2005-10-05 Andrew MacLeod <amacleod@redhat.com> PR tree-optimization/18587 * tree-ssa-operands.c (struct opbuild_list_d, OPBUILD_LAST): Delete. (build_defs, build_uses, build_v_may_defs, build_v_must_defs, build_vuses): Change to VEC type. (opbuild_initialize_virtual, opbuild_initialize_real, opbuild_free, opbuild_num_elems, opbuild_append_real, opbuild_append_virtual, opbuild_first, opbuild_next, opbuild_elem_real, opbuild_elem_virtual, opbuild_elem_uid, opbuild_clear, opbuild_remove_elem): Delete. (get_name_decl): New. Return DECL_UID of base variable. (operand_build_cmp): New. qsort comparison routine. (operand_build_sort_virtual): New. Sort virtual build vector. (init_ssa_operands, fini_ssa_operands): Use VEC routines. (FINALIZE_OPBUILD_BASE, FINALIZE_OPBUILD_ELEM): Use VEC_Index. (FINALIZE_BASE): Use get_name_decl. (finalize_ssa_defs, finalize_ssa_uses, cleanup_v_may_defs, finalize_ssa_v_may_defs, finalize_ssa_vuses, finalize_ssa_v_must_defs, (start_ssa_stmt_operands, append_def, append_use, append_vuse, append_v_may_def, append_v_must_def): Replace opbuild_* routines with direct VEC_* manipulations. (build_ssa_operands): Call operand_build_sort_virtual. (copy_virtual_operand, create_ssa_artficial_load_stmt, add_call_clobber_ops, add_call_read_ops): Replace opbuild_* routines with direct VEC_* manipulations. * tree-ssa-opfinalize.h (FINALIZE_FUNC): Replace opbuild_* routines with direct VEC manipulations. From-SVN: r104996
2131 lines
63 KiB
C
2131 lines
63 KiB
C
/* SSA operands management for trees.
|
|
Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
|
|
Boston, MA 02110-1301, USA. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "flags.h"
|
|
#include "function.h"
|
|
#include "diagnostic.h"
|
|
#include "tree-flow.h"
|
|
#include "tree-inline.h"
|
|
#include "tree-pass.h"
|
|
#include "ggc.h"
|
|
#include "timevar.h"
|
|
#include "toplev.h"
|
|
#include "langhooks.h"
|
|
#include "ipa-reference.h"
|
|
|
|
/* This file contains the code required to manage the operands cache of the
|
|
SSA optimizer. For every stmt, we maintain an operand cache in the stmt
|
|
annotation. This cache contains operands that will be of interest to
|
|
optimizers and other passes wishing to manipulate the IL.
|
|
|
|
The operand type are broken up into REAL and VIRTUAL operands. The real
|
|
operands are represented as pointers into the stmt's operand tree. Thus
|
|
any manipulation of the real operands will be reflected in the actual tree.
|
|
Virtual operands are represented solely in the cache, although the base
|
|
variable for the SSA_NAME may, or may not occur in the stmt's tree.
|
|
Manipulation of the virtual operands will not be reflected in the stmt tree.
|
|
|
|
The routines in this file are concerned with creating this operand cache
|
|
from a stmt tree.
|
|
|
|
The operand tree is the parsed by the various get_* routines which look
|
|
through the stmt tree for the occurrence of operands which may be of
|
|
interest, and calls are made to the append_* routines whenever one is
|
|
found. There are 5 of these routines, each representing one of the
|
|
5 types of operands. Defs, Uses, Virtual Uses, Virtual May Defs, and
|
|
Virtual Must Defs.
|
|
|
|
The append_* routines check for duplication, and simply keep a list of
|
|
unique objects for each operand type in the build_* extendable vectors.
|
|
|
|
Once the stmt tree is completely parsed, the finalize_ssa_operands()
|
|
routine is called, which proceeds to perform the finalization routine
|
|
on each of the 5 operand vectors which have been built up.
|
|
|
|
If the stmt had a previous operand cache, the finalization routines
|
|
attempt to match up the new operands with the old ones. If it's a perfect
|
|
match, the old vector is simply reused. If it isn't a perfect match, then
|
|
a new vector is created and the new operands are placed there. For
|
|
virtual operands, if the previous cache had SSA_NAME version of a
|
|
variable, and that same variable occurs in the same operands cache, then
|
|
the new cache vector will also get the same SSA_NAME.
|
|
|
|
i.e., if a stmt had a VUSE of 'a_5', and 'a' occurs in the new operand
|
|
vector for VUSE, then the new vector will also be modified such that
|
|
it contains 'a_5' rather than 'a'.
|
|
|
|
*/
|
|
|
|
|
|
/* Flags to describe operand properties in helpers. */
|
|
|
|
/* By default, operands are loaded. */
|
|
#define opf_none 0
|
|
|
|
/* Operand is the target of an assignment expression or a
|
|
call-clobbered variable */
|
|
#define opf_is_def (1 << 0)
|
|
|
|
/* Operand is the target of an assignment expression. */
|
|
#define opf_kill_def (1 << 1)
|
|
|
|
/* No virtual operands should be created in the expression. This is used
|
|
when traversing ADDR_EXPR nodes which have different semantics than
|
|
other expressions. Inside an ADDR_EXPR node, the only operands that we
|
|
need to consider are indices into arrays. For instance, &a.b[i] should
|
|
generate a USE of 'i' but it should not generate a VUSE for 'a' nor a
|
|
VUSE for 'b'. */
|
|
#define opf_no_vops (1 << 2)
|
|
|
|
/* Operand is a "non-specific" kill for call-clobbers and such. This is used
|
|
to distinguish "reset the world" events from explicit MODIFY_EXPRs. */
|
|
#define opf_non_specific (1 << 3)
|
|
|
|
|
|
/* Array for building all the def operands. */
|
|
static VEC(tree,heap) *build_defs;
|
|
|
|
/* Array for building all the use operands. */
|
|
static VEC(tree,heap) *build_uses;
|
|
|
|
/* Array for building all the v_may_def operands. */
|
|
static VEC(tree,heap) *build_v_may_defs;
|
|
|
|
/* Array for building all the vuse operands. */
|
|
static VEC(tree,heap) *build_vuses;
|
|
|
|
/* Array for building all the v_must_def operands. */
|
|
static VEC(tree,heap) *build_v_must_defs;
|
|
|
|
/* True if the operands for call clobbered vars are cached and valid. */
|
|
bool ssa_call_clobbered_cache_valid;
|
|
bool ssa_ro_call_cache_valid;
|
|
|
|
/* These arrays are the cached operand vectors for call clobbered calls. */
|
|
static VEC(tree,heap) *clobbered_v_may_defs;
|
|
static VEC(tree,heap) *clobbered_vuses;
|
|
static VEC(tree,heap) *ro_call_vuses;
|
|
static bool clobbered_aliased_loads;
|
|
static bool clobbered_aliased_stores;
|
|
static bool ro_call_aliased_loads;
|
|
static bool ops_active = false;
|
|
|
|
static GTY (()) struct ssa_operand_memory_d *operand_memory = NULL;
|
|
static unsigned operand_memory_index;
|
|
|
|
static void get_expr_operands (tree, tree *, int);
|
|
static void get_asm_expr_operands (tree);
|
|
static void get_indirect_ref_operands (tree, tree, int);
|
|
static void get_tmr_operands (tree, tree, int);
|
|
static void get_call_expr_operands (tree, tree);
|
|
static inline void append_def (tree *);
|
|
static inline void append_use (tree *);
|
|
static void append_v_may_def (tree);
|
|
static void append_v_must_def (tree);
|
|
static void add_call_clobber_ops (tree, tree);
|
|
static void add_call_read_ops (tree);
|
|
static void add_stmt_operand (tree *, stmt_ann_t, int);
|
|
static void build_ssa_operands (tree stmt);
|
|
|
|
static def_optype_p free_defs = NULL;
|
|
static use_optype_p free_uses = NULL;
|
|
static vuse_optype_p free_vuses = NULL;
|
|
static maydef_optype_p free_maydefs = NULL;
|
|
static mustdef_optype_p free_mustdefs = NULL;
|
|
|
|
|
|
/* Return the DECL_UID of the base varaiable of T. */
|
|
|
|
static inline unsigned
|
|
get_name_decl (tree t)
|
|
{
|
|
if (TREE_CODE (t) != SSA_NAME)
|
|
return DECL_UID (t);
|
|
else
|
|
return DECL_UID (SSA_NAME_VAR (t));
|
|
}
|
|
|
|
/* Comparison function for qsort used in operand_build_sort_virtual. */
|
|
|
|
static int
|
|
operand_build_cmp (const void *p, const void *q)
|
|
{
|
|
tree e1 = *((const tree *)p);
|
|
tree e2 = *((const tree *)q);
|
|
unsigned int u1,u2;
|
|
|
|
u1 = get_name_decl (e1);
|
|
u2 = get_name_decl (e2);
|
|
|
|
/* We want to sort in ascending order. They can never be equal. */
|
|
#ifdef ENABLE_CHECKING
|
|
gcc_assert (u1 != u2);
|
|
#endif
|
|
return (u1 > u2 ? 1 : -1);
|
|
}
|
|
|
|
/* Sort the virtual operands in LIST from lowest DECL_UID to highest. */
|
|
|
|
static inline void
|
|
operand_build_sort_virtual (VEC(tree,heap) *list)
|
|
{
|
|
int num = VEC_length (tree, list);
|
|
if (num < 2)
|
|
return;
|
|
if (num == 2)
|
|
{
|
|
if (get_name_decl (VEC_index (tree, list, 0))
|
|
> get_name_decl (VEC_index (tree, list, 1)))
|
|
{
|
|
/* Swap elements if in the wrong order. */
|
|
tree tmp = VEC_index (tree, list, 0);
|
|
VEC_replace (tree, list, 0, VEC_index (tree, list, 1));
|
|
VEC_replace (tree, list, 1, tmp);
|
|
}
|
|
return;
|
|
}
|
|
/* There are 3 or more elements, call qsort. */
|
|
qsort (VEC_address (tree, list),
|
|
VEC_length (tree, list),
|
|
sizeof (tree),
|
|
operand_build_cmp);
|
|
}
|
|
|
|
|
|
|
|
/* Return true if the ssa operands cache is active. */
|
|
|
|
bool
|
|
ssa_operands_active (void)
|
|
{
|
|
return ops_active;
|
|
}
|
|
|
|
|
|
/* Initialize the operand cache routines. */
|
|
|
|
void
|
|
init_ssa_operands (void)
|
|
{
|
|
build_defs = VEC_alloc (tree, heap, 5);
|
|
build_uses = VEC_alloc (tree, heap, 10);
|
|
build_vuses = VEC_alloc (tree, heap, 25);
|
|
build_v_may_defs = VEC_alloc (tree, heap, 25);
|
|
build_v_must_defs = VEC_alloc (tree, heap, 25);
|
|
|
|
gcc_assert (operand_memory == NULL);
|
|
operand_memory_index = SSA_OPERAND_MEMORY_SIZE;
|
|
ops_active = true;
|
|
}
|
|
|
|
|
|
/* Dispose of anything required by the operand routines. */
|
|
|
|
void
|
|
fini_ssa_operands (void)
|
|
{
|
|
struct ssa_operand_memory_d *ptr;
|
|
VEC_free (tree, heap, build_defs);
|
|
VEC_free (tree, heap, build_uses);
|
|
VEC_free (tree, heap, build_v_must_defs);
|
|
VEC_free (tree, heap, build_v_may_defs);
|
|
VEC_free (tree, heap, build_vuses);
|
|
free_defs = NULL;
|
|
free_uses = NULL;
|
|
free_vuses = NULL;
|
|
free_maydefs = NULL;
|
|
free_mustdefs = NULL;
|
|
while ((ptr = operand_memory) != NULL)
|
|
{
|
|
operand_memory = operand_memory->next;
|
|
ggc_free (ptr);
|
|
}
|
|
|
|
VEC_free (tree, heap, clobbered_v_may_defs);
|
|
VEC_free (tree, heap, clobbered_vuses);
|
|
VEC_free (tree, heap, ro_call_vuses);
|
|
ops_active = false;
|
|
}
|
|
|
|
|
|
/* Return memory for operands of SIZE chunks. */
|
|
|
|
static inline void *
|
|
ssa_operand_alloc (unsigned size)
|
|
{
|
|
char *ptr;
|
|
if (operand_memory_index + size >= SSA_OPERAND_MEMORY_SIZE)
|
|
{
|
|
struct ssa_operand_memory_d *ptr;
|
|
ptr = ggc_alloc (sizeof (struct ssa_operand_memory_d));
|
|
ptr->next = operand_memory;
|
|
operand_memory = ptr;
|
|
operand_memory_index = 0;
|
|
}
|
|
ptr = &(operand_memory->mem[operand_memory_index]);
|
|
operand_memory_index += size;
|
|
return ptr;
|
|
}
|
|
|
|
|
|
/* Make sure PTR is in the correct immediate use list. Since uses are simply
|
|
pointers into the stmt TREE, there is no way of telling if anyone has
|
|
changed what this pointer points to via TREE_OPERANDS (exp, 0) = <...>.
|
|
The contents are different, but the pointer is still the same. This
|
|
routine will check to make sure PTR is in the correct list, and if it isn't
|
|
put it in the correct list. We cannot simply check the previous node
|
|
because all nodes in the same stmt might have be changed. */
|
|
|
|
static inline void
|
|
correct_use_link (use_operand_p ptr, tree stmt)
|
|
{
|
|
use_operand_p prev;
|
|
tree root;
|
|
|
|
/* Fold_stmt () may have changed the stmt pointers. */
|
|
if (ptr->stmt != stmt)
|
|
ptr->stmt = stmt;
|
|
|
|
prev = ptr->prev;
|
|
if (prev)
|
|
{
|
|
bool stmt_mod = true;
|
|
/* Find the first element which isn't a SAFE iterator, is in a different
|
|
stmt, and is not a modified stmt. That node is in the correct list,
|
|
see if we are too. */
|
|
|
|
while (stmt_mod)
|
|
{
|
|
while (prev->stmt == stmt || prev->stmt == NULL)
|
|
prev = prev->prev;
|
|
if (prev->use == NULL)
|
|
stmt_mod = false;
|
|
else
|
|
if ((stmt_mod = stmt_modified_p (prev->stmt)))
|
|
prev = prev->prev;
|
|
}
|
|
|
|
/* Get the ssa_name of the list the node is in. */
|
|
if (prev->use == NULL)
|
|
root = prev->stmt;
|
|
else
|
|
root = *(prev->use);
|
|
/* If it's the right list, simply return. */
|
|
if (root == *(ptr->use))
|
|
return;
|
|
}
|
|
/* Its in the wrong list if we reach here. */
|
|
delink_imm_use (ptr);
|
|
link_imm_use (ptr, *(ptr->use));
|
|
}
|
|
|
|
|
|
/* This routine makes sure that PTR is in an immediate use list, and makes
|
|
sure the stmt pointer is set to the current stmt. Virtual uses do not need
|
|
the overhead of correct_use_link since they cannot be directly manipulated
|
|
like a real use can be. (They don't exist in the TREE_OPERAND nodes.) */
|
|
static inline void
|
|
set_virtual_use_link (use_operand_p ptr, tree stmt)
|
|
{
|
|
/* Fold_stmt () may have changed the stmt pointers. */
|
|
if (ptr->stmt != stmt)
|
|
ptr->stmt = stmt;
|
|
|
|
/* If this use isn't in a list, add it to the correct list. */
|
|
if (!ptr->prev)
|
|
link_imm_use (ptr, *(ptr->use));
|
|
}
|
|
|
|
|
|
|
|
#define FINALIZE_OPBUILD build_defs
|
|
#define FINALIZE_OPBUILD_BASE(I) (tree *)VEC_index (tree, \
|
|
build_defs, (I))
|
|
#define FINALIZE_OPBUILD_ELEM(I) (tree *)VEC_index (tree, \
|
|
build_defs, (I))
|
|
#define FINALIZE_FUNC finalize_ssa_def_ops
|
|
#define FINALIZE_ALLOC alloc_def
|
|
#define FINALIZE_FREE free_defs
|
|
#define FINALIZE_TYPE struct def_optype_d
|
|
#define FINALIZE_ELEM(PTR) ((PTR)->def_ptr)
|
|
#define FINALIZE_OPS DEF_OPS
|
|
#define FINALIZE_BASE(VAR) VAR
|
|
#define FINALIZE_BASE_TYPE tree *
|
|
#define FINALIZE_BASE_ZERO NULL
|
|
#define FINALIZE_INITIALIZE(PTR, VAL, STMT) FINALIZE_ELEM (PTR) = (VAL)
|
|
#include "tree-ssa-opfinalize.h"
|
|
|
|
|
|
/* This routine will create stmt operands for STMT from the def build list. */
|
|
|
|
static void
|
|
finalize_ssa_defs (tree stmt)
|
|
{
|
|
unsigned int num = VEC_length (tree, build_defs);
|
|
/* There should only be a single real definition per assignment. */
|
|
gcc_assert ((stmt && TREE_CODE (stmt) != MODIFY_EXPR) || num <= 1);
|
|
|
|
/* If there is an old list, often the new list is identical, or close, so
|
|
find the elements at the beginning that are the same as the vector. */
|
|
|
|
finalize_ssa_def_ops (stmt);
|
|
VEC_truncate (tree, build_defs, 0);
|
|
}
|
|
|
|
#define FINALIZE_OPBUILD build_uses
|
|
#define FINALIZE_OPBUILD_BASE(I) (tree *)VEC_index (tree, \
|
|
build_uses, (I))
|
|
#define FINALIZE_OPBUILD_ELEM(I) (tree *)VEC_index (tree, \
|
|
build_uses, (I))
|
|
#define FINALIZE_FUNC finalize_ssa_use_ops
|
|
#define FINALIZE_ALLOC alloc_use
|
|
#define FINALIZE_FREE free_uses
|
|
#define FINALIZE_TYPE struct use_optype_d
|
|
#define FINALIZE_ELEM(PTR) ((PTR)->use_ptr.use)
|
|
#define FINALIZE_OPS USE_OPS
|
|
#define FINALIZE_USE_PTR(PTR) USE_OP_PTR (PTR)
|
|
#define FINALIZE_CORRECT_USE correct_use_link
|
|
#define FINALIZE_BASE(VAR) VAR
|
|
#define FINALIZE_BASE_TYPE tree *
|
|
#define FINALIZE_BASE_ZERO NULL
|
|
#define FINALIZE_INITIALIZE(PTR, VAL, STMT) \
|
|
(PTR)->use_ptr.use = (VAL); \
|
|
link_imm_use_stmt (&((PTR)->use_ptr), \
|
|
*(VAL), (STMT))
|
|
#include "tree-ssa-opfinalize.h"
|
|
|
|
/* Return a new use operand vector for STMT, comparing to OLD_OPS_P. */
|
|
|
|
static void
|
|
finalize_ssa_uses (tree stmt)
|
|
{
|
|
#ifdef ENABLE_CHECKING
|
|
{
|
|
unsigned x;
|
|
unsigned num = VEC_length (tree, build_uses);
|
|
|
|
/* If the pointer to the operand is the statement itself, something is
|
|
wrong. It means that we are pointing to a local variable (the
|
|
initial call to get_stmt_operands does not pass a pointer to a
|
|
statement). */
|
|
for (x = 0; x < num; x++)
|
|
gcc_assert (*((tree *)VEC_index (tree, build_uses, x)) != stmt);
|
|
}
|
|
#endif
|
|
finalize_ssa_use_ops (stmt);
|
|
VEC_truncate (tree, build_uses, 0);
|
|
}
|
|
|
|
|
|
/* Return a new v_may_def operand vector for STMT, comparing to OLD_OPS_P. */
|
|
#define FINALIZE_OPBUILD build_v_may_defs
|
|
#define FINALIZE_OPBUILD_ELEM(I) VEC_index (tree, build_v_may_defs, (I))
|
|
#define FINALIZE_OPBUILD_BASE(I) get_name_decl (VEC_index (tree, \
|
|
build_v_may_defs, (I)))
|
|
#define FINALIZE_FUNC finalize_ssa_v_may_def_ops
|
|
#define FINALIZE_ALLOC alloc_maydef
|
|
#define FINALIZE_FREE free_maydefs
|
|
#define FINALIZE_TYPE struct maydef_optype_d
|
|
#define FINALIZE_ELEM(PTR) MAYDEF_RESULT (PTR)
|
|
#define FINALIZE_OPS MAYDEF_OPS
|
|
#define FINALIZE_USE_PTR(PTR) MAYDEF_OP_PTR (PTR)
|
|
#define FINALIZE_CORRECT_USE set_virtual_use_link
|
|
#define FINALIZE_BASE_ZERO 0
|
|
#define FINALIZE_BASE(VAR) get_name_decl (VAR)
|
|
#define FINALIZE_BASE_TYPE unsigned
|
|
#define FINALIZE_INITIALIZE(PTR, VAL, STMT) \
|
|
(PTR)->def_var = (VAL); \
|
|
(PTR)->use_var = (VAL); \
|
|
(PTR)->use_ptr.use = &((PTR)->use_var); \
|
|
link_imm_use_stmt (&((PTR)->use_ptr), \
|
|
(VAL), (STMT))
|
|
#include "tree-ssa-opfinalize.h"
|
|
|
|
|
|
static void
|
|
finalize_ssa_v_may_defs (tree stmt)
|
|
{
|
|
finalize_ssa_v_may_def_ops (stmt);
|
|
}
|
|
|
|
|
|
/* Clear the in_list bits and empty the build array for v_may_defs. */
|
|
|
|
static inline void
|
|
cleanup_v_may_defs (void)
|
|
{
|
|
unsigned x, num;
|
|
num = VEC_length (tree, build_v_may_defs);
|
|
|
|
for (x = 0; x < num; x++)
|
|
{
|
|
tree t = VEC_index (tree, build_v_may_defs, x);
|
|
if (TREE_CODE (t) != SSA_NAME)
|
|
{
|
|
var_ann_t ann = var_ann (t);
|
|
ann->in_v_may_def_list = 0;
|
|
}
|
|
}
|
|
VEC_truncate (tree, build_v_may_defs, 0);
|
|
}
|
|
|
|
|
|
#define FINALIZE_OPBUILD build_vuses
|
|
#define FINALIZE_OPBUILD_ELEM(I) VEC_index (tree, build_vuses, (I))
|
|
#define FINALIZE_OPBUILD_BASE(I) get_name_decl (VEC_index (tree, \
|
|
build_vuses, (I)))
|
|
#define FINALIZE_FUNC finalize_ssa_vuse_ops
|
|
#define FINALIZE_ALLOC alloc_vuse
|
|
#define FINALIZE_FREE free_vuses
|
|
#define FINALIZE_TYPE struct vuse_optype_d
|
|
#define FINALIZE_ELEM(PTR) VUSE_OP (PTR)
|
|
#define FINALIZE_OPS VUSE_OPS
|
|
#define FINALIZE_USE_PTR(PTR) VUSE_OP_PTR (PTR)
|
|
#define FINALIZE_CORRECT_USE set_virtual_use_link
|
|
#define FINALIZE_BASE_ZERO 0
|
|
#define FINALIZE_BASE(VAR) get_name_decl (VAR)
|
|
#define FINALIZE_BASE_TYPE unsigned
|
|
#define FINALIZE_INITIALIZE(PTR, VAL, STMT) \
|
|
(PTR)->use_var = (VAL); \
|
|
(PTR)->use_ptr.use = &((PTR)->use_var); \
|
|
link_imm_use_stmt (&((PTR)->use_ptr), \
|
|
(VAL), (STMT))
|
|
#include "tree-ssa-opfinalize.h"
|
|
|
|
|
|
/* Return a new vuse operand vector, comparing to OLD_OPS_P. */
|
|
|
|
static void
|
|
finalize_ssa_vuses (tree stmt)
|
|
{
|
|
unsigned num, num_v_may_defs;
|
|
unsigned vuse_index;
|
|
|
|
/* Remove superfluous VUSE operands. If the statement already has a
|
|
V_MAY_DEF operation for a variable 'a', then a VUSE for 'a' is not
|
|
needed because V_MAY_DEFs imply a VUSE of the variable. For instance,
|
|
suppose that variable 'a' is aliased:
|
|
|
|
# VUSE <a_2>
|
|
# a_3 = V_MAY_DEF <a_2>
|
|
a = a + 1;
|
|
|
|
The VUSE <a_2> is superfluous because it is implied by the V_MAY_DEF
|
|
operation. */
|
|
|
|
num = VEC_length (tree, build_vuses);
|
|
num_v_may_defs = VEC_length (tree, build_v_may_defs);
|
|
|
|
if (num > 0 && num_v_may_defs > 0)
|
|
{
|
|
for (vuse_index = 0; vuse_index < VEC_length (tree, build_vuses); )
|
|
{
|
|
tree vuse;
|
|
vuse = VEC_index (tree, build_vuses, vuse_index);
|
|
if (TREE_CODE (vuse) != SSA_NAME)
|
|
{
|
|
var_ann_t ann = var_ann (vuse);
|
|
ann->in_vuse_list = 0;
|
|
if (ann->in_v_may_def_list)
|
|
{
|
|
VEC_ordered_remove (tree, build_vuses, vuse_index);
|
|
continue;
|
|
}
|
|
}
|
|
vuse_index++;
|
|
}
|
|
}
|
|
else
|
|
/* Clear out the in_list bits. */
|
|
for (vuse_index = 0;
|
|
vuse_index < VEC_length (tree, build_vuses);
|
|
vuse_index++)
|
|
{
|
|
tree t = VEC_index (tree, build_vuses, vuse_index);
|
|
if (TREE_CODE (t) != SSA_NAME)
|
|
{
|
|
var_ann_t ann = var_ann (t);
|
|
ann->in_vuse_list = 0;
|
|
}
|
|
}
|
|
|
|
finalize_ssa_vuse_ops (stmt);
|
|
/* The v_may_def build vector wasn't cleaned up because we needed it. */
|
|
cleanup_v_may_defs ();
|
|
|
|
/* Free the vuses build vector. */
|
|
VEC_truncate (tree, build_vuses, 0);
|
|
|
|
}
|
|
|
|
/* Return a new v_must_def operand vector for STMT, comparing to OLD_OPS_P. */
|
|
|
|
#define FINALIZE_OPBUILD build_v_must_defs
|
|
#define FINALIZE_OPBUILD_ELEM(I) VEC_index (tree, build_v_must_defs, (I))
|
|
#define FINALIZE_OPBUILD_BASE(I) get_name_decl (VEC_index (tree, \
|
|
build_v_must_defs, (I)))
|
|
#define FINALIZE_FUNC finalize_ssa_v_must_def_ops
|
|
#define FINALIZE_ALLOC alloc_mustdef
|
|
#define FINALIZE_FREE free_mustdefs
|
|
#define FINALIZE_TYPE struct mustdef_optype_d
|
|
#define FINALIZE_ELEM(PTR) MUSTDEF_RESULT (PTR)
|
|
#define FINALIZE_OPS MUSTDEF_OPS
|
|
#define FINALIZE_USE_PTR(PTR) MUSTDEF_KILL_PTR (PTR)
|
|
#define FINALIZE_CORRECT_USE set_virtual_use_link
|
|
#define FINALIZE_BASE_ZERO 0
|
|
#define FINALIZE_BASE(VAR) get_name_decl (VAR)
|
|
#define FINALIZE_BASE_TYPE unsigned
|
|
#define FINALIZE_INITIALIZE(PTR, VAL, STMT) \
|
|
(PTR)->def_var = (VAL); \
|
|
(PTR)->kill_var = (VAL); \
|
|
(PTR)->use_ptr.use = &((PTR)->kill_var);\
|
|
link_imm_use_stmt (&((PTR)->use_ptr), \
|
|
(VAL), (STMT))
|
|
#include "tree-ssa-opfinalize.h"
|
|
|
|
|
|
static void
|
|
finalize_ssa_v_must_defs (tree stmt)
|
|
{
|
|
/* In the presence of subvars, there may be more than one V_MUST_DEF per
|
|
statement (one for each subvar). It is a bit expensive to verify that
|
|
all must-defs in a statement belong to subvars if there is more than one
|
|
MUST-def, so we don't do it. Suffice to say, if you reach here without
|
|
having subvars, and have num >1, you have hit a bug. */
|
|
|
|
finalize_ssa_v_must_def_ops (stmt);
|
|
VEC_truncate (tree, build_v_must_defs, 0);
|
|
}
|
|
|
|
|
|
/* Finalize all the build vectors, fill the new ones into INFO. */
|
|
|
|
static inline void
|
|
finalize_ssa_stmt_operands (tree stmt)
|
|
{
|
|
finalize_ssa_defs (stmt);
|
|
finalize_ssa_uses (stmt);
|
|
finalize_ssa_v_must_defs (stmt);
|
|
finalize_ssa_v_may_defs (stmt);
|
|
finalize_ssa_vuses (stmt);
|
|
}
|
|
|
|
|
|
/* Start the process of building up operands vectors in INFO. */
|
|
|
|
static inline void
|
|
start_ssa_stmt_operands (void)
|
|
{
|
|
gcc_assert (VEC_length (tree, build_defs) == 0);
|
|
gcc_assert (VEC_length (tree, build_uses) == 0);
|
|
gcc_assert (VEC_length (tree, build_vuses) == 0);
|
|
gcc_assert (VEC_length (tree, build_v_may_defs) == 0);
|
|
gcc_assert (VEC_length (tree, build_v_must_defs) == 0);
|
|
}
|
|
|
|
|
|
/* Add DEF_P to the list of pointers to operands. */
|
|
|
|
static inline void
|
|
append_def (tree *def_p)
|
|
{
|
|
VEC_safe_push (tree, heap, build_defs, (tree)def_p);
|
|
}
|
|
|
|
|
|
/* Add USE_P to the list of pointers to operands. */
|
|
|
|
static inline void
|
|
append_use (tree *use_p)
|
|
{
|
|
VEC_safe_push (tree, heap, build_uses, (tree)use_p);
|
|
}
|
|
|
|
|
|
/* Add a new virtual may def for variable VAR to the build array. */
|
|
|
|
static inline void
|
|
append_v_may_def (tree var)
|
|
{
|
|
if (TREE_CODE (var) != SSA_NAME)
|
|
{
|
|
var_ann_t ann = get_var_ann (var);
|
|
|
|
/* Don't allow duplicate entries. */
|
|
if (ann->in_v_may_def_list)
|
|
return;
|
|
ann->in_v_may_def_list = 1;
|
|
}
|
|
|
|
VEC_safe_push (tree, heap, build_v_may_defs, (tree)var);
|
|
}
|
|
|
|
|
|
/* Add VAR to the list of virtual uses. */
|
|
|
|
static inline void
|
|
append_vuse (tree var)
|
|
{
|
|
|
|
/* Don't allow duplicate entries. */
|
|
if (TREE_CODE (var) != SSA_NAME)
|
|
{
|
|
var_ann_t ann = get_var_ann (var);
|
|
|
|
if (ann->in_vuse_list || ann->in_v_may_def_list)
|
|
return;
|
|
ann->in_vuse_list = 1;
|
|
}
|
|
|
|
VEC_safe_push (tree, heap, build_vuses, (tree)var);
|
|
}
|
|
|
|
|
|
/* Add VAR to the list of virtual must definitions for INFO. */
|
|
|
|
static inline void
|
|
append_v_must_def (tree var)
|
|
{
|
|
unsigned i;
|
|
|
|
/* Don't allow duplicate entries. */
|
|
for (i = 0; i < VEC_length (tree, build_v_must_defs); i++)
|
|
if (var == VEC_index (tree, build_v_must_defs, i))
|
|
return;
|
|
|
|
VEC_safe_push (tree, heap, build_v_must_defs, (tree)var);
|
|
}
|
|
|
|
|
|
/* Parse STMT looking for operands. OLD_OPS is the original stmt operand
|
|
cache for STMT, if it existed before. When finished, the various build_*
|
|
operand vectors will have potential operands. in them. */
|
|
|
|
static void
|
|
parse_ssa_operands (tree stmt)
|
|
{
|
|
enum tree_code code;
|
|
|
|
code = TREE_CODE (stmt);
|
|
switch (code)
|
|
{
|
|
case MODIFY_EXPR:
|
|
/* First get operands from the RHS. For the LHS, we use a V_MAY_DEF if
|
|
either only part of LHS is modified or if the RHS might throw,
|
|
otherwise, use V_MUST_DEF.
|
|
|
|
??? If it might throw, we should represent somehow that it is killed
|
|
on the fallthrough path. */
|
|
{
|
|
tree lhs = TREE_OPERAND (stmt, 0);
|
|
int lhs_flags = opf_is_def;
|
|
|
|
get_expr_operands (stmt, &TREE_OPERAND (stmt, 1), opf_none);
|
|
|
|
/* If the LHS is a VIEW_CONVERT_EXPR, it isn't changing whether
|
|
or not the entire LHS is modified; that depends on what's
|
|
inside the VIEW_CONVERT_EXPR. */
|
|
if (TREE_CODE (lhs) == VIEW_CONVERT_EXPR)
|
|
lhs = TREE_OPERAND (lhs, 0);
|
|
|
|
if (TREE_CODE (lhs) != ARRAY_REF
|
|
&& TREE_CODE (lhs) != ARRAY_RANGE_REF
|
|
&& TREE_CODE (lhs) != BIT_FIELD_REF
|
|
&& TREE_CODE (lhs) != REALPART_EXPR
|
|
&& TREE_CODE (lhs) != IMAGPART_EXPR)
|
|
lhs_flags |= opf_kill_def;
|
|
|
|
get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), lhs_flags);
|
|
}
|
|
break;
|
|
|
|
case COND_EXPR:
|
|
get_expr_operands (stmt, &COND_EXPR_COND (stmt), opf_none);
|
|
break;
|
|
|
|
case SWITCH_EXPR:
|
|
get_expr_operands (stmt, &SWITCH_COND (stmt), opf_none);
|
|
break;
|
|
|
|
case ASM_EXPR:
|
|
get_asm_expr_operands (stmt);
|
|
break;
|
|
|
|
case RETURN_EXPR:
|
|
get_expr_operands (stmt, &TREE_OPERAND (stmt, 0), opf_none);
|
|
break;
|
|
|
|
case GOTO_EXPR:
|
|
get_expr_operands (stmt, &GOTO_DESTINATION (stmt), opf_none);
|
|
break;
|
|
|
|
case LABEL_EXPR:
|
|
get_expr_operands (stmt, &LABEL_EXPR_LABEL (stmt), opf_none);
|
|
break;
|
|
|
|
/* These nodes contain no variable references. */
|
|
case BIND_EXPR:
|
|
case CASE_LABEL_EXPR:
|
|
case TRY_CATCH_EXPR:
|
|
case TRY_FINALLY_EXPR:
|
|
case EH_FILTER_EXPR:
|
|
case CATCH_EXPR:
|
|
case RESX_EXPR:
|
|
break;
|
|
|
|
default:
|
|
/* Notice that if get_expr_operands tries to use &STMT as the operand
|
|
pointer (which may only happen for USE operands), we will fail in
|
|
append_use. This default will handle statements like empty
|
|
statements, or CALL_EXPRs that may appear on the RHS of a statement
|
|
or as statements themselves. */
|
|
get_expr_operands (stmt, &stmt, opf_none);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Create an operands cache for STMT, returning it in NEW_OPS. OLD_OPS are the
|
|
original operands, and if ANN is non-null, appropriate stmt flags are set
|
|
in the stmt's annotation. If ANN is NULL, this is not considered a "real"
|
|
stmt, and none of the operands will be entered into their respective
|
|
immediate uses tables. This is to allow stmts to be processed when they
|
|
are not actually in the CFG.
|
|
|
|
Note that some fields in old_ops may change to NULL, although none of the
|
|
memory they originally pointed to will be destroyed. It is appropriate
|
|
to call free_stmt_operands() on the value returned in old_ops.
|
|
|
|
The rationale for this: Certain optimizations wish to examine the difference
|
|
between new_ops and old_ops after processing. If a set of operands don't
|
|
change, new_ops will simply assume the pointer in old_ops, and the old_ops
|
|
pointer will be set to NULL, indicating no memory needs to be cleared.
|
|
Usage might appear something like:
|
|
|
|
old_ops_copy = old_ops = stmt_ann(stmt)->operands;
|
|
build_ssa_operands (stmt, NULL, &old_ops, &new_ops);
|
|
<* compare old_ops_copy and new_ops *>
|
|
free_ssa_operands (old_ops); */
|
|
|
|
static void
|
|
build_ssa_operands (tree stmt)
|
|
{
|
|
stmt_ann_t ann = get_stmt_ann (stmt);
|
|
|
|
/* Initially assume that the statement has no volatile operands, nor
|
|
makes aliased loads or stores. */
|
|
if (ann)
|
|
{
|
|
ann->has_volatile_ops = false;
|
|
ann->makes_aliased_stores = false;
|
|
ann->makes_aliased_loads = false;
|
|
}
|
|
|
|
start_ssa_stmt_operands ();
|
|
|
|
parse_ssa_operands (stmt);
|
|
operand_build_sort_virtual (build_vuses);
|
|
operand_build_sort_virtual (build_v_may_defs);
|
|
operand_build_sort_virtual (build_v_must_defs);
|
|
|
|
finalize_ssa_stmt_operands (stmt);
|
|
}
|
|
|
|
|
|
/* Free any operands vectors in OPS. */
|
|
void
|
|
free_ssa_operands (stmt_operands_p ops)
|
|
{
|
|
ops->def_ops = NULL;
|
|
ops->use_ops = NULL;
|
|
ops->maydef_ops = NULL;
|
|
ops->mustdef_ops = NULL;
|
|
ops->vuse_ops = NULL;
|
|
}
|
|
|
|
|
|
/* Get the operands of statement STMT. Note that repeated calls to
|
|
get_stmt_operands for the same statement will do nothing until the
|
|
statement is marked modified by a call to mark_stmt_modified(). */
|
|
|
|
void
|
|
update_stmt_operands (tree stmt)
|
|
{
|
|
stmt_ann_t ann = get_stmt_ann (stmt);
|
|
/* If get_stmt_operands is called before SSA is initialized, dont
|
|
do anything. */
|
|
if (!ssa_operands_active ())
|
|
return;
|
|
/* The optimizers cannot handle statements that are nothing but a
|
|
_DECL. This indicates a bug in the gimplifier. */
|
|
gcc_assert (!SSA_VAR_P (stmt));
|
|
|
|
gcc_assert (ann->modified);
|
|
|
|
timevar_push (TV_TREE_OPS);
|
|
|
|
build_ssa_operands (stmt);
|
|
|
|
/* Clear the modified bit for STMT. Subsequent calls to
|
|
get_stmt_operands for this statement will do nothing until the
|
|
statement is marked modified by a call to mark_stmt_modified(). */
|
|
ann->modified = 0;
|
|
|
|
timevar_pop (TV_TREE_OPS);
|
|
}
|
|
|
|
|
|
/* Copies virtual operands from SRC to DST. */
|
|
|
|
void
|
|
copy_virtual_operands (tree dest, tree src)
|
|
{
|
|
tree t;
|
|
ssa_op_iter iter, old_iter;
|
|
use_operand_p use_p, u2;
|
|
def_operand_p def_p, d2;
|
|
|
|
build_ssa_operands (dest);
|
|
|
|
/* Copy all the virtual fields. */
|
|
FOR_EACH_SSA_TREE_OPERAND (t, src, iter, SSA_OP_VUSE)
|
|
append_vuse (t);
|
|
FOR_EACH_SSA_TREE_OPERAND (t, src, iter, SSA_OP_VMAYDEF)
|
|
append_v_may_def (t);
|
|
FOR_EACH_SSA_TREE_OPERAND (t, src, iter, SSA_OP_VMUSTDEF)
|
|
append_v_must_def (t);
|
|
|
|
if (VEC_length (tree, build_vuses) == 0
|
|
&& VEC_length (tree, build_v_may_defs) == 0
|
|
&& VEC_length (tree, build_v_must_defs) == 0)
|
|
return;
|
|
|
|
/* Now commit the virtual operands to this stmt. */
|
|
finalize_ssa_v_must_defs (dest);
|
|
finalize_ssa_v_may_defs (dest);
|
|
finalize_ssa_vuses (dest);
|
|
|
|
/* Finally, set the field to the same values as then originals. */
|
|
|
|
|
|
t = op_iter_init_tree (&old_iter, src, SSA_OP_VUSE);
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, dest, iter, SSA_OP_VUSE)
|
|
{
|
|
gcc_assert (!op_iter_done (&old_iter));
|
|
SET_USE (use_p, t);
|
|
t = op_iter_next_tree (&old_iter);
|
|
}
|
|
gcc_assert (op_iter_done (&old_iter));
|
|
|
|
op_iter_init_maydef (&old_iter, src, &u2, &d2);
|
|
FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, dest, iter)
|
|
{
|
|
gcc_assert (!op_iter_done (&old_iter));
|
|
SET_USE (use_p, USE_FROM_PTR (u2));
|
|
SET_DEF (def_p, DEF_FROM_PTR (d2));
|
|
op_iter_next_maymustdef (&u2, &d2, &old_iter);
|
|
}
|
|
gcc_assert (op_iter_done (&old_iter));
|
|
|
|
op_iter_init_mustdef (&old_iter, src, &u2, &d2);
|
|
FOR_EACH_SSA_MUSTDEF_OPERAND (def_p, use_p, dest, iter)
|
|
{
|
|
gcc_assert (!op_iter_done (&old_iter));
|
|
SET_USE (use_p, USE_FROM_PTR (u2));
|
|
SET_DEF (def_p, DEF_FROM_PTR (d2));
|
|
op_iter_next_maymustdef (&u2, &d2, &old_iter);
|
|
}
|
|
gcc_assert (op_iter_done (&old_iter));
|
|
|
|
}
|
|
|
|
|
|
/* Specifically for use in DOM's expression analysis. Given a store, we
|
|
create an artificial stmt which looks like a load from the store, this can
|
|
be used to eliminate redundant loads. OLD_OPS are the operands from the
|
|
store stmt, and NEW_STMT is the new load which represents a load of the
|
|
values stored. */
|
|
|
|
void
|
|
create_ssa_artficial_load_stmt (tree new_stmt, tree old_stmt)
|
|
{
|
|
stmt_ann_t ann;
|
|
tree op;
|
|
ssa_op_iter iter;
|
|
use_operand_p use_p;
|
|
unsigned x;
|
|
|
|
ann = get_stmt_ann (new_stmt);
|
|
|
|
/* process the stmt looking for operands. */
|
|
start_ssa_stmt_operands ();
|
|
parse_ssa_operands (new_stmt);
|
|
|
|
for (x = 0; x < VEC_length (tree, build_vuses); x++)
|
|
{
|
|
tree t = VEC_index (tree, build_vuses, x);
|
|
if (TREE_CODE (t) != SSA_NAME)
|
|
{
|
|
var_ann_t ann = var_ann (t);
|
|
ann->in_vuse_list = 0;
|
|
}
|
|
}
|
|
|
|
for (x = 0; x < VEC_length (tree, build_v_may_defs); x++)
|
|
{
|
|
tree t = VEC_index (tree, build_v_may_defs, x);
|
|
if (TREE_CODE (t) != SSA_NAME)
|
|
{
|
|
var_ann_t ann = var_ann (t);
|
|
ann->in_v_may_def_list = 0;
|
|
}
|
|
}
|
|
/* Remove any virtual operands that were found. */
|
|
VEC_truncate (tree, build_v_may_defs, 0);
|
|
VEC_truncate (tree, build_v_must_defs, 0);
|
|
VEC_truncate (tree, build_vuses, 0);
|
|
|
|
/* For each VDEF on the original statement, we want to create a
|
|
VUSE of the V_MAY_DEF result or V_MUST_DEF op on the new
|
|
statement. */
|
|
FOR_EACH_SSA_TREE_OPERAND (op, old_stmt, iter,
|
|
(SSA_OP_VMAYDEF | SSA_OP_VMUSTDEF))
|
|
append_vuse (op);
|
|
|
|
/* Now build the operands for this new stmt. */
|
|
finalize_ssa_stmt_operands (new_stmt);
|
|
|
|
/* All uses in this fake stmt must not be in the immediate use lists. */
|
|
FOR_EACH_SSA_USE_OPERAND (use_p, new_stmt, iter, SSA_OP_ALL_USES)
|
|
delink_imm_use (use_p);
|
|
}
|
|
|
|
void
|
|
swap_tree_operands (tree stmt, tree *exp0, tree *exp1)
|
|
{
|
|
tree op0, op1;
|
|
op0 = *exp0;
|
|
op1 = *exp1;
|
|
|
|
/* If the operand cache is active, attempt to preserve the relative positions
|
|
of these two operands in their respective immediate use lists. */
|
|
if (ssa_operands_active () && op0 != op1)
|
|
{
|
|
use_optype_p use0, use1, ptr;
|
|
use0 = use1 = NULL;
|
|
/* Find the 2 operands in the cache, if they are there. */
|
|
for (ptr = USE_OPS (stmt); ptr; ptr = ptr->next)
|
|
if (USE_OP_PTR (ptr)->use == exp0)
|
|
{
|
|
use0 = ptr;
|
|
break;
|
|
}
|
|
for (ptr = USE_OPS (stmt); ptr; ptr = ptr->next)
|
|
if (USE_OP_PTR (ptr)->use == exp1)
|
|
{
|
|
use1 = ptr;
|
|
break;
|
|
}
|
|
/* If both uses don't have operand entries, there isn't much we can do
|
|
at this point. Presumably we dont need to worry about it. */
|
|
if (use0 && use1)
|
|
{
|
|
tree *tmp = USE_OP_PTR (use1)->use;
|
|
USE_OP_PTR (use1)->use = USE_OP_PTR (use0)->use;
|
|
USE_OP_PTR (use0)->use = tmp;
|
|
}
|
|
}
|
|
|
|
/* Now swap the data. */
|
|
*exp0 = op1;
|
|
*exp1 = op0;
|
|
}
|
|
|
|
|
|
/* Recursively scan the expression pointed to by EXPR_P in statement referred
|
|
to by INFO. FLAGS is one of the OPF_* constants modifying how to interpret
|
|
the operands found. */
|
|
|
|
static void
|
|
get_expr_operands (tree stmt, tree *expr_p, int flags)
|
|
{
|
|
enum tree_code code;
|
|
enum tree_code_class class;
|
|
tree expr = *expr_p;
|
|
stmt_ann_t s_ann = stmt_ann (stmt);
|
|
|
|
if (expr == NULL)
|
|
return;
|
|
|
|
code = TREE_CODE (expr);
|
|
class = TREE_CODE_CLASS (code);
|
|
|
|
switch (code)
|
|
{
|
|
case ADDR_EXPR:
|
|
/* We could have the address of a component, array member,
|
|
etc which has interesting variable references. */
|
|
/* Taking the address of a variable does not represent a
|
|
reference to it, but the fact that the stmt takes its address will be
|
|
of interest to some passes (e.g. alias resolution). */
|
|
add_stmt_operand (expr_p, s_ann, 0);
|
|
|
|
/* If the address is invariant, there may be no interesting variable
|
|
references inside. */
|
|
if (is_gimple_min_invariant (expr))
|
|
return;
|
|
|
|
/* There should be no VUSEs created, since the referenced objects are
|
|
not really accessed. The only operands that we should find here
|
|
are ARRAY_REF indices which will always be real operands (GIMPLE
|
|
does not allow non-registers as array indices). */
|
|
flags |= opf_no_vops;
|
|
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
|
|
return;
|
|
|
|
case SSA_NAME:
|
|
case VAR_DECL:
|
|
case PARM_DECL:
|
|
case RESULT_DECL:
|
|
case CONST_DECL:
|
|
{
|
|
subvar_t svars;
|
|
|
|
/* Add the subvars for a variable if it has subvars, to DEFS or USES.
|
|
Otherwise, add the variable itself.
|
|
Whether it goes to USES or DEFS depends on the operand flags. */
|
|
if (var_can_have_subvars (expr)
|
|
&& (svars = get_subvars_for_var (expr)))
|
|
{
|
|
subvar_t sv;
|
|
for (sv = svars; sv; sv = sv->next)
|
|
add_stmt_operand (&sv->var, s_ann, flags);
|
|
}
|
|
else
|
|
{
|
|
add_stmt_operand (expr_p, s_ann, flags);
|
|
}
|
|
return;
|
|
}
|
|
case MISALIGNED_INDIRECT_REF:
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
|
|
/* fall through */
|
|
|
|
case ALIGN_INDIRECT_REF:
|
|
case INDIRECT_REF:
|
|
get_indirect_ref_operands (stmt, expr, flags);
|
|
return;
|
|
|
|
case TARGET_MEM_REF:
|
|
get_tmr_operands (stmt, expr, flags);
|
|
return;
|
|
|
|
case ARRAY_REF:
|
|
case ARRAY_RANGE_REF:
|
|
/* Treat array references as references to the virtual variable
|
|
representing the array. The virtual variable for an ARRAY_REF
|
|
is the VAR_DECL for the array. */
|
|
|
|
/* Add the virtual variable for the ARRAY_REF to VDEFS or VUSES
|
|
according to the value of IS_DEF. Recurse if the LHS of the
|
|
ARRAY_REF node is not a regular variable. */
|
|
if (SSA_VAR_P (TREE_OPERAND (expr, 0)))
|
|
add_stmt_operand (expr_p, s_ann, flags);
|
|
else
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
|
|
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 3), opf_none);
|
|
return;
|
|
|
|
case COMPONENT_REF:
|
|
case REALPART_EXPR:
|
|
case IMAGPART_EXPR:
|
|
{
|
|
tree ref;
|
|
unsigned HOST_WIDE_INT offset, size;
|
|
/* This component ref becomes an access to all of the subvariables
|
|
it can touch, if we can determine that, but *NOT* the real one.
|
|
If we can't determine which fields we could touch, the recursion
|
|
will eventually get to a variable and add *all* of its subvars, or
|
|
whatever is the minimum correct subset. */
|
|
|
|
ref = okay_component_ref_for_subvars (expr, &offset, &size);
|
|
if (ref)
|
|
{
|
|
subvar_t svars = get_subvars_for_var (ref);
|
|
subvar_t sv;
|
|
for (sv = svars; sv; sv = sv->next)
|
|
{
|
|
bool exact;
|
|
if (overlap_subvar (offset, size, sv, &exact))
|
|
{
|
|
int subvar_flags = flags;
|
|
if (!exact)
|
|
subvar_flags &= ~opf_kill_def;
|
|
add_stmt_operand (&sv->var, s_ann, subvar_flags);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0),
|
|
flags & ~opf_kill_def);
|
|
|
|
if (code == COMPONENT_REF)
|
|
{
|
|
if (s_ann && TREE_THIS_VOLATILE (TREE_OPERAND (expr, 1)))
|
|
s_ann->has_volatile_ops = true;
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
|
|
}
|
|
return;
|
|
}
|
|
case WITH_SIZE_EXPR:
|
|
/* WITH_SIZE_EXPR is a pass-through reference to its first argument,
|
|
and an rvalue reference to its second argument. */
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
|
|
return;
|
|
|
|
case CALL_EXPR:
|
|
get_call_expr_operands (stmt, expr);
|
|
return;
|
|
|
|
case COND_EXPR:
|
|
case VEC_COND_EXPR:
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
|
|
return;
|
|
|
|
case MODIFY_EXPR:
|
|
{
|
|
int subflags;
|
|
tree op;
|
|
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 1), opf_none);
|
|
|
|
op = TREE_OPERAND (expr, 0);
|
|
if (TREE_CODE (op) == WITH_SIZE_EXPR)
|
|
op = TREE_OPERAND (expr, 0);
|
|
if (TREE_CODE (op) == ARRAY_REF
|
|
|| TREE_CODE (op) == ARRAY_RANGE_REF
|
|
|| TREE_CODE (op) == REALPART_EXPR
|
|
|| TREE_CODE (op) == IMAGPART_EXPR)
|
|
subflags = opf_is_def;
|
|
else
|
|
subflags = opf_is_def | opf_kill_def;
|
|
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), subflags);
|
|
return;
|
|
}
|
|
|
|
case CONSTRUCTOR:
|
|
{
|
|
/* General aggregate CONSTRUCTORs have been decomposed, but they
|
|
are still in use as the COMPLEX_EXPR equivalent for vectors. */
|
|
constructor_elt *ce;
|
|
unsigned HOST_WIDE_INT idx;
|
|
|
|
for (idx = 0;
|
|
VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (expr), idx, ce);
|
|
idx++)
|
|
get_expr_operands (stmt, &ce->value, opf_none);
|
|
|
|
return;
|
|
}
|
|
|
|
case TRUTH_NOT_EXPR:
|
|
case BIT_FIELD_REF:
|
|
case VIEW_CONVERT_EXPR:
|
|
do_unary:
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
|
|
return;
|
|
|
|
case TRUTH_AND_EXPR:
|
|
case TRUTH_OR_EXPR:
|
|
case TRUTH_XOR_EXPR:
|
|
case COMPOUND_EXPR:
|
|
case OBJ_TYPE_REF:
|
|
case ASSERT_EXPR:
|
|
do_binary:
|
|
{
|
|
tree op0 = TREE_OPERAND (expr, 0);
|
|
tree op1 = TREE_OPERAND (expr, 1);
|
|
|
|
/* If it would be profitable to swap the operands, then do so to
|
|
canonicalize the statement, enabling better optimization.
|
|
|
|
By placing canonicalization of such expressions here we
|
|
transparently keep statements in canonical form, even
|
|
when the statement is modified. */
|
|
if (tree_swap_operands_p (op0, op1, false))
|
|
{
|
|
/* For relationals we need to swap the operands
|
|
and change the code. */
|
|
if (code == LT_EXPR
|
|
|| code == GT_EXPR
|
|
|| code == LE_EXPR
|
|
|| code == GE_EXPR)
|
|
{
|
|
TREE_SET_CODE (expr, swap_tree_comparison (code));
|
|
swap_tree_operands (stmt,
|
|
&TREE_OPERAND (expr, 0),
|
|
&TREE_OPERAND (expr, 1));
|
|
}
|
|
|
|
/* For a commutative operator we can just swap the operands. */
|
|
else if (commutative_tree_code (code))
|
|
{
|
|
swap_tree_operands (stmt,
|
|
&TREE_OPERAND (expr, 0),
|
|
&TREE_OPERAND (expr, 1));
|
|
}
|
|
}
|
|
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
|
|
return;
|
|
}
|
|
|
|
case REALIGN_LOAD_EXPR:
|
|
{
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), flags);
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 1), flags);
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 2), flags);
|
|
return;
|
|
}
|
|
|
|
case BLOCK:
|
|
case FUNCTION_DECL:
|
|
case EXC_PTR_EXPR:
|
|
case FILTER_EXPR:
|
|
case LABEL_DECL:
|
|
/* Expressions that make no memory references. */
|
|
return;
|
|
|
|
default:
|
|
if (class == tcc_unary)
|
|
goto do_unary;
|
|
if (class == tcc_binary || class == tcc_comparison)
|
|
goto do_binary;
|
|
if (class == tcc_constant || class == tcc_type)
|
|
return;
|
|
}
|
|
|
|
/* If we get here, something has gone wrong. */
|
|
#ifdef ENABLE_CHECKING
|
|
fprintf (stderr, "unhandled expression in get_expr_operands():\n");
|
|
debug_tree (expr);
|
|
fputs ("\n", stderr);
|
|
internal_error ("internal error");
|
|
#endif
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
|
|
/* Scan operands in the ASM_EXPR stmt referred to in INFO. */
|
|
|
|
static void
|
|
get_asm_expr_operands (tree stmt)
|
|
{
|
|
stmt_ann_t s_ann = stmt_ann (stmt);
|
|
int noutputs = list_length (ASM_OUTPUTS (stmt));
|
|
const char **oconstraints
|
|
= (const char **) alloca ((noutputs) * sizeof (const char *));
|
|
int i;
|
|
tree link;
|
|
const char *constraint;
|
|
bool allows_mem, allows_reg, is_inout;
|
|
|
|
for (i=0, link = ASM_OUTPUTS (stmt); link; ++i, link = TREE_CHAIN (link))
|
|
{
|
|
oconstraints[i] = constraint
|
|
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
|
parse_output_constraint (&constraint, i, 0, 0,
|
|
&allows_mem, &allows_reg, &is_inout);
|
|
|
|
/* This should have been split in gimplify_asm_expr. */
|
|
gcc_assert (!allows_reg || !is_inout);
|
|
|
|
/* Memory operands are addressable. Note that STMT needs the
|
|
address of this operand. */
|
|
if (!allows_reg && allows_mem)
|
|
{
|
|
tree t = get_base_address (TREE_VALUE (link));
|
|
if (t && DECL_P (t) && s_ann)
|
|
add_to_addressable_set (t, &s_ann->addresses_taken);
|
|
}
|
|
|
|
get_expr_operands (stmt, &TREE_VALUE (link), opf_is_def);
|
|
}
|
|
|
|
for (link = ASM_INPUTS (stmt); link; link = TREE_CHAIN (link))
|
|
{
|
|
constraint
|
|
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
|
|
parse_input_constraint (&constraint, 0, 0, noutputs, 0,
|
|
oconstraints, &allows_mem, &allows_reg);
|
|
|
|
/* Memory operands are addressable. Note that STMT needs the
|
|
address of this operand. */
|
|
if (!allows_reg && allows_mem)
|
|
{
|
|
tree t = get_base_address (TREE_VALUE (link));
|
|
if (t && DECL_P (t) && s_ann)
|
|
add_to_addressable_set (t, &s_ann->addresses_taken);
|
|
}
|
|
|
|
get_expr_operands (stmt, &TREE_VALUE (link), 0);
|
|
}
|
|
|
|
|
|
/* Clobber memory for asm ("" : : : "memory"); */
|
|
for (link = ASM_CLOBBERS (stmt); link; link = TREE_CHAIN (link))
|
|
if (strcmp (TREE_STRING_POINTER (TREE_VALUE (link)), "memory") == 0)
|
|
{
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
|
|
/* Clobber all call-clobbered variables (or .GLOBAL_VAR if we
|
|
decided to group them). */
|
|
if (global_var)
|
|
add_stmt_operand (&global_var, s_ann, opf_is_def);
|
|
else
|
|
EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, i, bi)
|
|
{
|
|
tree var = referenced_var (i);
|
|
add_stmt_operand (&var, s_ann, opf_is_def | opf_non_specific);
|
|
}
|
|
|
|
/* Now clobber all addressables. */
|
|
EXECUTE_IF_SET_IN_BITMAP (addressable_vars, 0, i, bi)
|
|
{
|
|
tree var = referenced_var (i);
|
|
|
|
/* Subvars are explicitly represented in this list, so
|
|
we don't need the original to be added to the clobber
|
|
ops, but the original *will* be in this list because
|
|
we keep the addressability of the original
|
|
variable up-to-date so we don't screw up the rest of
|
|
the backend. */
|
|
if (var_can_have_subvars (var)
|
|
&& get_subvars_for_var (var) != NULL)
|
|
continue;
|
|
|
|
add_stmt_operand (&var, s_ann, opf_is_def | opf_non_specific);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* A subroutine of get_expr_operands to handle INDIRECT_REF,
|
|
ALIGN_INDIRECT_REF and MISALIGNED_INDIRECT_REF. */
|
|
|
|
static void
|
|
get_indirect_ref_operands (tree stmt, tree expr, int flags)
|
|
{
|
|
tree *pptr = &TREE_OPERAND (expr, 0);
|
|
tree ptr = *pptr;
|
|
stmt_ann_t s_ann = stmt_ann (stmt);
|
|
|
|
/* Stores into INDIRECT_REF operands are never killing definitions. */
|
|
flags &= ~opf_kill_def;
|
|
|
|
if (SSA_VAR_P (ptr))
|
|
{
|
|
struct ptr_info_def *pi = NULL;
|
|
|
|
/* If PTR has flow-sensitive points-to information, use it. */
|
|
if (TREE_CODE (ptr) == SSA_NAME
|
|
&& (pi = SSA_NAME_PTR_INFO (ptr)) != NULL
|
|
&& pi->name_mem_tag)
|
|
{
|
|
/* PTR has its own memory tag. Use it. */
|
|
add_stmt_operand (&pi->name_mem_tag, s_ann, flags);
|
|
}
|
|
else
|
|
{
|
|
/* If PTR is not an SSA_NAME or it doesn't have a name
|
|
tag, use its type memory tag. */
|
|
var_ann_t v_ann;
|
|
|
|
/* If we are emitting debugging dumps, display a warning if
|
|
PTR is an SSA_NAME with no flow-sensitive alias
|
|
information. That means that we may need to compute
|
|
aliasing again. */
|
|
if (dump_file
|
|
&& TREE_CODE (ptr) == SSA_NAME
|
|
&& pi == NULL)
|
|
{
|
|
fprintf (dump_file,
|
|
"NOTE: no flow-sensitive alias info for ");
|
|
print_generic_expr (dump_file, ptr, dump_flags);
|
|
fprintf (dump_file, " in ");
|
|
print_generic_stmt (dump_file, stmt, dump_flags);
|
|
}
|
|
|
|
if (TREE_CODE (ptr) == SSA_NAME)
|
|
ptr = SSA_NAME_VAR (ptr);
|
|
v_ann = var_ann (ptr);
|
|
if (v_ann->type_mem_tag)
|
|
add_stmt_operand (&v_ann->type_mem_tag, s_ann, flags);
|
|
}
|
|
}
|
|
|
|
/* If a constant is used as a pointer, we can't generate a real
|
|
operand for it but we mark the statement volatile to prevent
|
|
optimizations from messing things up. */
|
|
else if (TREE_CODE (ptr) == INTEGER_CST)
|
|
{
|
|
if (s_ann)
|
|
s_ann->has_volatile_ops = true;
|
|
return;
|
|
}
|
|
|
|
/* Everything else *should* have been folded elsewhere, but users
|
|
are smarter than we in finding ways to write invalid code. We
|
|
cannot just assert here. If we were absolutely certain that we
|
|
do handle all valid cases, then we could just do nothing here.
|
|
That seems optimistic, so attempt to do something logical... */
|
|
else if ((TREE_CODE (ptr) == PLUS_EXPR || TREE_CODE (ptr) == MINUS_EXPR)
|
|
&& TREE_CODE (TREE_OPERAND (ptr, 0)) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (ptr, 1)) == INTEGER_CST)
|
|
{
|
|
/* Make sure we know the object is addressable. */
|
|
pptr = &TREE_OPERAND (ptr, 0);
|
|
add_stmt_operand (pptr, s_ann, 0);
|
|
|
|
/* Mark the object itself with a VUSE. */
|
|
pptr = &TREE_OPERAND (*pptr, 0);
|
|
get_expr_operands (stmt, pptr, flags);
|
|
return;
|
|
}
|
|
|
|
/* Ok, this isn't even is_gimple_min_invariant. Something's broke. */
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
/* Add a USE operand for the base pointer. */
|
|
get_expr_operands (stmt, pptr, opf_none);
|
|
}
|
|
|
|
/* A subroutine of get_expr_operands to handle TARGET_MEM_REF. */
|
|
|
|
static void
|
|
get_tmr_operands (tree stmt, tree expr, int flags)
|
|
{
|
|
tree tag = TMR_TAG (expr);
|
|
|
|
/* First record the real operands. */
|
|
get_expr_operands (stmt, &TMR_BASE (expr), opf_none);
|
|
get_expr_operands (stmt, &TMR_INDEX (expr), opf_none);
|
|
|
|
/* MEM_REFs should never be killing. */
|
|
flags &= ~opf_kill_def;
|
|
|
|
if (TMR_SYMBOL (expr))
|
|
{
|
|
stmt_ann_t ann = stmt_ann (stmt);
|
|
add_to_addressable_set (TMR_SYMBOL (expr), &ann->addresses_taken);
|
|
}
|
|
|
|
if (tag)
|
|
get_expr_operands (stmt, &tag, flags);
|
|
else
|
|
/* Something weird, so ensure that we will be careful. */
|
|
stmt_ann (stmt)->has_volatile_ops = true;
|
|
}
|
|
|
|
/* A subroutine of get_expr_operands to handle CALL_EXPR. */
|
|
|
|
static void
|
|
get_call_expr_operands (tree stmt, tree expr)
|
|
{
|
|
tree op;
|
|
int call_flags = call_expr_flags (expr);
|
|
|
|
/* If aliases have been computed already, add V_MAY_DEF or V_USE
|
|
operands for all the symbols that have been found to be
|
|
call-clobbered.
|
|
|
|
Note that if aliases have not been computed, the global effects
|
|
of calls will not be included in the SSA web. This is fine
|
|
because no optimizer should run before aliases have been
|
|
computed. By not bothering with virtual operands for CALL_EXPRs
|
|
we avoid adding superfluous virtual operands, which can be a
|
|
significant compile time sink (See PR 15855). */
|
|
if (aliases_computed_p
|
|
&& !bitmap_empty_p (call_clobbered_vars)
|
|
&& !(call_flags & ECF_NOVOPS))
|
|
{
|
|
/* A 'pure' or a 'const' function never call-clobbers anything.
|
|
A 'noreturn' function might, but since we don't return anyway
|
|
there is no point in recording that. */
|
|
if (TREE_SIDE_EFFECTS (expr)
|
|
&& !(call_flags & (ECF_PURE | ECF_CONST | ECF_NORETURN)))
|
|
add_call_clobber_ops (stmt, get_callee_fndecl (expr));
|
|
else if (!(call_flags & ECF_CONST))
|
|
add_call_read_ops (stmt);
|
|
}
|
|
|
|
/* Find uses in the called function. */
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 0), opf_none);
|
|
|
|
for (op = TREE_OPERAND (expr, 1); op; op = TREE_CHAIN (op))
|
|
get_expr_operands (stmt, &TREE_VALUE (op), opf_none);
|
|
|
|
get_expr_operands (stmt, &TREE_OPERAND (expr, 2), opf_none);
|
|
|
|
}
|
|
|
|
|
|
/* Add *VAR_P to the appropriate operand array for INFO. FLAGS is as in
|
|
get_expr_operands. If *VAR_P is a GIMPLE register, it will be added to
|
|
the statement's real operands, otherwise it is added to virtual
|
|
operands. */
|
|
|
|
static void
|
|
add_stmt_operand (tree *var_p, stmt_ann_t s_ann, int flags)
|
|
{
|
|
bool is_real_op;
|
|
tree var, sym;
|
|
var_ann_t v_ann;
|
|
|
|
var = *var_p;
|
|
STRIP_NOPS (var);
|
|
|
|
/* If the operand is an ADDR_EXPR, add its operand to the list of
|
|
variables that have had their address taken in this statement. */
|
|
if (TREE_CODE (var) == ADDR_EXPR && s_ann)
|
|
{
|
|
add_to_addressable_set (TREE_OPERAND (var, 0), &s_ann->addresses_taken);
|
|
return;
|
|
}
|
|
|
|
/* If the original variable is not a scalar, it will be added to the list
|
|
of virtual operands. In that case, use its base symbol as the virtual
|
|
variable representing it. */
|
|
is_real_op = is_gimple_reg (var);
|
|
if (!is_real_op && !DECL_P (var))
|
|
var = get_virtual_var (var);
|
|
|
|
/* If VAR is not a variable that we care to optimize, do nothing. */
|
|
if (var == NULL_TREE || !SSA_VAR_P (var))
|
|
return;
|
|
|
|
sym = (TREE_CODE (var) == SSA_NAME ? SSA_NAME_VAR (var) : var);
|
|
v_ann = var_ann (sym);
|
|
|
|
/* Mark statements with volatile operands. Optimizers should back
|
|
off from statements having volatile operands. */
|
|
if (TREE_THIS_VOLATILE (sym) && s_ann)
|
|
s_ann->has_volatile_ops = true;
|
|
|
|
/* If the variable cannot be modified and this is a V_MAY_DEF change
|
|
it into a VUSE. This happens when read-only variables are marked
|
|
call-clobbered and/or aliased to writable variables. So we only
|
|
check that this only happens on non-specific stores.
|
|
|
|
Note that if this is a specific store, i.e. associated with a
|
|
modify_expr, then we can't suppress the V_DEF, lest we run into
|
|
validation problems.
|
|
|
|
This can happen when programs cast away const, leaving us with a
|
|
store to read-only memory. If the statement is actually executed
|
|
at runtime, then the program is ill formed. If the statement is
|
|
not executed then all is well. At the very least, we cannot ICE. */
|
|
if ((flags & opf_non_specific) && unmodifiable_var_p (var))
|
|
{
|
|
gcc_assert (!is_real_op);
|
|
flags &= ~(opf_is_def | opf_kill_def);
|
|
}
|
|
|
|
if (is_real_op)
|
|
{
|
|
/* The variable is a GIMPLE register. Add it to real operands. */
|
|
if (flags & opf_is_def)
|
|
append_def (var_p);
|
|
else
|
|
append_use (var_p);
|
|
}
|
|
else
|
|
{
|
|
varray_type aliases;
|
|
|
|
/* The variable is not a GIMPLE register. Add it (or its aliases) to
|
|
virtual operands, unless the caller has specifically requested
|
|
not to add virtual operands (used when adding operands inside an
|
|
ADDR_EXPR expression). */
|
|
if (flags & opf_no_vops)
|
|
return;
|
|
|
|
aliases = v_ann->may_aliases;
|
|
|
|
if (aliases == NULL)
|
|
{
|
|
/* The variable is not aliased or it is an alias tag. */
|
|
if (flags & opf_is_def)
|
|
{
|
|
if (flags & opf_kill_def)
|
|
{
|
|
/* Only regular variables or struct fields may get a
|
|
V_MUST_DEF operand. */
|
|
gcc_assert (v_ann->mem_tag_kind == NOT_A_TAG
|
|
|| v_ann->mem_tag_kind == STRUCT_FIELD);
|
|
/* V_MUST_DEF for non-aliased, non-GIMPLE register
|
|
variable definitions. */
|
|
append_v_must_def (var);
|
|
}
|
|
else
|
|
{
|
|
/* Add a V_MAY_DEF for call-clobbered variables and
|
|
memory tags. */
|
|
append_v_may_def (var);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
append_vuse (var);
|
|
if (s_ann && v_ann->is_alias_tag)
|
|
s_ann->makes_aliased_loads = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
size_t i;
|
|
|
|
/* The variable is aliased. Add its aliases to the virtual
|
|
operands. */
|
|
gcc_assert (VARRAY_ACTIVE_SIZE (aliases) != 0);
|
|
|
|
if (flags & opf_is_def)
|
|
{
|
|
/* If the variable is also an alias tag, add a virtual
|
|
operand for it, otherwise we will miss representing
|
|
references to the members of the variable's alias set.
|
|
This fixes the bug in gcc.c-torture/execute/20020503-1.c. */
|
|
if (v_ann->is_alias_tag)
|
|
append_v_may_def (var);
|
|
|
|
for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
|
|
append_v_may_def (VARRAY_TREE (aliases, i));
|
|
|
|
if (s_ann)
|
|
s_ann->makes_aliased_stores = 1;
|
|
}
|
|
else
|
|
{
|
|
/* Similarly, append a virtual uses for VAR itself, when
|
|
it is an alias tag. */
|
|
if (v_ann->is_alias_tag)
|
|
append_vuse (var);
|
|
|
|
for (i = 0; i < VARRAY_ACTIVE_SIZE (aliases); i++)
|
|
append_vuse (VARRAY_TREE (aliases, i));
|
|
|
|
if (s_ann)
|
|
s_ann->makes_aliased_loads = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Add the base address of REF to the set *ADDRESSES_TAKEN. If
|
|
*ADDRESSES_TAKEN is NULL, a new set is created. REF may be
|
|
a single variable whose address has been taken or any other valid
|
|
GIMPLE memory reference (structure reference, array, etc). If the
|
|
base address of REF is a decl that has sub-variables, also add all
|
|
of its sub-variables. */
|
|
|
|
void
|
|
add_to_addressable_set (tree ref, bitmap *addresses_taken)
|
|
{
|
|
tree var;
|
|
subvar_t svars;
|
|
|
|
gcc_assert (addresses_taken);
|
|
|
|
/* Note that it is *NOT OKAY* to use the target of a COMPONENT_REF
|
|
as the only thing we take the address of. If VAR is a structure,
|
|
taking the address of a field means that the whole structure may
|
|
be referenced using pointer arithmetic. See PR 21407 and the
|
|
ensuing mailing list discussion. */
|
|
var = get_base_address (ref);
|
|
if (var && SSA_VAR_P (var))
|
|
{
|
|
if (*addresses_taken == NULL)
|
|
*addresses_taken = BITMAP_GGC_ALLOC ();
|
|
|
|
if (var_can_have_subvars (var)
|
|
&& (svars = get_subvars_for_var (var)))
|
|
{
|
|
subvar_t sv;
|
|
for (sv = svars; sv; sv = sv->next)
|
|
{
|
|
bitmap_set_bit (*addresses_taken, DECL_UID (sv->var));
|
|
TREE_ADDRESSABLE (sv->var) = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
bitmap_set_bit (*addresses_taken, DECL_UID (var));
|
|
TREE_ADDRESSABLE (var) = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Add clobbering definitions for .GLOBAL_VAR or for each of the call
|
|
clobbered variables in the function. */
|
|
|
|
static void
|
|
add_call_clobber_ops (tree stmt, tree callee)
|
|
{
|
|
unsigned u;
|
|
tree t;
|
|
bitmap_iterator bi;
|
|
stmt_ann_t s_ann = stmt_ann (stmt);
|
|
struct stmt_ann_d empty_ann;
|
|
bitmap not_read_b, not_written_b;
|
|
|
|
/* Functions that are not const, pure or never return may clobber
|
|
call-clobbered variables. */
|
|
if (s_ann)
|
|
s_ann->makes_clobbering_call = true;
|
|
|
|
/* If we created .GLOBAL_VAR earlier, just use it. See compute_may_aliases
|
|
for the heuristic used to decide whether to create .GLOBAL_VAR or not. */
|
|
if (global_var)
|
|
{
|
|
add_stmt_operand (&global_var, s_ann, opf_is_def);
|
|
return;
|
|
}
|
|
|
|
/* FIXME - if we have better information from the static vars
|
|
analysis, we need to make the cache call site specific. This way
|
|
we can have the performance benefits even if we are doing good
|
|
optimization. */
|
|
|
|
/* Get info for local and module level statics. There is a bit
|
|
set for each static if the call being processed does not read
|
|
or write that variable. */
|
|
|
|
not_read_b = callee ? ipa_reference_get_not_read_global (callee) : NULL;
|
|
not_written_b = callee ? ipa_reference_get_not_written_global (callee) : NULL;
|
|
|
|
/* If cache is valid, copy the elements into the build vectors. */
|
|
if (ssa_call_clobbered_cache_valid
|
|
&& (!not_read_b || bitmap_empty_p (not_read_b))
|
|
&& (!not_written_b || bitmap_empty_p (not_written_b)))
|
|
{
|
|
for (u = 0 ; u < VEC_length (tree, clobbered_vuses); u++)
|
|
{
|
|
t = VEC_index (tree, clobbered_vuses, u);
|
|
gcc_assert (TREE_CODE (t) != SSA_NAME);
|
|
var_ann (t)->in_vuse_list = 1;
|
|
VEC_safe_push (tree, heap, build_vuses, (tree)t);
|
|
}
|
|
for (u = 0; u < VEC_length (tree, clobbered_v_may_defs); u++)
|
|
{
|
|
t = VEC_index (tree, clobbered_v_may_defs, u);
|
|
gcc_assert (TREE_CODE (t) != SSA_NAME);
|
|
var_ann (t)->in_v_may_def_list = 1;
|
|
VEC_safe_push (tree, heap, build_v_may_defs, (tree)t);
|
|
}
|
|
if (s_ann)
|
|
{
|
|
s_ann->makes_aliased_loads = clobbered_aliased_loads;
|
|
s_ann->makes_aliased_stores = clobbered_aliased_stores;
|
|
}
|
|
return;
|
|
}
|
|
|
|
memset (&empty_ann, 0, sizeof (struct stmt_ann_d));
|
|
|
|
/* Add a V_MAY_DEF operand for every call clobbered variable. */
|
|
EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, u, bi)
|
|
{
|
|
tree var = referenced_var (u);
|
|
if (unmodifiable_var_p (var))
|
|
add_stmt_operand (&var, &empty_ann, opf_none);
|
|
else
|
|
{
|
|
bool not_read
|
|
= not_read_b ? bitmap_bit_p (not_read_b, u) : false;
|
|
bool not_written
|
|
= not_written_b ? bitmap_bit_p (not_written_b, u) : false;
|
|
|
|
if ((TREE_READONLY (var)
|
|
&& (TREE_STATIC (var) || DECL_EXTERNAL (var)))
|
|
|| not_written)
|
|
{
|
|
if (!not_read)
|
|
add_stmt_operand (&var, &empty_ann, opf_none);
|
|
}
|
|
else
|
|
add_stmt_operand (&var, &empty_ann, opf_is_def);
|
|
}
|
|
}
|
|
|
|
if ((!not_read_b || bitmap_empty_p (not_read_b))
|
|
&& (!not_written_b || bitmap_empty_p (not_written_b)))
|
|
{
|
|
clobbered_aliased_loads = empty_ann.makes_aliased_loads;
|
|
clobbered_aliased_stores = empty_ann.makes_aliased_stores;
|
|
|
|
/* Set the flags for a stmt's annotation. */
|
|
if (s_ann)
|
|
{
|
|
s_ann->makes_aliased_loads = empty_ann.makes_aliased_loads;
|
|
s_ann->makes_aliased_stores = empty_ann.makes_aliased_stores;
|
|
}
|
|
|
|
/* Prepare empty cache vectors. */
|
|
VEC_truncate (tree, clobbered_vuses, 0);
|
|
VEC_truncate (tree, clobbered_v_may_defs, 0);
|
|
|
|
/* Now fill the clobbered cache with the values that have been found. */
|
|
for (u = 0; u < VEC_length (tree, build_vuses); u++)
|
|
VEC_safe_push (tree, heap, clobbered_vuses,
|
|
VEC_index (tree, build_vuses, u));
|
|
|
|
gcc_assert (VEC_length (tree, build_vuses)
|
|
== VEC_length (tree, clobbered_vuses));
|
|
|
|
for (u = 0; u < VEC_length (tree, build_v_may_defs); u++)
|
|
VEC_safe_push (tree, heap, clobbered_v_may_defs,
|
|
VEC_index (tree, build_v_may_defs, u));
|
|
|
|
gcc_assert (VEC_length (tree, build_v_may_defs)
|
|
== VEC_length (tree, clobbered_v_may_defs));
|
|
|
|
ssa_call_clobbered_cache_valid = true;
|
|
}
|
|
}
|
|
|
|
|
|
/* Add VUSE operands for .GLOBAL_VAR or all call clobbered variables in the
|
|
function. */
|
|
|
|
static void
|
|
add_call_read_ops (tree stmt)
|
|
{
|
|
unsigned u;
|
|
tree t;
|
|
bitmap_iterator bi;
|
|
stmt_ann_t s_ann = stmt_ann (stmt);
|
|
struct stmt_ann_d empty_ann;
|
|
|
|
/* if the function is not pure, it may reference memory. Add
|
|
a VUSE for .GLOBAL_VAR if it has been created. See add_referenced_var
|
|
for the heuristic used to decide whether to create .GLOBAL_VAR. */
|
|
if (global_var)
|
|
{
|
|
add_stmt_operand (&global_var, s_ann, opf_none);
|
|
return;
|
|
}
|
|
|
|
/* If cache is valid, copy the elements into the build vector. */
|
|
if (ssa_ro_call_cache_valid)
|
|
{
|
|
for (u = 0; u < VEC_length (tree, ro_call_vuses); u++)
|
|
{
|
|
t = VEC_index (tree, ro_call_vuses, u);
|
|
gcc_assert (TREE_CODE (t) != SSA_NAME);
|
|
var_ann (t)->in_vuse_list = 1;
|
|
VEC_safe_push (tree, heap, build_vuses, (tree)t);
|
|
}
|
|
if (s_ann)
|
|
s_ann->makes_aliased_loads = ro_call_aliased_loads;
|
|
return;
|
|
}
|
|
|
|
memset (&empty_ann, 0, sizeof (struct stmt_ann_d));
|
|
|
|
/* Add a VUSE for each call-clobbered variable. */
|
|
EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars, 0, u, bi)
|
|
{
|
|
tree var = referenced_var (u);
|
|
add_stmt_operand (&var, &empty_ann, opf_none | opf_non_specific);
|
|
}
|
|
|
|
ro_call_aliased_loads = empty_ann.makes_aliased_loads;
|
|
if (s_ann)
|
|
s_ann->makes_aliased_loads = empty_ann.makes_aliased_loads;
|
|
|
|
/* Prepare empty cache vectors. */
|
|
VEC_truncate (tree, ro_call_vuses, 0);
|
|
|
|
/* Now fill the clobbered cache with the values that have been found. */
|
|
for (u = 0; u < VEC_length (tree, build_vuses); u++)
|
|
VEC_safe_push (tree, heap, ro_call_vuses,
|
|
VEC_index (tree, build_vuses, u));
|
|
|
|
gcc_assert (VEC_length (tree, build_vuses)
|
|
== VEC_length (tree, ro_call_vuses));
|
|
|
|
ssa_ro_call_cache_valid = true;
|
|
}
|
|
|
|
|
|
/* Scan the immediate_use list for VAR making sure its linked properly.
|
|
return RTUE iof there is a problem. */
|
|
|
|
bool
|
|
verify_imm_links (FILE *f, tree var)
|
|
{
|
|
use_operand_p ptr, prev, list;
|
|
int count;
|
|
|
|
gcc_assert (TREE_CODE (var) == SSA_NAME);
|
|
|
|
list = &(SSA_NAME_IMM_USE_NODE (var));
|
|
gcc_assert (list->use == NULL);
|
|
|
|
if (list->prev == NULL)
|
|
{
|
|
gcc_assert (list->next == NULL);
|
|
return false;
|
|
}
|
|
|
|
prev = list;
|
|
count = 0;
|
|
for (ptr = list->next; ptr != list; )
|
|
{
|
|
if (prev != ptr->prev)
|
|
goto error;
|
|
|
|
if (ptr->use == NULL)
|
|
goto error; /* 2 roots, or SAFE guard node. */
|
|
else if (*(ptr->use) != var)
|
|
goto error;
|
|
|
|
prev = ptr;
|
|
ptr = ptr->next;
|
|
/* Avoid infinite loops. */
|
|
if (count++ > 30000)
|
|
goto error;
|
|
}
|
|
|
|
/* Verify list in the other direction. */
|
|
prev = list;
|
|
for (ptr = list->prev; ptr != list; )
|
|
{
|
|
if (prev != ptr->next)
|
|
goto error;
|
|
prev = ptr;
|
|
ptr = ptr->prev;
|
|
if (count-- < 0)
|
|
goto error;
|
|
}
|
|
|
|
if (count != 0)
|
|
goto error;
|
|
|
|
return false;
|
|
|
|
error:
|
|
if (ptr->stmt && stmt_modified_p (ptr->stmt))
|
|
{
|
|
fprintf (f, " STMT MODIFIED. - <%p> ", (void *)ptr->stmt);
|
|
print_generic_stmt (f, ptr->stmt, TDF_SLIM);
|
|
}
|
|
fprintf (f, " IMM ERROR : (use_p : tree - %p:%p)", (void *)ptr,
|
|
(void *)ptr->use);
|
|
print_generic_expr (f, USE_FROM_PTR (ptr), TDF_SLIM);
|
|
fprintf(f, "\n");
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Dump all the immediate uses to FILE. */
|
|
|
|
void
|
|
dump_immediate_uses_for (FILE *file, tree var)
|
|
{
|
|
imm_use_iterator iter;
|
|
use_operand_p use_p;
|
|
|
|
gcc_assert (var && TREE_CODE (var) == SSA_NAME);
|
|
|
|
print_generic_expr (file, var, TDF_SLIM);
|
|
fprintf (file, " : -->");
|
|
if (has_zero_uses (var))
|
|
fprintf (file, " no uses.\n");
|
|
else
|
|
if (has_single_use (var))
|
|
fprintf (file, " single use.\n");
|
|
else
|
|
fprintf (file, "%d uses.\n", num_imm_uses (var));
|
|
|
|
FOR_EACH_IMM_USE_FAST (use_p, iter, var)
|
|
{
|
|
if (!is_gimple_reg (USE_FROM_PTR (use_p)))
|
|
print_generic_stmt (file, USE_STMT (use_p), TDF_VOPS);
|
|
else
|
|
print_generic_stmt (file, USE_STMT (use_p), TDF_SLIM);
|
|
}
|
|
fprintf(file, "\n");
|
|
}
|
|
|
|
/* Dump all the immediate uses to FILE. */
|
|
|
|
void
|
|
dump_immediate_uses (FILE *file)
|
|
{
|
|
tree var;
|
|
unsigned int x;
|
|
|
|
fprintf (file, "Immediate_uses: \n\n");
|
|
for (x = 1; x < num_ssa_names; x++)
|
|
{
|
|
var = ssa_name(x);
|
|
if (!var)
|
|
continue;
|
|
dump_immediate_uses_for (file, var);
|
|
}
|
|
}
|
|
|
|
|
|
/* Dump def-use edges on stderr. */
|
|
|
|
void
|
|
debug_immediate_uses (void)
|
|
{
|
|
dump_immediate_uses (stderr);
|
|
}
|
|
|
|
/* Dump def-use edges on stderr. */
|
|
|
|
void
|
|
debug_immediate_uses_for (tree var)
|
|
{
|
|
dump_immediate_uses_for (stderr, var);
|
|
}
|
|
#include "gt-tree-ssa-operands.h"
|