8sa1-gcc/gcc/fortran/class.c
Tobias Burnus d6cd871198 class.c (gfc_find_derived_vtab): Disable ABI-breaking generation of the "_final" subroutine for now.
2012-09-03  Tobias Burnus  <burnus@net-b.de>

        * class.c (gfc_find_derived_vtab): Disable ABI-breaking
        generation of the "_final" subroutine for now.

From-SVN: r190872
2012-09-03 09:51:05 +02:00

1825 lines
56 KiB
C

/* Implementation of Fortran 2003 Polymorphism.
Copyright (C) 2009, 2010
Free Software Foundation, Inc.
Contributed by Paul Richard Thomas <pault@gcc.gnu.org>
and Janus Weil <janus@gcc.gnu.org>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* class.c -- This file contains the front end functions needed to service
the implementation of Fortran 2003 polymorphism and other
object-oriented features. */
/* Outline of the internal representation:
Each CLASS variable is encapsulated by a class container, which is a
structure with two fields:
* _data: A pointer to the actual data of the variable. This field has the
declared type of the class variable and its attributes
(pointer/allocatable/dimension/...).
* _vptr: A pointer to the vtable entry (see below) of the dynamic type.
For each derived type we set up a "vtable" entry, i.e. a structure with the
following fields:
* _hash: A hash value serving as a unique identifier for this type.
* _size: The size in bytes of the derived type.
* _extends: A pointer to the vtable entry of the parent derived type.
* _def_init: A pointer to a default initialized variable of this type.
* _copy: A procedure pointer to a copying procedure.
* _final: A procedure pointer to a wrapper function, which frees
allocatable components and calls FINAL subroutines.
After these follow procedure pointer components for the specific
type-bound procedures. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "gfortran.h"
#include "constructor.h"
/* Inserts a derived type component reference in a data reference chain.
TS: base type of the ref chain so far, in which we will pick the component
REF: the address of the GFC_REF pointer to update
NAME: name of the component to insert
Note that component insertion makes sense only if we are at the end of
the chain (*REF == NULL) or if we are adding a missing "_data" component
to access the actual contents of a class object. */
static void
insert_component_ref (gfc_typespec *ts, gfc_ref **ref, const char * const name)
{
gfc_symbol *type_sym;
gfc_ref *new_ref;
gcc_assert (ts->type == BT_DERIVED || ts->type == BT_CLASS);
type_sym = ts->u.derived;
new_ref = gfc_get_ref ();
new_ref->type = REF_COMPONENT;
new_ref->next = *ref;
new_ref->u.c.sym = type_sym;
new_ref->u.c.component = gfc_find_component (type_sym, name, true, true);
gcc_assert (new_ref->u.c.component);
if (new_ref->next)
{
gfc_ref *next = NULL;
/* We need to update the base type in the trailing reference chain to
that of the new component. */
gcc_assert (strcmp (name, "_data") == 0);
if (new_ref->next->type == REF_COMPONENT)
next = new_ref->next;
else if (new_ref->next->type == REF_ARRAY
&& new_ref->next->next
&& new_ref->next->next->type == REF_COMPONENT)
next = new_ref->next->next;
if (next != NULL)
{
gcc_assert (new_ref->u.c.component->ts.type == BT_CLASS
|| new_ref->u.c.component->ts.type == BT_DERIVED);
next->u.c.sym = new_ref->u.c.component->ts.u.derived;
}
}
*ref = new_ref;
}
/* Tells whether we need to add a "_data" reference to access REF subobject
from an object of type TS. If FIRST_REF_IN_CHAIN is set, then the base
object accessed by REF is a variable; in other words it is a full object,
not a subobject. */
static bool
class_data_ref_missing (gfc_typespec *ts, gfc_ref *ref, bool first_ref_in_chain)
{
/* Only class containers may need the "_data" reference. */
if (ts->type != BT_CLASS)
return false;
/* Accessing a class container with an array reference is certainly wrong. */
if (ref->type != REF_COMPONENT)
return true;
/* Accessing the class container's fields is fine. */
if (ref->u.c.component->name[0] == '_')
return false;
/* At this point we have a class container with a non class container's field
component reference. We don't want to add the "_data" component if we are
at the first reference and the symbol's type is an extended derived type.
In that case, conv_parent_component_references will do the right thing so
it is not absolutely necessary. Omitting it prevents a regression (see
class_41.f03) in the interface mapping mechanism. When evaluating string
lengths depending on dummy arguments, we create a fake symbol with a type
equal to that of the dummy type. However, because of type extension,
the backend type (corresponding to the actual argument) can have a
different (extended) type. Adding the "_data" component explicitly, using
the base type, confuses the gfc_conv_component_ref code which deals with
the extended type. */
if (first_ref_in_chain && ts->u.derived->attr.extension)
return false;
/* We have a class container with a non class container's field component
reference that doesn't fall into the above. */
return true;
}
/* Browse through a data reference chain and add the missing "_data" references
when a subobject of a class object is accessed without it.
Note that it doesn't add the "_data" reference when the class container
is the last element in the reference chain. */
void
gfc_fix_class_refs (gfc_expr *e)
{
gfc_typespec *ts;
gfc_ref **ref;
if ((e->expr_type != EXPR_VARIABLE
&& e->expr_type != EXPR_FUNCTION)
|| (e->expr_type == EXPR_FUNCTION
&& e->value.function.isym != NULL))
return;
ts = &e->symtree->n.sym->ts;
for (ref = &e->ref; *ref != NULL; ref = &(*ref)->next)
{
if (class_data_ref_missing (ts, *ref, ref == &e->ref))
insert_component_ref (ts, ref, "_data");
if ((*ref)->type == REF_COMPONENT)
ts = &(*ref)->u.c.component->ts;
}
}
/* Insert a reference to the component of the given name.
Only to be used with CLASS containers and vtables. */
void
gfc_add_component_ref (gfc_expr *e, const char *name)
{
gfc_ref **tail = &(e->ref);
gfc_ref *next = NULL;
gfc_symbol *derived = e->symtree->n.sym->ts.u.derived;
while (*tail != NULL)
{
if ((*tail)->type == REF_COMPONENT)
{
if (strcmp ((*tail)->u.c.component->name, "_data") == 0
&& (*tail)->next
&& (*tail)->next->type == REF_ARRAY
&& (*tail)->next->next == NULL)
return;
derived = (*tail)->u.c.component->ts.u.derived;
}
if ((*tail)->type == REF_ARRAY && (*tail)->next == NULL)
break;
tail = &((*tail)->next);
}
if (*tail != NULL && strcmp (name, "_data") == 0)
next = *tail;
(*tail) = gfc_get_ref();
(*tail)->next = next;
(*tail)->type = REF_COMPONENT;
(*tail)->u.c.sym = derived;
(*tail)->u.c.component = gfc_find_component (derived, name, true, true);
gcc_assert((*tail)->u.c.component);
if (!next)
e->ts = (*tail)->u.c.component->ts;
}
/* This is used to add both the _data component reference and an array
reference to class expressions. Used in translation of intrinsic
array inquiry functions. */
void
gfc_add_class_array_ref (gfc_expr *e)
{
int rank = CLASS_DATA (e)->as->rank;
gfc_array_spec *as = CLASS_DATA (e)->as;
gfc_ref *ref = NULL;
gfc_add_component_ref (e, "_data");
e->rank = rank;
for (ref = e->ref; ref; ref = ref->next)
if (!ref->next)
break;
if (ref->type != REF_ARRAY)
{
ref->next = gfc_get_ref ();
ref = ref->next;
ref->type = REF_ARRAY;
ref->u.ar.type = AR_FULL;
ref->u.ar.as = as;
}
}
/* Unfortunately, class array expressions can appear in various conditions;
with and without both _data component and an arrayspec. This function
deals with that variability. The previous reference to 'ref' is to a
class array. */
static bool
class_array_ref_detected (gfc_ref *ref, bool *full_array)
{
bool no_data = false;
bool with_data = false;
/* An array reference with no _data component. */
if (ref && ref->type == REF_ARRAY
&& !ref->next
&& ref->u.ar.type != AR_ELEMENT)
{
if (full_array)
*full_array = ref->u.ar.type == AR_FULL;
no_data = true;
}
/* Cover cases where _data appears, with or without an array ref. */
if (ref && ref->type == REF_COMPONENT
&& strcmp (ref->u.c.component->name, "_data") == 0)
{
if (!ref->next)
{
with_data = true;
if (full_array)
*full_array = true;
}
else if (ref->next && ref->next->type == REF_ARRAY
&& !ref->next->next
&& ref->type == REF_COMPONENT
&& ref->next->type == REF_ARRAY
&& ref->next->u.ar.type != AR_ELEMENT)
{
with_data = true;
if (full_array)
*full_array = ref->next->u.ar.type == AR_FULL;
}
}
return no_data || with_data;
}
/* Returns true if the expression contains a reference to a class
array. Notice that class array elements return false. */
bool
gfc_is_class_array_ref (gfc_expr *e, bool *full_array)
{
gfc_ref *ref;
if (!e->rank)
return false;
if (full_array)
*full_array= false;
/* Is this a class array object? ie. Is the symbol of type class? */
if (e->symtree
&& e->symtree->n.sym->ts.type == BT_CLASS
&& CLASS_DATA (e->symtree->n.sym)
&& CLASS_DATA (e->symtree->n.sym)->attr.dimension
&& class_array_ref_detected (e->ref, full_array))
return true;
/* Or is this a class array component reference? */
for (ref = e->ref; ref; ref = ref->next)
{
if (ref->type == REF_COMPONENT
&& ref->u.c.component->ts.type == BT_CLASS
&& CLASS_DATA (ref->u.c.component)->attr.dimension
&& class_array_ref_detected (ref->next, full_array))
return true;
}
return false;
}
/* Returns true if the expression is a reference to a class
scalar. This function is necessary because such expressions
can be dressed with a reference to the _data component and so
have a type other than BT_CLASS. */
bool
gfc_is_class_scalar_expr (gfc_expr *e)
{
gfc_ref *ref;
if (e->rank)
return false;
/* Is this a class object? */
if (e->symtree
&& e->symtree->n.sym->ts.type == BT_CLASS
&& CLASS_DATA (e->symtree->n.sym)
&& !CLASS_DATA (e->symtree->n.sym)->attr.dimension
&& (e->ref == NULL
|| (strcmp (e->ref->u.c.component->name, "_data") == 0
&& e->ref->next == NULL)))
return true;
/* Or is the final reference BT_CLASS or _data? */
for (ref = e->ref; ref; ref = ref->next)
{
if (ref->type == REF_COMPONENT
&& ref->u.c.component->ts.type == BT_CLASS
&& CLASS_DATA (ref->u.c.component)
&& !CLASS_DATA (ref->u.c.component)->attr.dimension
&& (ref->next == NULL
|| (strcmp (ref->next->u.c.component->name, "_data") == 0
&& ref->next->next == NULL)))
return true;
}
return false;
}
/* Tells whether the expression E is a reference to a (scalar) class container.
Scalar because array class containers usually have an array reference after
them, and gfc_fix_class_refs will add the missing "_data" component reference
in that case. */
bool
gfc_is_class_container_ref (gfc_expr *e)
{
gfc_ref *ref;
bool result;
if (e->expr_type != EXPR_VARIABLE)
return e->ts.type == BT_CLASS;
if (e->symtree->n.sym->ts.type == BT_CLASS)
result = true;
else
result = false;
for (ref = e->ref; ref; ref = ref->next)
{
if (ref->type != REF_COMPONENT)
result = false;
else if (ref->u.c.component->ts.type == BT_CLASS)
result = true;
else
result = false;
}
return result;
}
/* Build a NULL initializer for CLASS pointers,
initializing the _data component to NULL and
the _vptr component to the declared type. */
gfc_expr *
gfc_class_null_initializer (gfc_typespec *ts)
{
gfc_expr *init;
gfc_component *comp;
init = gfc_get_structure_constructor_expr (ts->type, ts->kind,
&ts->u.derived->declared_at);
init->ts = *ts;
for (comp = ts->u.derived->components; comp; comp = comp->next)
{
gfc_constructor *ctor = gfc_constructor_get();
if (strcmp (comp->name, "_vptr") == 0)
ctor->expr = gfc_lval_expr_from_sym (gfc_find_derived_vtab (ts->u.derived));
else
ctor->expr = gfc_get_null_expr (NULL);
gfc_constructor_append (&init->value.constructor, ctor);
}
return init;
}
/* Create a unique string identifier for a derived type, composed of its name
and module name. This is used to construct unique names for the class
containers and vtab symbols. */
static void
get_unique_type_string (char *string, gfc_symbol *derived)
{
char dt_name[GFC_MAX_SYMBOL_LEN+1];
sprintf (dt_name, "%s", derived->name);
dt_name[0] = TOUPPER (dt_name[0]);
if (derived->module)
sprintf (string, "%s_%s", derived->module, dt_name);
else if (derived->ns->proc_name)
sprintf (string, "%s_%s", derived->ns->proc_name->name, dt_name);
else
sprintf (string, "_%s", dt_name);
}
/* A relative of 'get_unique_type_string' which makes sure the generated
string will not be too long (replacing it by a hash string if needed). */
static void
get_unique_hashed_string (char *string, gfc_symbol *derived)
{
char tmp[2*GFC_MAX_SYMBOL_LEN+2];
get_unique_type_string (&tmp[0], derived);
/* If string is too long, use hash value in hex representation (allow for
extra decoration, cf. gfc_build_class_symbol & gfc_find_derived_vtab).
We need space to for 15 characters "__class_" + symbol name + "_%d_%da",
where %d is the (co)rank which can be up to n = 15. */
if (strlen (tmp) > GFC_MAX_SYMBOL_LEN - 15)
{
int h = gfc_hash_value (derived);
sprintf (string, "%X", h);
}
else
strcpy (string, tmp);
}
/* Assign a hash value for a derived type. The algorithm is that of SDBM. */
unsigned int
gfc_hash_value (gfc_symbol *sym)
{
unsigned int hash = 0;
char c[2*(GFC_MAX_SYMBOL_LEN+1)];
int i, len;
get_unique_type_string (&c[0], sym);
len = strlen (c);
for (i = 0; i < len; i++)
hash = (hash << 6) + (hash << 16) - hash + c[i];
/* Return the hash but take the modulus for the sake of module read,
even though this slightly increases the chance of collision. */
return (hash % 100000000);
}
/* Build a polymorphic CLASS entity, using the symbol that comes from
build_sym. A CLASS entity is represented by an encapsulating type,
which contains the declared type as '_data' component, plus a pointer
component '_vptr' which determines the dynamic type. */
gfc_try
gfc_build_class_symbol (gfc_typespec *ts, symbol_attribute *attr,
gfc_array_spec **as, bool delayed_vtab)
{
char name[GFC_MAX_SYMBOL_LEN+1], tname[GFC_MAX_SYMBOL_LEN+1];
gfc_symbol *fclass;
gfc_symbol *vtab;
gfc_component *c;
int rank;
if (as && *as && (*as)->type == AS_ASSUMED_SIZE)
{
gfc_error ("Assumed size polymorphic objects or components, such "
"as that at %C, have not yet been implemented");
return FAILURE;
}
if (attr->class_ok)
/* Class container has already been built. */
return SUCCESS;
attr->class_ok = attr->dummy || attr->pointer || attr->allocatable
|| attr->select_type_temporary;
if (!attr->class_ok)
/* We can not build the class container yet. */
return SUCCESS;
/* Determine the name of the encapsulating type. */
rank = !(*as) || (*as)->rank == -1 ? GFC_MAX_DIMENSIONS : (*as)->rank;
get_unique_hashed_string (tname, ts->u.derived);
if ((*as) && attr->allocatable)
sprintf (name, "__class_%s_%d_%da", tname, rank, (*as)->corank);
else if ((*as) && attr->pointer)
sprintf (name, "__class_%s_%d_%dp", tname, rank, (*as)->corank);
else if ((*as))
sprintf (name, "__class_%s_%d_%d", tname, rank, (*as)->corank);
else if (attr->pointer)
sprintf (name, "__class_%s_p", tname);
else if (attr->allocatable)
sprintf (name, "__class_%s_a", tname);
else
sprintf (name, "__class_%s", tname);
gfc_find_symbol (name, ts->u.derived->ns, 0, &fclass);
if (fclass == NULL)
{
gfc_symtree *st;
/* If not there, create a new symbol. */
fclass = gfc_new_symbol (name, ts->u.derived->ns);
st = gfc_new_symtree (&ts->u.derived->ns->sym_root, name);
st->n.sym = fclass;
gfc_set_sym_referenced (fclass);
fclass->refs++;
fclass->ts.type = BT_UNKNOWN;
fclass->attr.abstract = ts->u.derived->attr.abstract;
fclass->f2k_derived = gfc_get_namespace (NULL, 0);
if (gfc_add_flavor (&fclass->attr, FL_DERIVED,
NULL, &gfc_current_locus) == FAILURE)
return FAILURE;
/* Add component '_data'. */
if (gfc_add_component (fclass, "_data", &c) == FAILURE)
return FAILURE;
c->ts = *ts;
c->ts.type = BT_DERIVED;
c->attr.access = ACCESS_PRIVATE;
c->ts.u.derived = ts->u.derived;
c->attr.class_pointer = attr->pointer;
c->attr.pointer = attr->pointer || (attr->dummy && !attr->allocatable)
|| attr->select_type_temporary;
c->attr.allocatable = attr->allocatable;
c->attr.dimension = attr->dimension;
c->attr.codimension = attr->codimension;
c->attr.abstract = ts->u.derived->attr.abstract;
c->as = (*as);
c->initializer = NULL;
/* Add component '_vptr'. */
if (gfc_add_component (fclass, "_vptr", &c) == FAILURE)
return FAILURE;
c->ts.type = BT_DERIVED;
if (delayed_vtab
|| (ts->u.derived->f2k_derived
&& ts->u.derived->f2k_derived->finalizers))
c->ts.u.derived = NULL;
else
{
vtab = gfc_find_derived_vtab (ts->u.derived);
gcc_assert (vtab);
c->ts.u.derived = vtab->ts.u.derived;
}
c->attr.access = ACCESS_PRIVATE;
c->attr.pointer = 1;
}
/* Since the extension field is 8 bit wide, we can only have
up to 255 extension levels. */
if (ts->u.derived->attr.extension == 255)
{
gfc_error ("Maximum extension level reached with type '%s' at %L",
ts->u.derived->name, &ts->u.derived->declared_at);
return FAILURE;
}
fclass->attr.extension = ts->u.derived->attr.extension + 1;
fclass->attr.alloc_comp = ts->u.derived->attr.alloc_comp;
fclass->attr.is_class = 1;
ts->u.derived = fclass;
attr->allocatable = attr->pointer = attr->dimension = attr->codimension = 0;
(*as) = NULL;
return SUCCESS;
}
/* Add a procedure pointer component to the vtype
to represent a specific type-bound procedure. */
static void
add_proc_comp (gfc_symbol *vtype, const char *name, gfc_typebound_proc *tb)
{
gfc_component *c;
if (tb->non_overridable)
return;
c = gfc_find_component (vtype, name, true, true);
if (c == NULL)
{
/* Add procedure component. */
if (gfc_add_component (vtype, name, &c) == FAILURE)
return;
if (!c->tb)
c->tb = XCNEW (gfc_typebound_proc);
*c->tb = *tb;
c->tb->ppc = 1;
c->attr.procedure = 1;
c->attr.proc_pointer = 1;
c->attr.flavor = FL_PROCEDURE;
c->attr.access = ACCESS_PRIVATE;
c->attr.external = 1;
c->attr.untyped = 1;
c->attr.if_source = IFSRC_IFBODY;
}
else if (c->attr.proc_pointer && c->tb)
{
*c->tb = *tb;
c->tb->ppc = 1;
}
if (tb->u.specific)
{
c->ts.interface = tb->u.specific->n.sym;
if (!tb->deferred)
c->initializer = gfc_get_variable_expr (tb->u.specific);
}
}
/* Add all specific type-bound procedures in the symtree 'st' to a vtype. */
static void
add_procs_to_declared_vtab1 (gfc_symtree *st, gfc_symbol *vtype)
{
if (!st)
return;
if (st->left)
add_procs_to_declared_vtab1 (st->left, vtype);
if (st->right)
add_procs_to_declared_vtab1 (st->right, vtype);
if (st->n.tb && !st->n.tb->error
&& !st->n.tb->is_generic && st->n.tb->u.specific)
add_proc_comp (vtype, st->name, st->n.tb);
}
/* Copy procedure pointers components from the parent type. */
static void
copy_vtab_proc_comps (gfc_symbol *declared, gfc_symbol *vtype)
{
gfc_component *cmp;
gfc_symbol *vtab;
vtab = gfc_find_derived_vtab (declared);
for (cmp = vtab->ts.u.derived->components; cmp; cmp = cmp->next)
{
if (gfc_find_component (vtype, cmp->name, true, true))
continue;
add_proc_comp (vtype, cmp->name, cmp->tb);
}
}
/* Returns true if any of its nonpointer nonallocatable components or
their nonpointer nonallocatable subcomponents has a finalization
subroutine. */
static bool
has_finalizer_component (gfc_symbol *derived)
{
gfc_component *c;
for (c = derived->components; c; c = c->next)
{
if (c->ts.type == BT_DERIVED && c->ts.u.derived->f2k_derived
&& c->ts.u.derived->f2k_derived->finalizers)
return true;
if (c->ts.type == BT_DERIVED
&& !c->attr.pointer && !c->attr.allocatable
&& has_finalizer_component (c->ts.u.derived))
return true;
}
return false;
}
/* Call DEALLOCATE for the passed component if it is allocatable, if it is
neither allocatable nor a pointer but has a finalizer, call it. If it
is a nonpointer component with allocatable components or has finalizers, walk
them. Either of them is required; other nonallocatables and pointers aren't
handled gracefully.
Note: If the component is allocatable, the DEALLOCATE handling takes care
of calling the appropriate finalizers, coarray deregistering, and
deallocation of allocatable subcomponents. */
static void
finalize_component (gfc_expr *expr, gfc_symbol *derived, gfc_component *comp,
gfc_expr *stat, gfc_code **code)
{
gfc_expr *e;
gfc_ref *ref;
if (comp->ts.type != BT_DERIVED && comp->ts.type != BT_CLASS
&& !comp->attr.allocatable)
return;
if ((comp->ts.type == BT_DERIVED && comp->attr.pointer)
|| (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
&& CLASS_DATA (comp)->attr.pointer))
return;
if (comp->ts.type == BT_DERIVED && !comp->attr.allocatable
&& (comp->ts.u.derived->f2k_derived == NULL
|| comp->ts.u.derived->f2k_derived->finalizers == NULL)
&& !has_finalizer_component (comp->ts.u.derived))
return;
e = gfc_copy_expr (expr);
if (!e->ref)
e->ref = ref = gfc_get_ref ();
else
{
for (ref = e->ref; ref->next; ref = ref->next)
;
ref->next = gfc_get_ref ();
ref = ref->next;
}
ref->type = REF_COMPONENT;
ref->u.c.sym = derived;
ref->u.c.component = comp;
e->ts = comp->ts;
if (comp->attr.dimension
|| (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
&& CLASS_DATA (comp)->attr.dimension))
{
ref->next = gfc_get_ref ();
ref->next->type = REF_ARRAY;
ref->next->u.ar.type = AR_FULL;
ref->next->u.ar.dimen = 0;
ref->next->u.ar.as = comp->ts.type == BT_CLASS ? CLASS_DATA (comp)->as
: comp->as;
e->rank = ref->next->u.ar.as->rank;
}
if (comp->attr.allocatable
|| (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
&& CLASS_DATA (comp)->attr.allocatable))
{
/* Call DEALLOCATE (comp, stat=ignore). */
gfc_code *dealloc;
dealloc = XCNEW (gfc_code);
dealloc->op = EXEC_DEALLOCATE;
dealloc->loc = gfc_current_locus;
dealloc->ext.alloc.list = gfc_get_alloc ();
dealloc->ext.alloc.list->expr = e;
dealloc->expr1 = stat;
if (*code)
{
(*code)->next = dealloc;
(*code) = (*code)->next;
}
else
(*code) = dealloc;
}
else if (comp->ts.type == BT_DERIVED
&& comp->ts.u.derived->f2k_derived
&& comp->ts.u.derived->f2k_derived->finalizers)
{
/* Call FINAL_WRAPPER (comp); */
gfc_code *final_wrap;
gfc_symbol *vtab;
gfc_component *c;
vtab = gfc_find_derived_vtab (comp->ts.u.derived);
for (c = vtab->ts.u.derived->components; c; c = c->next)
if (strcmp (c->name, "_final") == 0)
break;
gcc_assert (c);
final_wrap = XCNEW (gfc_code);
final_wrap->op = EXEC_CALL;
final_wrap->loc = gfc_current_locus;
final_wrap->loc = gfc_current_locus;
final_wrap->symtree = c->initializer->symtree;
final_wrap->resolved_sym = c->initializer->symtree->n.sym;
final_wrap->ext.actual = gfc_get_actual_arglist ();
final_wrap->ext.actual->expr = e;
if (*code)
{
(*code)->next = final_wrap;
(*code) = (*code)->next;
}
else
(*code) = final_wrap;
}
else
{
gfc_component *c;
for (c = comp->ts.u.derived->components; c; c = c->next)
finalize_component (e, c->ts.u.derived, c, stat, code);
}
}
/* Generate code equivalent to
CALL C_F_POINTER (TRANSFER (TRANSFER (C_LOC (array, cptr), c_intptr)
+ idx * STORAGE_SIZE (array)/NUMERIC_STORAGE_SIZE., c_ptr),
ptr). */
static gfc_code *
finalization_scalarizer (gfc_symbol *idx, gfc_symbol *array, gfc_symbol *ptr,
gfc_namespace *sub_ns)
{
gfc_code *block;
gfc_expr *expr, *expr2, *expr3;
/* C_F_POINTER(). */
block = XCNEW (gfc_code);
block->op = EXEC_CALL;
block->loc = gfc_current_locus;
gfc_get_sym_tree ("c_f_pointer", sub_ns, &block->symtree, true);
block->resolved_sym = block->symtree->n.sym;
block->resolved_sym->attr.flavor = FL_PROCEDURE;
block->resolved_sym->attr.intrinsic = 1;
block->resolved_sym->from_intmod = INTMOD_ISO_C_BINDING;
block->resolved_sym->intmod_sym_id = ISOCBINDING_F_POINTER;
gfc_commit_symbol (block->resolved_sym);
/* C_F_POINTER's first argument: TRANSFER ( <addr>, c_intptr_t). */
block->ext.actual = gfc_get_actual_arglist ();
block->ext.actual->next = gfc_get_actual_arglist ();
block->ext.actual->next->expr = gfc_get_int_expr (gfc_index_integer_kind,
NULL, 0);
/* The <addr> part: TRANSFER (C_LOC (array), c_intptr_t). */
/* TRANSFER. */
expr2 = gfc_get_expr ();
expr2->expr_type = EXPR_FUNCTION;
expr2->value.function.name = "__transfer0";
expr2->value.function.isym
= gfc_intrinsic_function_by_id (GFC_ISYM_TRANSFER);
/* Set symtree for -fdump-parse-tree. */
gfc_get_sym_tree ("transfer", sub_ns, &expr2->symtree, false);
expr2->symtree->n.sym->attr.flavor = FL_PROCEDURE;
expr2->symtree->n.sym->attr.intrinsic = 1;
gfc_commit_symbol (expr2->symtree->n.sym);
expr2->value.function.actual = gfc_get_actual_arglist ();
expr2->value.function.actual->expr
= gfc_lval_expr_from_sym (array);
expr2->ts.type = BT_INTEGER;
expr2->ts.kind = gfc_index_integer_kind;
/* TRANSFER's second argument: 0_c_intptr_t. */
expr2->value.function.actual = gfc_get_actual_arglist ();
expr2->value.function.actual->next = gfc_get_actual_arglist ();
expr2->value.function.actual->next->expr
= gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
expr2->value.function.actual->next->next = gfc_get_actual_arglist ();
/* TRANSFER's first argument: C_LOC (array). */
expr = gfc_get_expr ();
expr->expr_type = EXPR_FUNCTION;
gfc_get_sym_tree ("c_loc", sub_ns, &expr->symtree, false);
expr->symtree->n.sym->attr.flavor = FL_PROCEDURE;
expr->symtree->n.sym->intmod_sym_id = ISOCBINDING_LOC;
expr->symtree->n.sym->attr.intrinsic = 1;
expr->symtree->n.sym->from_intmod = INTMOD_ISO_C_BINDING;
expr->value.function.esym = expr->symtree->n.sym;
expr->value.function.actual = gfc_get_actual_arglist ();
expr->value.function.actual->expr
= gfc_lval_expr_from_sym (array);
expr->symtree->n.sym->result = expr->symtree->n.sym;
gfc_commit_symbol (expr->symtree->n.sym);
expr->ts.type = BT_INTEGER;
expr->ts.kind = gfc_index_integer_kind;
expr2->value.function.actual->expr = expr;
/* STORAGE_SIZE (...) / NUMERIC_STORAGE_SIZE. */
block->ext.actual->expr = gfc_get_expr ();
expr = block->ext.actual->expr;
expr->expr_type = EXPR_OP;
expr->value.op.op = INTRINSIC_DIVIDE;
/* STORAGE_SIZE (array,kind=c_intptr_t). */
expr->value.op.op1 = gfc_get_expr ();
expr->value.op.op1->expr_type = EXPR_FUNCTION;
expr->value.op.op1->value.function.isym
= gfc_intrinsic_function_by_id (GFC_ISYM_STORAGE_SIZE);
gfc_get_sym_tree ("storage_size", sub_ns, &expr->value.op.op1->symtree,
false);
expr->value.op.op1->symtree->n.sym->attr.flavor = FL_PROCEDURE;
expr->value.op.op1->symtree->n.sym->attr.intrinsic = 1;
gfc_commit_symbol (expr->value.op.op1->symtree->n.sym);
expr->value.op.op1->value.function.actual = gfc_get_actual_arglist ();
expr->value.op.op1->value.function.actual->expr
= gfc_lval_expr_from_sym (array);
expr->value.op.op1->value.function.actual->next = gfc_get_actual_arglist ();
expr->value.op.op1->value.function.actual->next->expr
= gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
expr->value.op.op2 = gfc_get_int_expr (gfc_index_integer_kind, NULL,
gfc_character_storage_size);
expr->value.op.op1->ts = expr->value.op.op2->ts;
expr->ts = expr->value.op.op1->ts;
/* Offset calculation: idx * (STORAGE_SIZE (...) / NUMERIC_STORAGE_SIZE). */
block->ext.actual->expr = gfc_get_expr ();
expr3 = block->ext.actual->expr;
expr3->expr_type = EXPR_OP;
expr3->value.op.op = INTRINSIC_TIMES;
expr3->value.op.op1 = gfc_lval_expr_from_sym (idx);
expr3->value.op.op2 = expr;
expr3->ts = expr->ts;
/* <array addr> + <offset>. */
block->ext.actual->expr = gfc_get_expr ();
block->ext.actual->expr->expr_type = EXPR_OP;
block->ext.actual->expr->value.op.op = INTRINSIC_PLUS;
block->ext.actual->expr->value.op.op1 = expr2;
block->ext.actual->expr->value.op.op2 = expr3;
block->ext.actual->expr->ts = expr->ts;
/* C_F_POINTER's 2nd arg: ptr -- and its absent shape=. */
block->ext.actual->next = gfc_get_actual_arglist ();
block->ext.actual->next->expr = gfc_lval_expr_from_sym (ptr);
block->ext.actual->next->next = gfc_get_actual_arglist ();
return block;
}
/* Generate the finalization/polymorphic freeing wrapper subroutine for the
derived type "derived". The function first calls the approriate FINAL
subroutine, then it DEALLOCATEs (finalizes/frees) the allocatable
components (but not the inherited ones). Last, it calls the wrapper
subroutine of the parent. The generated wrapper procedure takes as argument
an assumed-rank array.
If neither allocatable components nor FINAL subroutines exists, the vtab
will contain a NULL pointer. */
static void
generate_finalization_wrapper (gfc_symbol *derived, gfc_namespace *ns,
const char *tname, gfc_component *vtab_final)
{
gfc_symbol *final, *array, *nelem;
gfc_symbol *ptr = NULL, *idx = NULL;
gfc_component *comp;
gfc_namespace *sub_ns;
gfc_code *last_code;
char name[GFC_MAX_SYMBOL_LEN+1];
bool finalizable_comp = false;
gfc_expr *ancestor_wrapper = NULL;
/* Search for the ancestor's finalizers. */
if (derived->attr.extension && derived->components
&& (!derived->components->ts.u.derived->attr.abstract
|| has_finalizer_component (derived)))
{
gfc_symbol *vtab;
gfc_component *comp;
vtab = gfc_find_derived_vtab (derived->components->ts.u.derived);
for (comp = vtab->ts.u.derived->components; comp; comp = comp->next)
if (comp->name[0] == '_' && comp->name[1] == 'f')
{
ancestor_wrapper = comp->initializer;
break;
}
}
/* No wrapper of the ancestor and no own FINAL subroutines and
allocatable components: Return a NULL() expression. */
if ((!ancestor_wrapper || ancestor_wrapper->expr_type == EXPR_NULL)
&& !derived->attr.alloc_comp
&& (!derived->f2k_derived || !derived->f2k_derived->finalizers)
&& !has_finalizer_component (derived))
{
vtab_final->initializer = gfc_get_null_expr (NULL);
return;
}
/* Check whether there are new allocatable components. */
for (comp = derived->components; comp; comp = comp->next)
{
if (comp == derived->components && derived->attr.extension
&& ancestor_wrapper && ancestor_wrapper->expr_type != EXPR_NULL)
continue;
if (comp->ts.type != BT_CLASS && !comp->attr.pointer
&& (comp->attr.alloc_comp || comp->attr.allocatable
|| (comp->ts.type == BT_DERIVED
&& has_finalizer_component (comp->ts.u.derived))))
finalizable_comp = true;
else if (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
&& CLASS_DATA (comp)->attr.allocatable)
finalizable_comp = true;
}
/* If there is no new finalizer and no new allocatable, return with
an expr to the ancestor's one. */
if ((!derived->f2k_derived || !derived->f2k_derived->finalizers)
&& !finalizable_comp)
{
vtab_final->initializer = gfc_copy_expr (ancestor_wrapper);
return;
}
/* We now create a wrapper, which does the following:
1. Call the suitable finalization subroutine for this type
2. Loop over all noninherited allocatable components and noninherited
components with allocatable components and DEALLOCATE those; this will
take care of finalizers, coarray deregistering and allocatable
nested components.
3. Call the ancestor's finalizer. */
/* Declare the wrapper function; it takes an assumed-rank array
as argument. */
/* Set up the namespace. */
sub_ns = gfc_get_namespace (ns, 0);
sub_ns->sibling = ns->contained;
ns->contained = sub_ns;
sub_ns->resolved = 1;
/* Set up the procedure symbol. */
sprintf (name, "__final_%s", tname);
gfc_get_symbol (name, sub_ns, &final);
sub_ns->proc_name = final;
final->attr.flavor = FL_PROCEDURE;
final->attr.subroutine = 1;
final->attr.pure = 1;
final->attr.artificial = 1;
final->attr.if_source = IFSRC_DECL;
if (ns->proc_name->attr.flavor == FL_MODULE)
final->module = ns->proc_name->name;
gfc_set_sym_referenced (final);
/* Set up formal argument. */
gfc_get_symbol ("array", sub_ns, &array);
array->ts.type = BT_DERIVED;
array->ts.u.derived = derived;
array->attr.flavor = FL_VARIABLE;
array->attr.dummy = 1;
array->attr.contiguous = 1;
array->attr.dimension = 1;
array->attr.artificial = 1;
array->as = gfc_get_array_spec();
array->as->type = AS_ASSUMED_RANK;
array->as->rank = -1;
array->attr.intent = INTENT_INOUT;
gfc_set_sym_referenced (array);
final->formal = gfc_get_formal_arglist ();
final->formal->sym = array;
gfc_commit_symbol (array);
/* Obtain the size (number of elements) of "array" MINUS ONE,
which is used in the scalarization. */
gfc_get_symbol ("nelem", sub_ns, &nelem);
nelem->ts.type = BT_INTEGER;
nelem->ts.kind = gfc_index_integer_kind;
nelem->attr.flavor = FL_VARIABLE;
nelem->attr.artificial = 1;
gfc_set_sym_referenced (nelem);
gfc_commit_symbol (nelem);
/* Generate: nelem = SIZE (array) - 1. */
last_code = XCNEW (gfc_code);
last_code->op = EXEC_ASSIGN;
last_code->loc = gfc_current_locus;
last_code->expr1 = gfc_lval_expr_from_sym (nelem);
last_code->expr2 = gfc_get_expr ();
last_code->expr2->expr_type = EXPR_OP;
last_code->expr2->value.op.op = INTRINSIC_MINUS;
last_code->expr2->value.op.op2
= gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
last_code->expr2->ts = last_code->expr2->value.op.op2->ts;
last_code->expr2->value.op.op1 = gfc_get_expr ();
last_code->expr2->value.op.op1->expr_type = EXPR_FUNCTION;
last_code->expr2->value.op.op1->value.function.isym
= gfc_intrinsic_function_by_id (GFC_ISYM_SIZE);
gfc_get_sym_tree ("size", sub_ns, &last_code->expr2->value.op.op1->symtree,
false);
last_code->expr2->value.op.op1->symtree->n.sym->attr.flavor = FL_PROCEDURE;
last_code->expr2->value.op.op1->symtree->n.sym->attr.intrinsic = 1;
gfc_commit_symbol (last_code->expr2->value.op.op1->symtree->n.sym);
last_code->expr2->value.op.op1->value.function.actual
= gfc_get_actual_arglist ();
last_code->expr2->value.op.op1->value.function.actual->expr
= gfc_lval_expr_from_sym (array);
/* dim=NULL. */
last_code->expr2->value.op.op1->value.function.actual->next
= gfc_get_actual_arglist ();
/* kind=c_intptr_t. */
last_code->expr2->value.op.op1->value.function.actual->next->next
= gfc_get_actual_arglist ();
last_code->expr2->value.op.op1->value.function.actual->next->next->expr
= gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
last_code->expr2->value.op.op1->ts
= last_code->expr2->value.op.op1->value.function.isym->ts;
sub_ns->code = last_code;
/* Call final subroutines. We now generate code like:
use iso_c_binding
integer, pointer :: ptr
type(c_ptr) :: cptr
integer(c_intptr_t) :: i, addr
select case (rank (array))
case (3)
call final_rank3 (array)
case default:
do i = 0, size (array)-1
addr = transfer (c_loc (array), addr) + i * STORAGE_SIZE (array)
call c_f_pointer (transfer (addr, cptr), ptr)
call elemental_final (ptr)
end do
end select */
if (derived->f2k_derived && derived->f2k_derived->finalizers)
{
gfc_finalizer *fini, *fini_elem = NULL;
gfc_code *block = NULL;
/* SELECT CASE (RANK (array)). */
last_code->next = XCNEW (gfc_code);
last_code = last_code->next;
last_code->op = EXEC_SELECT;
last_code->loc = gfc_current_locus;
last_code->expr1 = gfc_get_expr ();
last_code->expr1->expr_type = EXPR_FUNCTION;
last_code->expr1->value.function.isym
= gfc_intrinsic_function_by_id (GFC_ISYM_RANK);
gfc_get_sym_tree ("rank", sub_ns, &last_code->expr1->symtree,
false);
last_code->expr1->symtree->n.sym->attr.flavor = FL_PROCEDURE;
last_code->expr1->symtree->n.sym->attr.intrinsic = 1;
gfc_commit_symbol (last_code->expr1->symtree->n.sym);
last_code->expr1->value.function.actual = gfc_get_actual_arglist ();
last_code->expr1->value.function.actual->expr
= gfc_lval_expr_from_sym (array);
last_code->expr1->ts = last_code->expr1->value.function.isym->ts;
for (fini = derived->f2k_derived->finalizers; fini; fini = fini->next)
{
if (fini->proc_tree->n.sym->attr.elemental)
{
fini_elem = fini;
continue;
}
/* CASE (fini_rank). */
if (block)
{
block->block = XCNEW (gfc_code);
block = block->block;
}
else
{
block = XCNEW (gfc_code);
last_code->block = block;
}
block->loc = gfc_current_locus;
block->op = EXEC_SELECT;
block->ext.block.case_list = gfc_get_case ();
block->ext.block.case_list->where = gfc_current_locus;
if (fini->proc_tree->n.sym->formal->sym->attr.dimension)
block->ext.block.case_list->low
= gfc_get_int_expr (gfc_default_integer_kind, NULL,
fini->proc_tree->n.sym->formal->sym->as->rank);
else
block->ext.block.case_list->low
= gfc_get_int_expr (gfc_default_integer_kind, NULL, 0);
block->ext.block.case_list->high
= block->ext.block.case_list->low;
/* CALL fini_rank (array). */
block->next = XCNEW (gfc_code);
block->next->op = EXEC_CALL;
block->next->loc = gfc_current_locus;
block->next->symtree = fini->proc_tree;
block->next->resolved_sym = fini->proc_tree->n.sym;
block->next->ext.actual = gfc_get_actual_arglist ();
block->next->ext.actual->expr = gfc_lval_expr_from_sym (array);
}
/* Elemental call - scalarized. */
if (fini_elem)
{
gfc_iterator *iter;
/* CASE DEFAULT. */
if (block)
{
block->block = XCNEW (gfc_code);
block = block->block;
}
else
{
block = XCNEW (gfc_code);
last_code->block = block;
}
block->loc = gfc_current_locus;
block->op = EXEC_SELECT;
block->ext.block.case_list = gfc_get_case ();
gfc_get_symbol ("idx", sub_ns, &idx);
idx->ts.type = BT_INTEGER;
idx->ts.kind = gfc_index_integer_kind;
idx->attr.flavor = FL_VARIABLE;
idx->attr.artificial = 1;
gfc_set_sym_referenced (idx);
gfc_commit_symbol (idx);
gfc_get_symbol ("ptr", sub_ns, &ptr);
ptr->ts.type = BT_DERIVED;
ptr->ts.u.derived = derived;
ptr->attr.flavor = FL_VARIABLE;
ptr->attr.pointer = 1;
ptr->attr.artificial = 1;
gfc_set_sym_referenced (ptr);
gfc_commit_symbol (ptr);
/* Create loop. */
iter = gfc_get_iterator ();
iter->var = gfc_lval_expr_from_sym (idx);
iter->start = gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
iter->end = gfc_lval_expr_from_sym (nelem);
iter->step = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
block->next = XCNEW (gfc_code);
block = block->next;
block->op = EXEC_DO;
block->loc = gfc_current_locus;
block->ext.iterator = iter;
block->block = gfc_get_code ();
block->block->op = EXEC_DO;
/* Create code for
CALL C_F_POINTER (TRANSFER (TRANSFER (C_LOC (array, cptr), c_intptr)
+ idx * STORAGE_SIZE (array), c_ptr), ptr). */
block->block->next = finalization_scalarizer (idx, array, ptr, sub_ns);
block = block->block->next;
/* CALL final_elemental (array). */
block->next = XCNEW (gfc_code);
block = block->next;
block->op = EXEC_CALL;
block->loc = gfc_current_locus;
block->symtree = fini_elem->proc_tree;
block->resolved_sym = fini_elem->proc_sym;
block->ext.actual = gfc_get_actual_arglist ();
block->ext.actual->expr = gfc_lval_expr_from_sym (ptr);
}
}
/* Finalize and deallocate allocatable components. The same manual
scalarization is used as above. */
if (finalizable_comp)
{
gfc_symbol *stat;
gfc_code *block = NULL;
gfc_iterator *iter;
if (!idx)
{
gfc_get_symbol ("idx", sub_ns, &idx);
idx->ts.type = BT_INTEGER;
idx->ts.kind = gfc_index_integer_kind;
idx->attr.flavor = FL_VARIABLE;
idx->attr.artificial = 1;
gfc_set_sym_referenced (idx);
gfc_commit_symbol (idx);
}
if (!ptr)
{
gfc_get_symbol ("ptr", sub_ns, &ptr);
ptr->ts.type = BT_DERIVED;
ptr->ts.u.derived = derived;
ptr->attr.flavor = FL_VARIABLE;
ptr->attr.pointer = 1;
ptr->attr.artificial = 1;
gfc_set_sym_referenced (ptr);
gfc_commit_symbol (ptr);
}
gfc_get_symbol ("ignore", sub_ns, &stat);
stat->attr.flavor = FL_VARIABLE;
stat->attr.artificial = 1;
stat->ts.type = BT_INTEGER;
stat->ts.kind = gfc_default_integer_kind;
gfc_set_sym_referenced (stat);
gfc_commit_symbol (stat);
/* Create loop. */
iter = gfc_get_iterator ();
iter->var = gfc_lval_expr_from_sym (idx);
iter->start = gfc_get_int_expr (gfc_index_integer_kind, NULL, 0);
iter->end = gfc_lval_expr_from_sym (nelem);
iter->step = gfc_get_int_expr (gfc_index_integer_kind, NULL, 1);
last_code->next = XCNEW (gfc_code);
last_code = last_code->next;
last_code->op = EXEC_DO;
last_code->loc = gfc_current_locus;
last_code->ext.iterator = iter;
last_code->block = gfc_get_code ();
last_code->block->op = EXEC_DO;
/* Create code for
CALL C_F_POINTER (TRANSFER (TRANSFER (C_LOC (array, cptr), c_intptr)
+ idx * STORAGE_SIZE (array), c_ptr), ptr). */
last_code->block->next = finalization_scalarizer (idx, array, ptr, sub_ns);
block = last_code->block->next;
for (comp = derived->components; comp; comp = comp->next)
{
if (comp == derived->components && derived->attr.extension
&& ancestor_wrapper && ancestor_wrapper->expr_type != EXPR_NULL)
continue;
finalize_component (gfc_lval_expr_from_sym (ptr), derived, comp,
gfc_lval_expr_from_sym (stat), &block);
if (!last_code->block->next)
last_code->block->next = block;
}
}
/* Call the finalizer of the ancestor. */
if (ancestor_wrapper && ancestor_wrapper->expr_type != EXPR_NULL)
{
last_code->next = XCNEW (gfc_code);
last_code = last_code->next;
last_code->op = EXEC_CALL;
last_code->loc = gfc_current_locus;
last_code->symtree = ancestor_wrapper->symtree;
last_code->resolved_sym = ancestor_wrapper->symtree->n.sym;
last_code->ext.actual = gfc_get_actual_arglist ();
last_code->ext.actual->expr = gfc_lval_expr_from_sym (array);
}
gfc_commit_symbol (final);
vtab_final->initializer = gfc_lval_expr_from_sym (final);
vtab_final->ts.interface = final;
}
/* Add procedure pointers for all type-bound procedures to a vtab. */
static void
add_procs_to_declared_vtab (gfc_symbol *derived, gfc_symbol *vtype)
{
gfc_symbol* super_type;
super_type = gfc_get_derived_super_type (derived);
if (super_type && (super_type != derived))
{
/* Make sure that the PPCs appear in the same order as in the parent. */
copy_vtab_proc_comps (super_type, vtype);
/* Only needed to get the PPC initializers right. */
add_procs_to_declared_vtab (super_type, vtype);
}
if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
add_procs_to_declared_vtab1 (derived->f2k_derived->tb_sym_root, vtype);
if (derived->f2k_derived && derived->f2k_derived->tb_uop_root)
add_procs_to_declared_vtab1 (derived->f2k_derived->tb_uop_root, vtype);
}
/* Find (or generate) the symbol for a derived type's vtab. */
gfc_symbol *
gfc_find_derived_vtab (gfc_symbol *derived)
{
gfc_namespace *ns;
gfc_symbol *vtab = NULL, *vtype = NULL, *found_sym = NULL, *def_init = NULL;
gfc_symbol *copy = NULL, *src = NULL, *dst = NULL;
/* Find the top-level namespace (MODULE or PROGRAM). */
for (ns = gfc_current_ns; ns; ns = ns->parent)
if (!ns->parent)
break;
/* If the type is a class container, use the underlying derived type. */
if (derived->attr.is_class)
derived = gfc_get_derived_super_type (derived);
if (ns)
{
char name[GFC_MAX_SYMBOL_LEN+1], tname[GFC_MAX_SYMBOL_LEN+1];
get_unique_hashed_string (tname, derived);
sprintf (name, "__vtab_%s", tname);
/* Look for the vtab symbol in various namespaces. */
gfc_find_symbol (name, gfc_current_ns, 0, &vtab);
if (vtab == NULL)
gfc_find_symbol (name, ns, 0, &vtab);
if (vtab == NULL)
gfc_find_symbol (name, derived->ns, 0, &vtab);
if (vtab == NULL)
{
gfc_get_symbol (name, ns, &vtab);
vtab->ts.type = BT_DERIVED;
if (gfc_add_flavor (&vtab->attr, FL_VARIABLE, NULL,
&gfc_current_locus) == FAILURE)
goto cleanup;
vtab->attr.target = 1;
vtab->attr.save = SAVE_IMPLICIT;
vtab->attr.vtab = 1;
vtab->attr.access = ACCESS_PUBLIC;
gfc_set_sym_referenced (vtab);
sprintf (name, "__vtype_%s", tname);
gfc_find_symbol (name, ns, 0, &vtype);
if (vtype == NULL)
{
gfc_component *c;
gfc_symbol *parent = NULL, *parent_vtab = NULL;
gfc_get_symbol (name, ns, &vtype);
if (gfc_add_flavor (&vtype->attr, FL_DERIVED,
NULL, &gfc_current_locus) == FAILURE)
goto cleanup;
vtype->attr.access = ACCESS_PUBLIC;
vtype->attr.vtype = 1;
gfc_set_sym_referenced (vtype);
/* Add component '_hash'. */
if (gfc_add_component (vtype, "_hash", &c) == FAILURE)
goto cleanup;
c->ts.type = BT_INTEGER;
c->ts.kind = 4;
c->attr.access = ACCESS_PRIVATE;
c->initializer = gfc_get_int_expr (gfc_default_integer_kind,
NULL, derived->hash_value);
/* Add component '_size'. */
if (gfc_add_component (vtype, "_size", &c) == FAILURE)
goto cleanup;
c->ts.type = BT_INTEGER;
c->ts.kind = 4;
c->attr.access = ACCESS_PRIVATE;
/* Remember the derived type in ts.u.derived,
so that the correct initializer can be set later on
(in gfc_conv_structure). */
c->ts.u.derived = derived;
c->initializer = gfc_get_int_expr (gfc_default_integer_kind,
NULL, 0);
/* Add component _extends. */
if (gfc_add_component (vtype, "_extends", &c) == FAILURE)
goto cleanup;
c->attr.pointer = 1;
c->attr.access = ACCESS_PRIVATE;
parent = gfc_get_derived_super_type (derived);
if (parent)
{
parent_vtab = gfc_find_derived_vtab (parent);
c->ts.type = BT_DERIVED;
c->ts.u.derived = parent_vtab->ts.u.derived;
c->initializer = gfc_get_expr ();
c->initializer->expr_type = EXPR_VARIABLE;
gfc_find_sym_tree (parent_vtab->name, parent_vtab->ns,
0, &c->initializer->symtree);
}
else
{
c->ts.type = BT_DERIVED;
c->ts.u.derived = vtype;
c->initializer = gfc_get_null_expr (NULL);
}
if (derived->components == NULL && !derived->attr.zero_comp)
{
/* At this point an error must have occurred.
Prevent further errors on the vtype components. */
found_sym = vtab;
goto have_vtype;
}
/* Add component _def_init. */
if (gfc_add_component (vtype, "_def_init", &c) == FAILURE)
goto cleanup;
c->attr.pointer = 1;
c->attr.artificial = 1;
c->attr.access = ACCESS_PRIVATE;
c->ts.type = BT_DERIVED;
c->ts.u.derived = derived;
if (derived->attr.abstract)
c->initializer = gfc_get_null_expr (NULL);
else
{
/* Construct default initialization variable. */
sprintf (name, "__def_init_%s", tname);
gfc_get_symbol (name, ns, &def_init);
def_init->attr.target = 1;
def_init->attr.artificial = 1;
def_init->attr.save = SAVE_IMPLICIT;
def_init->attr.access = ACCESS_PUBLIC;
def_init->attr.flavor = FL_VARIABLE;
gfc_set_sym_referenced (def_init);
def_init->ts.type = BT_DERIVED;
def_init->ts.u.derived = derived;
def_init->value = gfc_default_initializer (&def_init->ts);
c->initializer = gfc_lval_expr_from_sym (def_init);
}
/* Add component _copy. */
if (gfc_add_component (vtype, "_copy", &c) == FAILURE)
goto cleanup;
c->attr.proc_pointer = 1;
c->attr.access = ACCESS_PRIVATE;
c->tb = XCNEW (gfc_typebound_proc);
c->tb->ppc = 1;
if (derived->attr.abstract)
c->initializer = gfc_get_null_expr (NULL);
else
{
/* Set up namespace. */
gfc_namespace *sub_ns = gfc_get_namespace (ns, 0);
sub_ns->sibling = ns->contained;
ns->contained = sub_ns;
sub_ns->resolved = 1;
/* Set up procedure symbol. */
sprintf (name, "__copy_%s", tname);
gfc_get_symbol (name, sub_ns, &copy);
sub_ns->proc_name = copy;
copy->attr.flavor = FL_PROCEDURE;
copy->attr.subroutine = 1;
copy->attr.pure = 1;
copy->attr.artificial = 1;
copy->attr.if_source = IFSRC_DECL;
/* This is elemental so that arrays are automatically
treated correctly by the scalarizer. */
copy->attr.elemental = 1;
if (ns->proc_name->attr.flavor == FL_MODULE)
copy->module = ns->proc_name->name;
gfc_set_sym_referenced (copy);
/* Set up formal arguments. */
gfc_get_symbol ("src", sub_ns, &src);
src->ts.type = BT_DERIVED;
src->ts.u.derived = derived;
src->attr.flavor = FL_VARIABLE;
src->attr.dummy = 1;
src->attr.artificial = 1;
src->attr.intent = INTENT_IN;
gfc_set_sym_referenced (src);
copy->formal = gfc_get_formal_arglist ();
copy->formal->sym = src;
gfc_get_symbol ("dst", sub_ns, &dst);
dst->ts.type = BT_DERIVED;
dst->ts.u.derived = derived;
dst->attr.flavor = FL_VARIABLE;
dst->attr.dummy = 1;
dst->attr.artificial = 1;
dst->attr.intent = INTENT_OUT;
gfc_set_sym_referenced (dst);
copy->formal->next = gfc_get_formal_arglist ();
copy->formal->next->sym = dst;
/* Set up code. */
sub_ns->code = gfc_get_code ();
sub_ns->code->op = EXEC_INIT_ASSIGN;
sub_ns->code->expr1 = gfc_lval_expr_from_sym (dst);
sub_ns->code->expr2 = gfc_lval_expr_from_sym (src);
/* Set initializer. */
c->initializer = gfc_lval_expr_from_sym (copy);
c->ts.interface = copy;
}
/* Add component _final, which contains a procedure pointer to
a wrapper which handles both the freeing of allocatable
components and the calls to finalization subroutines.
Note: The actual wrapper function can only be generated
at resolution time. */
/* FIXME: Enable ABI-breaking "_final" generation. */
if (0)
{
if (gfc_add_component (vtype, "_final", &c) == FAILURE)
goto cleanup;
c->attr.proc_pointer = 1;
c->attr.access = ACCESS_PRIVATE;
c->tb = XCNEW (gfc_typebound_proc);
c->tb->ppc = 1;
generate_finalization_wrapper (derived, ns, tname, c);
/* Add procedure pointers for type-bound procedures. */
add_procs_to_declared_vtab (derived, vtype);
}
}
have_vtype:
vtab->ts.u.derived = vtype;
vtab->value = gfc_default_initializer (&vtab->ts);
}
}
found_sym = vtab;
cleanup:
/* It is unexpected to have some symbols added at resolution or code
generation time. We commit the changes in order to keep a clean state. */
if (found_sym)
{
gfc_commit_symbol (vtab);
if (vtype)
gfc_commit_symbol (vtype);
if (def_init)
gfc_commit_symbol (def_init);
if (copy)
gfc_commit_symbol (copy);
if (src)
gfc_commit_symbol (src);
if (dst)
gfc_commit_symbol (dst);
}
else
gfc_undo_symbols ();
return found_sym;
}
/* General worker function to find either a type-bound procedure or a
type-bound user operator. */
static gfc_symtree*
find_typebound_proc_uop (gfc_symbol* derived, gfc_try* t,
const char* name, bool noaccess, bool uop,
locus* where)
{
gfc_symtree* res;
gfc_symtree* root;
/* Set correct symbol-root. */
gcc_assert (derived->f2k_derived);
root = (uop ? derived->f2k_derived->tb_uop_root
: derived->f2k_derived->tb_sym_root);
/* Set default to failure. */
if (t)
*t = FAILURE;
/* Try to find it in the current type's namespace. */
res = gfc_find_symtree (root, name);
if (res && res->n.tb && !res->n.tb->error)
{
/* We found one. */
if (t)
*t = SUCCESS;
if (!noaccess && derived->attr.use_assoc
&& res->n.tb->access == ACCESS_PRIVATE)
{
if (where)
gfc_error ("'%s' of '%s' is PRIVATE at %L",
name, derived->name, where);
if (t)
*t = FAILURE;
}
return res;
}
/* Otherwise, recurse on parent type if derived is an extension. */
if (derived->attr.extension)
{
gfc_symbol* super_type;
super_type = gfc_get_derived_super_type (derived);
gcc_assert (super_type);
return find_typebound_proc_uop (super_type, t, name,
noaccess, uop, where);
}
/* Nothing found. */
return NULL;
}
/* Find a type-bound procedure or user operator by name for a derived-type
(looking recursively through the super-types). */
gfc_symtree*
gfc_find_typebound_proc (gfc_symbol* derived, gfc_try* t,
const char* name, bool noaccess, locus* where)
{
return find_typebound_proc_uop (derived, t, name, noaccess, false, where);
}
gfc_symtree*
gfc_find_typebound_user_op (gfc_symbol* derived, gfc_try* t,
const char* name, bool noaccess, locus* where)
{
return find_typebound_proc_uop (derived, t, name, noaccess, true, where);
}
/* Find a type-bound intrinsic operator looking recursively through the
super-type hierarchy. */
gfc_typebound_proc*
gfc_find_typebound_intrinsic_op (gfc_symbol* derived, gfc_try* t,
gfc_intrinsic_op op, bool noaccess,
locus* where)
{
gfc_typebound_proc* res;
/* Set default to failure. */
if (t)
*t = FAILURE;
/* Try to find it in the current type's namespace. */
if (derived->f2k_derived)
res = derived->f2k_derived->tb_op[op];
else
res = NULL;
/* Check access. */
if (res && !res->error)
{
/* We found one. */
if (t)
*t = SUCCESS;
if (!noaccess && derived->attr.use_assoc
&& res->access == ACCESS_PRIVATE)
{
if (where)
gfc_error ("'%s' of '%s' is PRIVATE at %L",
gfc_op2string (op), derived->name, where);
if (t)
*t = FAILURE;
}
return res;
}
/* Otherwise, recurse on parent type if derived is an extension. */
if (derived->attr.extension)
{
gfc_symbol* super_type;
super_type = gfc_get_derived_super_type (derived);
gcc_assert (super_type);
return gfc_find_typebound_intrinsic_op (super_type, t, op,
noaccess, where);
}
/* Nothing found. */
return NULL;
}
/* Get a typebound-procedure symtree or create and insert it if not yet
present. This is like a very simplified version of gfc_get_sym_tree for
tbp-symtrees rather than regular ones. */
gfc_symtree*
gfc_get_tbp_symtree (gfc_symtree **root, const char *name)
{
gfc_symtree *result;
result = gfc_find_symtree (*root, name);
if (!result)
{
result = gfc_new_symtree (root, name);
gcc_assert (result);
result->n.tb = NULL;
}
return result;
}