* decl.c (gnat_to_gnu_entity) <E_Procedure>: Do not set "const" flag on "pure" Ada subprograms if SJLJ exceptions are used. * trans.c (Handled_Sequence_Of_Statements_to_gnu): Set TREE_NO_WARNING on the declaration node of JMPBUF_SAVE. * utils.c (init_gigi_decls): Set DECL_IS_PURE on the declaration nodes of Get_Jmpbuf_Address_Soft and Get_GNAT_Exception. * utils2.c (build_call_0_expr): Do not set TREE_SIDE_EFFECTS. From-SVN: r117299
2049 lines
66 KiB
C
2049 lines
66 KiB
C
/****************************************************************************
|
||
* *
|
||
* GNAT COMPILER COMPONENTS *
|
||
* *
|
||
* U T I L S 2 *
|
||
* *
|
||
* C Implementation File *
|
||
* *
|
||
* Copyright (C) 1992-2006, Free Software Foundation, Inc. *
|
||
* *
|
||
* GNAT is free software; you can redistribute it and/or modify it under *
|
||
* terms of the GNU General Public License as published by the Free Soft- *
|
||
* ware Foundation; either version 2, or (at your option) any later ver- *
|
||
* sion. GNAT is distributed in the hope that it will be useful, but WITH- *
|
||
* OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
|
||
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
|
||
* for more details. You should have received a copy of the GNU General *
|
||
* Public License distributed with GNAT; see file COPYING. If not, write *
|
||
* to the Free Software Foundation, 51 Franklin Street, Fifth Floor, *
|
||
* Boston, MA 02110-1301, USA. *
|
||
* *
|
||
* GNAT was originally developed by the GNAT team at New York University. *
|
||
* Extensive contributions were provided by Ada Core Technologies Inc. *
|
||
* *
|
||
****************************************************************************/
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "ggc.h"
|
||
#include "flags.h"
|
||
#include "output.h"
|
||
#include "ada.h"
|
||
#include "types.h"
|
||
#include "atree.h"
|
||
#include "stringt.h"
|
||
#include "namet.h"
|
||
#include "uintp.h"
|
||
#include "fe.h"
|
||
#include "elists.h"
|
||
#include "nlists.h"
|
||
#include "sinfo.h"
|
||
#include "einfo.h"
|
||
#include "ada-tree.h"
|
||
#include "gigi.h"
|
||
|
||
static tree find_common_type (tree, tree);
|
||
static bool contains_save_expr_p (tree);
|
||
static tree contains_null_expr (tree);
|
||
static tree compare_arrays (tree, tree, tree);
|
||
static tree nonbinary_modular_operation (enum tree_code, tree, tree, tree);
|
||
static tree build_simple_component_ref (tree, tree, tree, bool);
|
||
|
||
/* Prepare expr to be an argument of a TRUTH_NOT_EXPR or other logical
|
||
operation.
|
||
|
||
This preparation consists of taking the ordinary representation of
|
||
an expression expr and producing a valid tree boolean expression
|
||
describing whether expr is nonzero. We could simply always do
|
||
|
||
build_binary_op (NE_EXPR, expr, integer_zero_node, 1),
|
||
|
||
but we optimize comparisons, &&, ||, and !.
|
||
|
||
The resulting type should always be the same as the input type.
|
||
This function is simpler than the corresponding C version since
|
||
the only possible operands will be things of Boolean type. */
|
||
|
||
tree
|
||
gnat_truthvalue_conversion (tree expr)
|
||
{
|
||
tree type = TREE_TYPE (expr);
|
||
|
||
switch (TREE_CODE (expr))
|
||
{
|
||
case EQ_EXPR: case NE_EXPR: case LE_EXPR: case GE_EXPR:
|
||
case LT_EXPR: case GT_EXPR:
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
case TRUTH_AND_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
case TRUTH_XOR_EXPR:
|
||
case ERROR_MARK:
|
||
return expr;
|
||
|
||
case INTEGER_CST:
|
||
return (integer_zerop (expr) ? convert (type, integer_zero_node)
|
||
: convert (type, integer_one_node));
|
||
|
||
case REAL_CST:
|
||
return (real_zerop (expr) ? convert (type, integer_zero_node)
|
||
: convert (type, integer_one_node));
|
||
|
||
case COND_EXPR:
|
||
/* Distribute the conversion into the arms of a COND_EXPR. */
|
||
return fold
|
||
(build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
|
||
gnat_truthvalue_conversion (TREE_OPERAND (expr, 1)),
|
||
gnat_truthvalue_conversion (TREE_OPERAND (expr, 2))));
|
||
|
||
default:
|
||
return build_binary_op (NE_EXPR, type, expr,
|
||
convert (type, integer_zero_node));
|
||
}
|
||
}
|
||
|
||
/* Return the base type of TYPE. */
|
||
|
||
tree
|
||
get_base_type (tree type)
|
||
{
|
||
if (TREE_CODE (type) == RECORD_TYPE
|
||
&& TYPE_JUSTIFIED_MODULAR_P (type))
|
||
type = TREE_TYPE (TYPE_FIELDS (type));
|
||
|
||
while (TREE_TYPE (type)
|
||
&& (TREE_CODE (type) == INTEGER_TYPE
|
||
|| TREE_CODE (type) == REAL_TYPE))
|
||
type = TREE_TYPE (type);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* EXP is a GCC tree representing an address. See if we can find how
|
||
strictly the object at that address is aligned. Return that alignment
|
||
in bits. If we don't know anything about the alignment, return 0. */
|
||
|
||
unsigned int
|
||
known_alignment (tree exp)
|
||
{
|
||
unsigned int this_alignment;
|
||
unsigned int lhs, rhs;
|
||
unsigned int type_alignment;
|
||
|
||
/* For pointer expressions, we know that the designated object is always at
|
||
least as strictly aligned as the designated subtype, so we account for
|
||
both type and expression information in this case.
|
||
|
||
Beware that we can still get a dummy designated subtype here (e.g. Taft
|
||
Amendement types), in which the alignment information is meaningless and
|
||
should be ignored.
|
||
|
||
We always compute a type_alignment value and return the MAX of it
|
||
compared with what we get from the expression tree. Just set the
|
||
type_alignment value to 0 when the type information is to be ignored. */
|
||
type_alignment
|
||
= ((POINTER_TYPE_P (TREE_TYPE (exp))
|
||
&& !TYPE_IS_DUMMY_P (TREE_TYPE (TREE_TYPE (exp))))
|
||
? TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp))) : 0);
|
||
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case CONVERT_EXPR:
|
||
case NOP_EXPR:
|
||
case NON_LVALUE_EXPR:
|
||
/* Conversions between pointers and integers don't change the alignment
|
||
of the underlying object. */
|
||
this_alignment = known_alignment (TREE_OPERAND (exp, 0));
|
||
break;
|
||
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
/* If two address are added, the alignment of the result is the
|
||
minimum of the two alignments. */
|
||
lhs = known_alignment (TREE_OPERAND (exp, 0));
|
||
rhs = known_alignment (TREE_OPERAND (exp, 1));
|
||
this_alignment = MIN (lhs, rhs);
|
||
break;
|
||
|
||
case INTEGER_CST:
|
||
/* The first part of this represents the lowest bit in the constant,
|
||
but is it in bytes, not bits. */
|
||
this_alignment
|
||
= MIN (BITS_PER_UNIT
|
||
* (TREE_INT_CST_LOW (exp) & - TREE_INT_CST_LOW (exp)),
|
||
BIGGEST_ALIGNMENT);
|
||
break;
|
||
|
||
case MULT_EXPR:
|
||
/* If we know the alignment of just one side, use it. Otherwise,
|
||
use the product of the alignments. */
|
||
lhs = known_alignment (TREE_OPERAND (exp, 0));
|
||
rhs = known_alignment (TREE_OPERAND (exp, 1));
|
||
|
||
if (lhs == 0 || rhs == 0)
|
||
this_alignment = MIN (BIGGEST_ALIGNMENT, MAX (lhs, rhs));
|
||
else
|
||
this_alignment = MIN (BIGGEST_ALIGNMENT, lhs * rhs);
|
||
break;
|
||
|
||
case ADDR_EXPR:
|
||
this_alignment = expr_align (TREE_OPERAND (exp, 0));
|
||
break;
|
||
|
||
default:
|
||
this_alignment = 0;
|
||
break;
|
||
}
|
||
|
||
return MAX (type_alignment, this_alignment);
|
||
}
|
||
|
||
/* We have a comparison or assignment operation on two types, T1 and T2,
|
||
which are both either array types or both record types.
|
||
Return the type that both operands should be converted to, if any.
|
||
Otherwise return zero. */
|
||
|
||
static tree
|
||
find_common_type (tree t1, tree t2)
|
||
{
|
||
/* If either type is non-BLKmode, use it. Note that we know that we will
|
||
not have any alignment problems since if we did the non-BLKmode
|
||
type could not have been used. */
|
||
if (TYPE_MODE (t1) != BLKmode)
|
||
return t1;
|
||
else if (TYPE_MODE (t2) != BLKmode)
|
||
return t2;
|
||
|
||
/* If both types have constant size, use the smaller one. Keep returning
|
||
T1 if we have a tie, to be consistent with the other cases. */
|
||
if (TREE_CONSTANT (TYPE_SIZE (t1)) && TREE_CONSTANT (TYPE_SIZE (t2)))
|
||
return tree_int_cst_lt (TYPE_SIZE (t2), TYPE_SIZE (t1)) ? t2 : t1;
|
||
|
||
/* Otherwise, if either type has a constant size, use it. */
|
||
else if (TREE_CONSTANT (TYPE_SIZE (t1)))
|
||
return t1;
|
||
else if (TREE_CONSTANT (TYPE_SIZE (t2)))
|
||
return t2;
|
||
|
||
/* In this case, both types have variable size. It's probably
|
||
best to leave the "type mismatch" because changing it could
|
||
case a bad self-referential reference. */
|
||
return 0;
|
||
}
|
||
|
||
/* See if EXP contains a SAVE_EXPR in a position where we would
|
||
normally put it.
|
||
|
||
??? This is a real kludge, but is probably the best approach short
|
||
of some very general solution. */
|
||
|
||
static bool
|
||
contains_save_expr_p (tree exp)
|
||
{
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case SAVE_EXPR:
|
||
return true;
|
||
|
||
case ADDR_EXPR: case INDIRECT_REF:
|
||
case COMPONENT_REF:
|
||
case NOP_EXPR: case CONVERT_EXPR: case VIEW_CONVERT_EXPR:
|
||
return contains_save_expr_p (TREE_OPERAND (exp, 0));
|
||
|
||
case CONSTRUCTOR:
|
||
{
|
||
tree value;
|
||
unsigned HOST_WIDE_INT ix;
|
||
|
||
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), ix, value)
|
||
if (contains_save_expr_p (value))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* See if EXP contains a NULL_EXPR in an expression we use for sizes. Return
|
||
it if so. This is used to detect types whose sizes involve computations
|
||
that are known to raise Constraint_Error. */
|
||
|
||
static tree
|
||
contains_null_expr (tree exp)
|
||
{
|
||
tree tem;
|
||
|
||
if (TREE_CODE (exp) == NULL_EXPR)
|
||
return exp;
|
||
|
||
switch (TREE_CODE_CLASS (TREE_CODE (exp)))
|
||
{
|
||
case tcc_unary:
|
||
return contains_null_expr (TREE_OPERAND (exp, 0));
|
||
|
||
case tcc_comparison:
|
||
case tcc_binary:
|
||
tem = contains_null_expr (TREE_OPERAND (exp, 0));
|
||
if (tem)
|
||
return tem;
|
||
|
||
return contains_null_expr (TREE_OPERAND (exp, 1));
|
||
|
||
case tcc_expression:
|
||
switch (TREE_CODE (exp))
|
||
{
|
||
case SAVE_EXPR:
|
||
return contains_null_expr (TREE_OPERAND (exp, 0));
|
||
|
||
case COND_EXPR:
|
||
tem = contains_null_expr (TREE_OPERAND (exp, 0));
|
||
if (tem)
|
||
return tem;
|
||
|
||
tem = contains_null_expr (TREE_OPERAND (exp, 1));
|
||
if (tem)
|
||
return tem;
|
||
|
||
return contains_null_expr (TREE_OPERAND (exp, 2));
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return an expression tree representing an equality comparison of
|
||
A1 and A2, two objects of ARRAY_TYPE. The returned expression should
|
||
be of type RESULT_TYPE
|
||
|
||
Two arrays are equal in one of two ways: (1) if both have zero length
|
||
in some dimension (not necessarily the same dimension) or (2) if the
|
||
lengths in each dimension are equal and the data is equal. We perform the
|
||
length tests in as efficient a manner as possible. */
|
||
|
||
static tree
|
||
compare_arrays (tree result_type, tree a1, tree a2)
|
||
{
|
||
tree t1 = TREE_TYPE (a1);
|
||
tree t2 = TREE_TYPE (a2);
|
||
tree result = convert (result_type, integer_one_node);
|
||
tree a1_is_null = convert (result_type, integer_zero_node);
|
||
tree a2_is_null = convert (result_type, integer_zero_node);
|
||
bool length_zero_p = false;
|
||
|
||
/* Process each dimension separately and compare the lengths. If any
|
||
dimension has a size known to be zero, set SIZE_ZERO_P to 1 to
|
||
suppress the comparison of the data. */
|
||
while (TREE_CODE (t1) == ARRAY_TYPE && TREE_CODE (t2) == ARRAY_TYPE)
|
||
{
|
||
tree lb1 = TYPE_MIN_VALUE (TYPE_DOMAIN (t1));
|
||
tree ub1 = TYPE_MAX_VALUE (TYPE_DOMAIN (t1));
|
||
tree lb2 = TYPE_MIN_VALUE (TYPE_DOMAIN (t2));
|
||
tree ub2 = TYPE_MAX_VALUE (TYPE_DOMAIN (t2));
|
||
tree bt = get_base_type (TREE_TYPE (lb1));
|
||
tree length1 = fold (build2 (MINUS_EXPR, bt, ub1, lb1));
|
||
tree length2 = fold (build2 (MINUS_EXPR, bt, ub2, lb2));
|
||
tree nbt;
|
||
tree tem;
|
||
tree comparison, this_a1_is_null, this_a2_is_null;
|
||
|
||
/* If the length of the first array is a constant, swap our operands
|
||
unless the length of the second array is the constant zero.
|
||
Note that we have set the `length' values to the length - 1. */
|
||
if (TREE_CODE (length1) == INTEGER_CST
|
||
&& !integer_zerop (fold (build2 (PLUS_EXPR, bt, length2,
|
||
convert (bt, integer_one_node)))))
|
||
{
|
||
tem = a1, a1 = a2, a2 = tem;
|
||
tem = t1, t1 = t2, t2 = tem;
|
||
tem = lb1, lb1 = lb2, lb2 = tem;
|
||
tem = ub1, ub1 = ub2, ub2 = tem;
|
||
tem = length1, length1 = length2, length2 = tem;
|
||
tem = a1_is_null, a1_is_null = a2_is_null, a2_is_null = tem;
|
||
}
|
||
|
||
/* If the length of this dimension in the second array is the constant
|
||
zero, we can just go inside the original bounds for the first
|
||
array and see if last < first. */
|
||
if (integer_zerop (fold (build2 (PLUS_EXPR, bt, length2,
|
||
convert (bt, integer_one_node)))))
|
||
{
|
||
tree ub = TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));
|
||
tree lb = TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));
|
||
|
||
comparison = build_binary_op (LT_EXPR, result_type, ub, lb);
|
||
comparison = SUBSTITUTE_PLACEHOLDER_IN_EXPR (comparison, a1);
|
||
length1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (length1, a1);
|
||
|
||
length_zero_p = true;
|
||
this_a1_is_null = comparison;
|
||
this_a2_is_null = convert (result_type, integer_one_node);
|
||
}
|
||
|
||
/* If the length is some other constant value, we know that the
|
||
this dimension in the first array cannot be superflat, so we
|
||
can just use its length from the actual stored bounds. */
|
||
else if (TREE_CODE (length2) == INTEGER_CST)
|
||
{
|
||
ub1 = TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));
|
||
lb1 = TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));
|
||
ub2 = TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t2)));
|
||
lb2 = TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t2)));
|
||
nbt = get_base_type (TREE_TYPE (ub1));
|
||
|
||
comparison
|
||
= build_binary_op (EQ_EXPR, result_type,
|
||
build_binary_op (MINUS_EXPR, nbt, ub1, lb1),
|
||
build_binary_op (MINUS_EXPR, nbt, ub2, lb2));
|
||
|
||
/* Note that we know that UB2 and LB2 are constant and hence
|
||
cannot contain a PLACEHOLDER_EXPR. */
|
||
|
||
comparison = SUBSTITUTE_PLACEHOLDER_IN_EXPR (comparison, a1);
|
||
length1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (length1, a1);
|
||
|
||
this_a1_is_null = build_binary_op (LT_EXPR, result_type, ub1, lb1);
|
||
this_a2_is_null = convert (result_type, integer_zero_node);
|
||
}
|
||
|
||
/* Otherwise compare the computed lengths. */
|
||
else
|
||
{
|
||
length1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (length1, a1);
|
||
length2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (length2, a2);
|
||
|
||
comparison
|
||
= build_binary_op (EQ_EXPR, result_type, length1, length2);
|
||
|
||
this_a1_is_null
|
||
= build_binary_op (LT_EXPR, result_type, length1,
|
||
convert (bt, integer_zero_node));
|
||
this_a2_is_null
|
||
= build_binary_op (LT_EXPR, result_type, length2,
|
||
convert (bt, integer_zero_node));
|
||
}
|
||
|
||
result = build_binary_op (TRUTH_ANDIF_EXPR, result_type,
|
||
result, comparison);
|
||
|
||
a1_is_null = build_binary_op (TRUTH_ORIF_EXPR, result_type,
|
||
this_a1_is_null, a1_is_null);
|
||
a2_is_null = build_binary_op (TRUTH_ORIF_EXPR, result_type,
|
||
this_a2_is_null, a2_is_null);
|
||
|
||
t1 = TREE_TYPE (t1);
|
||
t2 = TREE_TYPE (t2);
|
||
}
|
||
|
||
/* Unless the size of some bound is known to be zero, compare the
|
||
data in the array. */
|
||
if (!length_zero_p)
|
||
{
|
||
tree type = find_common_type (TREE_TYPE (a1), TREE_TYPE (a2));
|
||
|
||
if (type)
|
||
a1 = convert (type, a1), a2 = convert (type, a2);
|
||
|
||
result = build_binary_op (TRUTH_ANDIF_EXPR, result_type, result,
|
||
fold (build2 (EQ_EXPR, result_type, a1, a2)));
|
||
|
||
}
|
||
|
||
/* The result is also true if both sizes are zero. */
|
||
result = build_binary_op (TRUTH_ORIF_EXPR, result_type,
|
||
build_binary_op (TRUTH_ANDIF_EXPR, result_type,
|
||
a1_is_null, a2_is_null),
|
||
result);
|
||
|
||
/* If either operand contains SAVE_EXPRs, they have to be evaluated before
|
||
starting the comparison above since the place it would be otherwise
|
||
evaluated would be wrong. */
|
||
|
||
if (contains_save_expr_p (a1))
|
||
result = build2 (COMPOUND_EXPR, result_type, a1, result);
|
||
|
||
if (contains_save_expr_p (a2))
|
||
result = build2 (COMPOUND_EXPR, result_type, a2, result);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Compute the result of applying OP_CODE to LHS and RHS, where both are of
|
||
type TYPE. We know that TYPE is a modular type with a nonbinary
|
||
modulus. */
|
||
|
||
static tree
|
||
nonbinary_modular_operation (enum tree_code op_code, tree type, tree lhs,
|
||
tree rhs)
|
||
{
|
||
tree modulus = TYPE_MODULUS (type);
|
||
unsigned int needed_precision = tree_floor_log2 (modulus) + 1;
|
||
unsigned int precision;
|
||
bool unsignedp = true;
|
||
tree op_type = type;
|
||
tree result;
|
||
|
||
/* If this is an addition of a constant, convert it to a subtraction
|
||
of a constant since we can do that faster. */
|
||
if (op_code == PLUS_EXPR && TREE_CODE (rhs) == INTEGER_CST)
|
||
rhs = fold (build2 (MINUS_EXPR, type, modulus, rhs)), op_code = MINUS_EXPR;
|
||
|
||
/* For the logical operations, we only need PRECISION bits. For
|
||
addition and subtraction, we need one more and for multiplication we
|
||
need twice as many. But we never want to make a size smaller than
|
||
our size. */
|
||
if (op_code == PLUS_EXPR || op_code == MINUS_EXPR)
|
||
needed_precision += 1;
|
||
else if (op_code == MULT_EXPR)
|
||
needed_precision *= 2;
|
||
|
||
precision = MAX (needed_precision, TYPE_PRECISION (op_type));
|
||
|
||
/* Unsigned will do for everything but subtraction. */
|
||
if (op_code == MINUS_EXPR)
|
||
unsignedp = false;
|
||
|
||
/* If our type is the wrong signedness or isn't wide enough, make a new
|
||
type and convert both our operands to it. */
|
||
if (TYPE_PRECISION (op_type) < precision
|
||
|| TYPE_UNSIGNED (op_type) != unsignedp)
|
||
{
|
||
/* Copy the node so we ensure it can be modified to make it modular. */
|
||
op_type = copy_node (gnat_type_for_size (precision, unsignedp));
|
||
modulus = convert (op_type, modulus);
|
||
SET_TYPE_MODULUS (op_type, modulus);
|
||
TYPE_MODULAR_P (op_type) = 1;
|
||
lhs = convert (op_type, lhs);
|
||
rhs = convert (op_type, rhs);
|
||
}
|
||
|
||
/* Do the operation, then we'll fix it up. */
|
||
result = fold (build2 (op_code, op_type, lhs, rhs));
|
||
|
||
/* For multiplication, we have no choice but to do a full modulus
|
||
operation. However, we want to do this in the narrowest
|
||
possible size. */
|
||
if (op_code == MULT_EXPR)
|
||
{
|
||
tree div_type = copy_node (gnat_type_for_size (needed_precision, 1));
|
||
modulus = convert (div_type, modulus);
|
||
SET_TYPE_MODULUS (div_type, modulus);
|
||
TYPE_MODULAR_P (div_type) = 1;
|
||
result = convert (op_type,
|
||
fold (build2 (TRUNC_MOD_EXPR, div_type,
|
||
convert (div_type, result), modulus)));
|
||
}
|
||
|
||
/* For subtraction, add the modulus back if we are negative. */
|
||
else if (op_code == MINUS_EXPR)
|
||
{
|
||
result = save_expr (result);
|
||
result = fold (build3 (COND_EXPR, op_type,
|
||
build2 (LT_EXPR, integer_type_node, result,
|
||
convert (op_type, integer_zero_node)),
|
||
fold (build2 (PLUS_EXPR, op_type,
|
||
result, modulus)),
|
||
result));
|
||
}
|
||
|
||
/* For the other operations, subtract the modulus if we are >= it. */
|
||
else
|
||
{
|
||
result = save_expr (result);
|
||
result = fold (build3 (COND_EXPR, op_type,
|
||
build2 (GE_EXPR, integer_type_node,
|
||
result, modulus),
|
||
fold (build2 (MINUS_EXPR, op_type,
|
||
result, modulus)),
|
||
result));
|
||
}
|
||
|
||
return convert (type, result);
|
||
}
|
||
|
||
/* Make a binary operation of kind OP_CODE. RESULT_TYPE is the type
|
||
desired for the result. Usually the operation is to be performed
|
||
in that type. For MODIFY_EXPR and ARRAY_REF, RESULT_TYPE may be 0
|
||
in which case the type to be used will be derived from the operands.
|
||
|
||
This function is very much unlike the ones for C and C++ since we
|
||
have already done any type conversion and matching required. All we
|
||
have to do here is validate the work done by SEM and handle subtypes. */
|
||
|
||
tree
|
||
build_binary_op (enum tree_code op_code, tree result_type,
|
||
tree left_operand, tree right_operand)
|
||
{
|
||
tree left_type = TREE_TYPE (left_operand);
|
||
tree right_type = TREE_TYPE (right_operand);
|
||
tree left_base_type = get_base_type (left_type);
|
||
tree right_base_type = get_base_type (right_type);
|
||
tree operation_type = result_type;
|
||
tree best_type = NULL_TREE;
|
||
tree modulus;
|
||
tree result;
|
||
bool has_side_effects = false;
|
||
|
||
if (operation_type
|
||
&& TREE_CODE (operation_type) == RECORD_TYPE
|
||
&& TYPE_JUSTIFIED_MODULAR_P (operation_type))
|
||
operation_type = TREE_TYPE (TYPE_FIELDS (operation_type));
|
||
|
||
if (operation_type
|
||
&& !AGGREGATE_TYPE_P (operation_type)
|
||
&& TYPE_EXTRA_SUBTYPE_P (operation_type))
|
||
operation_type = get_base_type (operation_type);
|
||
|
||
modulus = (operation_type && TREE_CODE (operation_type) == INTEGER_TYPE
|
||
&& TYPE_MODULAR_P (operation_type)
|
||
? TYPE_MODULUS (operation_type) : 0);
|
||
|
||
switch (op_code)
|
||
{
|
||
case MODIFY_EXPR:
|
||
/* If there were any integral or pointer conversions on LHS, remove
|
||
them; we'll be putting them back below if needed. Likewise for
|
||
conversions between array and record types. But don't do this if
|
||
the right operand is not BLKmode (for packed arrays)
|
||
unless we are not changing the mode. */
|
||
while ((TREE_CODE (left_operand) == CONVERT_EXPR
|
||
|| TREE_CODE (left_operand) == NOP_EXPR
|
||
|| TREE_CODE (left_operand) == VIEW_CONVERT_EXPR)
|
||
&& (((INTEGRAL_TYPE_P (left_type)
|
||
|| POINTER_TYPE_P (left_type))
|
||
&& (INTEGRAL_TYPE_P (TREE_TYPE
|
||
(TREE_OPERAND (left_operand, 0)))
|
||
|| POINTER_TYPE_P (TREE_TYPE
|
||
(TREE_OPERAND (left_operand, 0)))))
|
||
|| (((TREE_CODE (left_type) == RECORD_TYPE
|
||
/* Don't remove conversions to justified modular
|
||
types. */
|
||
&& !TYPE_JUSTIFIED_MODULAR_P (left_type))
|
||
|| TREE_CODE (left_type) == ARRAY_TYPE)
|
||
&& ((TREE_CODE (TREE_TYPE
|
||
(TREE_OPERAND (left_operand, 0)))
|
||
== RECORD_TYPE)
|
||
|| (TREE_CODE (TREE_TYPE
|
||
(TREE_OPERAND (left_operand, 0)))
|
||
== ARRAY_TYPE))
|
||
&& (TYPE_MODE (right_type) == BLKmode
|
||
|| (TYPE_MODE (left_type)
|
||
== TYPE_MODE (TREE_TYPE
|
||
(TREE_OPERAND
|
||
(left_operand, 0))))))))
|
||
{
|
||
left_operand = TREE_OPERAND (left_operand, 0);
|
||
left_type = TREE_TYPE (left_operand);
|
||
}
|
||
|
||
if (!operation_type)
|
||
operation_type = left_type;
|
||
|
||
/* If we are copying one array or record to another, find the best type
|
||
to use. */
|
||
if (((TREE_CODE (left_type) == ARRAY_TYPE
|
||
&& TREE_CODE (right_type) == ARRAY_TYPE)
|
||
|| (TREE_CODE (left_type) == RECORD_TYPE
|
||
&& TREE_CODE (right_type) == RECORD_TYPE))
|
||
&& (best_type = find_common_type (left_type, right_type)))
|
||
operation_type = best_type;
|
||
|
||
/* If a class-wide type may be involved, force use of the RHS type. */
|
||
if ((TREE_CODE (right_type) == RECORD_TYPE
|
||
|| TREE_CODE (right_type) == UNION_TYPE)
|
||
&& TYPE_ALIGN_OK (right_type))
|
||
operation_type = right_type;
|
||
|
||
/* Ensure everything on the LHS is valid. If we have a field reference,
|
||
strip anything that get_inner_reference can handle. Then remove any
|
||
conversions with type types having the same code and mode. Mark
|
||
VIEW_CONVERT_EXPRs with TREE_ADDRESSABLE. When done, we must have
|
||
either an INDIRECT_REF or a decl. */
|
||
result = left_operand;
|
||
while (1)
|
||
{
|
||
tree restype = TREE_TYPE (result);
|
||
|
||
if (TREE_CODE (result) == COMPONENT_REF
|
||
|| TREE_CODE (result) == ARRAY_REF
|
||
|| TREE_CODE (result) == ARRAY_RANGE_REF)
|
||
while (handled_component_p (result))
|
||
result = TREE_OPERAND (result, 0);
|
||
else if (TREE_CODE (result) == REALPART_EXPR
|
||
|| TREE_CODE (result) == IMAGPART_EXPR
|
||
|| ((TREE_CODE (result) == NOP_EXPR
|
||
|| TREE_CODE (result) == CONVERT_EXPR)
|
||
&& (((TREE_CODE (restype)
|
||
== TREE_CODE (TREE_TYPE
|
||
(TREE_OPERAND (result, 0))))
|
||
&& (TYPE_MODE (TREE_TYPE
|
||
(TREE_OPERAND (result, 0)))
|
||
== TYPE_MODE (restype)))
|
||
|| TYPE_ALIGN_OK (restype))))
|
||
result = TREE_OPERAND (result, 0);
|
||
else if (TREE_CODE (result) == VIEW_CONVERT_EXPR)
|
||
{
|
||
TREE_ADDRESSABLE (result) = 1;
|
||
result = TREE_OPERAND (result, 0);
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
gcc_assert (TREE_CODE (result) == INDIRECT_REF
|
||
|| TREE_CODE (result) == NULL_EXPR || DECL_P (result));
|
||
|
||
/* Convert the right operand to the operation type unless
|
||
it is either already of the correct type or if the type
|
||
involves a placeholder, since the RHS may not have the same
|
||
record type. */
|
||
if (operation_type != right_type
|
||
&& (!CONTAINS_PLACEHOLDER_P (TYPE_SIZE (operation_type))))
|
||
{
|
||
right_operand = convert (operation_type, right_operand);
|
||
right_type = operation_type;
|
||
}
|
||
|
||
/* If the left operand is not the same type as the operation type,
|
||
surround it in a VIEW_CONVERT_EXPR. */
|
||
if (left_type != operation_type)
|
||
left_operand = unchecked_convert (operation_type, left_operand, false);
|
||
|
||
has_side_effects = true;
|
||
modulus = NULL_TREE;
|
||
break;
|
||
|
||
case ARRAY_REF:
|
||
if (!operation_type)
|
||
operation_type = TREE_TYPE (left_type);
|
||
|
||
/* ... fall through ... */
|
||
|
||
case ARRAY_RANGE_REF:
|
||
|
||
/* First convert the right operand to its base type. This will
|
||
prevent unneeded signedness conversions when sizetype is wider than
|
||
integer. */
|
||
right_operand = convert (right_base_type, right_operand);
|
||
right_operand = convert (TYPE_DOMAIN (left_type), right_operand);
|
||
|
||
if (!TREE_CONSTANT (right_operand)
|
||
|| !TREE_CONSTANT (TYPE_MIN_VALUE (right_type)))
|
||
gnat_mark_addressable (left_operand);
|
||
|
||
modulus = NULL_TREE;
|
||
break;
|
||
|
||
case GE_EXPR:
|
||
case LE_EXPR:
|
||
case GT_EXPR:
|
||
case LT_EXPR:
|
||
gcc_assert (!POINTER_TYPE_P (left_type));
|
||
|
||
/* ... fall through ... */
|
||
|
||
case EQ_EXPR:
|
||
case NE_EXPR:
|
||
/* If either operand is a NULL_EXPR, just return a new one. */
|
||
if (TREE_CODE (left_operand) == NULL_EXPR)
|
||
return build2 (op_code, result_type,
|
||
build1 (NULL_EXPR, integer_type_node,
|
||
TREE_OPERAND (left_operand, 0)),
|
||
integer_zero_node);
|
||
|
||
else if (TREE_CODE (right_operand) == NULL_EXPR)
|
||
return build2 (op_code, result_type,
|
||
build1 (NULL_EXPR, integer_type_node,
|
||
TREE_OPERAND (right_operand, 0)),
|
||
integer_zero_node);
|
||
|
||
/* If either object is a justified modular types, get the
|
||
fields from within. */
|
||
if (TREE_CODE (left_type) == RECORD_TYPE
|
||
&& TYPE_JUSTIFIED_MODULAR_P (left_type))
|
||
{
|
||
left_operand = convert (TREE_TYPE (TYPE_FIELDS (left_type)),
|
||
left_operand);
|
||
left_type = TREE_TYPE (left_operand);
|
||
left_base_type = get_base_type (left_type);
|
||
}
|
||
|
||
if (TREE_CODE (right_type) == RECORD_TYPE
|
||
&& TYPE_JUSTIFIED_MODULAR_P (right_type))
|
||
{
|
||
right_operand = convert (TREE_TYPE (TYPE_FIELDS (right_type)),
|
||
right_operand);
|
||
right_type = TREE_TYPE (right_operand);
|
||
right_base_type = get_base_type (right_type);
|
||
}
|
||
|
||
/* If both objects are arrays, compare them specially. */
|
||
if ((TREE_CODE (left_type) == ARRAY_TYPE
|
||
|| (TREE_CODE (left_type) == INTEGER_TYPE
|
||
&& TYPE_HAS_ACTUAL_BOUNDS_P (left_type)))
|
||
&& (TREE_CODE (right_type) == ARRAY_TYPE
|
||
|| (TREE_CODE (right_type) == INTEGER_TYPE
|
||
&& TYPE_HAS_ACTUAL_BOUNDS_P (right_type))))
|
||
{
|
||
result = compare_arrays (result_type, left_operand, right_operand);
|
||
|
||
if (op_code == NE_EXPR)
|
||
result = invert_truthvalue (result);
|
||
else
|
||
gcc_assert (op_code == EQ_EXPR);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Otherwise, the base types must be the same unless the objects are
|
||
records. If we have records, use the best type and convert both
|
||
operands to that type. */
|
||
if (left_base_type != right_base_type)
|
||
{
|
||
if (TREE_CODE (left_base_type) == RECORD_TYPE
|
||
&& TREE_CODE (right_base_type) == RECORD_TYPE)
|
||
{
|
||
/* The only way these are permitted to be the same is if both
|
||
types have the same name. In that case, one of them must
|
||
not be self-referential. Use that one as the best type.
|
||
Even better is if one is of fixed size. */
|
||
best_type = NULL_TREE;
|
||
|
||
gcc_assert (TYPE_NAME (left_base_type)
|
||
&& (TYPE_NAME (left_base_type)
|
||
== TYPE_NAME (right_base_type)));
|
||
|
||
if (TREE_CONSTANT (TYPE_SIZE (left_base_type)))
|
||
best_type = left_base_type;
|
||
else if (TREE_CONSTANT (TYPE_SIZE (right_base_type)))
|
||
best_type = right_base_type;
|
||
else if (!CONTAINS_PLACEHOLDER_P (TYPE_SIZE (left_base_type)))
|
||
best_type = left_base_type;
|
||
else if (!CONTAINS_PLACEHOLDER_P (TYPE_SIZE (right_base_type)))
|
||
best_type = right_base_type;
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
left_operand = convert (best_type, left_operand);
|
||
right_operand = convert (best_type, right_operand);
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* If we are comparing a fat pointer against zero, we need to
|
||
just compare the data pointer. */
|
||
else if (TYPE_FAT_POINTER_P (left_base_type)
|
||
&& TREE_CODE (right_operand) == CONSTRUCTOR
|
||
&& integer_zerop (VEC_index (constructor_elt,
|
||
CONSTRUCTOR_ELTS (right_operand),
|
||
0)
|
||
->value))
|
||
{
|
||
right_operand = build_component_ref (left_operand, NULL_TREE,
|
||
TYPE_FIELDS (left_base_type),
|
||
false);
|
||
left_operand = convert (TREE_TYPE (right_operand),
|
||
integer_zero_node);
|
||
}
|
||
else
|
||
{
|
||
left_operand = convert (left_base_type, left_operand);
|
||
right_operand = convert (right_base_type, right_operand);
|
||
}
|
||
|
||
modulus = NULL_TREE;
|
||
break;
|
||
|
||
case PREINCREMENT_EXPR:
|
||
case PREDECREMENT_EXPR:
|
||
case POSTINCREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
/* In these, the result type and the left operand type should be the
|
||
same. Do the operation in the base type of those and convert the
|
||
right operand (which is an integer) to that type.
|
||
|
||
Note that these operations are only used in loop control where
|
||
we guarantee that no overflow can occur. So nothing special need
|
||
be done for modular types. */
|
||
|
||
gcc_assert (left_type == result_type);
|
||
operation_type = get_base_type (result_type);
|
||
left_operand = convert (operation_type, left_operand);
|
||
right_operand = convert (operation_type, right_operand);
|
||
has_side_effects = true;
|
||
modulus = NULL_TREE;
|
||
break;
|
||
|
||
case LSHIFT_EXPR:
|
||
case RSHIFT_EXPR:
|
||
case LROTATE_EXPR:
|
||
case RROTATE_EXPR:
|
||
/* The RHS of a shift can be any type. Also, ignore any modulus
|
||
(we used to abort, but this is needed for unchecked conversion
|
||
to modular types). Otherwise, processing is the same as normal. */
|
||
gcc_assert (operation_type == left_base_type);
|
||
modulus = NULL_TREE;
|
||
left_operand = convert (operation_type, left_operand);
|
||
break;
|
||
|
||
case TRUTH_ANDIF_EXPR:
|
||
case TRUTH_ORIF_EXPR:
|
||
case TRUTH_AND_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
case TRUTH_XOR_EXPR:
|
||
left_operand = gnat_truthvalue_conversion (left_operand);
|
||
right_operand = gnat_truthvalue_conversion (right_operand);
|
||
goto common;
|
||
|
||
case BIT_AND_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
/* For binary modulus, if the inputs are in range, so are the
|
||
outputs. */
|
||
if (modulus && integer_pow2p (modulus))
|
||
modulus = NULL_TREE;
|
||
|
||
goto common;
|
||
|
||
case COMPLEX_EXPR:
|
||
gcc_assert (TREE_TYPE (result_type) == left_base_type
|
||
&& TREE_TYPE (result_type) == right_base_type);
|
||
left_operand = convert (left_base_type, left_operand);
|
||
right_operand = convert (right_base_type, right_operand);
|
||
break;
|
||
|
||
case TRUNC_DIV_EXPR: case TRUNC_MOD_EXPR:
|
||
case CEIL_DIV_EXPR: case CEIL_MOD_EXPR:
|
||
case FLOOR_DIV_EXPR: case FLOOR_MOD_EXPR:
|
||
case ROUND_DIV_EXPR: case ROUND_MOD_EXPR:
|
||
/* These always produce results lower than either operand. */
|
||
modulus = NULL_TREE;
|
||
goto common;
|
||
|
||
default:
|
||
common:
|
||
/* The result type should be the same as the base types of the
|
||
both operands (and they should be the same). Convert
|
||
everything to the result type. */
|
||
|
||
gcc_assert (operation_type == left_base_type
|
||
&& left_base_type == right_base_type);
|
||
left_operand = convert (operation_type, left_operand);
|
||
right_operand = convert (operation_type, right_operand);
|
||
}
|
||
|
||
if (modulus && !integer_pow2p (modulus))
|
||
{
|
||
result = nonbinary_modular_operation (op_code, operation_type,
|
||
left_operand, right_operand);
|
||
modulus = NULL_TREE;
|
||
}
|
||
/* If either operand is a NULL_EXPR, just return a new one. */
|
||
else if (TREE_CODE (left_operand) == NULL_EXPR)
|
||
return build1 (NULL_EXPR, operation_type, TREE_OPERAND (left_operand, 0));
|
||
else if (TREE_CODE (right_operand) == NULL_EXPR)
|
||
return build1 (NULL_EXPR, operation_type, TREE_OPERAND (right_operand, 0));
|
||
else if (op_code == ARRAY_REF || op_code == ARRAY_RANGE_REF)
|
||
result = fold (build4 (op_code, operation_type, left_operand,
|
||
right_operand, NULL_TREE, NULL_TREE));
|
||
else
|
||
result
|
||
= fold (build2 (op_code, operation_type, left_operand, right_operand));
|
||
|
||
TREE_SIDE_EFFECTS (result) |= has_side_effects;
|
||
TREE_CONSTANT (result)
|
||
|= (TREE_CONSTANT (left_operand) & TREE_CONSTANT (right_operand)
|
||
&& op_code != ARRAY_REF && op_code != ARRAY_RANGE_REF);
|
||
|
||
if ((op_code == ARRAY_REF || op_code == ARRAY_RANGE_REF)
|
||
&& TYPE_VOLATILE (operation_type))
|
||
TREE_THIS_VOLATILE (result) = 1;
|
||
|
||
/* If we are working with modular types, perform the MOD operation
|
||
if something above hasn't eliminated the need for it. */
|
||
if (modulus)
|
||
result = fold (build2 (FLOOR_MOD_EXPR, operation_type, result,
|
||
convert (operation_type, modulus)));
|
||
|
||
if (result_type && result_type != operation_type)
|
||
result = convert (result_type, result);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Similar, but for unary operations. */
|
||
|
||
tree
|
||
build_unary_op (enum tree_code op_code, tree result_type, tree operand)
|
||
{
|
||
tree type = TREE_TYPE (operand);
|
||
tree base_type = get_base_type (type);
|
||
tree operation_type = result_type;
|
||
tree result;
|
||
bool side_effects = false;
|
||
|
||
if (operation_type
|
||
&& TREE_CODE (operation_type) == RECORD_TYPE
|
||
&& TYPE_JUSTIFIED_MODULAR_P (operation_type))
|
||
operation_type = TREE_TYPE (TYPE_FIELDS (operation_type));
|
||
|
||
if (operation_type
|
||
&& !AGGREGATE_TYPE_P (operation_type)
|
||
&& TYPE_EXTRA_SUBTYPE_P (operation_type))
|
||
operation_type = get_base_type (operation_type);
|
||
|
||
switch (op_code)
|
||
{
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
if (!operation_type)
|
||
result_type = operation_type = TREE_TYPE (type);
|
||
else
|
||
gcc_assert (result_type == TREE_TYPE (type));
|
||
|
||
result = fold (build1 (op_code, operation_type, operand));
|
||
break;
|
||
|
||
case TRUTH_NOT_EXPR:
|
||
gcc_assert (result_type == base_type);
|
||
result = invert_truthvalue (gnat_truthvalue_conversion (operand));
|
||
break;
|
||
|
||
case ATTR_ADDR_EXPR:
|
||
case ADDR_EXPR:
|
||
switch (TREE_CODE (operand))
|
||
{
|
||
case INDIRECT_REF:
|
||
case UNCONSTRAINED_ARRAY_REF:
|
||
result = TREE_OPERAND (operand, 0);
|
||
|
||
/* Make sure the type here is a pointer, not a reference.
|
||
GCC wants pointer types for function addresses. */
|
||
if (!result_type)
|
||
result_type = build_pointer_type (type);
|
||
break;
|
||
|
||
case NULL_EXPR:
|
||
result = operand;
|
||
TREE_TYPE (result) = type = build_pointer_type (type);
|
||
break;
|
||
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
case COMPONENT_REF:
|
||
case BIT_FIELD_REF:
|
||
/* If this is for 'Address, find the address of the prefix and
|
||
add the offset to the field. Otherwise, do this the normal
|
||
way. */
|
||
if (op_code == ATTR_ADDR_EXPR)
|
||
{
|
||
HOST_WIDE_INT bitsize;
|
||
HOST_WIDE_INT bitpos;
|
||
tree offset, inner;
|
||
enum machine_mode mode;
|
||
int unsignedp, volatilep;
|
||
|
||
inner = get_inner_reference (operand, &bitsize, &bitpos, &offset,
|
||
&mode, &unsignedp, &volatilep,
|
||
false);
|
||
|
||
/* If INNER is a padding type whose field has a self-referential
|
||
size, convert to that inner type. We know the offset is zero
|
||
and we need to have that type visible. */
|
||
if (TREE_CODE (TREE_TYPE (inner)) == RECORD_TYPE
|
||
&& TYPE_IS_PADDING_P (TREE_TYPE (inner))
|
||
&& (CONTAINS_PLACEHOLDER_P
|
||
(TYPE_SIZE (TREE_TYPE (TYPE_FIELDS
|
||
(TREE_TYPE (inner)))))))
|
||
inner = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (inner))),
|
||
inner);
|
||
|
||
/* Compute the offset as a byte offset from INNER. */
|
||
if (!offset)
|
||
offset = size_zero_node;
|
||
|
||
if (bitpos % BITS_PER_UNIT != 0)
|
||
post_error
|
||
("taking address of object not aligned on storage unit?",
|
||
error_gnat_node);
|
||
|
||
offset = size_binop (PLUS_EXPR, offset,
|
||
size_int (bitpos / BITS_PER_UNIT));
|
||
|
||
/* Take the address of INNER, convert the offset to void *, and
|
||
add then. It will later be converted to the desired result
|
||
type, if any. */
|
||
inner = build_unary_op (ADDR_EXPR, NULL_TREE, inner);
|
||
inner = convert (ptr_void_type_node, inner);
|
||
offset = convert (ptr_void_type_node, offset);
|
||
result = build_binary_op (PLUS_EXPR, ptr_void_type_node,
|
||
inner, offset);
|
||
result = convert (build_pointer_type (TREE_TYPE (operand)),
|
||
result);
|
||
break;
|
||
}
|
||
goto common;
|
||
|
||
case CONSTRUCTOR:
|
||
/* If this is just a constructor for a padded record, we can
|
||
just take the address of the single field and convert it to
|
||
a pointer to our type. */
|
||
if (TREE_CODE (type) == RECORD_TYPE && TYPE_IS_PADDING_P (type))
|
||
{
|
||
result = (VEC_index (constructor_elt,
|
||
CONSTRUCTOR_ELTS (operand),
|
||
0)
|
||
->value);
|
||
|
||
result = convert (build_pointer_type (TREE_TYPE (operand)),
|
||
build_unary_op (ADDR_EXPR, NULL_TREE, result));
|
||
break;
|
||
}
|
||
|
||
goto common;
|
||
|
||
case NOP_EXPR:
|
||
if (AGGREGATE_TYPE_P (type)
|
||
&& AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (operand, 0))))
|
||
return build_unary_op (ADDR_EXPR, result_type,
|
||
TREE_OPERAND (operand, 0));
|
||
|
||
/* ... fallthru ... */
|
||
|
||
case VIEW_CONVERT_EXPR:
|
||
/* If this just a variant conversion or if the conversion doesn't
|
||
change the mode, get the result type from this type and go down.
|
||
This is needed for conversions of CONST_DECLs, to eventually get
|
||
to the address of their CORRESPONDING_VARs. */
|
||
if ((TYPE_MAIN_VARIANT (type)
|
||
== TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (operand, 0))))
|
||
|| (TYPE_MODE (type) != BLKmode
|
||
&& (TYPE_MODE (type)
|
||
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (operand, 0))))))
|
||
return build_unary_op (ADDR_EXPR,
|
||
(result_type ? result_type
|
||
: build_pointer_type (type)),
|
||
TREE_OPERAND (operand, 0));
|
||
goto common;
|
||
|
||
case CONST_DECL:
|
||
operand = DECL_CONST_CORRESPONDING_VAR (operand);
|
||
|
||
/* ... fall through ... */
|
||
|
||
default:
|
||
common:
|
||
|
||
/* If we are taking the address of a padded record whose field is
|
||
contains a template, take the address of the template. */
|
||
if (TREE_CODE (type) == RECORD_TYPE
|
||
&& TYPE_IS_PADDING_P (type)
|
||
&& TREE_CODE (TREE_TYPE (TYPE_FIELDS (type))) == RECORD_TYPE
|
||
&& TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (TYPE_FIELDS (type))))
|
||
{
|
||
type = TREE_TYPE (TYPE_FIELDS (type));
|
||
operand = convert (type, operand);
|
||
}
|
||
|
||
if (type != error_mark_node)
|
||
operation_type = build_pointer_type (type);
|
||
|
||
gnat_mark_addressable (operand);
|
||
result = fold (build1 (ADDR_EXPR, operation_type, operand));
|
||
}
|
||
|
||
TREE_CONSTANT (result) = staticp (operand) || TREE_CONSTANT (operand);
|
||
break;
|
||
|
||
case INDIRECT_REF:
|
||
/* If we want to refer to an entire unconstrained array,
|
||
make up an expression to do so. This will never survive to
|
||
the backend. If TYPE is a thin pointer, first convert the
|
||
operand to a fat pointer. */
|
||
if (TYPE_THIN_POINTER_P (type)
|
||
&& TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type)))
|
||
{
|
||
operand
|
||
= convert (TREE_TYPE (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))),
|
||
operand);
|
||
type = TREE_TYPE (operand);
|
||
}
|
||
|
||
if (TYPE_FAT_POINTER_P (type))
|
||
{
|
||
result = build1 (UNCONSTRAINED_ARRAY_REF,
|
||
TYPE_UNCONSTRAINED_ARRAY (type), operand);
|
||
TREE_READONLY (result) = TREE_STATIC (result)
|
||
= TYPE_READONLY (TYPE_UNCONSTRAINED_ARRAY (type));
|
||
}
|
||
else if (TREE_CODE (operand) == ADDR_EXPR)
|
||
result = TREE_OPERAND (operand, 0);
|
||
|
||
else
|
||
{
|
||
result = fold (build1 (op_code, TREE_TYPE (type), operand));
|
||
TREE_READONLY (result) = TYPE_READONLY (TREE_TYPE (type));
|
||
}
|
||
|
||
side_effects
|
||
= (!TYPE_FAT_POINTER_P (type) && TYPE_VOLATILE (TREE_TYPE (type)));
|
||
break;
|
||
|
||
case NEGATE_EXPR:
|
||
case BIT_NOT_EXPR:
|
||
{
|
||
tree modulus = ((operation_type
|
||
&& TREE_CODE (operation_type) == INTEGER_TYPE
|
||
&& TYPE_MODULAR_P (operation_type))
|
||
? TYPE_MODULUS (operation_type) : 0);
|
||
int mod_pow2 = modulus && integer_pow2p (modulus);
|
||
|
||
/* If this is a modular type, there are various possibilities
|
||
depending on the operation and whether the modulus is a
|
||
power of two or not. */
|
||
|
||
if (modulus)
|
||
{
|
||
gcc_assert (operation_type == base_type);
|
||
operand = convert (operation_type, operand);
|
||
|
||
/* The fastest in the negate case for binary modulus is
|
||
the straightforward code; the TRUNC_MOD_EXPR below
|
||
is an AND operation. */
|
||
if (op_code == NEGATE_EXPR && mod_pow2)
|
||
result = fold (build2 (TRUNC_MOD_EXPR, operation_type,
|
||
fold (build1 (NEGATE_EXPR, operation_type,
|
||
operand)),
|
||
modulus));
|
||
|
||
/* For nonbinary negate case, return zero for zero operand,
|
||
else return the modulus minus the operand. If the modulus
|
||
is a power of two minus one, we can do the subtraction
|
||
as an XOR since it is equivalent and faster on most machines. */
|
||
else if (op_code == NEGATE_EXPR && !mod_pow2)
|
||
{
|
||
if (integer_pow2p (fold (build2 (PLUS_EXPR, operation_type,
|
||
modulus,
|
||
convert (operation_type,
|
||
integer_one_node)))))
|
||
result = fold (build2 (BIT_XOR_EXPR, operation_type,
|
||
operand, modulus));
|
||
else
|
||
result = fold (build2 (MINUS_EXPR, operation_type,
|
||
modulus, operand));
|
||
|
||
result = fold (build3 (COND_EXPR, operation_type,
|
||
fold (build2 (NE_EXPR,
|
||
integer_type_node,
|
||
operand,
|
||
convert
|
||
(operation_type,
|
||
integer_zero_node))),
|
||
result, operand));
|
||
}
|
||
else
|
||
{
|
||
/* For the NOT cases, we need a constant equal to
|
||
the modulus minus one. For a binary modulus, we
|
||
XOR against the constant and subtract the operand from
|
||
that constant for nonbinary modulus. */
|
||
|
||
tree cnst = fold (build2 (MINUS_EXPR, operation_type, modulus,
|
||
convert (operation_type,
|
||
integer_one_node)));
|
||
|
||
if (mod_pow2)
|
||
result = fold (build2 (BIT_XOR_EXPR, operation_type,
|
||
operand, cnst));
|
||
else
|
||
result = fold (build2 (MINUS_EXPR, operation_type,
|
||
cnst, operand));
|
||
}
|
||
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* ... fall through ... */
|
||
|
||
default:
|
||
gcc_assert (operation_type == base_type);
|
||
result = fold (build1 (op_code, operation_type, convert (operation_type,
|
||
operand)));
|
||
}
|
||
|
||
if (side_effects)
|
||
{
|
||
TREE_SIDE_EFFECTS (result) = 1;
|
||
if (TREE_CODE (result) == INDIRECT_REF)
|
||
TREE_THIS_VOLATILE (result) = TYPE_VOLATILE (TREE_TYPE (result));
|
||
}
|
||
|
||
if (result_type && TREE_TYPE (result) != result_type)
|
||
result = convert (result_type, result);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Similar, but for COND_EXPR. */
|
||
|
||
tree
|
||
build_cond_expr (tree result_type, tree condition_operand,
|
||
tree true_operand, tree false_operand)
|
||
{
|
||
tree result;
|
||
bool addr_p = false;
|
||
|
||
/* The front-end verifies that result, true and false operands have same base
|
||
type. Convert everything to the result type. */
|
||
|
||
true_operand = convert (result_type, true_operand);
|
||
false_operand = convert (result_type, false_operand);
|
||
|
||
/* If the result type is unconstrained, take the address of
|
||
the operands and then dereference our result. */
|
||
if (TREE_CODE (result_type) == UNCONSTRAINED_ARRAY_TYPE
|
||
|| CONTAINS_PLACEHOLDER_P (TYPE_SIZE (result_type)))
|
||
{
|
||
addr_p = true;
|
||
result_type = build_pointer_type (result_type);
|
||
true_operand = build_unary_op (ADDR_EXPR, result_type, true_operand);
|
||
false_operand = build_unary_op (ADDR_EXPR, result_type, false_operand);
|
||
}
|
||
|
||
result = fold (build3 (COND_EXPR, result_type, condition_operand,
|
||
true_operand, false_operand));
|
||
|
||
/* If either operand is a SAVE_EXPR (possibly surrounded by
|
||
arithmetic, make sure it gets done. */
|
||
true_operand = skip_simple_arithmetic (true_operand);
|
||
false_operand = skip_simple_arithmetic (false_operand);
|
||
|
||
if (TREE_CODE (true_operand) == SAVE_EXPR)
|
||
result = build2 (COMPOUND_EXPR, result_type, true_operand, result);
|
||
|
||
if (TREE_CODE (false_operand) == SAVE_EXPR)
|
||
result = build2 (COMPOUND_EXPR, result_type, false_operand, result);
|
||
|
||
/* ??? Seems the code above is wrong, as it may move ahead of the COND
|
||
SAVE_EXPRs with side effects and not shared by both arms. */
|
||
|
||
if (addr_p)
|
||
result = build_unary_op (INDIRECT_REF, NULL_TREE, result);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Similar, but for RETURN_EXPR. If RESULT_DECL is non-zero, build
|
||
a RETURN_EXPR around the assignment of RET_VAL to RESULT_DECL.
|
||
If RESULT_DECL is zero, build a bare RETURN_EXPR. */
|
||
|
||
tree
|
||
build_return_expr (tree result_decl, tree ret_val)
|
||
{
|
||
tree result_expr;
|
||
|
||
if (result_decl)
|
||
{
|
||
/* The gimplifier explicitly enforces the following invariant:
|
||
|
||
RETURN_EXPR
|
||
|
|
||
MODIFY_EXPR
|
||
/ \
|
||
/ \
|
||
RESULT_DECL ...
|
||
|
||
As a consequence, type-homogeneity dictates that we use the type
|
||
of the RESULT_DECL as the operation type. */
|
||
|
||
tree operation_type = TREE_TYPE (result_decl);
|
||
|
||
/* Convert the right operand to the operation type. Note that
|
||
it's the same transformation as in the MODIFY_EXPR case of
|
||
build_binary_op with the additional guarantee that the type
|
||
cannot involve a placeholder, since otherwise the function
|
||
would use the "target pointer" return mechanism. */
|
||
|
||
if (operation_type != TREE_TYPE (ret_val))
|
||
ret_val = convert (operation_type, ret_val);
|
||
|
||
result_expr
|
||
= build2 (MODIFY_EXPR, operation_type, result_decl, ret_val);
|
||
}
|
||
else
|
||
result_expr = NULL_TREE;
|
||
|
||
return build1 (RETURN_EXPR, void_type_node, result_expr);
|
||
}
|
||
|
||
/* Build a CALL_EXPR to call FUNDECL with one argument, ARG. Return
|
||
the CALL_EXPR. */
|
||
|
||
tree
|
||
build_call_1_expr (tree fundecl, tree arg)
|
||
{
|
||
tree call = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fundecl)),
|
||
build_unary_op (ADDR_EXPR, NULL_TREE, fundecl),
|
||
chainon (NULL_TREE, build_tree_list (NULL_TREE, arg)),
|
||
NULL_TREE);
|
||
|
||
TREE_SIDE_EFFECTS (call) = 1;
|
||
|
||
return call;
|
||
}
|
||
|
||
/* Build a CALL_EXPR to call FUNDECL with two arguments, ARG1 & ARG2. Return
|
||
the CALL_EXPR. */
|
||
|
||
tree
|
||
build_call_2_expr (tree fundecl, tree arg1, tree arg2)
|
||
{
|
||
tree call = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fundecl)),
|
||
build_unary_op (ADDR_EXPR, NULL_TREE, fundecl),
|
||
chainon (chainon (NULL_TREE,
|
||
build_tree_list (NULL_TREE, arg1)),
|
||
build_tree_list (NULL_TREE, arg2)),
|
||
NULL_TREE);
|
||
|
||
TREE_SIDE_EFFECTS (call) = 1;
|
||
|
||
return call;
|
||
}
|
||
|
||
/* Likewise to call FUNDECL with no arguments. */
|
||
|
||
tree
|
||
build_call_0_expr (tree fundecl)
|
||
{
|
||
tree call = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fundecl)),
|
||
build_unary_op (ADDR_EXPR, NULL_TREE, fundecl),
|
||
NULL_TREE, NULL_TREE);
|
||
|
||
/* We rely on build3 to compute TREE_SIDE_EFFECTS. This makes it possible
|
||
to propagate the DECL_IS_PURE flag on parameterless functions. */
|
||
|
||
return call;
|
||
}
|
||
|
||
/* Call a function that raises an exception and pass the line number and file
|
||
name, if requested. MSG says which exception function to call.
|
||
|
||
GNAT_NODE is the gnat node conveying the source location for which the
|
||
error should be signaled, or Empty in which case the error is signaled on
|
||
the current ref_file_name/input_line. */
|
||
|
||
tree
|
||
build_call_raise (int msg, Node_Id gnat_node)
|
||
{
|
||
tree fndecl = gnat_raise_decls[msg];
|
||
|
||
const char *str
|
||
= (Debug_Flag_NN || Exception_Locations_Suppressed)
|
||
? ""
|
||
: (gnat_node != Empty)
|
||
? IDENTIFIER_POINTER
|
||
(get_identifier (Get_Name_String
|
||
(Debug_Source_Name
|
||
(Get_Source_File_Index (Sloc (gnat_node))))))
|
||
: ref_filename;
|
||
|
||
int len = strlen (str) + 1;
|
||
tree filename = build_string (len, str);
|
||
|
||
int line_number
|
||
= (gnat_node != Empty)
|
||
? Get_Logical_Line_Number (Sloc(gnat_node)) : input_line;
|
||
|
||
TREE_TYPE (filename)
|
||
= build_array_type (char_type_node,
|
||
build_index_type (build_int_cst (NULL_TREE, len)));
|
||
|
||
return
|
||
build_call_2_expr (fndecl,
|
||
build1 (ADDR_EXPR, build_pointer_type (char_type_node),
|
||
filename),
|
||
build_int_cst (NULL_TREE, line_number));
|
||
}
|
||
|
||
/* qsort comparer for the bit positions of two constructor elements
|
||
for record components. */
|
||
|
||
static int
|
||
compare_elmt_bitpos (const PTR rt1, const PTR rt2)
|
||
{
|
||
tree elmt1 = * (tree *) rt1;
|
||
tree elmt2 = * (tree *) rt2;
|
||
|
||
tree pos_field1 = bit_position (TREE_PURPOSE (elmt1));
|
||
tree pos_field2 = bit_position (TREE_PURPOSE (elmt2));
|
||
|
||
if (tree_int_cst_equal (pos_field1, pos_field2))
|
||
return 0;
|
||
else if (tree_int_cst_lt (pos_field1, pos_field2))
|
||
return -1;
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
/* Return a CONSTRUCTOR of TYPE whose list is LIST. */
|
||
|
||
tree
|
||
gnat_build_constructor (tree type, tree list)
|
||
{
|
||
tree elmt;
|
||
int n_elmts;
|
||
bool allconstant = (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST);
|
||
bool side_effects = false;
|
||
tree result;
|
||
|
||
/* Scan the elements to see if they are all constant or if any has side
|
||
effects, to let us set global flags on the resulting constructor. Count
|
||
the elements along the way for possible sorting purposes below. */
|
||
for (n_elmts = 0, elmt = list; elmt; elmt = TREE_CHAIN (elmt), n_elmts ++)
|
||
{
|
||
if (!TREE_CONSTANT (TREE_VALUE (elmt))
|
||
|| (TREE_CODE (type) == RECORD_TYPE
|
||
&& DECL_BIT_FIELD (TREE_PURPOSE (elmt))
|
||
&& TREE_CODE (TREE_VALUE (elmt)) != INTEGER_CST)
|
||
|| !initializer_constant_valid_p (TREE_VALUE (elmt),
|
||
TREE_TYPE (TREE_VALUE (elmt))))
|
||
allconstant = false;
|
||
|
||
if (TREE_SIDE_EFFECTS (TREE_VALUE (elmt)))
|
||
side_effects = true;
|
||
|
||
/* Propagate an NULL_EXPR from the size of the type. We won't ever
|
||
be executing the code we generate here in that case, but handle it
|
||
specially to avoid the cmpiler blowing up. */
|
||
if (TREE_CODE (type) == RECORD_TYPE
|
||
&& (0 != (result
|
||
= contains_null_expr (DECL_SIZE (TREE_PURPOSE (elmt))))))
|
||
return build1 (NULL_EXPR, type, TREE_OPERAND (result, 0));
|
||
}
|
||
|
||
/* For record types with constant components only, sort field list
|
||
by increasing bit position. This is necessary to ensure the
|
||
constructor can be output as static data, which the gimplifier
|
||
might force in various circumstances. */
|
||
if (allconstant && TREE_CODE (type) == RECORD_TYPE && n_elmts > 1)
|
||
{
|
||
/* Fill an array with an element tree per index, and ask qsort to order
|
||
them according to what a bitpos comparison function says. */
|
||
|
||
tree *gnu_arr = (tree *) alloca (sizeof (tree) * n_elmts);
|
||
int i;
|
||
|
||
for (i = 0, elmt = list; elmt; elmt = TREE_CHAIN (elmt), i++)
|
||
gnu_arr[i] = elmt;
|
||
|
||
qsort (gnu_arr, n_elmts, sizeof (tree), compare_elmt_bitpos);
|
||
|
||
/* Then reconstruct the list from the sorted array contents. */
|
||
|
||
list = NULL_TREE;
|
||
for (i = n_elmts - 1; i >= 0; i--)
|
||
{
|
||
TREE_CHAIN (gnu_arr[i]) = list;
|
||
list = gnu_arr[i];
|
||
}
|
||
}
|
||
|
||
result = build_constructor_from_list (type, list);
|
||
TREE_CONSTANT (result) = TREE_INVARIANT (result)
|
||
= TREE_STATIC (result) = allconstant;
|
||
TREE_SIDE_EFFECTS (result) = side_effects;
|
||
TREE_READONLY (result) = TYPE_READONLY (type) || allconstant;
|
||
return result;
|
||
}
|
||
|
||
/* Return a COMPONENT_REF to access a field that is given by COMPONENT,
|
||
an IDENTIFIER_NODE giving the name of the field, or FIELD, a FIELD_DECL,
|
||
for the field. Don't fold the result if NO_FOLD_P is true.
|
||
|
||
We also handle the fact that we might have been passed a pointer to the
|
||
actual record and know how to look for fields in variant parts. */
|
||
|
||
static tree
|
||
build_simple_component_ref (tree record_variable, tree component,
|
||
tree field, bool no_fold_p)
|
||
{
|
||
tree record_type = TYPE_MAIN_VARIANT (TREE_TYPE (record_variable));
|
||
tree ref;
|
||
|
||
gcc_assert ((TREE_CODE (record_type) == RECORD_TYPE
|
||
|| TREE_CODE (record_type) == UNION_TYPE
|
||
|| TREE_CODE (record_type) == QUAL_UNION_TYPE)
|
||
&& TYPE_SIZE (record_type)
|
||
&& (component != 0) != (field != 0));
|
||
|
||
/* If no field was specified, look for a field with the specified name
|
||
in the current record only. */
|
||
if (!field)
|
||
for (field = TYPE_FIELDS (record_type); field;
|
||
field = TREE_CHAIN (field))
|
||
if (DECL_NAME (field) == component)
|
||
break;
|
||
|
||
if (!field)
|
||
return NULL_TREE;
|
||
|
||
/* If this field is not in the specified record, see if we can find
|
||
something in the record whose original field is the same as this one. */
|
||
if (DECL_CONTEXT (field) != record_type)
|
||
/* Check if there is a field with name COMPONENT in the record. */
|
||
{
|
||
tree new_field;
|
||
|
||
/* First loop thru normal components. */
|
||
|
||
for (new_field = TYPE_FIELDS (record_type); new_field;
|
||
new_field = TREE_CHAIN (new_field))
|
||
if (field == new_field
|
||
|| DECL_ORIGINAL_FIELD (new_field) == field
|
||
|| new_field == DECL_ORIGINAL_FIELD (field)
|
||
|| (DECL_ORIGINAL_FIELD (field)
|
||
&& (DECL_ORIGINAL_FIELD (field)
|
||
== DECL_ORIGINAL_FIELD (new_field))))
|
||
break;
|
||
|
||
/* Next, loop thru DECL_INTERNAL_P components if we haven't found
|
||
the component in the first search. Doing this search in 2 steps
|
||
is required to avoiding hidden homonymous fields in the
|
||
_Parent field. */
|
||
|
||
if (!new_field)
|
||
for (new_field = TYPE_FIELDS (record_type); new_field;
|
||
new_field = TREE_CHAIN (new_field))
|
||
if (DECL_INTERNAL_P (new_field))
|
||
{
|
||
tree field_ref
|
||
= build_simple_component_ref (record_variable,
|
||
NULL_TREE, new_field, no_fold_p);
|
||
ref = build_simple_component_ref (field_ref, NULL_TREE, field,
|
||
no_fold_p);
|
||
|
||
if (ref)
|
||
return ref;
|
||
}
|
||
|
||
field = new_field;
|
||
}
|
||
|
||
if (!field)
|
||
return NULL_TREE;
|
||
|
||
/* If the field's offset has overflowed, do not attempt to access it
|
||
as doing so may trigger sanity checks deeper in the back-end.
|
||
Note that we don't need to warn since this will be done on trying
|
||
to declare the object. */
|
||
if (TREE_CODE (DECL_FIELD_OFFSET (field)) == INTEGER_CST
|
||
&& TREE_CONSTANT_OVERFLOW (DECL_FIELD_OFFSET (field)))
|
||
return NULL_TREE;
|
||
|
||
/* It would be nice to call "fold" here, but that can lose a type
|
||
we need to tag a PLACEHOLDER_EXPR with, so we can't do it. */
|
||
ref = build3 (COMPONENT_REF, TREE_TYPE (field), record_variable, field,
|
||
NULL_TREE);
|
||
|
||
if (TREE_READONLY (record_variable) || TREE_READONLY (field))
|
||
TREE_READONLY (ref) = 1;
|
||
if (TREE_THIS_VOLATILE (record_variable) || TREE_THIS_VOLATILE (field)
|
||
|| TYPE_VOLATILE (record_type))
|
||
TREE_THIS_VOLATILE (ref) = 1;
|
||
|
||
return no_fold_p ? ref : fold (ref);
|
||
}
|
||
|
||
/* Like build_simple_component_ref, except that we give an error if the
|
||
reference could not be found. */
|
||
|
||
tree
|
||
build_component_ref (tree record_variable, tree component,
|
||
tree field, bool no_fold_p)
|
||
{
|
||
tree ref = build_simple_component_ref (record_variable, component, field,
|
||
no_fold_p);
|
||
|
||
if (ref)
|
||
return ref;
|
||
|
||
/* If FIELD was specified, assume this is an invalid user field so
|
||
raise constraint error. Otherwise, we can't find the type to return, so
|
||
abort. */
|
||
gcc_assert (field);
|
||
return build1 (NULL_EXPR, TREE_TYPE (field),
|
||
build_call_raise (CE_Discriminant_Check_Failed, Empty));
|
||
}
|
||
|
||
/* Build a GCC tree to call an allocation or deallocation function.
|
||
If GNU_OBJ is nonzero, it is an object to deallocate. Otherwise,
|
||
generate an allocator.
|
||
|
||
GNU_SIZE is the size of the object in bytes and ALIGN is the alignment in
|
||
bits. GNAT_PROC, if present, is a procedure to call and GNAT_POOL is the
|
||
storage pool to use. If not preset, malloc and free will be used except
|
||
if GNAT_PROC is the "fake" value of -1, in which case we allocate the
|
||
object dynamically on the stack frame. */
|
||
|
||
tree
|
||
build_call_alloc_dealloc (tree gnu_obj, tree gnu_size, unsigned align,
|
||
Entity_Id gnat_proc, Entity_Id gnat_pool,
|
||
Node_Id gnat_node)
|
||
{
|
||
tree gnu_align = size_int (align / BITS_PER_UNIT);
|
||
|
||
gnu_size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_size, gnu_obj);
|
||
|
||
if (Present (gnat_proc))
|
||
{
|
||
/* The storage pools are obviously always tagged types, but the
|
||
secondary stack uses the same mechanism and is not tagged */
|
||
if (Is_Tagged_Type (Etype (gnat_pool)))
|
||
{
|
||
/* The size is the third parameter; the alignment is the
|
||
same type. */
|
||
Entity_Id gnat_size_type
|
||
= Etype (Next_Formal (Next_Formal (First_Formal (gnat_proc))));
|
||
tree gnu_size_type = gnat_to_gnu_type (gnat_size_type);
|
||
tree gnu_proc = gnat_to_gnu (gnat_proc);
|
||
tree gnu_proc_addr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_proc);
|
||
tree gnu_pool = gnat_to_gnu (gnat_pool);
|
||
tree gnu_pool_addr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_pool);
|
||
tree gnu_args = NULL_TREE;
|
||
tree gnu_call;
|
||
|
||
/* The first arg is always the address of the storage pool; next
|
||
comes the address of the object, for a deallocator, then the
|
||
size and alignment. */
|
||
gnu_args
|
||
= chainon (gnu_args, build_tree_list (NULL_TREE, gnu_pool_addr));
|
||
|
||
if (gnu_obj)
|
||
gnu_args
|
||
= chainon (gnu_args, build_tree_list (NULL_TREE, gnu_obj));
|
||
|
||
gnu_args
|
||
= chainon (gnu_args,
|
||
build_tree_list (NULL_TREE,
|
||
convert (gnu_size_type, gnu_size)));
|
||
gnu_args
|
||
= chainon (gnu_args,
|
||
build_tree_list (NULL_TREE,
|
||
convert (gnu_size_type, gnu_align)));
|
||
|
||
gnu_call = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (gnu_proc)),
|
||
gnu_proc_addr, gnu_args, NULL_TREE);
|
||
TREE_SIDE_EFFECTS (gnu_call) = 1;
|
||
return gnu_call;
|
||
}
|
||
|
||
/* Secondary stack case. */
|
||
else
|
||
{
|
||
/* The size is the second parameter */
|
||
Entity_Id gnat_size_type
|
||
= Etype (Next_Formal (First_Formal (gnat_proc)));
|
||
tree gnu_size_type = gnat_to_gnu_type (gnat_size_type);
|
||
tree gnu_proc = gnat_to_gnu (gnat_proc);
|
||
tree gnu_proc_addr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_proc);
|
||
tree gnu_args = NULL_TREE;
|
||
tree gnu_call;
|
||
|
||
/* The first arg is the address of the object, for a
|
||
deallocator, then the size */
|
||
if (gnu_obj)
|
||
gnu_args
|
||
= chainon (gnu_args, build_tree_list (NULL_TREE, gnu_obj));
|
||
|
||
gnu_args
|
||
= chainon (gnu_args,
|
||
build_tree_list (NULL_TREE,
|
||
convert (gnu_size_type, gnu_size)));
|
||
|
||
gnu_call = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (gnu_proc)),
|
||
gnu_proc_addr, gnu_args, NULL_TREE);
|
||
TREE_SIDE_EFFECTS (gnu_call) = 1;
|
||
return gnu_call;
|
||
}
|
||
}
|
||
|
||
else if (gnu_obj)
|
||
return build_call_1_expr (free_decl, gnu_obj);
|
||
|
||
/* ??? For now, disable variable-sized allocators in the stack since
|
||
we can't yet gimplify an ALLOCATE_EXPR. */
|
||
else if (gnat_pool == -1
|
||
&& TREE_CODE (gnu_size) == INTEGER_CST && !flag_stack_check)
|
||
{
|
||
/* If the size is a constant, we can put it in the fixed portion of
|
||
the stack frame to avoid the need to adjust the stack pointer. */
|
||
if (TREE_CODE (gnu_size) == INTEGER_CST && !flag_stack_check)
|
||
{
|
||
tree gnu_range
|
||
= build_range_type (NULL_TREE, size_one_node, gnu_size);
|
||
tree gnu_array_type = build_array_type (char_type_node, gnu_range);
|
||
tree gnu_decl
|
||
= create_var_decl (get_identifier ("RETVAL"), NULL_TREE,
|
||
gnu_array_type, NULL_TREE, false, false, false,
|
||
false, NULL, gnat_node);
|
||
|
||
return convert (ptr_void_type_node,
|
||
build_unary_op (ADDR_EXPR, NULL_TREE, gnu_decl));
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
#if 0
|
||
return build2 (ALLOCATE_EXPR, ptr_void_type_node, gnu_size, gnu_align);
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
if (Nkind (gnat_node) != N_Allocator || !Comes_From_Source (gnat_node))
|
||
Check_No_Implicit_Heap_Alloc (gnat_node);
|
||
return build_call_1_expr (malloc_decl, gnu_size);
|
||
}
|
||
}
|
||
|
||
/* Build a GCC tree to correspond to allocating an object of TYPE whose
|
||
initial value is INIT, if INIT is nonzero. Convert the expression to
|
||
RESULT_TYPE, which must be some type of pointer. Return the tree.
|
||
GNAT_PROC and GNAT_POOL optionally give the procedure to call and
|
||
the storage pool to use. GNAT_NODE is used to provide an error
|
||
location for restriction violations messages. If IGNORE_INIT_TYPE is
|
||
true, ignore the type of INIT for the purpose of determining the size;
|
||
this will cause the maximum size to be allocated if TYPE is of
|
||
self-referential size. */
|
||
|
||
tree
|
||
build_allocator (tree type, tree init, tree result_type, Entity_Id gnat_proc,
|
||
Entity_Id gnat_pool, Node_Id gnat_node, bool ignore_init_type)
|
||
{
|
||
tree size = TYPE_SIZE_UNIT (type);
|
||
tree result;
|
||
|
||
/* If the initializer, if present, is a NULL_EXPR, just return a new one. */
|
||
if (init && TREE_CODE (init) == NULL_EXPR)
|
||
return build1 (NULL_EXPR, result_type, TREE_OPERAND (init, 0));
|
||
|
||
/* If RESULT_TYPE is a fat or thin pointer, set SIZE to be the sum of the
|
||
sizes of the object and its template. Allocate the whole thing and
|
||
fill in the parts that are known. */
|
||
else if (TYPE_FAT_OR_THIN_POINTER_P (result_type))
|
||
{
|
||
tree storage_type
|
||
= build_unc_object_type_from_ptr (result_type, type,
|
||
get_identifier ("ALLOC"));
|
||
tree template_type = TREE_TYPE (TYPE_FIELDS (storage_type));
|
||
tree storage_ptr_type = build_pointer_type (storage_type);
|
||
tree storage;
|
||
tree template_cons = NULL_TREE;
|
||
|
||
size = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (storage_type),
|
||
init);
|
||
|
||
/* If the size overflows, pass -1 so the allocator will raise
|
||
storage error. */
|
||
if (TREE_CODE (size) == INTEGER_CST && TREE_OVERFLOW (size))
|
||
size = ssize_int (-1);
|
||
|
||
storage = build_call_alloc_dealloc (NULL_TREE, size,
|
||
TYPE_ALIGN (storage_type),
|
||
gnat_proc, gnat_pool, gnat_node);
|
||
storage = convert (storage_ptr_type, protect_multiple_eval (storage));
|
||
|
||
if (TREE_CODE (type) == RECORD_TYPE && TYPE_IS_PADDING_P (type))
|
||
{
|
||
type = TREE_TYPE (TYPE_FIELDS (type));
|
||
|
||
if (init)
|
||
init = convert (type, init);
|
||
}
|
||
|
||
/* If there is an initializing expression, make a constructor for
|
||
the entire object including the bounds and copy it into the
|
||
object. If there is no initializing expression, just set the
|
||
bounds. */
|
||
if (init)
|
||
{
|
||
template_cons = tree_cons (TREE_CHAIN (TYPE_FIELDS (storage_type)),
|
||
init, NULL_TREE);
|
||
template_cons = tree_cons (TYPE_FIELDS (storage_type),
|
||
build_template (template_type, type,
|
||
init),
|
||
template_cons);
|
||
|
||
return convert
|
||
(result_type,
|
||
build2 (COMPOUND_EXPR, storage_ptr_type,
|
||
build_binary_op
|
||
(MODIFY_EXPR, storage_type,
|
||
build_unary_op (INDIRECT_REF, NULL_TREE,
|
||
convert (storage_ptr_type, storage)),
|
||
gnat_build_constructor (storage_type, template_cons)),
|
||
convert (storage_ptr_type, storage)));
|
||
}
|
||
else
|
||
return build2
|
||
(COMPOUND_EXPR, result_type,
|
||
build_binary_op
|
||
(MODIFY_EXPR, template_type,
|
||
build_component_ref
|
||
(build_unary_op (INDIRECT_REF, NULL_TREE,
|
||
convert (storage_ptr_type, storage)),
|
||
NULL_TREE, TYPE_FIELDS (storage_type), 0),
|
||
build_template (template_type, type, NULL_TREE)),
|
||
convert (result_type, convert (storage_ptr_type, storage)));
|
||
}
|
||
|
||
/* If we have an initializing expression, see if its size is simpler
|
||
than the size from the type. */
|
||
if (!ignore_init_type && init && TYPE_SIZE_UNIT (TREE_TYPE (init))
|
||
&& (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (init))) == INTEGER_CST
|
||
|| CONTAINS_PLACEHOLDER_P (size)))
|
||
size = TYPE_SIZE_UNIT (TREE_TYPE (init));
|
||
|
||
/* If the size is still self-referential, reference the initializing
|
||
expression, if it is present. If not, this must have been a
|
||
call to allocate a library-level object, in which case we use
|
||
the maximum size. */
|
||
if (CONTAINS_PLACEHOLDER_P (size))
|
||
{
|
||
if (!ignore_init_type && init)
|
||
size = substitute_placeholder_in_expr (size, init);
|
||
else
|
||
size = max_size (size, true);
|
||
}
|
||
|
||
/* If the size overflows, pass -1 so the allocator will raise
|
||
storage error. */
|
||
if (TREE_CODE (size) == INTEGER_CST && TREE_OVERFLOW (size))
|
||
size = ssize_int (-1);
|
||
|
||
/* If this is a type whose alignment is larger than the
|
||
biggest we support in normal alignment and this is in
|
||
the default storage pool, make an "aligning type", allocate
|
||
it, point to the field we need, and return that. */
|
||
if (TYPE_ALIGN (type) > BIGGEST_ALIGNMENT
|
||
&& No (gnat_proc))
|
||
{
|
||
tree new_type = make_aligning_type (type, TYPE_ALIGN (type), size);
|
||
|
||
result = build_call_alloc_dealloc (NULL_TREE, TYPE_SIZE_UNIT (new_type),
|
||
BIGGEST_ALIGNMENT, Empty,
|
||
Empty, gnat_node);
|
||
result = save_expr (result);
|
||
result = convert (build_pointer_type (new_type), result);
|
||
result = build_unary_op (INDIRECT_REF, NULL_TREE, result);
|
||
result = build_component_ref (result, NULL_TREE,
|
||
TYPE_FIELDS (new_type), 0);
|
||
result = convert (result_type,
|
||
build_unary_op (ADDR_EXPR, NULL_TREE, result));
|
||
}
|
||
else
|
||
result = convert (result_type,
|
||
build_call_alloc_dealloc (NULL_TREE, size,
|
||
TYPE_ALIGN (type),
|
||
gnat_proc,
|
||
gnat_pool,
|
||
gnat_node));
|
||
|
||
/* If we have an initial value, put the new address into a SAVE_EXPR, assign
|
||
the value, and return the address. Do this with a COMPOUND_EXPR. */
|
||
|
||
if (init)
|
||
{
|
||
result = save_expr (result);
|
||
result
|
||
= build2 (COMPOUND_EXPR, TREE_TYPE (result),
|
||
build_binary_op
|
||
(MODIFY_EXPR, NULL_TREE,
|
||
build_unary_op (INDIRECT_REF,
|
||
TREE_TYPE (TREE_TYPE (result)), result),
|
||
init),
|
||
result);
|
||
}
|
||
|
||
return convert (result_type, result);
|
||
}
|
||
|
||
/* Fill in a VMS descriptor for EXPR and return a constructor for it.
|
||
GNAT_FORMAL is how we find the descriptor record. */
|
||
|
||
tree
|
||
fill_vms_descriptor (tree expr, Entity_Id gnat_formal)
|
||
{
|
||
tree record_type = TREE_TYPE (TREE_TYPE (get_gnu_tree (gnat_formal)));
|
||
tree field;
|
||
tree const_list = NULL_TREE;
|
||
|
||
expr = maybe_unconstrained_array (expr);
|
||
gnat_mark_addressable (expr);
|
||
|
||
for (field = TYPE_FIELDS (record_type); field; field = TREE_CHAIN (field))
|
||
const_list
|
||
= tree_cons (field,
|
||
convert (TREE_TYPE (field),
|
||
SUBSTITUTE_PLACEHOLDER_IN_EXPR
|
||
(DECL_INITIAL (field), expr)),
|
||
const_list);
|
||
|
||
return gnat_build_constructor (record_type, nreverse (const_list));
|
||
}
|
||
|
||
/* Indicate that we need to make the address of EXPR_NODE and it therefore
|
||
should not be allocated in a register. Returns true if successful. */
|
||
|
||
bool
|
||
gnat_mark_addressable (tree expr_node)
|
||
{
|
||
while (1)
|
||
switch (TREE_CODE (expr_node))
|
||
{
|
||
case ADDR_EXPR:
|
||
case COMPONENT_REF:
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
case VIEW_CONVERT_EXPR:
|
||
case CONVERT_EXPR:
|
||
case NON_LVALUE_EXPR:
|
||
case NOP_EXPR:
|
||
expr_node = TREE_OPERAND (expr_node, 0);
|
||
break;
|
||
|
||
case CONSTRUCTOR:
|
||
TREE_ADDRESSABLE (expr_node) = 1;
|
||
return true;
|
||
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
case RESULT_DECL:
|
||
TREE_ADDRESSABLE (expr_node) = 1;
|
||
return true;
|
||
|
||
case FUNCTION_DECL:
|
||
TREE_ADDRESSABLE (expr_node) = 1;
|
||
return true;
|
||
|
||
case CONST_DECL:
|
||
return (DECL_CONST_CORRESPONDING_VAR (expr_node)
|
||
&& (gnat_mark_addressable
|
||
(DECL_CONST_CORRESPONDING_VAR (expr_node))));
|
||
default:
|
||
return true;
|
||
}
|
||
}
|