem->proc_sym;
|
|
block->ext.actual = gfc_get_actual_arglist ();
|
|
block->ext.actual->expr = gfc_lval_expr_from_sym (ptr);
|
|
}
|
|
}
|
|
|
|
/* Finalize and deallocate allocatable components. The same manual
|
|
scalarization is used as above. */
|
|
|
|
if (finalizable_comp)
|
|
{
|
|
gfc_symbol *stat;
|
|
gfc_code *block = NULL;
|
|
gfc_iterator *iter;
|
|
|
|
if (!idx)
|
|
{
|
|
gfc_get_symbol ("idx", sub_ns, &idx);
|
|
idx->ts.type = BT_INTEGER;
|
|
idx->ts.kind = gfc_index_integer_kind;
|
|
idx->attr.flavor = FL_VARIABLE;
|
|
idx->attr.artificial = 1;
|
|
gfc_set_sym_referenced (idx);
|
|
gfc_commit_symbol (idx);
|
|
}
|
|
|
|
if (!ptr)
|
|
{
|
|
gfc_get_symbol ("ptr", sub_ns, &ptr);
|
|
ptr->ts.type = BT_DERIVED;
|
|
ptr->ts.u.derived = derived;
|
|
ptr->attr.flavor = FL_VARIABLE;
|
|
ptr->attr.pointer = 1;
|
|
ptr->attr.artificial = 1;
|
|
gfc_set_sym_referenced (ptr);
|
|
gfc_commit_symbol (ptr);
|
|
}
|
|
|
|
gfc_get_symbol ("ignore", sub_ns, &stat);
|
|
stat->attr.flavor = FL_VARIABLE;
|
|
stat->attr.artificial = 1;
|
|
stat->ts.type = BT_INTEGER;
|
|
stat->ts.kind = gfc_default_integer_kind;
|
|
gfc_set_sym_referenced (stat);
|
|
gfc_commit_symbol (stat);
|
|
|
|
/* Create loop. */
|
|
iter = gfc_get_iterator ();
|
|
iter->var = gfc_lval_expr_from_sym (idx);
|
|
iter->start = gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
|
|
iter->end = gfc_lval_expr_from_sym (nelem);
|
|
iter->step = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
|
|
last_code->next = XCNEW (gfc_code);
|
|
last_code = last_code->next;
|
|
last_code->op = EXEC_DO;
|
|
last_code->loc = gfc_current_locus;
|
|
last_code->ext.iterator = iter;
|
|
last_code->block = gfc_get_code ();
|
|
last_code->block->op = EXEC_DO;
|
|
|
|
/* Create code for
|
|
CALL C_F_POINTER (TRANSFER (TRANSFER (C_LOC (array, cptr), c_intptr)
|
|
+ idx * STORAGE_SIZE (array), c_ptr), ptr). */
|
|
last_code->block->next = finalization_scalarizer (idx, array, ptr, sub_ns);
|
|
block = last_code->block->next;
|
|
|
|
for (comp = derived->components; comp; comp = comp->next)
|
|
{
|
|
if (comp == derived->components && derived->attr.extension
|
|
&& ancestor_wrapper && ancestor_wrapper->expr_type != EXPR_NULL)
|
|
continue;
|
|
|
|
finalize_component (gfc_lval_expr_from_sym (ptr), derived, comp,
|
|
gfc_lval_expr_from_sym (stat), &block);
|
|
if (!last_code->block->next)
|
|
last_code->block->next = block;
|
|
}
|
|
|
|
}
|
|
|
|
/* Call the finalizer of the ancestor. */
|
|
if (ancestor_wrapper && ancestor_wrapper->expr_type != EXPR_NULL)
|
|
{
|
|
last_code->next = XCNEW (gfc_code);
|
|
last_code = last_code->next;
|
|
last_code->op = EXEC_CALL;
|
|
last_code->loc = gfc_current_locus;
|
|
last_code->symtree = ancestor_wrapper->symtree;
|
|
last_code->resolved_sym = ancestor_wrapper->symtree->n.sym;
|
|
|
|
last_code->ext.actual = gfc_get_actual_arglist ();
|
|
last_code->ext.actual->expr = gfc_lval_expr_from_sym (array);
|
|
}
|
|
|
|
gfc_commit_symbol (final);
|
|
vtab_final->initializer = gfc_lval_expr_from_sym (final);
|
|
vtab_final->ts.interface = final;
|
|
}
|
|
|
|
|
|
/* Add procedure pointers for all type-bound procedures to a vtab. */
|
|
|
|
static void
|
|
add_procs_to_declared_vtab (gfc_symbol *derived, gfc_symbol *vtype)
|
|
{
|
|
gfc_symbol* super_type;
|
|
|
|
super_type = gfc_get_derived_super_type (derived);
|
|
|
|
if (super_type && (super_type != derived))
|
|
{
|
|
/* Make sure that the PPCs appear in the same order as in the parent. */
|
|
copy_vtab_proc_comps (super_type, vtype);
|
|
/* Only needed to get the PPC initializers right. */
|
|
add_procs_to_declared_vtab (super_type, vtype);
|
|
}
|
|
|
|
if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
|
|
add_procs_to_declared_vtab1 (derived->f2k_derived->tb_sym_root, vtype);
|
|
|
|
if (derived->f2k_derived && derived->f2k_derived->tb_uop_root)
|
|
add_procs_to_declared_vtab1 (derived->f2k_derived->tb_uop_root, vtype);
|
|
}
|
|
|
|
|
|
/* Find (or generate) the symbol for a derived type's vtab. */
|
|
|
|
gfc_symbol *
|
|
gfc_find_derived_vtab (gfc_symbol *derived)
|
|
{
|
|
gfc_namespace *ns;
|
|
gfc_symbol *vtab = NULL, *vtype = NULL, *found_sym = NULL, *def_init = NULL;
|
|
gfc_symbol *copy = NULL, *src = NULL, *dst = NULL;
|
|
|
|
/* Find the top-level namespace (MODULE or PROGRAM). */
|
|
for (ns = gfc_current_ns; ns; ns = ns->parent)
|
|
if (!ns->parent)
|
|
break;
|
|
|
|
/* If the type is a class container, use the underlying derived type. */
|
|
if (derived->attr.is_class)
|
|
derived = gfc_get_derived_super_type (derived);
|
|
|
|
if (ns)
|
|
{
|
|
char name[GFC_MAX_SYMBOL_LEN+1], tname[GFC_MAX_SYMBOL_LEN+1];
|
|
|
|
get_unique_hashed_string (tname, derived);
|
|
sprintf (name, "__vtab_%s", tname);
|
|
|
|
/* Look for the vtab symbol in various namespaces. */
|
|
gfc_find_symbol (name, gfc_current_ns, 0, &vtab);
|
|
if (vtab == NULL)
|
|
gfc_find_symbol (name, ns, 0, &vtab);
|
|
if (vtab == NULL)
|
|
gfc_find_symbol (name, derived->ns, 0, &vtab);
|
|
|
|
if (vtab == NULL)
|
|
{
|
|
gfc_get_symbol (name, ns, &vtab);
|
|
vtab->ts.type = BT_DERIVED;
|
|
if (gfc_add_flavor (&vtab->attr, FL_VARIABLE, NULL,
|
|
&gfc_current_locus) == FAILURE)
|
|
goto cleanup;
|
|
vtab->attr.target = 1;
|
|
vtab->attr.save = SAVE_IMPLICIT;
|
|
vtab->attr.vtab = 1;
|
|
vtab->attr.access = ACCESS_PUBLIC;
|
|
gfc_set_sym_referenced (vtab);
|
|
sprintf (name, "__vtype_%s", tname);
|
|
|
|
gfc_find_symbol (name, ns, 0, &vtype);
|
|
if (vtype == NULL)
|
|
{
|
|
gfc_component *c;
|
|
gfc_symbol *parent = NULL, *parent_vtab = NULL;
|
|
|
|
gfc_get_symbol (name, ns, &vtype);
|
|
if (gfc_add_flavor (&vtype->attr, FL_DERIVED,
|
|
NULL, &gfc_current_locus) == FAILURE)
|
|
goto cleanup;
|
|
vtype->attr.access = ACCESS_PUBLIC;
|
|
vtype->attr.vtype = 1;
|
|
gfc_set_sym_referenced (vtype);
|
|
|
|
/* Add component '_hash'. */
|
|
if (gfc_add_component (vtype, "_hash", &c) == FAILURE)
|
|
goto cleanup;
|
|
c->ts.type = BT_INTEGER;
|
|
c->ts.kind = 4;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->initializer = gfc_get_int_expr (gfc_default_integer_kind,
|
|
NULL, derived->hash_value);
|
|
|
|
/* Add component '_size'. */
|
|
if (gfc_add_component (vtype, "_size", &c) == FAILURE)
|
|
goto cleanup;
|
|
c->ts.type = BT_INTEGER;
|
|
c->ts.kind = 4;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
/* Remember the derived type in ts.u.derived,
|
|
so that the correct initializer can be set later on
|
|
(in gfc_conv_structure). */
|
|
c->ts.u.derived = derived;
|
|
c->initializer = gfc_get_int_expr (gfc_default_integer_kind,
|
|
NULL, 0);
|
|
|
|
/* Add component _extends. */
|
|
if (gfc_add_component (vtype, "_extends", &c) == FAILURE)
|
|
goto cleanup;
|
|
c->attr.pointer = 1;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
parent = gfc_get_derived_super_type (derived);
|
|
if (parent)
|
|
{
|
|
parent_vtab = gfc_find_derived_vtab (parent);
|
|
c->ts.type = BT_DERIVED;
|
|
c->ts.u.derived = parent_vtab->ts.u.derived;
|
|
c->initializer = gfc_get_expr ();
|
|
c->initializer->expr_type = EXPR_VARIABLE;
|
|
gfc_find_sym_tree (parent_vtab->name, parent_vtab->ns,
|
|
0, &c->initializer->symtree);
|
|
}
|
|
else
|
|
{
|
|
c->ts.type = BT_DERIVED;
|
|
c->ts.u.derived = vtype;
|
|
c->initializer = gfc_get_null_expr (NULL);
|
|
}
|
|
|
|
if (derived->components == NULL && !derived->attr.zero_comp)
|
|
{
|
|
/* At this point an error must have occurred.
|
|
Prevent further errors on the vtype components. */
|
|
found_sym = vtab;
|
|
goto have_vtype;
|
|
}
|
|
|
|
/* Add component _def_init. */
|
|
if (gfc_add_component (vtype, "_def_init", &c) == FAILURE)
|
|
goto cleanup;
|
|
c->attr.pointer = 1;
|
|
c->attr.artificial = 1;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->ts.type = BT_DERIVED;
|
|
c->ts.u.derived = derived;
|
|
if (derived->attr.abstract)
|
|
c->initializer = gfc_get_null_expr (NULL);
|
|
else
|
|
{
|
|
/* Construct default initialization variable. */
|
|
sprintf (name, "__def_init_%s", tname);
|
|
gfc_get_symbol (name, ns, &def_init);
|
|
def_init->attr.target = 1;
|
|
def_init->attr.artificial = 1;
|
|
def_init->attr.save = SAVE_IMPLICIT;
|
|
def_init->attr.access = ACCESS_PUBLIC;
|
|
def_init->attr.flavor = FL_VARIABLE;
|
|
gfc_set_sym_referenced (def_init);
|
|
def_init->ts.type = BT_DERIVED;
|
|
def_init->ts.u.derived = derived;
|
|
def_init->value = gfc_default_initializer (&def_init->ts);
|
|
|
|
c->initializer = gfc_lval_expr_from_sym (def_init);
|
|
}
|
|
|
|
/* Add component _copy. */
|
|
if (gfc_add_component (vtype, "_copy", &c) == FAILURE)
|
|
goto cleanup;
|
|
c->attr.proc_pointer = 1;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->tb = XCNEW (gfc_typebound_proc);
|
|
c->tb->ppc = 1;
|
|
if (derived->attr.abstract)
|
|
c->initializer = gfc_get_null_expr (NULL);
|
|
else
|
|
{
|
|
/* Set up namespace. */
|
|
gfc_namespace *sub_ns = gfc_get_namespace (ns, 0);
|
|
sub_ns->sibling = ns->contained;
|
|
ns->contained = sub_ns;
|
|
sub_ns->resolved = 1;
|
|
/* Set up procedure symbol. */
|
|
sprintf (name, "__copy_%s", tname);
|
|
gfc_get_symbol (name, sub_ns, ©);
|
|
sub_ns->proc_name = copy;
|
|
copy->attr.flavor = FL_PROCEDURE;
|
|
copy->attr.subroutine = 1;
|
|
copy->attr.pure = 1;
|
|
copy->attr.artificial = 1;
|
|
copy->attr.if_source = IFSRC_DECL;
|
|
/* This is elemental so that arrays are automatically
|
|
treated correctly by the scalarizer. */
|
|
copy->attr.elemental = 1;
|
|
if (ns->proc_name->attr.flavor == FL_MODULE)
|
|
copy->module = ns->proc_name->name;
|
|
gfc_set_sym_referenced (copy);
|
|
/* Set up formal arguments. */
|
|
gfc_get_symbol ("src", sub_ns, &src);
|
|
src->ts.type = BT_DERIVED;
|
|
src->ts.u.derived = derived;
|
|
src->attr.flavor = FL_VARIABLE;
|
|
src->attr.dummy = 1;
|
|
src->attr.artificial = 1;
|
|
src->attr.intent = INTENT_IN;
|
|
gfc_set_sym_referenced (src);
|
|
copy->formal = gfc_get_formal_arglist ();
|
|
copy->formal->sym = src;
|
|
gfc_get_symbol ("dst", sub_ns, &dst);
|
|
dst->ts.type = BT_DERIVED;
|
|
dst->ts.u.derived = derived;
|
|
dst->attr.flavor = FL_VARIABLE;
|
|
dst->attr.dummy = 1;
|
|
dst->attr.artificial = 1;
|
|
dst->attr.intent = INTENT_OUT;
|
|
gfc_set_sym_referenced (dst);
|
|
copy->formal->next = gfc_get_formal_arglist ();
|
|
copy->formal->next->sym = dst;
|
|
/* Set up code. */
|
|
sub_ns->code = gfc_get_code ();
|
|
sub_ns->code->op = EXEC_INIT_ASSIGN;
|
|
sub_ns->code->expr1 = gfc_lval_expr_from_sym (dst);
|
|
sub_ns->code->expr2 = gfc_lval_expr_from_sym (src);
|
|
/* Set initializer. */
|
|
c->initializer = gfc_lval_expr_from_sym (copy);
|
|
c->ts.interface = copy;
|
|
}
|
|
|
|
/* Add component _final, which contains a procedure pointer to
|
|
a wrapper which handles both the freeing of allocatable
|
|
components and the calls to finalization subroutines.
|
|
Note: The actual wrapper function can only be generated
|
|
at resolution time. */
|
|
/* FIXME: Enable ABI-breaking "_final" generation. */
|
|
if (0)
|
|
{
|
|
if (gfc_add_component (vtype, "_final", &c) == FAILURE)
|
|
goto cleanup;
|
|
c->attr.proc_pointer = 1;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->tb = XCNEW (gfc_typebound_proc);
|
|
c->tb->ppc = 1;
|
|
generate_finalization_wrapper (derived, ns, tname, c);
|
|
|
|
/* Add procedure pointers for type-bound procedures. */
|
|
add_procs_to_declared_vtab (derived, vtype);
|
|
}
|
|
}
|
|
|
|
have_vtype:
|
|
vtab->ts.u.derived = vtype;
|
|
vtab->value = gfc_default_initializer (&vtab->ts);
|
|
}
|
|
}
|
|
|
|
found_sym = vtab;
|
|
|
|
cleanup:
|
|
/* It is unexpected to have some symbols added at resolution or code
|
|
generation time. We commit the changes in order to keep a clean state. */
|
|
if (found_sym)
|
|
{
|
|
gfc_commit_symbol (vtab);
|
|
if (vtype)
|
|
gfc_commit_symbol (vtype);
|
|
if (def_init)
|
|
gfc_commit_symbol (def_init);
|
|
if (copy)
|
|
gfc_commit_symbol (copy);
|
|
if (src)
|
|
gfc_commit_symbol (src);
|
|
if (dst)
|
|
gfc_commit_symbol (dst);
|
|
}
|
|
else
|
|
gfc_undo_symbols ();
|
|
|
|
return found_sym;
|
|
}
|
|
|
|
|
|
/* General worker function to find either a type-bound procedure or a
|
|
type-bound user operator. */
|
|
|
|
static gfc_symtree*
|
|
find_typebound_proc_uop (gfc_symbol* derived, gfc_try* t,
|
|
const char* name, bool noaccess, bool uop,
|
|
locus* where)
|
|
{
|
|
gfc_symtree* res;
|
|
gfc_symtree* root;
|
|
|
|
/* Set correct symbol-root. */
|
|
gcc_assert (derived->f2k_derived);
|
|
root = (uop ? derived->f2k_derived->tb_uop_root
|
|
: derived->f2k_derived->tb_sym_root);
|
|
|
|
/* Set default to failure. */
|
|
if (t)
|
|
*t = FAILURE;
|
|
|
|
/* Try to find it in the current type's namespace. */
|
|
res = gfc_find_symtree (root, name);
|
|
if (res && res->n.tb && !res->n.tb->error)
|
|
{
|
|
/* We found one. */
|
|
if (t)
|
|
*t = SUCCESS;
|
|
|
|
if (!noaccess && derived->attr.use_assoc
|
|
&& res->n.tb->access == ACCESS_PRIVATE)
|
|
{
|
|
if (where)
|
|
gfc_error ("'%s' of '%s' is PRIVATE at %L",
|
|
name, derived->name, where);
|
|
if (t)
|
|
*t = FAILURE;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Otherwise, recurse on parent type if derived is an extension. */
|
|
if (derived->attr.extension)
|
|
{
|
|
gfc_symbol* super_type;
|
|
super_type = gfc_get_derived_super_type (derived);
|
|
gcc_assert (super_type);
|
|
|
|
return find_typebound_proc_uop (super_type, t, name,
|
|
noaccess, uop, where);
|
|
}
|
|
|
|
/* Nothing found. */
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Find a type-bound procedure or user operator by name for a derived-type
|
|
(looking recursively through the super-types). */
|
|
|
|
gfc_symtree*
|
|
gfc_find_typebound_proc (gfc_symbol* derived, gfc_try* t,
|
|
const char* name, bool noaccess, locus* where)
|
|
{
|
|
return find_typebound_proc_uop (derived, t, name, noaccess, false, where);
|
|
}
|
|
|
|
gfc_symtree*
|
|
gfc_find_typebound_user_op (gfc_symbol* derived, gfc_try* t,
|
|
const char* name, bool noaccess, locus* where)
|
|
{
|
|
return find_typebound_proc_uop (derived, t, name, noaccess, true, where);
|
|
}
|
|
|
|
|
|
/* Find a type-bound intrinsic operator looking recursively through the
|
|
super-type hierarchy. */
|
|
|
|
gfc_typebound_proc*
|
|
gfc_find_typebound_intrinsic_op (gfc_symbol* derived, gfc_try* t,
|
|
gfc_intrinsic_op op, bool noaccess,
|
|
locus* where)
|
|
{
|
|
gfc_typebound_proc* res;
|
|
|
|
/* Set default to failure. */
|
|
if (t)
|
|
*t = FAILURE;
|
|
|
|
/* Try to find it in the current type's namespace. */
|
|
if (derived->f2k_derived)
|
|
res = derived->f2k_derived->tb_op[op];
|
|
else
|
|
res = NULL;
|
|
|
|
/* Check access. */
|
|
if (res && !res->error)
|
|
{
|
|
/* We found one. */
|
|
if (t)
|
|
*t = SUCCESS;
|
|
|
|
if (!noaccess && derived->attr.use_assoc
|
|
&& res->access == ACCESS_PRIVATE)
|
|
{
|
|
if (where)
|
|
gfc_error ("'%s' of '%s' is PRIVATE at %L",
|
|
gfc_op2string (op), derived->name, where);
|
|
if (t)
|
|
*t = FAILURE;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Otherwise, recurse on parent type if derived is an extension. */
|
|
if (derived->attr.extension)
|
|
{
|
|
gfc_symbol* super_type;
|
|
super_type = gfc_get_derived_super_type (derived);
|
|
gcc_assert (super_type);
|
|
|
|
return gfc_find_typebound_intrinsic_op (super_type, t, op,
|
|
noaccess, where);
|
|
}
|
|
|
|
/* Nothing found. */
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Get a typebound-procedure symtree or create and insert it if not yet
|
|
present. This is like a very simplified version of gfc_get_sym_tree for
|
|
tbp-symtrees rather than regular ones. */
|
|
|
|
gfc_symtree*
|
|
gfc_get_tbp_symtree (gfc_symtree **root, const char *name)
|
|
{
|
|
gfc_symtree *result;
|
|
|
|
result = gfc_find_symtree (*root, name);
|
|
if (!result)
|
|
{
|
|
result = gfc_new_symtree (root, name);
|
|
gcc_assert (result);
|
|
result->n.tb = NULL;
|
|
}
|
|
|
|
return result;
|
|
}
|