8sa1-gcc/gcc/c/c-array-notation.c
Balaji V. Iyer d60f170618 Moved array notation helper functions from c/ to c-family/ files.
2013-06-07  Balaji V. Iyer  <balaji.v.iyer@intel.com>

        * c-array-notation.c (length_mismatch_in_expr_p): Moved this
        function to c-family/array-notation-common.c.
        (is_cilkplus_reduce_builtin): Likewise.
        (find_rank): Likewise.
        (extract_array_notation_exprs): Likewise.
        (replace_array_notations): Likewise.
        (find_inv_trees): Likewise.
        (replace_inv_trees): Likewise.
        (contains_array_notation_expr): Likewise.
        (find_correct_array_notation_type): Likewise.
        (replace_invariant_exprs): Initialized additional_tcodes to NULL.
        (struct inv_list): Moved this to c-family/array-notation-common.c.
        * c-tree.h (is_cilkplus_builtin_reduce): Remove prototype.

2013-06-07  Balaji V. Iyer  <balaji.v.iyer@intel.com>

        * array-notation-common.c (length_mismatch_in_expr_p): Moved this
        function from c/c-array-notation.c.
        (is_cilkplus_reduce_builtin): Likewise.
        (find_rank): Likewise.
        (extract_array_notation_exprs): Likewise.
        (replace_array_notations): Likewise.
        (find_inv_trees): Likewise.
        (replace_inv_trees): Likewise.
        (contains_array_notation_expr): Likewise.
        (find_correct_array_notation_type): Likewise.
        * c-common.h (struct inv_list): Moved this struct from the file
        c/c-array-notation.c and added a new field called additional tcodes.
        (length_mismatch_in_expr_p): New prototype.
        (is_cilkplus_reduce_builtin): Likewise.
        (find_rank): Likewise.
        (extract_array_notation_exprs): Likewise.
        (replace_array_notation): Likewise.
        (find_inv_trees): Likewise.
        (replace_inv_trees): Likewise.

From-SVN: r199825
2013-06-07 10:41:52 -07:00

2404 lines
77 KiB
C

/* This file is part of the Intel(R) Cilk(TM) Plus support
This file contains routines to handle Array Notation expression
handling routines in the C Compiler.
Copyright (C) 2013 Free Software Foundation, Inc.
Contributed by Balaji V. Iyer <balaji.v.iyer@intel.com>,
Intel Corporation.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* The Array Notation Transformation Technique:
An array notation expression has 4 major components:
1. The array name
2. Start Index
3. Number of elements we need to acess (we call it length)
4. Stride
For example, A[0:5:2], implies that we are accessing A[0], A[2], A[4],
A[6] and A[8]. The user is responsible to make sure the access length does
not step outside the array's size.
In this section, I highlight the overall method on how array notations are
broken up into C/C++ code. Almost all the functions follows this overall
technique:
Let's say we have an array notation in a statement like this:
A[St1:Ln:Str1] = B[St2:Ln:Str2] + <NON ARRAY_NOTATION_STMT>
where St{1,2} = Starting index,
Ln = Number of elements we need to access,
and Str{1,2} = the stride.
Note: The length of both the array notation expressions must be the same.
The above expression is broken into the following
(with the help of c_finish_loop function from c-typeck.c):
Tmp_Var = 0;
goto compare_label:
body_label:
A[St1+Tmp_Var*Str1] = B[St1+Tmp_Var*Str2] + <NON ARRAY_NOTATION_STMT>;
Tmp_Var++;
compare_label:
if (Tmp_Var < Ln)
goto body_label;
else
goto exit_label;
exit_label:
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "c-tree.h"
#include "tree-iterator.h"
#include "opts.h"
#include "c-family/c-common.h"
/* Replaces all the scalar expressions in *NODE. Returns a STATEMENT_LIST that
holds the NODE along with variables that holds the results of the invariant
expressions. */
tree
replace_invariant_exprs (tree *node)
{
size_t ix = 0;
tree node_list = NULL_TREE;
tree t = NULL_TREE, new_var = NULL_TREE, new_node;
struct inv_list data;
data.list_values = NULL;
data.replacement = NULL;
data.additional_tcodes = NULL;
walk_tree (node, find_inv_trees, (void *)&data, NULL);
if (vec_safe_length (data.list_values))
{
node_list = push_stmt_list ();
for (ix = 0; vec_safe_iterate (data.list_values, ix, &t); ix++)
{
new_var = build_decl (EXPR_LOCATION (t), VAR_DECL, NULL_TREE,
TREE_TYPE (t));
gcc_assert (new_var != NULL_TREE && new_var != error_mark_node);
new_node = build2 (MODIFY_EXPR, TREE_TYPE (t), new_var, t);
add_stmt (new_node);
vec_safe_push (data.replacement, new_var);
}
walk_tree (node, replace_inv_trees, (void *)&data, NULL);
node_list = pop_stmt_list (node_list);
}
return node_list;
}
/* Given a CALL_EXPR to an array notation built-in function in
AN_BUILTIN_FN, replace the call with the appropriate loop and
computation. Return the computation in *NEW_VAR.
The return value in *NEW_VAR will always be a scalar. If the
built-in is __sec_reduce_mutating, *NEW_VAR is set to NULL_TREE. */
static tree
fix_builtin_array_notation_fn (tree an_builtin_fn, tree *new_var)
{
tree new_var_type = NULL_TREE, func_parm, new_expr, new_yes_expr, new_no_expr;
tree array_ind_value = NULL_TREE, new_no_ind, new_yes_ind, new_no_list;
tree new_yes_list, new_cond_expr, new_var_init = NULL_TREE;
tree new_exp_init = NULL_TREE;
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
size_t list_size = 0, rank = 0, ii = 0, jj = 0;
int s_jj = 0;
tree **array_ops, *array_var, jj_tree, loop_init, array_op0;
tree **array_value, **array_stride, **array_length, **array_start;
tree *compare_expr, *expr_incr, *ind_init;
tree identity_value = NULL_TREE, call_fn = NULL_TREE, new_call_expr, body;
bool **count_down, **array_vector;
location_t location = UNKNOWN_LOCATION;
tree loop_with_init = alloc_stmt_list ();
enum built_in_function an_type =
is_cilkplus_reduce_builtin (CALL_EXPR_FN (an_builtin_fn));
if (an_type == BUILT_IN_NONE)
return NULL_TREE;
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING)
{
call_fn = CALL_EXPR_ARG (an_builtin_fn, 2);
while (TREE_CODE (call_fn) == CONVERT_EXPR
|| TREE_CODE (call_fn) == NOP_EXPR)
call_fn = TREE_OPERAND (call_fn, 0);
call_fn = TREE_OPERAND (call_fn, 0);
identity_value = CALL_EXPR_ARG (an_builtin_fn, 0);
while (TREE_CODE (identity_value) == CONVERT_EXPR
|| TREE_CODE (identity_value) == NOP_EXPR)
identity_value = TREE_OPERAND (identity_value, 0);
func_parm = CALL_EXPR_ARG (an_builtin_fn, 1);
}
else
func_parm = CALL_EXPR_ARG (an_builtin_fn, 0);
while (TREE_CODE (func_parm) == CONVERT_EXPR
|| TREE_CODE (func_parm) == EXCESS_PRECISION_EXPR
|| TREE_CODE (func_parm) == NOP_EXPR)
func_parm = TREE_OPERAND (func_parm, 0);
location = EXPR_LOCATION (an_builtin_fn);
if (!find_rank (location, an_builtin_fn, an_builtin_fn, true, &rank))
return error_mark_node;
if (rank == 0)
return an_builtin_fn;
else if (rank > 1
&& (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND))
{
error_at (location, "__sec_reduce_min_ind or __sec_reduce_max_ind cannot"
" have arrays with dimension greater than 1");
return error_mark_node;
}
extract_array_notation_exprs (func_parm, true, &array_list);
list_size = vec_safe_length (array_list);
switch (an_type)
{
case BUILT_IN_CILKPLUS_SEC_REDUCE_ADD:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUL:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN:
new_var_type = TREE_TYPE ((*array_list)[0]);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_NONZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_NONZERO:
new_var_type = integer_type_node;
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND:
new_var_type = integer_type_node;
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE:
if (call_fn && identity_value)
new_var_type = TREE_TYPE ((*array_list)[0]);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING:
new_var_type = NULL_TREE;
break;
default:
gcc_unreachable ();
}
array_ops = XNEWVEC (tree *, list_size);
for (ii = 0; ii < list_size; ii++)
array_ops[ii] = XNEWVEC (tree, rank);
array_vector = XNEWVEC (bool *, list_size);
for (ii = 0; ii < list_size; ii++)
array_vector[ii] = XNEWVEC (bool, rank);
array_value = XNEWVEC (tree *, list_size);
array_stride = XNEWVEC (tree *, list_size);
array_length = XNEWVEC (tree *, list_size);
array_start = XNEWVEC (tree *, list_size);
for (ii = 0; ii < list_size; ii++)
{
array_value[ii] = XNEWVEC (tree, rank);
array_stride[ii] = XNEWVEC (tree, rank);
array_length[ii] = XNEWVEC (tree, rank);
array_start[ii] = XNEWVEC (tree, rank);
}
compare_expr = XNEWVEC (tree, rank);
expr_incr = XNEWVEC (tree, rank);
ind_init = XNEWVEC (tree, rank);
count_down = XNEWVEC (bool *, list_size);
for (ii = 0; ii < list_size; ii++)
count_down[ii] = XNEWVEC (bool, rank);
array_var = XNEWVEC (tree, rank);
for (ii = 0; ii < list_size; ii++)
{
jj = 0;
for (jj_tree = (*array_list)[ii];
jj_tree && TREE_CODE (jj_tree) == ARRAY_NOTATION_REF;
jj_tree = ARRAY_NOTATION_ARRAY (jj_tree))
{
array_ops[ii][jj] = jj_tree;
jj++;
}
}
for (ii = 0; ii < list_size; ii++)
{
tree array_node = (*array_list)[ii];
if (TREE_CODE (array_node) == ARRAY_NOTATION_REF)
{
for (jj = 0; jj < rank; jj++)
{
if (TREE_CODE (array_ops[ii][jj]) == ARRAY_NOTATION_REF)
{
array_value[ii][jj] =
ARRAY_NOTATION_ARRAY (array_ops[ii][jj]);
array_start[ii][jj] =
ARRAY_NOTATION_START (array_ops[ii][jj]);
array_length[ii][jj] =
fold_build1 (CONVERT_EXPR, integer_type_node,
ARRAY_NOTATION_LENGTH (array_ops[ii][jj]));
array_stride[ii][jj] =
fold_build1 (CONVERT_EXPR, integer_type_node,
ARRAY_NOTATION_STRIDE (array_ops[ii][jj]));
array_vector[ii][jj] = true;
if (!TREE_CONSTANT (array_length[ii][jj]))
count_down[ii][jj] = false;
else if (tree_int_cst_lt
(array_length[ii][jj],
build_int_cst (TREE_TYPE (array_length[ii][jj]),
0)))
count_down[ii][jj] = true;
else
count_down[ii][jj] = false;
}
else
array_vector[ii][jj] = false;
}
}
}
loop_init = alloc_stmt_list ();
for (ii = 0; ii < rank; ii++)
{
array_var[ii] = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
ind_init[ii] =
build_modify_expr (location, array_var[ii],
TREE_TYPE (array_var[ii]), NOP_EXPR,
location,
build_int_cst (TREE_TYPE (array_var[ii]), 0),
TREE_TYPE (array_var[ii]));
}
for (ii = 0; ii < list_size; ii++)
{
if (array_vector[ii][0])
{
tree array_opr_node = array_value[ii][rank - 1];
for (s_jj = rank - 1; s_jj >= 0; s_jj--)
{
if (count_down[ii][s_jj])
{
/* Array[start_index - (induction_var * stride)] */
array_opr_node = build_array_ref
(location, array_opr_node,
build2 (MINUS_EXPR, TREE_TYPE (array_var[s_jj]),
array_start[ii][s_jj],
build2 (MULT_EXPR, TREE_TYPE (array_var[s_jj]),
array_var[s_jj], array_stride[ii][s_jj])));
}
else
{
/* Array[start_index + (induction_var * stride)] */
array_opr_node = build_array_ref
(location, array_opr_node,
build2 (PLUS_EXPR, TREE_TYPE (array_var[s_jj]),
array_start[ii][s_jj],
build2 (MULT_EXPR, TREE_TYPE (array_var[s_jj]),
array_var[s_jj], array_stride[ii][s_jj])));
}
}
vec_safe_push (array_operand, array_opr_node);
}
else
/* This is just a dummy node to make sure the list sizes for both
array list and array operand list are the same. */
vec_safe_push (array_operand, integer_one_node);
}
replace_array_notations (&func_parm, true, array_list, array_operand);
for (ii = 0; ii < rank; ii++)
expr_incr[ii] =
build2 (MODIFY_EXPR, void_type_node, array_var[ii],
build2 (PLUS_EXPR, TREE_TYPE (array_var[ii]), array_var[ii],
build_int_cst (TREE_TYPE (array_var[ii]), 1)));
for (jj = 0; jj < rank; jj++)
{
if (rank && expr_incr[jj])
{
if (count_down[0][jj])
compare_expr[jj] =
build2 (LT_EXPR, boolean_type_node, array_var[jj],
build2 (MULT_EXPR, TREE_TYPE (array_var[jj]),
array_length[0][jj],
build_int_cst (TREE_TYPE (array_var[jj]), -1)));
else
compare_expr[jj] = build2 (LT_EXPR, boolean_type_node,
array_var[jj], array_length[0][jj]);
}
}
if (an_type != BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING)
{
*new_var = build_decl (location, VAR_DECL, NULL_TREE, new_var_type);
gcc_assert (*new_var && *new_var != error_mark_node);
}
else
*new_var = NULL_TREE;
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND)
array_ind_value = build_decl (location, VAR_DECL, NULL_TREE,
TREE_TYPE (func_parm));
array_op0 = (*array_operand)[0];
switch (an_type)
{
case BUILT_IN_CILKPLUS_SEC_REDUCE_ADD:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (new_var_type), new_var_type);
new_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), PLUS_EXPR,
location, func_parm, TREE_TYPE (func_parm));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUL:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_one_cst (new_var_type), new_var_type);
new_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), MULT_EXPR,
location, func_parm, TREE_TYPE (func_parm));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_one_cst (new_var_type), new_var_type);
/* Initially you assume everything is zero, now if we find a case where
it is NOT true, then we set the result to false. Otherwise
we just keep the previous value. */
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (TREE_TYPE (*new_var)),
TREE_TYPE (*new_var));
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_cond_expr = build2 (NE_EXPR, TREE_TYPE (func_parm), func_parm,
build_zero_cst (TREE_TYPE (func_parm)));
new_expr = build_conditional_expr
(location, new_cond_expr, false, new_yes_expr,
TREE_TYPE (new_yes_expr), new_no_expr, TREE_TYPE (new_no_expr));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_NONZERO:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_one_cst (new_var_type), new_var_type);
/* Initially you assume everything is non-zero, now if we find a case
where it is NOT true, then we set the result to false. Otherwise
we just keep the previous value. */
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (TREE_TYPE (*new_var)),
TREE_TYPE (*new_var));
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_cond_expr = build2 (EQ_EXPR, TREE_TYPE (func_parm), func_parm,
build_zero_cst (TREE_TYPE (func_parm)));
new_expr = build_conditional_expr
(location, new_cond_expr, false, new_yes_expr,
TREE_TYPE (new_yes_expr), new_no_expr, TREE_TYPE (new_no_expr));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (new_var_type), new_var_type);
/* Initially we assume there are NO zeros in the list. When we find
a non-zero, we keep the previous value. If we find a zero, we
set the value to true. */
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_one_cst (new_var_type), new_var_type);
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_cond_expr = build2 (EQ_EXPR, TREE_TYPE (func_parm), func_parm,
build_zero_cst (TREE_TYPE (func_parm)));
new_expr = build_conditional_expr
(location, new_cond_expr, false, new_yes_expr,
TREE_TYPE (new_yes_expr), new_no_expr, TREE_TYPE (new_no_expr));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_NONZERO:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (new_var_type), new_var_type);
/* Initially we assume there are NO non-zeros in the list. When we find
a zero, we keep the previous value. If we find a non-zero, we set
the value to true. */
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_one_cst (new_var_type), new_var_type);
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_cond_expr = build2 (NE_EXPR, TREE_TYPE (func_parm), func_parm,
build_zero_cst (TREE_TYPE (func_parm)));
new_expr = build_conditional_expr
(location, new_cond_expr, false, new_yes_expr,
TREE_TYPE (new_yes_expr), new_no_expr, TREE_TYPE (new_no_expr));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX:
if (TYPE_MIN_VALUE (new_var_type))
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, TYPE_MIN_VALUE (new_var_type), new_var_type);
else
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, func_parm, new_var_type);
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, func_parm, TREE_TYPE (*new_var));
new_expr = build_conditional_expr
(location,
build2 (LT_EXPR, TREE_TYPE (*new_var), *new_var, func_parm), false,
new_yes_expr, TREE_TYPE (*new_var), new_no_expr, TREE_TYPE (*new_var));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN:
if (TYPE_MAX_VALUE (new_var_type))
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, TYPE_MAX_VALUE (new_var_type), new_var_type);
else
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, func_parm, new_var_type);
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, func_parm, TREE_TYPE (*new_var));
new_expr = build_conditional_expr
(location,
build2 (GT_EXPR, TREE_TYPE (*new_var), *new_var, func_parm), false,
new_yes_expr, TREE_TYPE (*new_var), new_no_expr, TREE_TYPE (*new_var));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (new_var_type), new_var_type);
new_exp_init = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR, location, func_parm, TREE_TYPE (func_parm));
new_no_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_no_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, array_ind_value, TREE_TYPE (array_ind_value));
if (list_size > 1)
{
new_yes_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, array_var[0], TREE_TYPE (array_var[0]));
new_yes_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, func_parm, TREE_TYPE ((*array_operand)[0]));
}
else
{
new_yes_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, TREE_OPERAND (array_op0, 1),
TREE_TYPE (TREE_OPERAND (array_op0, 1)));
new_yes_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, func_parm, TREE_OPERAND (array_op0, 1));
}
new_yes_list = alloc_stmt_list ();
append_to_statement_list (new_yes_ind, &new_yes_list);
append_to_statement_list (new_yes_expr, &new_yes_list);
new_no_list = alloc_stmt_list ();
append_to_statement_list (new_no_ind, &new_no_list);
append_to_statement_list (new_no_expr, &new_no_list);
new_expr = build_conditional_expr
(location,
build2 (LE_EXPR, TREE_TYPE (array_ind_value), array_ind_value,
func_parm),
false,
new_yes_list, TREE_TYPE (*new_var), new_no_list, TREE_TYPE (*new_var));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (new_var_type), new_var_type);
new_exp_init = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR, location, func_parm, TREE_TYPE (func_parm));
new_no_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_no_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, array_ind_value, TREE_TYPE (array_ind_value));
if (list_size > 1)
{
new_yes_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, array_var[0], TREE_TYPE (array_var[0]));
new_yes_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, func_parm, TREE_TYPE (array_op0));
}
else
{
new_yes_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, TREE_OPERAND (array_op0, 1),
TREE_TYPE (TREE_OPERAND (array_op0, 1)));
new_yes_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, func_parm, TREE_OPERAND (array_op0, 1));
}
new_yes_list = alloc_stmt_list ();
append_to_statement_list (new_yes_ind, &new_yes_list);
append_to_statement_list (new_yes_expr, &new_yes_list);
new_no_list = alloc_stmt_list ();
append_to_statement_list (new_no_ind, &new_no_list);
append_to_statement_list (new_no_expr, &new_no_list);
new_expr = build_conditional_expr
(location,
build2 (GE_EXPR, TREE_TYPE (array_ind_value), array_ind_value,
func_parm),
false,
new_yes_list, TREE_TYPE (*new_var), new_no_list, TREE_TYPE (*new_var));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, identity_value, new_var_type);
new_call_expr = build_call_expr (call_fn, 2, *new_var, func_parm);
new_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, new_call_expr, TREE_TYPE (*new_var));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING:
new_expr = build_call_expr (call_fn, 2, identity_value, func_parm);
break;
default:
gcc_unreachable ();
break;
}
for (ii = 0; ii < rank; ii++)
append_to_statement_list (ind_init [ii], &loop_init);
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND)
append_to_statement_list (new_exp_init, &loop_init);
if (an_type != BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING)
append_to_statement_list (new_var_init, &loop_init);
append_to_statement_list_force (loop_init, &loop_with_init);
body = new_expr;
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
c_finish_loop (location, compare_expr[ii], expr_incr[ii], body, NULL_TREE,
NULL_TREE, true);
body = pop_stmt_list (new_loop);
}
append_to_statement_list_force (body, &loop_with_init);
XDELETEVEC (compare_expr);
XDELETEVEC (expr_incr);
XDELETEVEC (ind_init);
XDELETEVEC (array_var);
for (ii = 0; ii < list_size; ii++)
{
XDELETEVEC (count_down[ii]);
XDELETEVEC (array_value[ii]);
XDELETEVEC (array_stride[ii]);
XDELETEVEC (array_length[ii]);
XDELETEVEC (array_start[ii]);
XDELETEVEC (array_ops[ii]);
XDELETEVEC (array_vector[ii]);
}
XDELETEVEC (count_down);
XDELETEVEC (array_value);
XDELETEVEC (array_stride);
XDELETEVEC (array_length);
XDELETEVEC (array_start);
XDELETEVEC (array_ops);
XDELETEVEC (array_vector);
return loop_with_init;
}
/* Returns a loop with ARRAY_REF inside it with an appropriate modify expr.
The LHS and/or RHS will be array notation expressions that have a MODIFYCODE
Their locations are specified by LHS_LOC, RHS_LOC. The location of the
modify expression is location. The original type of LHS and RHS are passed
in LHS_ORIGTYPE and RHS_ORIGTYPE. */
tree
build_array_notation_expr (location_t location, tree lhs, tree lhs_origtype,
enum tree_code modifycode, location_t rhs_loc,
tree rhs, tree rhs_origtype)
{
bool **lhs_vector = NULL, **rhs_vector = NULL, found_builtin_fn = false;
tree **lhs_array = NULL, **rhs_array = NULL;
tree array_expr_lhs = NULL_TREE, array_expr_rhs = NULL_TREE;
tree array_expr = NULL_TREE;
tree **lhs_value = NULL, **rhs_value = NULL;
tree **lhs_stride = NULL, **lhs_length = NULL, **lhs_start = NULL;
tree **rhs_stride = NULL, **rhs_length = NULL, **rhs_start = NULL;
tree an_init = NULL_TREE, *lhs_var = NULL, *rhs_var = NULL;
tree *cond_expr = NULL;
tree body, loop_with_init = alloc_stmt_list();
tree scalar_mods = NULL_TREE;
tree *lhs_expr_incr = NULL, *rhs_expr_incr = NULL;
tree *lhs_ind_init = NULL, *rhs_ind_init = NULL;
bool **lhs_count_down = NULL, **rhs_count_down = NULL;
tree *lhs_compare = NULL, *rhs_compare = NULL;
vec<tree, va_gc> *rhs_array_operand = NULL, *lhs_array_operand = NULL;
size_t lhs_rank = 0, rhs_rank = 0;
size_t ii = 0, jj = 0;
int s_jj = 0;
tree ii_tree = NULL_TREE, new_modify_expr;
vec<tree, va_gc> *lhs_list = NULL, *rhs_list = NULL;
tree new_var = NULL_TREE, builtin_loop = NULL_TREE;
tree begin_var, lngth_var, strde_var;
size_t rhs_list_size = 0, lhs_list_size = 0;
/* If either of this is true, an error message must have been send out
already. Not necessary to send out multiple error messages. */
if (lhs == error_mark_node || rhs == error_mark_node)
return error_mark_node;
if (!find_rank (location, rhs, rhs, false, &rhs_rank))
return error_mark_node;
extract_array_notation_exprs (rhs, false, &rhs_list);
rhs_list_size = vec_safe_length (rhs_list);
an_init = push_stmt_list ();
if (rhs_rank)
{
scalar_mods = replace_invariant_exprs (&rhs);
if (scalar_mods)
add_stmt (scalar_mods);
}
for (ii = 0; ii < rhs_list_size; ii++)
{
tree rhs_node = (*rhs_list)[ii];
if (TREE_CODE (rhs_node) == CALL_EXPR)
{
builtin_loop = fix_builtin_array_notation_fn (rhs_node, &new_var);
if (builtin_loop == error_mark_node)
{
pop_stmt_list (an_init);
return error_mark_node;
}
else if (builtin_loop)
{
add_stmt (builtin_loop);
found_builtin_fn = true;
if (new_var)
{
vec<tree, va_gc> *rhs_sub_list = NULL, *new_var_list = NULL;
vec_safe_push (rhs_sub_list, rhs_node);
vec_safe_push (new_var_list, new_var);
replace_array_notations (&rhs, false, rhs_sub_list,
new_var_list);
}
}
}
}
lhs_rank = 0;
rhs_rank = 0;
if (!find_rank (location, lhs, lhs, true, &lhs_rank))
{
pop_stmt_list (an_init);
return error_mark_node;
}
if (!find_rank (location, rhs, rhs, true, &rhs_rank))
{
pop_stmt_list (an_init);
return error_mark_node;
}
if (lhs_rank == 0 && rhs_rank == 0)
{
if (found_builtin_fn)
{
new_modify_expr = build_modify_expr (location, lhs, lhs_origtype,
modifycode, rhs_loc, rhs,
rhs_origtype);
add_stmt (new_modify_expr);
pop_stmt_list (an_init);
return an_init;
}
else
{
pop_stmt_list (an_init);
return NULL_TREE;
}
}
rhs_list_size = 0;
rhs_list = NULL;
extract_array_notation_exprs (rhs, true, &rhs_list);
extract_array_notation_exprs (lhs, true, &lhs_list);
rhs_list_size = vec_safe_length (rhs_list);
lhs_list_size = vec_safe_length (lhs_list);
if (lhs_rank == 0 && rhs_rank != 0 && TREE_CODE (rhs) != CALL_EXPR)
{
tree rhs_base = rhs;
if (TREE_CODE (rhs_base) == ARRAY_NOTATION_REF)
{
for (ii = 0; ii < (size_t) rhs_rank; ii++)
rhs_base = ARRAY_NOTATION_ARRAY (rhs);
error_at (location, "%qE cannot be scalar when %qE is not", lhs,
rhs_base);
return error_mark_node;
}
else
{
error_at (location, "%qE cannot be scalar when %qE is not", lhs,
rhs_base);
return error_mark_node;
}
}
if (lhs_rank != 0 && rhs_rank != 0 && lhs_rank != rhs_rank)
{
tree lhs_base = lhs;
tree rhs_base = rhs;
for (ii = 0; ii < lhs_rank; ii++)
lhs_base = ARRAY_NOTATION_ARRAY (lhs_base);
while (rhs_base && TREE_CODE (rhs_base) != ARRAY_NOTATION_REF)
rhs_base = TREE_OPERAND (rhs_base, 0);
for (ii = 0; ii < rhs_rank; ii++)
rhs_base = ARRAY_NOTATION_ARRAY (rhs_base);
error_at (location, "rank mismatch between %qE and %qE", lhs, rhs);
pop_stmt_list (an_init);
return error_mark_node;
}
/* Here we assign the array notation components to variable so that we can
satisfy the exec once rule. */
for (ii = 0; ii < lhs_list_size; ii++)
{
tree array_node = (*lhs_list)[ii];
tree array_begin = ARRAY_NOTATION_START (array_node);
tree array_lngth = ARRAY_NOTATION_LENGTH (array_node);
tree array_strde = ARRAY_NOTATION_STRIDE (array_node);
if (TREE_CODE (array_begin) != INTEGER_CST)
{
begin_var = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
add_stmt (build_modify_expr (location, begin_var,
TREE_TYPE (begin_var),
NOP_EXPR, location, array_begin,
TREE_TYPE (array_begin)));
ARRAY_NOTATION_START (array_node) = begin_var;
}
if (TREE_CODE (array_lngth) != INTEGER_CST)
{
lngth_var = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
add_stmt (build_modify_expr (location, lngth_var,
TREE_TYPE (lngth_var),
NOP_EXPR, location, array_lngth,
TREE_TYPE (array_lngth)));
ARRAY_NOTATION_LENGTH (array_node) = lngth_var;
}
if (TREE_CODE (array_strde) != INTEGER_CST)
{
strde_var = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
add_stmt (build_modify_expr (location, strde_var,
TREE_TYPE (strde_var),
NOP_EXPR, location, array_strde,
TREE_TYPE (array_strde)));
ARRAY_NOTATION_STRIDE (array_node) = strde_var;
}
}
for (ii = 0; ii < rhs_list_size; ii++)
{
tree array_node = (*rhs_list)[ii];
if (array_node && TREE_CODE (array_node) == ARRAY_NOTATION_REF)
{
tree array_begin = ARRAY_NOTATION_START (array_node);
tree array_lngth = ARRAY_NOTATION_LENGTH (array_node);
tree array_strde = ARRAY_NOTATION_STRIDE (array_node);
if (TREE_CODE (array_begin) != INTEGER_CST)
{
begin_var = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
add_stmt (build_modify_expr (location, begin_var,
TREE_TYPE (begin_var),
NOP_EXPR, location, array_begin,
TREE_TYPE (array_begin)));
ARRAY_NOTATION_START (array_node) = begin_var;
}
if (TREE_CODE (array_lngth) != INTEGER_CST)
{
lngth_var = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
add_stmt (build_modify_expr (location, lngth_var,
TREE_TYPE (lngth_var),
NOP_EXPR, location, array_lngth,
TREE_TYPE (array_lngth)));
ARRAY_NOTATION_LENGTH (array_node) = lngth_var;
}
if (TREE_CODE (array_strde) != INTEGER_CST)
{
strde_var = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
add_stmt (build_modify_expr (location, strde_var,
TREE_TYPE (strde_var),
NOP_EXPR, location, array_strde,
TREE_TYPE (array_strde)));
ARRAY_NOTATION_STRIDE (array_node) = strde_var;
}
}
}
lhs_vector = XNEWVEC (bool *, lhs_list_size);
for (ii = 0; ii < lhs_list_size; ii++)
lhs_vector[ii] = XNEWVEC (bool, lhs_rank);
rhs_vector = XNEWVEC (bool *, rhs_list_size);
for (ii = 0; ii < rhs_list_size; ii++)
rhs_vector[ii] = XNEWVEC (bool, rhs_rank);
lhs_array = XNEWVEC (tree *, lhs_list_size);
for (ii = 0; ii < lhs_list_size; ii++)
lhs_array[ii] = XNEWVEC (tree, lhs_rank);
rhs_array = XNEWVEC (tree *, rhs_list_size);
for (ii = 0; ii < rhs_list_size; ii++)
rhs_array[ii] = XNEWVEC (tree, rhs_rank);
lhs_value = XNEWVEC (tree *, lhs_list_size);
for (ii = 0; ii < lhs_list_size; ii++)
lhs_value[ii] = XNEWVEC (tree, lhs_rank);
rhs_value = XNEWVEC (tree *, rhs_list_size);
for (ii = 0; ii < rhs_list_size; ii++)
rhs_value[ii] = XNEWVEC (tree, rhs_rank);
lhs_stride = XNEWVEC (tree *, lhs_list_size);
for (ii = 0; ii < lhs_list_size; ii++)
lhs_stride[ii] = XNEWVEC (tree, lhs_rank);
rhs_stride = XNEWVEC (tree *, rhs_list_size);
for (ii = 0; ii < rhs_list_size; ii++)
rhs_stride[ii] = XNEWVEC (tree, rhs_rank);
lhs_length = XNEWVEC (tree *, lhs_list_size);
for (ii = 0; ii < lhs_list_size; ii++)
lhs_length[ii] = XNEWVEC (tree, lhs_rank);
rhs_length = XNEWVEC (tree *, rhs_list_size);
for (ii = 0; ii < rhs_list_size; ii++)
rhs_length[ii] = XNEWVEC (tree, rhs_rank);
lhs_start = XNEWVEC (tree *, lhs_list_size);
for (ii = 0; ii < lhs_list_size; ii++)
lhs_start[ii] = XNEWVEC (tree, lhs_rank);
rhs_start = XNEWVEC (tree *, rhs_list_size);
for (ii = 0; ii < rhs_list_size; ii++)
rhs_start[ii] = XNEWVEC (tree, rhs_rank);
lhs_var = XNEWVEC (tree, lhs_rank);
rhs_var = XNEWVEC (tree, rhs_rank);
cond_expr = XNEWVEC (tree, MAX (lhs_rank, rhs_rank));
lhs_expr_incr = XNEWVEC (tree, lhs_rank);
rhs_expr_incr =XNEWVEC (tree, rhs_rank);
lhs_ind_init = XNEWVEC (tree, lhs_rank);
rhs_ind_init = XNEWVEC (tree, rhs_rank);
lhs_count_down = XNEWVEC (bool *, lhs_list_size);
for (ii = 0; ii < lhs_list_size; ii++)
lhs_count_down[ii] = XNEWVEC (bool, lhs_rank);
rhs_count_down = XNEWVEC (bool *, rhs_list_size);
for (ii = 0; ii < rhs_list_size; ii++)
rhs_count_down[ii] = XNEWVEC (bool, rhs_rank);
lhs_compare = XNEWVEC (tree, lhs_rank);
rhs_compare = XNEWVEC (tree, rhs_rank);
if (lhs_rank)
{
for (ii = 0; ii < lhs_list_size; ii++)
{
jj = 0;
ii_tree = (*lhs_list)[ii];
while (ii_tree)
{
if (TREE_CODE (ii_tree) == ARRAY_NOTATION_REF)
{
lhs_array[ii][jj] = ii_tree;
jj++;
ii_tree = ARRAY_NOTATION_ARRAY (ii_tree);
}
else if (TREE_CODE (ii_tree) == ARRAY_REF)
ii_tree = TREE_OPERAND (ii_tree, 0);
else if (TREE_CODE (ii_tree) == VAR_DECL
|| TREE_CODE (ii_tree) == PARM_DECL)
break;
}
}
}
else
lhs_array[0][0] = NULL_TREE;
if (rhs_rank)
{
for (ii = 0; ii < rhs_list_size; ii++)
{
jj = 0;
ii_tree = (*rhs_list)[ii];
while (ii_tree)
{
if (TREE_CODE (ii_tree) == ARRAY_NOTATION_REF)
{
rhs_array[ii][jj] = ii_tree;
jj++;
ii_tree = ARRAY_NOTATION_ARRAY (ii_tree);
}
else if (TREE_CODE (ii_tree) == ARRAY_REF)
ii_tree = TREE_OPERAND (ii_tree, 0);
else if (TREE_CODE (ii_tree) == VAR_DECL
|| TREE_CODE (ii_tree) == PARM_DECL
|| TREE_CODE (ii_tree) == CALL_EXPR)
break;
}
}
}
for (ii = 0; ii < lhs_list_size; ii++)
{
tree lhs_node = (*lhs_list)[ii];
if (TREE_CODE (lhs_node) == ARRAY_NOTATION_REF)
{
for (jj = 0; jj < lhs_rank; jj++)
{
if (TREE_CODE (lhs_array[ii][jj]) == ARRAY_NOTATION_REF)
{
lhs_value[ii][jj] = ARRAY_NOTATION_ARRAY (lhs_array[ii][jj]);
lhs_start[ii][jj] = ARRAY_NOTATION_START (lhs_array[ii][jj]);
lhs_length[ii][jj] =
fold_build1 (CONVERT_EXPR, integer_type_node,
ARRAY_NOTATION_LENGTH (lhs_array[ii][jj]));
lhs_stride[ii][jj] =
fold_build1 (CONVERT_EXPR, integer_type_node,
ARRAY_NOTATION_STRIDE (lhs_array[ii][jj]));
lhs_vector[ii][jj] = true;
/* IF the stride value is variable (i.e. not constant) then
assume that the length is positive. */
if (!TREE_CONSTANT (lhs_length[ii][jj]))
lhs_count_down[ii][jj] = false;
else if (tree_int_cst_lt
(lhs_length[ii][jj],
build_zero_cst (TREE_TYPE (lhs_length[ii][jj]))))
lhs_count_down[ii][jj] = true;
else
lhs_count_down[ii][jj] = false;
}
else
lhs_vector[ii][jj] = false;
}
}
}
for (ii = 0; ii < rhs_list_size; ii++)
{
if (TREE_CODE ((*rhs_list)[ii]) == ARRAY_NOTATION_REF)
{
for (jj = 0; jj < rhs_rank; jj++)
{
if (TREE_CODE (rhs_array[ii][jj]) == ARRAY_NOTATION_REF)
{
rhs_value[ii][jj] = ARRAY_NOTATION_ARRAY (rhs_array[ii][jj]);
rhs_start[ii][jj] = ARRAY_NOTATION_START (rhs_array[ii][jj]);
rhs_length[ii][jj] =
fold_build1 (CONVERT_EXPR, integer_type_node,
ARRAY_NOTATION_LENGTH (rhs_array[ii][jj]));
rhs_stride[ii][jj] =
fold_build1 (CONVERT_EXPR, integer_type_node,
ARRAY_NOTATION_STRIDE (rhs_array[ii][jj]));
rhs_vector[ii][jj] = true;
/* If the stride value is variable (i.e. not constant) then
assume that the length is positive. */
if (!TREE_CONSTANT (rhs_length[ii][jj]))
rhs_count_down[ii][jj] = false;
else if (tree_int_cst_lt
(rhs_length[ii][jj],
build_int_cst (TREE_TYPE (rhs_length[ii][jj]), 0)))
rhs_count_down[ii][jj] = true;
else
rhs_count_down[ii][jj] = false;
}
else
rhs_vector[ii][jj] = false;
}
}
else
for (jj = 0; jj < rhs_rank; jj++)
{
rhs_vector[ii][jj] = false;
rhs_length[ii][jj] = NULL_TREE;
}
}
if (length_mismatch_in_expr_p (EXPR_LOCATION (lhs), lhs_length,
lhs_list_size, lhs_rank)
|| length_mismatch_in_expr_p (EXPR_LOCATION (rhs), rhs_length,
rhs_list_size, rhs_rank))
{
pop_stmt_list (an_init);
return error_mark_node;
}
if (lhs_list_size > 0 && rhs_list_size > 0 && lhs_rank > 0 && rhs_rank > 0
&& TREE_CODE (lhs_length[0][0]) == INTEGER_CST
&& rhs_length[0][0]
&& TREE_CODE (rhs_length[0][0]) == INTEGER_CST)
{
HOST_WIDE_INT l_length = int_cst_value (lhs_length[0][0]);
HOST_WIDE_INT r_length = int_cst_value (rhs_length[0][0]);
/* Length can be negative or positive. As long as the magnitude is OK,
then the array notation is valid. */
if (absu_hwi (l_length) != absu_hwi (r_length))
{
error_at (location, "length mismatch between LHS and RHS");
pop_stmt_list (an_init);
return error_mark_node;
}
}
for (ii = 0; ii < lhs_rank; ii++)
{
if (lhs_vector[0][ii])
{
lhs_var[ii] = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
lhs_ind_init[ii] = build_modify_expr
(location, lhs_var[ii], TREE_TYPE (lhs_var[ii]),
NOP_EXPR,
location, build_zero_cst (TREE_TYPE (lhs_var[ii])),
TREE_TYPE (lhs_var[ii]));
}
}
for (ii = 0; ii < rhs_rank; ii++)
{
/* When we have a polynomial, we assume that the indices are of type
integer. */
rhs_var[ii] = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
rhs_ind_init[ii] = build_modify_expr
(location, rhs_var[ii], TREE_TYPE (rhs_var[ii]),
NOP_EXPR,
location, build_int_cst (TREE_TYPE (rhs_var[ii]), 0),
TREE_TYPE (rhs_var[ii]));
}
if (lhs_rank)
{
for (ii = 0; ii < lhs_list_size; ii++)
{
if (lhs_vector[ii][0])
{
/* The last ARRAY_NOTATION element's ARRAY component should be
the array's base value. */
tree lhs_array_opr = lhs_value[ii][lhs_rank - 1];
for (s_jj = lhs_rank - 1; s_jj >= 0; s_jj--)
{
if (lhs_count_down[ii][s_jj])
/* Array[start_index + (induction_var * stride)]. */
lhs_array_opr = build_array_ref
(location, lhs_array_opr,
build2 (MINUS_EXPR, TREE_TYPE (lhs_var[s_jj]),
lhs_start[ii][s_jj],
build2 (MULT_EXPR, TREE_TYPE (lhs_var[s_jj]),
lhs_var[s_jj],
lhs_stride[ii][s_jj])));
else
lhs_array_opr = build_array_ref
(location, lhs_array_opr,
build2 (PLUS_EXPR, TREE_TYPE (lhs_var[s_jj]),
lhs_start[ii][s_jj],
build2 (MULT_EXPR, TREE_TYPE (lhs_var[s_jj]),
lhs_var[s_jj],
lhs_stride[ii][s_jj])));
}
vec_safe_push (lhs_array_operand, lhs_array_opr);
}
else
vec_safe_push (lhs_array_operand, integer_one_node);
}
replace_array_notations (&lhs, true, lhs_list, lhs_array_operand);
array_expr_lhs = lhs;
}
if (rhs_rank)
{
for (ii = 0; ii < rhs_list_size; ii++)
{
if (rhs_vector[ii][0])
{
tree rhs_array_opr = rhs_value[ii][rhs_rank - 1];
for (s_jj = rhs_rank - 1; s_jj >= 0; s_jj--)
{
if (rhs_count_down[ii][s_jj])
/* Array[start_index - (induction_var * stride)] */
rhs_array_opr = build_array_ref
(location, rhs_array_opr,
build2 (MINUS_EXPR, TREE_TYPE (rhs_var[s_jj]),
rhs_start[ii][s_jj],
build2 (MULT_EXPR, TREE_TYPE (rhs_var[s_jj]),
rhs_var[s_jj],
rhs_stride[ii][s_jj])));
else
/* Array[start_index + (induction_var * stride)] */
rhs_array_opr = build_array_ref
(location, rhs_array_opr,
build2 (PLUS_EXPR, TREE_TYPE (rhs_var[s_jj]),
rhs_start[ii][s_jj],
build2 (MULT_EXPR, TREE_TYPE (rhs_var[s_jj]),
rhs_var[s_jj],
rhs_stride[ii][s_jj])));
}
vec_safe_push (rhs_array_operand, rhs_array_opr);
}
else
/* This is just a dummy node to make sure the list sizes for both
array list and array operand list are the same. */
vec_safe_push (rhs_array_operand, integer_one_node);
}
for (ii = 0; ii < rhs_list_size; ii++)
{
tree rhs_node = (*rhs_list)[ii];
if (TREE_CODE (rhs_node) == CALL_EXPR)
{
int idx_value = 0;
tree func_name = CALL_EXPR_FN (rhs_node);
if (TREE_CODE (func_name) == ADDR_EXPR)
if (is_sec_implicit_index_fn (func_name))
{
idx_value =
extract_sec_implicit_index_arg (location, rhs_node);
if (idx_value == -1) /* This means we have an error. */
return error_mark_node;
else if (idx_value < (int) lhs_rank && idx_value >= 0)
vec_safe_push (rhs_array_operand, lhs_var[idx_value]);
else
{
size_t ee = 0;
tree lhs_base = (*lhs_list)[ii];
for (ee = 0; ee < lhs_rank; ee++)
lhs_base = ARRAY_NOTATION_ARRAY (lhs_base);
error_at (location, "__sec_implicit_index argument %d "
"must be less than rank of %qD", idx_value,
lhs_base);
return error_mark_node;
}
}
}
}
replace_array_notations (&rhs, true, rhs_list, rhs_array_operand);
array_expr_rhs = rhs;
}
else
{
for (ii = 0; ii < rhs_list_size; ii++)
{
tree rhs_node = (*rhs_list)[ii];
if (TREE_CODE (rhs_node) == CALL_EXPR)
{
int idx_value = 0;
tree func_name = CALL_EXPR_FN (rhs_node);
if (TREE_CODE (func_name) == ADDR_EXPR)
if (is_sec_implicit_index_fn (func_name))
{
idx_value =
extract_sec_implicit_index_arg (location, rhs_node);
if (idx_value == -1) /* This means we have an error. */
return error_mark_node;
else if (idx_value < (int) lhs_rank && idx_value >= 0)
vec_safe_push (rhs_array_operand, lhs_var[idx_value]);
else
{
size_t ee = 0;
tree lhs_base = (*lhs_list)[ii];
for (ee = 0; ee < lhs_rank; ee++)
lhs_base = ARRAY_NOTATION_ARRAY (lhs_base);
error_at (location, "__sec_implicit_index argument %d "
"must be less than rank of %qD", idx_value,
lhs_base);
return error_mark_node;
}
}
}
}
replace_array_notations (&rhs, true, rhs_list, rhs_array_operand);
array_expr_rhs = rhs;
rhs_expr_incr[0] = NULL_TREE;
}
for (ii = 0; ii < rhs_rank; ii++)
rhs_expr_incr[ii] = build2 (MODIFY_EXPR, void_type_node, rhs_var[ii],
build2
(PLUS_EXPR, TREE_TYPE (rhs_var[ii]),
rhs_var[ii],
build_one_cst (TREE_TYPE (rhs_var[ii]))));
for (ii = 0; ii < lhs_rank; ii++)
lhs_expr_incr[ii] = build2
(MODIFY_EXPR, void_type_node, lhs_var[ii],
build2 (PLUS_EXPR, TREE_TYPE (lhs_var[ii]), lhs_var[ii],
build_one_cst (TREE_TYPE (lhs_var[ii]))));
/* If array_expr_lhs is NULL, then we have function that returns void or
its return value is ignored. */
if (!array_expr_lhs)
array_expr_lhs = lhs;
array_expr = build_modify_expr (location, array_expr_lhs, lhs_origtype,
modifycode, rhs_loc, array_expr_rhs,
rhs_origtype);
for (jj = 0; jj < MAX (lhs_rank, rhs_rank); jj++)
{
if (rhs_rank && rhs_expr_incr[jj])
{
size_t iii = 0;
if (lhs_rank == 0)
lhs_compare[jj] = integer_one_node;
else if (lhs_count_down[0][jj])
lhs_compare[jj] = build2
(GT_EXPR, boolean_type_node, lhs_var[jj], lhs_length[0][jj]);
else
lhs_compare[jj] = build2
(LT_EXPR, boolean_type_node, lhs_var[jj], lhs_length[0][jj]);
/* The reason why we have this here is for the following case:
Array[:][:] = function_call(something) + Array2[:][:];
So, we will skip the first operand of RHS and then go to the
2nd to find whether we should count up or down. */
for (iii = 0; iii < rhs_list_size; iii++)
if (rhs_vector[iii][jj])
break;
/* What we are doing here is this:
We always count up, so:
if (length is negative ==> which means we count down)
we multiply length by -1 and count up => ii < -LENGTH
else
we just count up, so we compare for ii < LENGTH
*/
if (rhs_count_down[iii][jj])
/* We use iii for rhs_length because that is the correct countdown
we have to use. */
rhs_compare[jj] = build2
(LT_EXPR, boolean_type_node, rhs_var[jj],
build2 (MULT_EXPR, TREE_TYPE (rhs_var[jj]),
rhs_length[iii][jj],
build_int_cst (TREE_TYPE (rhs_var[jj]), -1)));
else
rhs_compare[jj] = build2 (LT_EXPR, boolean_type_node, rhs_var[jj],
rhs_length[iii][jj]);
if (lhs_compare[ii] != integer_one_node)
cond_expr[jj] = build2 (TRUTH_ANDIF_EXPR, void_type_node,
lhs_compare[jj], rhs_compare[jj]);
else
cond_expr[jj] = rhs_compare[jj];
}
else
{
if (lhs_count_down[0][jj])
cond_expr[jj] = build2
(GT_EXPR, boolean_type_node, lhs_var[jj], lhs_length[0][jj]);
else
cond_expr[jj] = build2
(LT_EXPR, boolean_type_node, lhs_var[jj], lhs_length[0][jj]);
}
}
an_init = pop_stmt_list (an_init);
append_to_statement_list_force (an_init, &loop_with_init);
body = array_expr;
for (ii = 0; ii < MAX (lhs_rank, rhs_rank); ii++)
{
tree incr_list = alloc_stmt_list ();
tree new_loop = push_stmt_list ();
if (lhs_rank)
add_stmt (lhs_ind_init[ii]);
if (rhs_rank)
add_stmt (rhs_ind_init[ii]);
if (lhs_rank)
append_to_statement_list_force (lhs_expr_incr[ii], &incr_list);
if (rhs_rank && rhs_expr_incr[ii])
append_to_statement_list_force (rhs_expr_incr[ii], &incr_list);
c_finish_loop (location, cond_expr[ii], incr_list, body, NULL_TREE,
NULL_TREE, true);
body = pop_stmt_list (new_loop);
}
append_to_statement_list_force (body, &loop_with_init);
return loop_with_init;
}
/* Helper function for fix_conditional_array_notations. Encloses the
conditional statement passed in STMT with a loop around it
and replaces the condition in STMT with a ARRAY_REF tree-node to the array.
The condition must have an ARRAY_NOTATION_REF tree. An expansion of array
notation in STMT is returned in a STATEMENT_LIST. */
static tree
fix_conditional_array_notations_1 (tree stmt)
{
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
size_t list_size = 0;
tree cond = NULL_TREE, builtin_loop = NULL_TREE, new_var = NULL_TREE;
size_t rank = 0, ii = 0, jj = 0;
int s_jj = 0;
tree **array_ops, *array_var, jj_tree, loop_init;
tree **array_value, **array_stride, **array_length, **array_start;
tree *compare_expr, *expr_incr, *ind_init;
bool **count_down, **array_vector;
tree begin_var, lngth_var, strde_var;
location_t location = EXPR_LOCATION (stmt);
tree body = NULL_TREE, loop_with_init = alloc_stmt_list ();
if (TREE_CODE (stmt) == COND_EXPR)
cond = COND_EXPR_COND (stmt);
else if (TREE_CODE (stmt) == SWITCH_EXPR)
cond = SWITCH_COND (stmt);
else
/* Otherwise dont even touch the statement. */
return stmt;
if (!find_rank (location, cond, cond, false, &rank))
return error_mark_node;
extract_array_notation_exprs (stmt, false, &array_list);
loop_init = push_stmt_list ();
for (ii = 0; ii < vec_safe_length (array_list); ii++)
{
tree array_node = (*array_list)[ii];
if (TREE_CODE (array_node) == CALL_EXPR)
{
builtin_loop = fix_builtin_array_notation_fn (array_node, &new_var);
if (builtin_loop == error_mark_node)
{
add_stmt (error_mark_node);
pop_stmt_list (loop_init);
return loop_init;
}
else if (builtin_loop)
{
vec <tree, va_gc>* sub_list = NULL, *new_var_list = NULL;
vec_safe_push (sub_list, array_node);
vec_safe_push (new_var_list, new_var);
add_stmt (builtin_loop);
replace_array_notations (&stmt, false, sub_list, new_var_list);
}
}
}
if (!find_rank (location, stmt, stmt, true, &rank))
{
pop_stmt_list (loop_init);
return error_mark_node;
}
if (rank == 0)
{
add_stmt (stmt);
pop_stmt_list (loop_init);
return loop_init;
}
extract_array_notation_exprs (stmt, true, &array_list);
if (vec_safe_length (array_list) == 0)
return stmt;
list_size = vec_safe_length (array_list);
array_ops = XNEWVEC (tree *, list_size);
for (ii = 0; ii < list_size; ii++)
array_ops[ii] = XNEWVEC (tree, rank);
array_vector = XNEWVEC (bool *, list_size);
for (ii = 0; ii < list_size; ii++)
array_vector[ii] = XNEWVEC (bool, rank);
array_value = XNEWVEC (tree *, list_size);
array_stride = XNEWVEC (tree *, list_size);
array_length = XNEWVEC (tree *, list_size);
array_start = XNEWVEC (tree *, list_size);
for (ii = 0; ii < list_size; ii++)
{
array_value[ii] = XNEWVEC (tree, rank);
array_stride[ii] = XNEWVEC (tree, rank);
array_length[ii] = XNEWVEC (tree, rank);
array_start[ii] = XNEWVEC (tree, rank);
}
compare_expr = XNEWVEC (tree, rank);
expr_incr = XNEWVEC (tree, rank);
ind_init = XNEWVEC (tree, rank);
count_down = XNEWVEC (bool *, list_size);
for (ii = 0; ii < list_size; ii++)
count_down[ii] = XNEWVEC (bool, rank);
array_var = XNEWVEC (tree, rank);
for (ii = 0; ii < list_size; ii++)
{
tree array_node = (*array_list)[ii];
if (array_node && TREE_CODE (array_node) == ARRAY_NOTATION_REF)
{
tree array_begin = ARRAY_NOTATION_START (array_node);
tree array_lngth = ARRAY_NOTATION_LENGTH (array_node);
tree array_strde = ARRAY_NOTATION_STRIDE (array_node);
if (TREE_CODE (array_begin) != INTEGER_CST)
{
begin_var = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
add_stmt (build_modify_expr (location, begin_var,
TREE_TYPE (begin_var),
NOP_EXPR, location, array_begin,
TREE_TYPE (array_begin)));
ARRAY_NOTATION_START (array_node) = begin_var;
}
if (TREE_CODE (array_lngth) != INTEGER_CST)
{
lngth_var = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
add_stmt (build_modify_expr (location, lngth_var,
TREE_TYPE (lngth_var),
NOP_EXPR, location, array_lngth,
TREE_TYPE (array_lngth)));
ARRAY_NOTATION_LENGTH (array_node) = lngth_var;
}
if (TREE_CODE (array_strde) != INTEGER_CST)
{
strde_var = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
add_stmt (build_modify_expr (location, strde_var,
TREE_TYPE (strde_var),
NOP_EXPR, location, array_strde,
TREE_TYPE (array_strde)));
ARRAY_NOTATION_STRIDE (array_node) = strde_var;
}
}
}
for (ii = 0; ii < list_size; ii++)
{
tree array_node = (*array_list)[ii];
jj = 0;
for (jj_tree = array_node;
jj_tree && TREE_CODE (jj_tree) == ARRAY_NOTATION_REF;
jj_tree = ARRAY_NOTATION_ARRAY (jj_tree))
{
array_ops[ii][jj] = jj_tree;
jj++;
}
}
for (ii = 0; ii < list_size; ii++)
{
tree array_node = (*array_list)[ii];
if (TREE_CODE (array_node) == ARRAY_NOTATION_REF)
{
for (jj = 0; jj < rank; jj++)
{
if (TREE_CODE (array_ops[ii][jj]) == ARRAY_NOTATION_REF)
{
array_value[ii][jj] =
ARRAY_NOTATION_ARRAY (array_ops[ii][jj]);
array_start[ii][jj] =
ARRAY_NOTATION_START (array_ops[ii][jj]);
array_length[ii][jj] =
fold_build1 (CONVERT_EXPR, integer_type_node,
ARRAY_NOTATION_LENGTH (array_ops[ii][jj]));
array_stride[ii][jj] =
fold_build1 (CONVERT_EXPR, integer_type_node,
ARRAY_NOTATION_STRIDE (array_ops[ii][jj]));
array_vector[ii][jj] = true;
if (!TREE_CONSTANT (array_length[ii][jj]))
count_down[ii][jj] = false;
else if (tree_int_cst_lt
(array_length[ii][jj],
build_int_cst (TREE_TYPE (array_length[ii][jj]),
0)))
count_down[ii][jj] = true;
else
count_down[ii][jj] = false;
}
else
array_vector[ii][jj] = false;
}
}
}
for (ii = 0; ii < rank; ii++)
{
array_var[ii] = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
ind_init[ii] =
build_modify_expr (location, array_var[ii],
TREE_TYPE (array_var[ii]), NOP_EXPR,
location,
build_int_cst (TREE_TYPE (array_var[ii]), 0),
TREE_TYPE (array_var[ii]));
}
for (ii = 0; ii < list_size; ii++)
{
if (array_vector[ii][0])
{
tree array_opr = array_value[ii][rank - 1];
for (s_jj = rank - 1; s_jj >= 0; s_jj--)
{
if (count_down[ii][s_jj])
/* Array[start_index - (induction_var * stride)] */
array_opr = build_array_ref
(location, array_opr,
build2 (MINUS_EXPR, TREE_TYPE (array_var[s_jj]),
array_start[ii][s_jj],
build2 (MULT_EXPR, TREE_TYPE (array_var[s_jj]),
array_var[s_jj], array_stride[ii][s_jj])));
else
/* Array[start_index + (induction_var * stride)] */
array_opr = build_array_ref
(location, array_opr,
build2 (PLUS_EXPR, TREE_TYPE (array_var[s_jj]),
array_start[ii][s_jj],
build2 (MULT_EXPR, TREE_TYPE (array_var[s_jj]),
array_var[s_jj], array_stride[ii][s_jj])));
}
vec_safe_push (array_operand, array_opr);
}
else
/* This is just a dummy node to make sure the list sizes for both
array list and array operand list are the same. */
vec_safe_push (array_operand, integer_one_node);
}
replace_array_notations (&stmt, true, array_list, array_operand);
for (ii = 0; ii < rank; ii++)
expr_incr[ii] = build2 (MODIFY_EXPR, void_type_node, array_var[ii],
build2 (PLUS_EXPR, TREE_TYPE (array_var[ii]),
array_var[ii],
build_int_cst (TREE_TYPE (array_var[ii]),
1)));
for (jj = 0; jj < rank; jj++)
{
if (rank && expr_incr[jj])
{
if (count_down[0][jj])
compare_expr[jj] =
build2 (LT_EXPR, boolean_type_node, array_var[jj],
build2 (MULT_EXPR, TREE_TYPE (array_var[jj]),
array_length[0][jj],
build_int_cst (TREE_TYPE (array_var[jj]), -1)));
else
compare_expr[jj] = build2 (LT_EXPR, boolean_type_node,
array_var[jj], array_length[0][jj]);
}
}
loop_init = pop_stmt_list (loop_init);
body = stmt;
append_to_statement_list_force (loop_init, &loop_with_init);
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
add_stmt (ind_init[ii]);
c_finish_loop (location, compare_expr[ii], expr_incr[ii], body, NULL_TREE,
NULL_TREE, true);
body = pop_stmt_list (new_loop);
}
append_to_statement_list_force (body, &loop_with_init);
XDELETEVEC (expr_incr);
XDELETEVEC (ind_init);
for (ii = 0; ii < list_size; ii++)
{
XDELETEVEC (count_down[ii]);
XDELETEVEC (array_value[ii]);
XDELETEVEC (array_stride[ii]);
XDELETEVEC (array_length[ii]);
XDELETEVEC (array_start[ii]);
XDELETEVEC (array_ops[ii]);
XDELETEVEC (array_vector[ii]);
}
XDELETEVEC (count_down);
XDELETEVEC (array_value);
XDELETEVEC (array_stride);
XDELETEVEC (array_length);
XDELETEVEC (array_start);
XDELETEVEC (array_ops);
XDELETEVEC (array_vector);
return loop_with_init;
}
/* Top-level function to replace ARRAY_NOTATION_REF in a conditional statement
in STMT. An expansion of array notation in STMT is returned as a
STATEMENT_LIST. */
tree
fix_conditional_array_notations (tree stmt)
{
if (TREE_CODE (stmt) == STATEMENT_LIST)
{
tree_stmt_iterator tsi;
for (tsi = tsi_start (stmt); !tsi_end_p (tsi); tsi_next (&tsi))
{
tree single_stmt = *tsi_stmt_ptr (tsi);
*tsi_stmt_ptr (tsi) =
fix_conditional_array_notations_1 (single_stmt);
}
return stmt;
}
else
return fix_conditional_array_notations_1 (stmt);
}
/* Create a struct c_expr that contains a loop with ARRAY_REF expr at location
LOCATION with the tree_code CODE and the array notation expr is
passed in ARG. Returns the fixed c_expr in ARG itself. */
struct c_expr
fix_array_notation_expr (location_t location, enum tree_code code,
struct c_expr arg)
{
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
size_t list_size = 0, rank = 0, ii = 0, jj = 0;
int s_jj = 0;
tree **array_ops, *array_var, jj_tree, loop_init;
tree **array_value, **array_stride, **array_length, **array_start;
tree *compare_expr, *expr_incr, *ind_init;
tree body, loop_with_init = alloc_stmt_list ();
bool **count_down, **array_vector;
if (!find_rank (location, arg.value, arg.value, false, &rank))
{
/* If this function returns a NULL, we convert the tree value in the
structure to error_mark_node and the parser should take care of the
rest. */
arg.value = error_mark_node;
return arg;
}
if (rank == 0)
return arg;
extract_array_notation_exprs (arg.value, true, &array_list);
if (vec_safe_length (array_list) == 0)
return arg;
list_size = vec_safe_length (array_list);
array_ops = XNEWVEC (tree *, list_size);
for (ii = 0; ii < list_size; ii++)
array_ops[ii] = XNEWVEC (tree, rank);
array_vector = XNEWVEC (bool *, list_size);
for (ii = 0; ii < list_size; ii++)
array_vector[ii] = XNEWVEC (bool, rank);
array_value = XNEWVEC (tree *, list_size);
array_stride = XNEWVEC (tree *, list_size);
array_length = XNEWVEC (tree *, list_size);
array_start = XNEWVEC (tree *, list_size);
for (ii = 0; ii < list_size; ii++)
{
array_value[ii] = XNEWVEC (tree, rank);
array_stride[ii] = XNEWVEC (tree, rank);
array_length[ii] = XNEWVEC (tree, rank);
array_start[ii] = XNEWVEC (tree, rank);
}
compare_expr = XNEWVEC (tree, rank);
expr_incr = XNEWVEC (tree, rank);
ind_init = XNEWVEC (tree, rank);
count_down = XNEWVEC (bool *, list_size);
for (ii = 0; ii < list_size; ii++)
count_down[ii] = XNEWVEC (bool, rank);
array_var = XNEWVEC (tree, rank);
for (ii = 0; ii < list_size; ii++)
{
jj = 0;
for (jj_tree = (*array_list)[ii];
jj_tree && TREE_CODE (jj_tree) == ARRAY_NOTATION_REF;
jj_tree = ARRAY_NOTATION_ARRAY (jj_tree))
{
array_ops[ii][jj] = jj_tree;
jj++;
}
}
loop_init = push_stmt_list ();
for (ii = 0; ii < list_size; ii++)
{
tree array_node = (*array_list)[ii];
if (TREE_CODE (array_node) == ARRAY_NOTATION_REF)
{
for (jj = 0; jj < rank; jj++)
{
if (TREE_CODE (array_ops[ii][jj]) == ARRAY_NOTATION_REF)
{
array_value[ii][jj] =
ARRAY_NOTATION_ARRAY (array_ops[ii][jj]);
array_start[ii][jj] =
ARRAY_NOTATION_START (array_ops[ii][jj]);
array_length[ii][jj] =
fold_build1 (CONVERT_EXPR, integer_type_node,
ARRAY_NOTATION_LENGTH (array_ops[ii][jj]));
array_stride[ii][jj] =
fold_build1 (CONVERT_EXPR, integer_type_node,
ARRAY_NOTATION_STRIDE (array_ops[ii][jj]));
array_vector[ii][jj] = true;
if (!TREE_CONSTANT (array_length[ii][jj]))
count_down[ii][jj] = false;
else if (tree_int_cst_lt
(array_length[ii][jj],
build_int_cst (TREE_TYPE (array_length[ii][jj]),
0)))
count_down[ii][jj] = true;
else
count_down[ii][jj] = false;
}
else
array_vector[ii][jj] = false;
}
}
}
for (ii = 0; ii < rank; ii++)
{
array_var[ii] = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
ind_init[ii] =
build_modify_expr (location, array_var[ii],
TREE_TYPE (array_var[ii]), NOP_EXPR,
location,
build_int_cst (TREE_TYPE (array_var[ii]), 0),
TREE_TYPE (array_var[ii]));
}
for (ii = 0; ii < list_size; ii++)
{
if (array_vector[ii][0])
{
tree array_opr = array_value[ii][rank - 1];
for (s_jj = rank - 1; s_jj >= 0; s_jj--)
{
if (count_down[ii][s_jj])
/* Array[start_index - (induction_var * stride)] */
array_opr = build_array_ref
(location, array_opr,
build2 (MINUS_EXPR, TREE_TYPE (array_var[s_jj]),
array_start[ii][s_jj],
build2 (MULT_EXPR, TREE_TYPE (array_var[s_jj]),
array_var[s_jj], array_stride[ii][s_jj])));
else
/* Array[start_index + (induction_var * stride)] */
array_opr = build_array_ref
(location, array_opr,
build2 (PLUS_EXPR, TREE_TYPE (array_var[s_jj]),
array_start[ii][s_jj],
build2 (MULT_EXPR, TREE_TYPE (array_var[s_jj]),
array_var[s_jj], array_stride[ii][s_jj])));
}
vec_safe_push (array_operand, array_opr);
}
else
/* This is just a dummy node to make sure the list sizes for both
array list and array operand list are the same. */
vec_safe_push (array_operand, integer_one_node);
}
replace_array_notations (&arg.value, true, array_list, array_operand);
for (ii = 0; ii < rank; ii++)
expr_incr[ii] =
build2 (MODIFY_EXPR, void_type_node, array_var[ii],
build2 (PLUS_EXPR, TREE_TYPE (array_var[ii]), array_var[ii],
build_int_cst (TREE_TYPE (array_var[ii]), 1)));
for (jj = 0; jj < rank; jj++)
{
if (rank && expr_incr[jj])
{
if (count_down[0][jj])
compare_expr[jj] =
build2 (LT_EXPR, boolean_type_node, array_var[jj],
build2 (MULT_EXPR, TREE_TYPE (array_var[jj]),
array_length[0][jj],
build_int_cst (TREE_TYPE (array_var[jj]), -1)));
else
compare_expr[jj] = build2 (LT_EXPR, boolean_type_node,
array_var[jj], array_length[0][jj]);
}
}
if (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR)
{
arg = default_function_array_read_conversion (location, arg);
arg.value = build_unary_op (location, code, arg.value, 0);
}
else if (code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR)
{
arg = default_function_array_read_conversion (location, arg);
arg = parser_build_unary_op (location, code, arg);
}
loop_init = pop_stmt_list (loop_init);
append_to_statement_list_force (loop_init, &loop_with_init);
body = arg.value;
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
add_stmt (ind_init[ii]);
c_finish_loop (location, compare_expr[ii], expr_incr[ii], body, NULL_TREE,
NULL_TREE, true);
body = pop_stmt_list (new_loop);
}
append_to_statement_list_force (body, &loop_with_init);
XDELETEVEC (expr_incr);
XDELETEVEC (ind_init);
XDELETEVEC (array_var);
for (ii = 0; ii < list_size; ii++)
{
XDELETEVEC (count_down[ii]);
XDELETEVEC (array_value[ii]);
XDELETEVEC (array_stride[ii]);
XDELETEVEC (array_length[ii]);
XDELETEVEC (array_start[ii]);
XDELETEVEC (array_ops[ii]);
XDELETEVEC (array_vector[ii]);
}
XDELETEVEC (count_down);
XDELETEVEC (array_value);
XDELETEVEC (array_stride);
XDELETEVEC (array_length);
XDELETEVEC (array_start);
XDELETEVEC (array_ops);
XDELETEVEC (array_vector);
arg.value = loop_with_init;
return arg;
}
/* Replaces array notations in a void function call arguments in ARG and returns
a STATEMENT_LIST. */
static tree
fix_array_notation_call_expr (tree arg)
{
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
tree new_var = NULL_TREE;
size_t list_size = 0, rank = 0, ii = 0, jj = 0;
int s_jj = 0;
tree **array_ops, *array_var, jj_tree, loop_init;
tree **array_value, **array_stride, **array_length, **array_start;
tree body, loop_with_init = alloc_stmt_list ();
tree *compare_expr, *expr_incr, *ind_init;
bool **count_down, **array_vector;
tree begin_var, lngth_var, strde_var;
location_t location = UNKNOWN_LOCATION;
if (TREE_CODE (arg) == CALL_EXPR
&& is_cilkplus_reduce_builtin (CALL_EXPR_FN (arg)))
{
loop_init = fix_builtin_array_notation_fn (arg, &new_var);
/* We are ignoring the new var because either the user does not want to
capture it OR he is using sec_reduce_mutating function. */
return loop_init;
}
if (!find_rank (location, arg, arg, false, &rank))
return error_mark_node;
if (rank == 0)
return arg;
extract_array_notation_exprs (arg, true, &array_list);
if (vec_safe_length (array_list) == 0)
return arg;
list_size = vec_safe_length (array_list);
location = EXPR_LOCATION (arg);
array_ops = XNEWVEC (tree *, list_size);
for (ii = 0; ii < list_size; ii++)
array_ops[ii] = XNEWVEC (tree, rank);
array_vector = XNEWVEC (bool *, list_size);
for (ii = 0; ii < list_size; ii++)
array_vector[ii] = (bool *) XNEWVEC (bool, rank);
array_value = XNEWVEC (tree *, list_size);
array_stride = XNEWVEC (tree *, list_size);
array_length = XNEWVEC (tree *, list_size);
array_start = XNEWVEC (tree *, list_size);
for (ii = 0; ii < list_size; ii++)
{
array_value[ii] = XNEWVEC (tree, rank);
array_stride[ii] = XNEWVEC (tree, rank);
array_length[ii] = XNEWVEC (tree, rank);
array_start[ii] = XNEWVEC (tree, rank);
}
compare_expr = XNEWVEC (tree, rank);
expr_incr = XNEWVEC (tree, rank);
ind_init = XNEWVEC (tree, rank);
count_down = XNEWVEC (bool *, list_size);
for (ii = 0; ii < list_size; ii++)
count_down[ii] = XNEWVEC (bool, rank);
array_var = XNEWVEC (tree, rank);
loop_init = push_stmt_list ();
for (ii = 0; ii < list_size; ii++)
{
tree array_node = (*array_list)[ii];
if (array_node && TREE_CODE (array_node) == ARRAY_NOTATION_REF)
{
tree array_begin = ARRAY_NOTATION_START (array_node);
tree array_lngth = ARRAY_NOTATION_LENGTH (array_node);
tree array_strde = ARRAY_NOTATION_STRIDE (array_node);
if (TREE_CODE (array_begin) != INTEGER_CST)
{
begin_var = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
add_stmt (build_modify_expr (location, begin_var,
TREE_TYPE (begin_var),
NOP_EXPR, location, array_begin,
TREE_TYPE (array_begin)));
ARRAY_NOTATION_START (array_node) = begin_var;
}
if (TREE_CODE (array_lngth) != INTEGER_CST)
{
lngth_var = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
add_stmt (build_modify_expr (location, lngth_var,
TREE_TYPE (lngth_var),
NOP_EXPR, location, array_lngth,
TREE_TYPE (array_lngth)));
ARRAY_NOTATION_LENGTH (array_node) = lngth_var;
}
if (TREE_CODE (array_strde) != INTEGER_CST)
{
strde_var = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
add_stmt (build_modify_expr (location, strde_var,
TREE_TYPE (strde_var),
NOP_EXPR, location, array_strde,
TREE_TYPE (array_strde)));
ARRAY_NOTATION_STRIDE (array_node) = strde_var;
}
}
}
for (ii = 0; ii < list_size; ii++)
{
jj = 0;
for (jj_tree = (*array_list)[ii];
jj_tree && TREE_CODE (jj_tree) == ARRAY_NOTATION_REF;
jj_tree = ARRAY_NOTATION_ARRAY (jj_tree))
{
array_ops[ii][jj] = jj_tree;
jj++;
}
}
for (ii = 0; ii < list_size; ii++)
{
tree array_node = (*array_list)[ii];
if (TREE_CODE (array_node) == ARRAY_NOTATION_REF)
{
for (jj = 0; jj < rank; jj++)
{
if (TREE_CODE (array_ops[ii][jj]) == ARRAY_NOTATION_REF)
{
array_value[ii][jj] =
ARRAY_NOTATION_ARRAY (array_ops[ii][jj]);
array_start[ii][jj] =
ARRAY_NOTATION_START (array_ops[ii][jj]);
array_length[ii][jj] =
fold_build1 (CONVERT_EXPR, integer_type_node,
ARRAY_NOTATION_LENGTH (array_ops[ii][jj]));
array_stride[ii][jj] =
fold_build1 (CONVERT_EXPR, integer_type_node,
ARRAY_NOTATION_STRIDE (array_ops[ii][jj]));
array_vector[ii][jj] = true;
if (!TREE_CONSTANT (array_length[ii][jj]))
count_down[ii][jj] = false;
else if (tree_int_cst_lt
(array_length[ii][jj],
build_int_cst (TREE_TYPE (array_length[ii][jj]),
0)))
count_down[ii][jj] = true;
else
count_down[ii][jj] = false;
}
else
array_vector[ii][jj] = false;
}
}
}
if (length_mismatch_in_expr_p (location, array_length, list_size, rank))
{
pop_stmt_list (loop_init);
return error_mark_node;
}
for (ii = 0; ii < rank; ii++)
{
array_var[ii] = build_decl (location, VAR_DECL, NULL_TREE,
integer_type_node);
ind_init[ii] =
build_modify_expr (location, array_var[ii],
TREE_TYPE (array_var[ii]), NOP_EXPR,
location,
build_int_cst (TREE_TYPE (array_var[ii]), 0),
TREE_TYPE (array_var[ii]));
}
for (ii = 0; ii < list_size; ii++)
{
if (array_vector[ii][0])
{
tree array_opr_node = array_value[ii][rank - 1];
for (s_jj = rank - 1; s_jj >= 0; s_jj--)
{
if (count_down[ii][s_jj])
/* Array[start_index - (induction_var * stride)] */
array_opr_node = build_array_ref
(location, array_opr_node,
build2 (MINUS_EXPR, TREE_TYPE (array_var[s_jj]),
array_start[ii][s_jj],
build2 (MULT_EXPR, TREE_TYPE (array_var[s_jj]),
array_var[s_jj], array_stride[ii][s_jj])));
else
/* Array[start_index + (induction_var * stride)] */
array_opr_node = build_array_ref
(location, array_opr_node,
build2 (PLUS_EXPR, TREE_TYPE (array_var[s_jj]),
array_start[ii][s_jj],
build2 (MULT_EXPR, TREE_TYPE (array_var[s_jj]),
array_var[s_jj], array_stride[ii][s_jj])));
}
vec_safe_push (array_operand, array_opr_node);
}
else
/* This is just a dummy node to make sure the list sizes for both
array list and array operand list are the same. */
vec_safe_push (array_operand, integer_one_node);
}
replace_array_notations (&arg, true, array_list, array_operand);
for (ii = 0; ii < rank; ii++)
expr_incr[ii] =
build2 (MODIFY_EXPR, void_type_node, array_var[ii],
build2 (PLUS_EXPR, TREE_TYPE (array_var[ii]), array_var[ii],
build_int_cst (TREE_TYPE (array_var[ii]), 1)));
for (jj = 0; jj < rank; jj++)
{
if (rank && expr_incr[jj])
{
if (count_down[0][jj])
compare_expr[jj] =
build2 (LT_EXPR, boolean_type_node, array_var[jj],
build2 (MULT_EXPR, TREE_TYPE (array_var[jj]),
array_length[0][jj],
build_int_cst (TREE_TYPE (array_var[jj]), -1)));
else
compare_expr[jj] = build2 (LT_EXPR, boolean_type_node,
array_var[jj], array_length[0][jj]);
}
}
loop_init = pop_stmt_list (loop_init);
append_to_statement_list_force (loop_init, &loop_with_init);
body = arg;
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
add_stmt (ind_init[ii]);
c_finish_loop (location, compare_expr[ii], expr_incr[ii], body, NULL_TREE,
NULL_TREE, true);
body = pop_stmt_list (new_loop);
}
append_to_statement_list_force (body, &loop_with_init);
XDELETEVEC (compare_expr);
XDELETEVEC (expr_incr);
XDELETEVEC (ind_init);
XDELETEVEC (array_var);
for (ii = 0; ii < list_size; ii++)
{
XDELETEVEC (count_down[ii]);
XDELETEVEC (array_value[ii]);
XDELETEVEC (array_stride[ii]);
XDELETEVEC (array_length[ii]);
XDELETEVEC (array_start[ii]);
XDELETEVEC (array_ops[ii]);
XDELETEVEC (array_vector[ii]);
}
XDELETEVEC (count_down);
XDELETEVEC (array_value);
XDELETEVEC (array_stride);
XDELETEVEC (array_length);
XDELETEVEC (array_start);
XDELETEVEC (array_ops);
XDELETEVEC (array_vector);
return loop_with_init;
}
/* Expands the built-in functions in a return. EXPR is a RETURN_EXPR with
a built-in reduction function. This function returns the expansion code for
the built-in function. */
static tree
fix_return_expr (tree expr)
{
tree new_mod_list, new_var, new_mod, retval_expr, retval_type;
location_t loc = EXPR_LOCATION (expr);
new_mod_list = alloc_stmt_list ();
retval_expr = TREE_OPERAND (expr, 0);
retval_type = TREE_TYPE (TREE_OPERAND (retval_expr, 1));
new_var = build_decl (loc, VAR_DECL, NULL_TREE, TREE_TYPE (retval_expr));
new_mod = build_array_notation_expr (loc, new_var, TREE_TYPE (new_var),
NOP_EXPR, loc,
TREE_OPERAND (retval_expr, 1),
retval_type);
TREE_OPERAND (retval_expr, 1) = new_var;
TREE_OPERAND (expr, 0) = retval_expr;
append_to_statement_list_force (new_mod, &new_mod_list);
append_to_statement_list_force (expr, &new_mod_list);
return new_mod_list;
}
/* Walks through tree node T and find all the call-statements that do not return
anything and fix up any array notations they may carry. The return value
is the same type as T but with all array notations replaced with appropriate
STATEMENT_LISTS. */
tree
expand_array_notation_exprs (tree t)
{
if (!contains_array_notation_expr (t))
return t;
switch (TREE_CODE (t))
{
case BIND_EXPR:
t = expand_array_notation_exprs (BIND_EXPR_BODY (t));
return t;
case COND_EXPR:
t = fix_conditional_array_notations (t);
/* After the expansion if they are still a COND_EXPR, we go into its
subtrees. */
if (TREE_CODE (t) == COND_EXPR)
{
if (COND_EXPR_THEN (t))
COND_EXPR_THEN (t) =
expand_array_notation_exprs (COND_EXPR_THEN (t));
if (COND_EXPR_ELSE (t))
COND_EXPR_ELSE (t) =
expand_array_notation_exprs (COND_EXPR_ELSE (t));
}
else
t = expand_array_notation_exprs (t);
return t;
case STATEMENT_LIST:
{
tree_stmt_iterator ii_tsi;
for (ii_tsi = tsi_start (t); !tsi_end_p (ii_tsi); tsi_next (&ii_tsi))
*tsi_stmt_ptr (ii_tsi) =
expand_array_notation_exprs (*tsi_stmt_ptr (ii_tsi));
}
return t;
case MODIFY_EXPR:
{
location_t loc = EXPR_HAS_LOCATION (t) ? EXPR_LOCATION (t) :
UNKNOWN_LOCATION;
tree lhs = TREE_OPERAND (t, 0);
tree rhs = TREE_OPERAND (t, 1);
location_t rhs_loc = EXPR_HAS_LOCATION (rhs) ? EXPR_LOCATION (rhs) :
UNKNOWN_LOCATION;
t = build_array_notation_expr (loc, lhs, TREE_TYPE (lhs), NOP_EXPR,
rhs_loc, rhs, TREE_TYPE (rhs));
return t;
}
case CALL_EXPR:
t = fix_array_notation_call_expr (t);
return t;
case RETURN_EXPR:
if (contains_array_notation_expr (t))
t = fix_return_expr (t);
default:
return t;
}
return t;
}
/* This handles expression of the form "a[i:j:k]" or "a[:]" or "a[i:j]," which
denotes an array notation expression. If a is a variable or a member, then
we generate a ARRAY_NOTATION_REF front-end tree and return it.
This tree is broken down to ARRAY_REF toward the end of parsing.
ARRAY_NOTATION_REF tree holds the START_INDEX, LENGTH, STRIDE and the TYPE
of ARRAY_REF. Restrictions on START_INDEX, LENGTH and STRIDE is same as that
of the index field passed into ARRAY_REF. The only additional restriction
is that, unlike index in ARRAY_REF, stride, length and start_index cannot
contain ARRAY_NOTATIONS. */
tree
build_array_notation_ref (location_t loc, tree array, tree start_index,
tree length, tree stride, tree type)
{
tree array_ntn_tree = NULL_TREE;
size_t stride_rank = 0, length_rank = 0, start_rank = 0;
if (!INTEGRAL_TYPE_P (TREE_TYPE (start_index)))
{
error_at (loc,
"start-index of array notation triplet is not an integer");
return error_mark_node;
}
if (!INTEGRAL_TYPE_P (TREE_TYPE (length)))
{
error_at (loc, "length of array notation triplet is not an integer");
return error_mark_node;
}
/* The stride is an optional field. */
if (stride && !INTEGRAL_TYPE_P (TREE_TYPE (stride)))
{
error_at (loc, "stride of array notation triplet is not an integer");
return error_mark_node;
}
if (!stride)
{
if (TREE_CONSTANT (start_index) && TREE_CONSTANT (length)
&& tree_int_cst_lt (length, start_index))
stride = build_int_cst (TREE_TYPE (start_index), -1);
else
stride = build_int_cst (TREE_TYPE (start_index), 1);
}
if (!find_rank (loc, start_index, start_index, false, &start_rank))
return error_mark_node;
if (!find_rank (loc, length, length, false, &length_rank))
return error_mark_node;
if (!find_rank (loc, stride, stride, false, &stride_rank))
return error_mark_node;
if (start_rank != 0)
{
error_at (loc, "rank of an array notation triplet's start-index is not "
"zero");
return error_mark_node;
}
if (length_rank != 0)
{
error_at (loc, "rank of an array notation triplet's length is not zero");
return error_mark_node;
}
if (stride_rank != 0)
{
error_at (loc, "rank of array notation triplet's stride is not zero");
return error_mark_node;
}
array_ntn_tree = build4 (ARRAY_NOTATION_REF, NULL_TREE, NULL_TREE, NULL_TREE,
NULL_TREE, NULL_TREE);
ARRAY_NOTATION_ARRAY (array_ntn_tree) = array;
ARRAY_NOTATION_START (array_ntn_tree) = start_index;
ARRAY_NOTATION_LENGTH (array_ntn_tree) = length;
ARRAY_NOTATION_STRIDE (array_ntn_tree) = stride;
TREE_TYPE (array_ntn_tree) = type;
return array_ntn_tree;
}