2006-10-31 Robert Dewar <dewar@adacore.com> Thomas Quinot <quinot@adacore.com> * sem_ch13.adb: Storage pool cannot be given for access to subprogram type. (New_Stream_Subprogram): When processing an attribute definition clause for a stream-oriented subprogram, record an entity node occurring at the point of clause to use for checking the visibility of the clause, as defined by 8.3(23) as amended by AI-195. (New_Stream_Subprogram): New procedure, factoring behaviour from both New_Stream_Function and New_Stream_Procedure. (New_Stream_Function, New_Stream_Procedure): Removed. (Analyze_Attribute_Definition_Clause, case Address): Check new Alignment_Check check From-SVN: r118301
3895 lines
133 KiB
Ada
3895 lines
133 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT COMPILER COMPONENTS --
|
|
-- --
|
|
-- S E M _ C H 1 3 --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
|
|
-- --
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 2, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
|
-- for more details. You should have received a copy of the GNU General --
|
|
-- Public License distributed with GNAT; see file COPYING. If not, write --
|
|
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
|
|
-- Boston, MA 02110-1301, USA. --
|
|
-- --
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
with Atree; use Atree;
|
|
with Checks; use Checks;
|
|
with Einfo; use Einfo;
|
|
with Errout; use Errout;
|
|
with Exp_Tss; use Exp_Tss;
|
|
with Exp_Util; use Exp_Util;
|
|
with Lib; use Lib;
|
|
with Nlists; use Nlists;
|
|
with Nmake; use Nmake;
|
|
with Opt; use Opt;
|
|
with Restrict; use Restrict;
|
|
with Rident; use Rident;
|
|
with Rtsfind; use Rtsfind;
|
|
with Sem; use Sem;
|
|
with Sem_Ch8; use Sem_Ch8;
|
|
with Sem_Eval; use Sem_Eval;
|
|
with Sem_Res; use Sem_Res;
|
|
with Sem_Type; use Sem_Type;
|
|
with Sem_Util; use Sem_Util;
|
|
with Sem_Warn; use Sem_Warn;
|
|
with Snames; use Snames;
|
|
with Stand; use Stand;
|
|
with Sinfo; use Sinfo;
|
|
with Table;
|
|
with Targparm; use Targparm;
|
|
with Ttypes; use Ttypes;
|
|
with Tbuild; use Tbuild;
|
|
with Urealp; use Urealp;
|
|
|
|
with GNAT.Heap_Sort_A; use GNAT.Heap_Sort_A;
|
|
|
|
package body Sem_Ch13 is
|
|
|
|
SSU : constant Pos := System_Storage_Unit;
|
|
-- Convenient short hand for commonly used constant
|
|
|
|
-----------------------
|
|
-- Local Subprograms --
|
|
-----------------------
|
|
|
|
procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id);
|
|
-- This routine is called after setting the Esize of type entity Typ.
|
|
-- The purpose is to deal with the situation where an aligment has been
|
|
-- inherited from a derived type that is no longer appropriate for the
|
|
-- new Esize value. In this case, we reset the Alignment to unknown.
|
|
|
|
procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
|
|
-- Given two entities for record components or discriminants, checks
|
|
-- if they hav overlapping component clauses and issues errors if so.
|
|
|
|
function Get_Alignment_Value (Expr : Node_Id) return Uint;
|
|
-- Given the expression for an alignment value, returns the corresponding
|
|
-- Uint value. If the value is inappropriate, then error messages are
|
|
-- posted as required, and a value of No_Uint is returned.
|
|
|
|
function Is_Operational_Item (N : Node_Id) return Boolean;
|
|
-- A specification for a stream attribute is allowed before the full
|
|
-- type is declared, as explained in AI-00137 and the corrigendum.
|
|
-- Attributes that do not specify a representation characteristic are
|
|
-- operational attributes.
|
|
|
|
function Address_Aliased_Entity (N : Node_Id) return Entity_Id;
|
|
-- If expression N is of the form E'Address, return E
|
|
|
|
procedure Mark_Aliased_Address_As_Volatile (N : Node_Id);
|
|
-- This is used for processing of an address representation clause. If
|
|
-- the expression N is of the form of K'Address, then the entity that
|
|
-- is associated with K is marked as volatile.
|
|
|
|
procedure New_Stream_Subprogram
|
|
(N : Node_Id;
|
|
Ent : Entity_Id;
|
|
Subp : Entity_Id;
|
|
Nam : TSS_Name_Type);
|
|
-- Create a subprogram renaming of a given stream attribute to the
|
|
-- designated subprogram and then in the tagged case, provide this as a
|
|
-- primitive operation, or in the non-tagged case make an appropriate TSS
|
|
-- entry. This is more properly an expansion activity than just semantics,
|
|
-- but the presence of user-defined stream functions for limited types is a
|
|
-- legality check, which is why this takes place here rather than in
|
|
-- exp_ch13, where it was previously. Nam indicates the name of the TSS
|
|
-- function to be generated.
|
|
--
|
|
-- To avoid elaboration anomalies with freeze nodes, for untagged types
|
|
-- we generate both a subprogram declaration and a subprogram renaming
|
|
-- declaration, so that the attribute specification is handled as a
|
|
-- renaming_as_body. For tagged types, the specification is one of the
|
|
-- primitive specs.
|
|
|
|
----------------------------------------------
|
|
-- Table for Validate_Unchecked_Conversions --
|
|
----------------------------------------------
|
|
|
|
-- The following table collects unchecked conversions for validation.
|
|
-- Entries are made by Validate_Unchecked_Conversion and then the
|
|
-- call to Validate_Unchecked_Conversions does the actual error
|
|
-- checking and posting of warnings. The reason for this delayed
|
|
-- processing is to take advantage of back-annotations of size and
|
|
-- alignment values peformed by the back end.
|
|
|
|
type UC_Entry is record
|
|
Enode : Node_Id; -- node used for posting warnings
|
|
Source : Entity_Id; -- source type for unchecked conversion
|
|
Target : Entity_Id; -- target type for unchecked conversion
|
|
end record;
|
|
|
|
package Unchecked_Conversions is new Table.Table (
|
|
Table_Component_Type => UC_Entry,
|
|
Table_Index_Type => Int,
|
|
Table_Low_Bound => 1,
|
|
Table_Initial => 50,
|
|
Table_Increment => 200,
|
|
Table_Name => "Unchecked_Conversions");
|
|
|
|
----------------------------
|
|
-- Address_Aliased_Entity --
|
|
----------------------------
|
|
|
|
function Address_Aliased_Entity (N : Node_Id) return Entity_Id is
|
|
begin
|
|
if Nkind (N) = N_Attribute_Reference
|
|
and then Attribute_Name (N) = Name_Address
|
|
then
|
|
declare
|
|
Nam : Node_Id := Prefix (N);
|
|
begin
|
|
while False
|
|
or else Nkind (Nam) = N_Selected_Component
|
|
or else Nkind (Nam) = N_Indexed_Component
|
|
loop
|
|
Nam := Prefix (Nam);
|
|
end loop;
|
|
|
|
if Is_Entity_Name (Nam) then
|
|
return Entity (Nam);
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
return Empty;
|
|
end Address_Aliased_Entity;
|
|
|
|
--------------------------------------
|
|
-- Alignment_Check_For_Esize_Change --
|
|
--------------------------------------
|
|
|
|
procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id) is
|
|
begin
|
|
-- If the alignment is known, and not set by a rep clause, and is
|
|
-- inconsistent with the size being set, then reset it to unknown,
|
|
-- we assume in this case that the size overrides the inherited
|
|
-- alignment, and that the alignment must be recomputed.
|
|
|
|
if Known_Alignment (Typ)
|
|
and then not Has_Alignment_Clause (Typ)
|
|
and then Esize (Typ) mod (Alignment (Typ) * SSU) /= 0
|
|
then
|
|
Init_Alignment (Typ);
|
|
end if;
|
|
end Alignment_Check_For_Esize_Change;
|
|
|
|
-----------------------
|
|
-- Analyze_At_Clause --
|
|
-----------------------
|
|
|
|
-- An at clause is replaced by the corresponding Address attribute
|
|
-- definition clause that is the preferred approach in Ada 95.
|
|
|
|
procedure Analyze_At_Clause (N : Node_Id) is
|
|
begin
|
|
Check_Restriction (No_Obsolescent_Features, N);
|
|
|
|
if Warn_On_Obsolescent_Feature then
|
|
Error_Msg_N
|
|
("at clause is an obsolescent feature ('R'M 'J.7(2))?", N);
|
|
Error_Msg_N
|
|
("\use address attribute definition clause instead?", N);
|
|
end if;
|
|
|
|
Rewrite (N,
|
|
Make_Attribute_Definition_Clause (Sloc (N),
|
|
Name => Identifier (N),
|
|
Chars => Name_Address,
|
|
Expression => Expression (N)));
|
|
Analyze_Attribute_Definition_Clause (N);
|
|
end Analyze_At_Clause;
|
|
|
|
-----------------------------------------
|
|
-- Analyze_Attribute_Definition_Clause --
|
|
-----------------------------------------
|
|
|
|
procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Nam : constant Node_Id := Name (N);
|
|
Attr : constant Name_Id := Chars (N);
|
|
Expr : constant Node_Id := Expression (N);
|
|
Id : constant Attribute_Id := Get_Attribute_Id (Attr);
|
|
Ent : Entity_Id;
|
|
U_Ent : Entity_Id;
|
|
|
|
FOnly : Boolean := False;
|
|
-- Reset to True for subtype specific attribute (Alignment, Size)
|
|
-- and for stream attributes, i.e. those cases where in the call
|
|
-- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
|
|
-- rules are checked. Note that the case of stream attributes is not
|
|
-- clear from the RM, but see AI95-00137. Also, the RM seems to
|
|
-- disallow Storage_Size for derived task types, but that is also
|
|
-- clearly unintentional.
|
|
|
|
procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
|
|
-- Common processing for 'Read, 'Write, 'Input and 'Output attribute
|
|
-- definition clauses.
|
|
|
|
procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
|
|
Subp : Entity_Id := Empty;
|
|
I : Interp_Index;
|
|
It : Interp;
|
|
Pnam : Entity_Id;
|
|
|
|
Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
|
|
|
|
function Has_Good_Profile (Subp : Entity_Id) return Boolean;
|
|
-- Return true if the entity is a subprogram with an appropriate
|
|
-- profile for the attribute being defined.
|
|
|
|
----------------------
|
|
-- Has_Good_Profile --
|
|
----------------------
|
|
|
|
function Has_Good_Profile (Subp : Entity_Id) return Boolean is
|
|
F : Entity_Id;
|
|
Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
|
|
Expected_Ekind : constant array (Boolean) of Entity_Kind :=
|
|
(False => E_Procedure, True => E_Function);
|
|
Typ : Entity_Id;
|
|
|
|
begin
|
|
if Ekind (Subp) /= Expected_Ekind (Is_Function) then
|
|
return False;
|
|
end if;
|
|
|
|
F := First_Formal (Subp);
|
|
|
|
if No (F)
|
|
or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
|
|
or else Designated_Type (Etype (F)) /=
|
|
Class_Wide_Type (RTE (RE_Root_Stream_Type))
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
if not Is_Function then
|
|
Next_Formal (F);
|
|
|
|
declare
|
|
Expected_Mode : constant array (Boolean) of Entity_Kind :=
|
|
(False => E_In_Parameter,
|
|
True => E_Out_Parameter);
|
|
begin
|
|
if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
|
|
return False;
|
|
end if;
|
|
end;
|
|
|
|
Typ := Etype (F);
|
|
|
|
else
|
|
Typ := Etype (Subp);
|
|
end if;
|
|
|
|
return Base_Type (Typ) = Base_Type (Ent)
|
|
and then No (Next_Formal (F));
|
|
|
|
end Has_Good_Profile;
|
|
|
|
-- Start of processing for Analyze_Stream_TSS_Definition
|
|
|
|
begin
|
|
FOnly := True;
|
|
|
|
if not Is_Type (U_Ent) then
|
|
Error_Msg_N ("local name must be a subtype", Nam);
|
|
return;
|
|
end if;
|
|
|
|
Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
|
|
|
|
-- If Pnam is present, it can be either inherited from an ancestor
|
|
-- type (in which case it is legal to redefine it for this type), or
|
|
-- be a previous definition of the attribute for the same type (in
|
|
-- which case it is illegal).
|
|
|
|
-- In the first case, it will have been analyzed already, and we
|
|
-- can check that its profile does not match the expected profile
|
|
-- for a stream attribute of U_Ent. In the second case, either Pnam
|
|
-- has been analyzed (and has the expected profile), or it has not
|
|
-- been analyzed yet (case of a type that has not been frozen yet
|
|
-- and for which the stream attribute has been set using Set_TSS).
|
|
|
|
if Present (Pnam)
|
|
and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
|
|
then
|
|
Error_Msg_Sloc := Sloc (Pnam);
|
|
Error_Msg_Name_1 := Attr;
|
|
Error_Msg_N ("% attribute already defined #", Nam);
|
|
return;
|
|
end if;
|
|
|
|
Analyze (Expr);
|
|
|
|
if Is_Entity_Name (Expr) then
|
|
if not Is_Overloaded (Expr) then
|
|
if Has_Good_Profile (Entity (Expr)) then
|
|
Subp := Entity (Expr);
|
|
end if;
|
|
|
|
else
|
|
Get_First_Interp (Expr, I, It);
|
|
|
|
while Present (It.Nam) loop
|
|
if Has_Good_Profile (It.Nam) then
|
|
Subp := It.Nam;
|
|
exit;
|
|
end if;
|
|
|
|
Get_Next_Interp (I, It);
|
|
end loop;
|
|
end if;
|
|
end if;
|
|
|
|
if Present (Subp) then
|
|
if Is_Abstract (Subp) then
|
|
Error_Msg_N ("stream subprogram must not be abstract", Expr);
|
|
return;
|
|
end if;
|
|
|
|
Set_Entity (Expr, Subp);
|
|
Set_Etype (Expr, Etype (Subp));
|
|
|
|
New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
|
|
|
|
else
|
|
Error_Msg_Name_1 := Attr;
|
|
Error_Msg_N ("incorrect expression for% attribute", Expr);
|
|
end if;
|
|
end Analyze_Stream_TSS_Definition;
|
|
|
|
-- Start of processing for Analyze_Attribute_Definition_Clause
|
|
|
|
begin
|
|
Analyze (Nam);
|
|
Ent := Entity (Nam);
|
|
|
|
if Rep_Item_Too_Early (Ent, N) then
|
|
return;
|
|
end if;
|
|
|
|
-- Rep clause applies to full view of incomplete type or private type if
|
|
-- we have one (if not, this is a premature use of the type). However,
|
|
-- certain semantic checks need to be done on the specified entity (i.e.
|
|
-- the private view), so we save it in Ent.
|
|
|
|
if Is_Private_Type (Ent)
|
|
and then Is_Derived_Type (Ent)
|
|
and then not Is_Tagged_Type (Ent)
|
|
and then No (Full_View (Ent))
|
|
then
|
|
-- If this is a private type whose completion is a derivation from
|
|
-- another private type, there is no full view, and the attribute
|
|
-- belongs to the type itself, not its underlying parent.
|
|
|
|
U_Ent := Ent;
|
|
|
|
elsif Ekind (Ent) = E_Incomplete_Type then
|
|
|
|
-- The attribute applies to the full view, set the entity of the
|
|
-- attribute definition accordingly.
|
|
|
|
Ent := Underlying_Type (Ent);
|
|
U_Ent := Ent;
|
|
Set_Entity (Nam, Ent);
|
|
|
|
else
|
|
U_Ent := Underlying_Type (Ent);
|
|
end if;
|
|
|
|
-- Complete other routine error checks
|
|
|
|
if Etype (Nam) = Any_Type then
|
|
return;
|
|
|
|
elsif Scope (Ent) /= Current_Scope then
|
|
Error_Msg_N ("entity must be declared in this scope", Nam);
|
|
return;
|
|
|
|
elsif No (U_Ent) then
|
|
U_Ent := Ent;
|
|
|
|
elsif Is_Type (U_Ent)
|
|
and then not Is_First_Subtype (U_Ent)
|
|
and then Id /= Attribute_Object_Size
|
|
and then Id /= Attribute_Value_Size
|
|
and then not From_At_Mod (N)
|
|
then
|
|
Error_Msg_N ("cannot specify attribute for subtype", Nam);
|
|
return;
|
|
end if;
|
|
|
|
-- Switch on particular attribute
|
|
|
|
case Id is
|
|
|
|
-------------
|
|
-- Address --
|
|
-------------
|
|
|
|
-- Address attribute definition clause
|
|
|
|
when Attribute_Address => Address : begin
|
|
Analyze_And_Resolve (Expr, RTE (RE_Address));
|
|
|
|
if Present (Address_Clause (U_Ent)) then
|
|
Error_Msg_N ("address already given for &", Nam);
|
|
|
|
-- Case of address clause for subprogram
|
|
|
|
elsif Is_Subprogram (U_Ent) then
|
|
if Has_Homonym (U_Ent) then
|
|
Error_Msg_N
|
|
("address clause cannot be given " &
|
|
"for overloaded subprogram",
|
|
Nam);
|
|
end if;
|
|
|
|
-- For subprograms, all address clauses are permitted,
|
|
-- and we mark the subprogram as having a deferred freeze
|
|
-- so that Gigi will not elaborate it too soon.
|
|
|
|
-- Above needs more comments, what is too soon about???
|
|
|
|
Set_Has_Delayed_Freeze (U_Ent);
|
|
|
|
-- Case of address clause for entry
|
|
|
|
elsif Ekind (U_Ent) = E_Entry then
|
|
if Nkind (Parent (N)) = N_Task_Body then
|
|
Error_Msg_N
|
|
("entry address must be specified in task spec", Nam);
|
|
end if;
|
|
|
|
-- For entries, we require a constant address
|
|
|
|
Check_Constant_Address_Clause (Expr, U_Ent);
|
|
|
|
if Is_Task_Type (Scope (U_Ent))
|
|
and then Comes_From_Source (Scope (U_Ent))
|
|
then
|
|
Error_Msg_N
|
|
("?entry address declared for entry in task type", N);
|
|
Error_Msg_N
|
|
("\?only one task can be declared of this type", N);
|
|
end if;
|
|
|
|
Check_Restriction (No_Obsolescent_Features, N);
|
|
|
|
if Warn_On_Obsolescent_Feature then
|
|
Error_Msg_N
|
|
("attaching interrupt to task entry is an " &
|
|
"obsolescent feature ('R'M 'J.7.1)?", N);
|
|
Error_Msg_N
|
|
("\use interrupt procedure instead?", N);
|
|
end if;
|
|
|
|
-- Case of an address clause for a controlled object:
|
|
-- erroneous execution.
|
|
|
|
elsif Is_Controlled (Etype (U_Ent)) then
|
|
Error_Msg_NE
|
|
("?controlled object& must not be overlaid", Nam, U_Ent);
|
|
Error_Msg_N
|
|
("\?Program_Error will be raised at run time", Nam);
|
|
Insert_Action (Declaration_Node (U_Ent),
|
|
Make_Raise_Program_Error (Loc,
|
|
Reason => PE_Overlaid_Controlled_Object));
|
|
|
|
-- Case of address clause for a (non-controlled) object
|
|
|
|
elsif
|
|
Ekind (U_Ent) = E_Variable
|
|
or else
|
|
Ekind (U_Ent) = E_Constant
|
|
then
|
|
declare
|
|
Expr : constant Node_Id := Expression (N);
|
|
Aent : constant Entity_Id := Address_Aliased_Entity (Expr);
|
|
|
|
begin
|
|
-- Exported variables cannot have an address clause,
|
|
-- because this cancels the effect of the pragma Export
|
|
|
|
if Is_Exported (U_Ent) then
|
|
Error_Msg_N
|
|
("cannot export object with address clause", Nam);
|
|
|
|
-- Overlaying controlled objects is erroneous
|
|
|
|
elsif Present (Aent)
|
|
and then Is_Controlled (Etype (Aent))
|
|
then
|
|
Error_Msg_N
|
|
("?controlled object must not be overlaid", Expr);
|
|
Error_Msg_N
|
|
("\?Program_Error will be raised at run time", Expr);
|
|
Insert_Action (Declaration_Node (U_Ent),
|
|
Make_Raise_Program_Error (Loc,
|
|
Reason => PE_Overlaid_Controlled_Object));
|
|
|
|
elsif Present (Aent)
|
|
and then Ekind (U_Ent) = E_Constant
|
|
and then Ekind (Aent) /= E_Constant
|
|
then
|
|
Error_Msg_N ("constant overlays a variable?", Expr);
|
|
|
|
elsif Present (Renamed_Object (U_Ent)) then
|
|
Error_Msg_N
|
|
("address clause not allowed"
|
|
& " for a renaming declaration ('R'M 13.1(6))", Nam);
|
|
|
|
-- Imported variables can have an address clause, but then
|
|
-- the import is pretty meaningless except to suppress
|
|
-- initializations, so we do not need such variables to
|
|
-- be statically allocated (and in fact it causes trouble
|
|
-- if the address clause is a local value).
|
|
|
|
elsif Is_Imported (U_Ent) then
|
|
Set_Is_Statically_Allocated (U_Ent, False);
|
|
end if;
|
|
|
|
-- We mark a possible modification of a variable with an
|
|
-- address clause, since it is likely aliasing is occurring.
|
|
|
|
Note_Possible_Modification (Nam);
|
|
|
|
-- Here we are checking for explicit overlap of one
|
|
-- variable by another, and if we find this, then we
|
|
-- mark the overlapped variable as also being aliased.
|
|
|
|
-- First case is where we have an explicit
|
|
|
|
-- for J'Address use K'Address;
|
|
|
|
-- In this case, we mark K as volatile
|
|
|
|
Mark_Aliased_Address_As_Volatile (Expr);
|
|
|
|
-- Second case is where we have a constant whose
|
|
-- definition is of the form of an address as in:
|
|
|
|
-- A : constant Address := K'Address;
|
|
-- ...
|
|
-- for B'Address use A;
|
|
|
|
-- In this case we also mark K as volatile
|
|
|
|
if Is_Entity_Name (Expr) then
|
|
declare
|
|
Ent : constant Entity_Id := Entity (Expr);
|
|
Decl : constant Node_Id := Declaration_Node (Ent);
|
|
|
|
begin
|
|
if Ekind (Ent) = E_Constant
|
|
and then Nkind (Decl) = N_Object_Declaration
|
|
and then Present (Expression (Decl))
|
|
then
|
|
Mark_Aliased_Address_As_Volatile
|
|
(Expression (Decl));
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- Legality checks on the address clause for initialized
|
|
-- objects is deferred until the freeze point, because
|
|
-- a subsequent pragma might indicate that the object is
|
|
-- imported and thus not initialized.
|
|
|
|
Set_Has_Delayed_Freeze (U_Ent);
|
|
|
|
if Is_Exported (U_Ent) then
|
|
Error_Msg_N
|
|
("& cannot be exported if an address clause is given",
|
|
Nam);
|
|
Error_Msg_N
|
|
("\define and export a variable " &
|
|
"that holds its address instead",
|
|
Nam);
|
|
end if;
|
|
|
|
-- Entity has delayed freeze, so we will generate an
|
|
-- alignment check at the freeze point unless suppressed.
|
|
|
|
if not Range_Checks_Suppressed (U_Ent)
|
|
and then not Alignment_Checks_Suppressed (U_Ent)
|
|
then
|
|
Set_Check_Address_Alignment (N);
|
|
end if;
|
|
|
|
-- Kill the size check code, since we are not allocating
|
|
-- the variable, it is somewhere else.
|
|
|
|
Kill_Size_Check_Code (U_Ent);
|
|
end;
|
|
|
|
-- Not a valid entity for an address clause
|
|
|
|
else
|
|
Error_Msg_N ("address cannot be given for &", Nam);
|
|
end if;
|
|
end Address;
|
|
|
|
---------------
|
|
-- Alignment --
|
|
---------------
|
|
|
|
-- Alignment attribute definition clause
|
|
|
|
when Attribute_Alignment => Alignment_Block : declare
|
|
Align : constant Uint := Get_Alignment_Value (Expr);
|
|
|
|
begin
|
|
FOnly := True;
|
|
|
|
if not Is_Type (U_Ent)
|
|
and then Ekind (U_Ent) /= E_Variable
|
|
and then Ekind (U_Ent) /= E_Constant
|
|
then
|
|
Error_Msg_N ("alignment cannot be given for &", Nam);
|
|
|
|
elsif Has_Alignment_Clause (U_Ent) then
|
|
Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
|
|
Error_Msg_N ("alignment clause previously given#", N);
|
|
|
|
elsif Align /= No_Uint then
|
|
Set_Has_Alignment_Clause (U_Ent);
|
|
Set_Alignment (U_Ent, Align);
|
|
end if;
|
|
end Alignment_Block;
|
|
|
|
---------------
|
|
-- Bit_Order --
|
|
---------------
|
|
|
|
-- Bit_Order attribute definition clause
|
|
|
|
when Attribute_Bit_Order => Bit_Order : declare
|
|
begin
|
|
if not Is_Record_Type (U_Ent) then
|
|
Error_Msg_N
|
|
("Bit_Order can only be defined for record type", Nam);
|
|
|
|
else
|
|
Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
|
|
|
|
if Etype (Expr) = Any_Type then
|
|
return;
|
|
|
|
elsif not Is_Static_Expression (Expr) then
|
|
Flag_Non_Static_Expr
|
|
("Bit_Order requires static expression!", Expr);
|
|
|
|
else
|
|
if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
|
|
Set_Reverse_Bit_Order (U_Ent, True);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end Bit_Order;
|
|
|
|
--------------------
|
|
-- Component_Size --
|
|
--------------------
|
|
|
|
-- Component_Size attribute definition clause
|
|
|
|
when Attribute_Component_Size => Component_Size_Case : declare
|
|
Csize : constant Uint := Static_Integer (Expr);
|
|
Btype : Entity_Id;
|
|
Biased : Boolean;
|
|
New_Ctyp : Entity_Id;
|
|
Decl : Node_Id;
|
|
|
|
begin
|
|
if not Is_Array_Type (U_Ent) then
|
|
Error_Msg_N ("component size requires array type", Nam);
|
|
return;
|
|
end if;
|
|
|
|
Btype := Base_Type (U_Ent);
|
|
|
|
if Has_Component_Size_Clause (Btype) then
|
|
Error_Msg_N
|
|
("component size clase for& previously given", Nam);
|
|
|
|
elsif Csize /= No_Uint then
|
|
Check_Size (Expr, Component_Type (Btype), Csize, Biased);
|
|
|
|
if Has_Aliased_Components (Btype)
|
|
and then Csize < 32
|
|
and then Csize /= 8
|
|
and then Csize /= 16
|
|
then
|
|
Error_Msg_N
|
|
("component size incorrect for aliased components", N);
|
|
return;
|
|
end if;
|
|
|
|
-- For the biased case, build a declaration for a subtype
|
|
-- that will be used to represent the biased subtype that
|
|
-- reflects the biased representation of components. We need
|
|
-- this subtype to get proper conversions on referencing
|
|
-- elements of the array.
|
|
|
|
if Biased then
|
|
New_Ctyp :=
|
|
Make_Defining_Identifier (Loc,
|
|
Chars => New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
|
|
|
|
Decl :=
|
|
Make_Subtype_Declaration (Loc,
|
|
Defining_Identifier => New_Ctyp,
|
|
Subtype_Indication =>
|
|
New_Occurrence_Of (Component_Type (Btype), Loc));
|
|
|
|
Set_Parent (Decl, N);
|
|
Analyze (Decl, Suppress => All_Checks);
|
|
|
|
Set_Has_Delayed_Freeze (New_Ctyp, False);
|
|
Set_Esize (New_Ctyp, Csize);
|
|
Set_RM_Size (New_Ctyp, Csize);
|
|
Init_Alignment (New_Ctyp);
|
|
Set_Has_Biased_Representation (New_Ctyp, True);
|
|
Set_Is_Itype (New_Ctyp, True);
|
|
Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
|
|
|
|
Set_Component_Type (Btype, New_Ctyp);
|
|
end if;
|
|
|
|
Set_Component_Size (Btype, Csize);
|
|
Set_Has_Component_Size_Clause (Btype, True);
|
|
Set_Has_Non_Standard_Rep (Btype, True);
|
|
end if;
|
|
end Component_Size_Case;
|
|
|
|
------------------
|
|
-- External_Tag --
|
|
------------------
|
|
|
|
when Attribute_External_Tag => External_Tag :
|
|
begin
|
|
if not Is_Tagged_Type (U_Ent) then
|
|
Error_Msg_N ("should be a tagged type", Nam);
|
|
end if;
|
|
|
|
Analyze_And_Resolve (Expr, Standard_String);
|
|
|
|
if not Is_Static_Expression (Expr) then
|
|
Flag_Non_Static_Expr
|
|
("static string required for tag name!", Nam);
|
|
end if;
|
|
|
|
Set_Has_External_Tag_Rep_Clause (U_Ent);
|
|
end External_Tag;
|
|
|
|
-----------
|
|
-- Input --
|
|
-----------
|
|
|
|
when Attribute_Input =>
|
|
Analyze_Stream_TSS_Definition (TSS_Stream_Input);
|
|
Set_Has_Specified_Stream_Input (Ent);
|
|
|
|
-------------------
|
|
-- Machine_Radix --
|
|
-------------------
|
|
|
|
-- Machine radix attribute definition clause
|
|
|
|
when Attribute_Machine_Radix => Machine_Radix : declare
|
|
Radix : constant Uint := Static_Integer (Expr);
|
|
|
|
begin
|
|
if not Is_Decimal_Fixed_Point_Type (U_Ent) then
|
|
Error_Msg_N ("decimal fixed-point type expected for &", Nam);
|
|
|
|
elsif Has_Machine_Radix_Clause (U_Ent) then
|
|
Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
|
|
Error_Msg_N ("machine radix clause previously given#", N);
|
|
|
|
elsif Radix /= No_Uint then
|
|
Set_Has_Machine_Radix_Clause (U_Ent);
|
|
Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
|
|
|
|
if Radix = 2 then
|
|
null;
|
|
elsif Radix = 10 then
|
|
Set_Machine_Radix_10 (U_Ent);
|
|
else
|
|
Error_Msg_N ("machine radix value must be 2 or 10", Expr);
|
|
end if;
|
|
end if;
|
|
end Machine_Radix;
|
|
|
|
-----------------
|
|
-- Object_Size --
|
|
-----------------
|
|
|
|
-- Object_Size attribute definition clause
|
|
|
|
when Attribute_Object_Size => Object_Size : declare
|
|
Size : constant Uint := Static_Integer (Expr);
|
|
Biased : Boolean;
|
|
|
|
begin
|
|
if not Is_Type (U_Ent) then
|
|
Error_Msg_N ("Object_Size cannot be given for &", Nam);
|
|
|
|
elsif Has_Object_Size_Clause (U_Ent) then
|
|
Error_Msg_N ("Object_Size already given for &", Nam);
|
|
|
|
else
|
|
Check_Size (Expr, U_Ent, Size, Biased);
|
|
|
|
if Size /= 8
|
|
and then
|
|
Size /= 16
|
|
and then
|
|
Size /= 32
|
|
and then
|
|
UI_Mod (Size, 64) /= 0
|
|
then
|
|
Error_Msg_N
|
|
("Object_Size must be 8, 16, 32, or multiple of 64",
|
|
Expr);
|
|
end if;
|
|
|
|
Set_Esize (U_Ent, Size);
|
|
Set_Has_Object_Size_Clause (U_Ent);
|
|
Alignment_Check_For_Esize_Change (U_Ent);
|
|
end if;
|
|
end Object_Size;
|
|
|
|
------------
|
|
-- Output --
|
|
------------
|
|
|
|
when Attribute_Output =>
|
|
Analyze_Stream_TSS_Definition (TSS_Stream_Output);
|
|
Set_Has_Specified_Stream_Output (Ent);
|
|
|
|
----------
|
|
-- Read --
|
|
----------
|
|
|
|
when Attribute_Read =>
|
|
Analyze_Stream_TSS_Definition (TSS_Stream_Read);
|
|
Set_Has_Specified_Stream_Read (Ent);
|
|
|
|
----------
|
|
-- Size --
|
|
----------
|
|
|
|
-- Size attribute definition clause
|
|
|
|
when Attribute_Size => Size : declare
|
|
Size : constant Uint := Static_Integer (Expr);
|
|
Etyp : Entity_Id;
|
|
Biased : Boolean;
|
|
|
|
begin
|
|
FOnly := True;
|
|
|
|
if Has_Size_Clause (U_Ent) then
|
|
Error_Msg_N ("size already given for &", Nam);
|
|
|
|
elsif not Is_Type (U_Ent)
|
|
and then Ekind (U_Ent) /= E_Variable
|
|
and then Ekind (U_Ent) /= E_Constant
|
|
then
|
|
Error_Msg_N ("size cannot be given for &", Nam);
|
|
|
|
elsif Is_Array_Type (U_Ent)
|
|
and then not Is_Constrained (U_Ent)
|
|
then
|
|
Error_Msg_N
|
|
("size cannot be given for unconstrained array", Nam);
|
|
|
|
elsif Size /= No_Uint then
|
|
if Is_Type (U_Ent) then
|
|
Etyp := U_Ent;
|
|
else
|
|
Etyp := Etype (U_Ent);
|
|
end if;
|
|
|
|
-- Check size, note that Gigi is in charge of checking
|
|
-- that the size of an array or record type is OK. Also
|
|
-- we do not check the size in the ordinary fixed-point
|
|
-- case, since it is too early to do so (there may be a
|
|
-- subsequent small clause that affects the size). We can
|
|
-- check the size if a small clause has already been given.
|
|
|
|
if not Is_Ordinary_Fixed_Point_Type (U_Ent)
|
|
or else Has_Small_Clause (U_Ent)
|
|
then
|
|
Check_Size (Expr, Etyp, Size, Biased);
|
|
Set_Has_Biased_Representation (U_Ent, Biased);
|
|
end if;
|
|
|
|
-- For types set RM_Size and Esize if possible
|
|
|
|
if Is_Type (U_Ent) then
|
|
Set_RM_Size (U_Ent, Size);
|
|
|
|
-- For scalar types, increase Object_Size to power of 2,
|
|
-- but not less than a storage unit in any case (i.e.,
|
|
-- normally this means it will be byte addressable).
|
|
|
|
if Is_Scalar_Type (U_Ent) then
|
|
if Size <= System_Storage_Unit then
|
|
Init_Esize (U_Ent, System_Storage_Unit);
|
|
elsif Size <= 16 then
|
|
Init_Esize (U_Ent, 16);
|
|
elsif Size <= 32 then
|
|
Init_Esize (U_Ent, 32);
|
|
else
|
|
Set_Esize (U_Ent, (Size + 63) / 64 * 64);
|
|
end if;
|
|
|
|
-- For all other types, object size = value size. The
|
|
-- backend will adjust as needed.
|
|
|
|
else
|
|
Set_Esize (U_Ent, Size);
|
|
end if;
|
|
|
|
Alignment_Check_For_Esize_Change (U_Ent);
|
|
|
|
-- For objects, set Esize only
|
|
|
|
else
|
|
if Is_Elementary_Type (Etyp) then
|
|
if Size /= System_Storage_Unit
|
|
and then
|
|
Size /= System_Storage_Unit * 2
|
|
and then
|
|
Size /= System_Storage_Unit * 4
|
|
and then
|
|
Size /= System_Storage_Unit * 8
|
|
then
|
|
Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
|
|
Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
|
|
Error_Msg_N
|
|
("size for primitive object must be a power of 2"
|
|
& " in the range ^-^", N);
|
|
end if;
|
|
end if;
|
|
|
|
Set_Esize (U_Ent, Size);
|
|
end if;
|
|
|
|
Set_Has_Size_Clause (U_Ent);
|
|
end if;
|
|
end Size;
|
|
|
|
-----------
|
|
-- Small --
|
|
-----------
|
|
|
|
-- Small attribute definition clause
|
|
|
|
when Attribute_Small => Small : declare
|
|
Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
|
|
Small : Ureal;
|
|
|
|
begin
|
|
Analyze_And_Resolve (Expr, Any_Real);
|
|
|
|
if Etype (Expr) = Any_Type then
|
|
return;
|
|
|
|
elsif not Is_Static_Expression (Expr) then
|
|
Flag_Non_Static_Expr
|
|
("small requires static expression!", Expr);
|
|
return;
|
|
|
|
else
|
|
Small := Expr_Value_R (Expr);
|
|
|
|
if Small <= Ureal_0 then
|
|
Error_Msg_N ("small value must be greater than zero", Expr);
|
|
return;
|
|
end if;
|
|
|
|
end if;
|
|
|
|
if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
|
|
Error_Msg_N
|
|
("small requires an ordinary fixed point type", Nam);
|
|
|
|
elsif Has_Small_Clause (U_Ent) then
|
|
Error_Msg_N ("small already given for &", Nam);
|
|
|
|
elsif Small > Delta_Value (U_Ent) then
|
|
Error_Msg_N
|
|
("small value must not be greater then delta value", Nam);
|
|
|
|
else
|
|
Set_Small_Value (U_Ent, Small);
|
|
Set_Small_Value (Implicit_Base, Small);
|
|
Set_Has_Small_Clause (U_Ent);
|
|
Set_Has_Small_Clause (Implicit_Base);
|
|
Set_Has_Non_Standard_Rep (Implicit_Base);
|
|
end if;
|
|
end Small;
|
|
|
|
------------------
|
|
-- Storage_Pool --
|
|
------------------
|
|
|
|
-- Storage_Pool attribute definition clause
|
|
|
|
when Attribute_Storage_Pool => Storage_Pool : declare
|
|
Pool : Entity_Id;
|
|
T : Entity_Id;
|
|
|
|
begin
|
|
if Ekind (U_Ent) = E_Access_Subprogram_Type then
|
|
Error_Msg_N
|
|
("storage pool cannot be given for access-to-subprogram type",
|
|
Nam);
|
|
return;
|
|
|
|
elsif Ekind (U_Ent) /= E_Access_Type
|
|
and then Ekind (U_Ent) /= E_General_Access_Type
|
|
then
|
|
Error_Msg_N
|
|
("storage pool can only be given for access types", Nam);
|
|
return;
|
|
|
|
elsif Is_Derived_Type (U_Ent) then
|
|
Error_Msg_N
|
|
("storage pool cannot be given for a derived access type",
|
|
Nam);
|
|
|
|
elsif Has_Storage_Size_Clause (U_Ent) then
|
|
Error_Msg_N ("storage size already given for &", Nam);
|
|
return;
|
|
|
|
elsif Present (Associated_Storage_Pool (U_Ent)) then
|
|
Error_Msg_N ("storage pool already given for &", Nam);
|
|
return;
|
|
end if;
|
|
|
|
Analyze_And_Resolve
|
|
(Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
|
|
|
|
if Nkind (Expr) = N_Type_Conversion then
|
|
T := Etype (Expression (Expr));
|
|
else
|
|
T := Etype (Expr);
|
|
end if;
|
|
|
|
-- The Stack_Bounded_Pool is used internally for implementing
|
|
-- access types with a Storage_Size. Since it only work
|
|
-- properly when used on one specific type, we need to check
|
|
-- that it is not highjacked improperly:
|
|
-- type T is access Integer;
|
|
-- for T'Storage_Size use n;
|
|
-- type Q is access Float;
|
|
-- for Q'Storage_Size use T'Storage_Size; -- incorrect
|
|
|
|
if Base_Type (T) = RTE (RE_Stack_Bounded_Pool) then
|
|
Error_Msg_N ("non-sharable internal Pool", Expr);
|
|
return;
|
|
end if;
|
|
|
|
-- If the argument is a name that is not an entity name, then
|
|
-- we construct a renaming operation to define an entity of
|
|
-- type storage pool.
|
|
|
|
if not Is_Entity_Name (Expr)
|
|
and then Is_Object_Reference (Expr)
|
|
then
|
|
Pool :=
|
|
Make_Defining_Identifier (Loc,
|
|
Chars => New_Internal_Name ('P'));
|
|
|
|
declare
|
|
Rnode : constant Node_Id :=
|
|
Make_Object_Renaming_Declaration (Loc,
|
|
Defining_Identifier => Pool,
|
|
Subtype_Mark =>
|
|
New_Occurrence_Of (Etype (Expr), Loc),
|
|
Name => Expr);
|
|
|
|
begin
|
|
Insert_Before (N, Rnode);
|
|
Analyze (Rnode);
|
|
Set_Associated_Storage_Pool (U_Ent, Pool);
|
|
end;
|
|
|
|
elsif Is_Entity_Name (Expr) then
|
|
Pool := Entity (Expr);
|
|
|
|
-- If pool is a renamed object, get original one. This can
|
|
-- happen with an explicit renaming, and within instances.
|
|
|
|
while Present (Renamed_Object (Pool))
|
|
and then Is_Entity_Name (Renamed_Object (Pool))
|
|
loop
|
|
Pool := Entity (Renamed_Object (Pool));
|
|
end loop;
|
|
|
|
if Present (Renamed_Object (Pool))
|
|
and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
|
|
and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
|
|
then
|
|
Pool := Entity (Expression (Renamed_Object (Pool)));
|
|
end if;
|
|
|
|
Set_Associated_Storage_Pool (U_Ent, Pool);
|
|
|
|
elsif Nkind (Expr) = N_Type_Conversion
|
|
and then Is_Entity_Name (Expression (Expr))
|
|
and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
|
|
then
|
|
Pool := Entity (Expression (Expr));
|
|
Set_Associated_Storage_Pool (U_Ent, Pool);
|
|
|
|
else
|
|
Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
|
|
return;
|
|
end if;
|
|
end Storage_Pool;
|
|
|
|
------------------
|
|
-- Storage_Size --
|
|
------------------
|
|
|
|
-- Storage_Size attribute definition clause
|
|
|
|
when Attribute_Storage_Size => Storage_Size : declare
|
|
Btype : constant Entity_Id := Base_Type (U_Ent);
|
|
Sprag : Node_Id;
|
|
|
|
begin
|
|
if Is_Task_Type (U_Ent) then
|
|
Check_Restriction (No_Obsolescent_Features, N);
|
|
|
|
if Warn_On_Obsolescent_Feature then
|
|
Error_Msg_N
|
|
("storage size clause for task is an " &
|
|
"obsolescent feature ('R'M 'J.9)?", N);
|
|
Error_Msg_N
|
|
("\use Storage_Size pragma instead?", N);
|
|
end if;
|
|
|
|
FOnly := True;
|
|
end if;
|
|
|
|
if not Is_Access_Type (U_Ent)
|
|
and then Ekind (U_Ent) /= E_Task_Type
|
|
then
|
|
Error_Msg_N ("storage size cannot be given for &", Nam);
|
|
|
|
elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
|
|
Error_Msg_N
|
|
("storage size cannot be given for a derived access type",
|
|
Nam);
|
|
|
|
elsif Has_Storage_Size_Clause (Btype) then
|
|
Error_Msg_N ("storage size already given for &", Nam);
|
|
|
|
else
|
|
Analyze_And_Resolve (Expr, Any_Integer);
|
|
|
|
if Is_Access_Type (U_Ent) then
|
|
if Present (Associated_Storage_Pool (U_Ent)) then
|
|
Error_Msg_N ("storage pool already given for &", Nam);
|
|
return;
|
|
end if;
|
|
|
|
if Compile_Time_Known_Value (Expr)
|
|
and then Expr_Value (Expr) = 0
|
|
then
|
|
Set_No_Pool_Assigned (Btype);
|
|
end if;
|
|
|
|
else -- Is_Task_Type (U_Ent)
|
|
Sprag := Get_Rep_Pragma (Btype, Name_Storage_Size);
|
|
|
|
if Present (Sprag) then
|
|
Error_Msg_Sloc := Sloc (Sprag);
|
|
Error_Msg_N
|
|
("Storage_Size already specified#", Nam);
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
Set_Has_Storage_Size_Clause (Btype);
|
|
end if;
|
|
end Storage_Size;
|
|
|
|
-----------------
|
|
-- Stream_Size --
|
|
-----------------
|
|
|
|
when Attribute_Stream_Size => Stream_Size : declare
|
|
Size : constant Uint := Static_Integer (Expr);
|
|
|
|
begin
|
|
if Has_Stream_Size_Clause (U_Ent) then
|
|
Error_Msg_N ("Stream_Size already given for &", Nam);
|
|
|
|
elsif Is_Elementary_Type (U_Ent) then
|
|
if Size /= System_Storage_Unit
|
|
and then
|
|
Size /= System_Storage_Unit * 2
|
|
and then
|
|
Size /= System_Storage_Unit * 4
|
|
and then
|
|
Size /= System_Storage_Unit * 8
|
|
then
|
|
Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
|
|
Error_Msg_N
|
|
("stream size for elementary type must be a"
|
|
& " power of 2 and at least ^", N);
|
|
|
|
elsif RM_Size (U_Ent) > Size then
|
|
Error_Msg_Uint_1 := RM_Size (U_Ent);
|
|
Error_Msg_N
|
|
("stream size for elementary type must be a"
|
|
& " power of 2 and at least ^", N);
|
|
end if;
|
|
|
|
Set_Has_Stream_Size_Clause (U_Ent);
|
|
|
|
else
|
|
Error_Msg_N ("Stream_Size cannot be given for &", Nam);
|
|
end if;
|
|
end Stream_Size;
|
|
|
|
----------------
|
|
-- Value_Size --
|
|
----------------
|
|
|
|
-- Value_Size attribute definition clause
|
|
|
|
when Attribute_Value_Size => Value_Size : declare
|
|
Size : constant Uint := Static_Integer (Expr);
|
|
Biased : Boolean;
|
|
|
|
begin
|
|
if not Is_Type (U_Ent) then
|
|
Error_Msg_N ("Value_Size cannot be given for &", Nam);
|
|
|
|
elsif Present
|
|
(Get_Attribute_Definition_Clause
|
|
(U_Ent, Attribute_Value_Size))
|
|
then
|
|
Error_Msg_N ("Value_Size already given for &", Nam);
|
|
|
|
else
|
|
if Is_Elementary_Type (U_Ent) then
|
|
Check_Size (Expr, U_Ent, Size, Biased);
|
|
Set_Has_Biased_Representation (U_Ent, Biased);
|
|
end if;
|
|
|
|
Set_RM_Size (U_Ent, Size);
|
|
end if;
|
|
end Value_Size;
|
|
|
|
-----------
|
|
-- Write --
|
|
-----------
|
|
|
|
when Attribute_Write =>
|
|
Analyze_Stream_TSS_Definition (TSS_Stream_Write);
|
|
Set_Has_Specified_Stream_Write (Ent);
|
|
|
|
-- All other attributes cannot be set
|
|
|
|
when others =>
|
|
Error_Msg_N
|
|
("attribute& cannot be set with definition clause", N);
|
|
end case;
|
|
|
|
-- The test for the type being frozen must be performed after
|
|
-- any expression the clause has been analyzed since the expression
|
|
-- itself might cause freezing that makes the clause illegal.
|
|
|
|
if Rep_Item_Too_Late (U_Ent, N, FOnly) then
|
|
return;
|
|
end if;
|
|
end Analyze_Attribute_Definition_Clause;
|
|
|
|
----------------------------
|
|
-- Analyze_Code_Statement --
|
|
----------------------------
|
|
|
|
procedure Analyze_Code_Statement (N : Node_Id) is
|
|
HSS : constant Node_Id := Parent (N);
|
|
SBody : constant Node_Id := Parent (HSS);
|
|
Subp : constant Entity_Id := Current_Scope;
|
|
Stmt : Node_Id;
|
|
Decl : Node_Id;
|
|
StmtO : Node_Id;
|
|
DeclO : Node_Id;
|
|
|
|
begin
|
|
-- Analyze and check we get right type, note that this implements the
|
|
-- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
|
|
-- is the only way that Asm_Insn could possibly be visible.
|
|
|
|
Analyze_And_Resolve (Expression (N));
|
|
|
|
if Etype (Expression (N)) = Any_Type then
|
|
return;
|
|
elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
|
|
Error_Msg_N ("incorrect type for code statement", N);
|
|
return;
|
|
end if;
|
|
|
|
Check_Code_Statement (N);
|
|
|
|
-- Make sure we appear in the handled statement sequence of a
|
|
-- subprogram (RM 13.8(3)).
|
|
|
|
if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
|
|
or else Nkind (SBody) /= N_Subprogram_Body
|
|
then
|
|
Error_Msg_N
|
|
("code statement can only appear in body of subprogram", N);
|
|
return;
|
|
end if;
|
|
|
|
-- Do remaining checks (RM 13.8(3)) if not already done
|
|
|
|
if not Is_Machine_Code_Subprogram (Subp) then
|
|
Set_Is_Machine_Code_Subprogram (Subp);
|
|
|
|
-- No exception handlers allowed
|
|
|
|
if Present (Exception_Handlers (HSS)) then
|
|
Error_Msg_N
|
|
("exception handlers not permitted in machine code subprogram",
|
|
First (Exception_Handlers (HSS)));
|
|
end if;
|
|
|
|
-- No declarations other than use clauses and pragmas (we allow
|
|
-- certain internally generated declarations as well).
|
|
|
|
Decl := First (Declarations (SBody));
|
|
while Present (Decl) loop
|
|
DeclO := Original_Node (Decl);
|
|
if Comes_From_Source (DeclO)
|
|
and then Nkind (DeclO) /= N_Pragma
|
|
and then Nkind (DeclO) /= N_Use_Package_Clause
|
|
and then Nkind (DeclO) /= N_Use_Type_Clause
|
|
and then Nkind (DeclO) /= N_Implicit_Label_Declaration
|
|
then
|
|
Error_Msg_N
|
|
("this declaration not allowed in machine code subprogram",
|
|
DeclO);
|
|
end if;
|
|
|
|
Next (Decl);
|
|
end loop;
|
|
|
|
-- No statements other than code statements, pragmas, and labels.
|
|
-- Again we allow certain internally generated statements.
|
|
|
|
Stmt := First (Statements (HSS));
|
|
while Present (Stmt) loop
|
|
StmtO := Original_Node (Stmt);
|
|
if Comes_From_Source (StmtO)
|
|
and then Nkind (StmtO) /= N_Pragma
|
|
and then Nkind (StmtO) /= N_Label
|
|
and then Nkind (StmtO) /= N_Code_Statement
|
|
then
|
|
Error_Msg_N
|
|
("this statement is not allowed in machine code subprogram",
|
|
StmtO);
|
|
end if;
|
|
|
|
Next (Stmt);
|
|
end loop;
|
|
end if;
|
|
end Analyze_Code_Statement;
|
|
|
|
-----------------------------------------------
|
|
-- Analyze_Enumeration_Representation_Clause --
|
|
-----------------------------------------------
|
|
|
|
procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
|
|
Ident : constant Node_Id := Identifier (N);
|
|
Aggr : constant Node_Id := Array_Aggregate (N);
|
|
Enumtype : Entity_Id;
|
|
Elit : Entity_Id;
|
|
Expr : Node_Id;
|
|
Assoc : Node_Id;
|
|
Choice : Node_Id;
|
|
Val : Uint;
|
|
Err : Boolean := False;
|
|
|
|
Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
|
|
Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
|
|
Min : Uint;
|
|
Max : Uint;
|
|
|
|
begin
|
|
-- First some basic error checks
|
|
|
|
Find_Type (Ident);
|
|
Enumtype := Entity (Ident);
|
|
|
|
if Enumtype = Any_Type
|
|
or else Rep_Item_Too_Early (Enumtype, N)
|
|
then
|
|
return;
|
|
else
|
|
Enumtype := Underlying_Type (Enumtype);
|
|
end if;
|
|
|
|
if not Is_Enumeration_Type (Enumtype) then
|
|
Error_Msg_NE
|
|
("enumeration type required, found}",
|
|
Ident, First_Subtype (Enumtype));
|
|
return;
|
|
end if;
|
|
|
|
-- Ignore rep clause on generic actual type. This will already have
|
|
-- been flagged on the template as an error, and this is the safest
|
|
-- way to ensure we don't get a junk cascaded message in the instance.
|
|
|
|
if Is_Generic_Actual_Type (Enumtype) then
|
|
return;
|
|
|
|
-- Type must be in current scope
|
|
|
|
elsif Scope (Enumtype) /= Current_Scope then
|
|
Error_Msg_N ("type must be declared in this scope", Ident);
|
|
return;
|
|
|
|
-- Type must be a first subtype
|
|
|
|
elsif not Is_First_Subtype (Enumtype) then
|
|
Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
|
|
return;
|
|
|
|
-- Ignore duplicate rep clause
|
|
|
|
elsif Has_Enumeration_Rep_Clause (Enumtype) then
|
|
Error_Msg_N ("duplicate enumeration rep clause ignored", N);
|
|
return;
|
|
|
|
-- Don't allow rep clause for standard [wide_[wide_]]character
|
|
|
|
elsif Root_Type (Enumtype) = Standard_Character
|
|
or else Root_Type (Enumtype) = Standard_Wide_Character
|
|
or else Root_Type (Enumtype) = Standard_Wide_Wide_Character
|
|
then
|
|
Error_Msg_N ("enumeration rep clause not allowed for this type", N);
|
|
return;
|
|
|
|
-- Check that the expression is a proper aggregate (no parentheses)
|
|
|
|
elsif Paren_Count (Aggr) /= 0 then
|
|
Error_Msg
|
|
("extra parentheses surrounding aggregate not allowed",
|
|
First_Sloc (Aggr));
|
|
return;
|
|
|
|
-- All tests passed, so set rep clause in place
|
|
|
|
else
|
|
Set_Has_Enumeration_Rep_Clause (Enumtype);
|
|
Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
|
|
end if;
|
|
|
|
-- Now we process the aggregate. Note that we don't use the normal
|
|
-- aggregate code for this purpose, because we don't want any of the
|
|
-- normal expansion activities, and a number of special semantic
|
|
-- rules apply (including the component type being any integer type)
|
|
|
|
Elit := First_Literal (Enumtype);
|
|
|
|
-- First the positional entries if any
|
|
|
|
if Present (Expressions (Aggr)) then
|
|
Expr := First (Expressions (Aggr));
|
|
while Present (Expr) loop
|
|
if No (Elit) then
|
|
Error_Msg_N ("too many entries in aggregate", Expr);
|
|
return;
|
|
end if;
|
|
|
|
Val := Static_Integer (Expr);
|
|
|
|
-- Err signals that we found some incorrect entries processing
|
|
-- the list. The final checks for completeness and ordering are
|
|
-- skipped in this case.
|
|
|
|
if Val = No_Uint then
|
|
Err := True;
|
|
elsif Val < Lo or else Hi < Val then
|
|
Error_Msg_N ("value outside permitted range", Expr);
|
|
Err := True;
|
|
end if;
|
|
|
|
Set_Enumeration_Rep (Elit, Val);
|
|
Set_Enumeration_Rep_Expr (Elit, Expr);
|
|
Next (Expr);
|
|
Next (Elit);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Now process the named entries if present
|
|
|
|
if Present (Component_Associations (Aggr)) then
|
|
Assoc := First (Component_Associations (Aggr));
|
|
while Present (Assoc) loop
|
|
Choice := First (Choices (Assoc));
|
|
|
|
if Present (Next (Choice)) then
|
|
Error_Msg_N
|
|
("multiple choice not allowed here", Next (Choice));
|
|
Err := True;
|
|
end if;
|
|
|
|
if Nkind (Choice) = N_Others_Choice then
|
|
Error_Msg_N ("others choice not allowed here", Choice);
|
|
Err := True;
|
|
|
|
elsif Nkind (Choice) = N_Range then
|
|
-- ??? should allow zero/one element range here
|
|
Error_Msg_N ("range not allowed here", Choice);
|
|
Err := True;
|
|
|
|
else
|
|
Analyze_And_Resolve (Choice, Enumtype);
|
|
|
|
if Is_Entity_Name (Choice)
|
|
and then Is_Type (Entity (Choice))
|
|
then
|
|
Error_Msg_N ("subtype name not allowed here", Choice);
|
|
Err := True;
|
|
-- ??? should allow static subtype with zero/one entry
|
|
|
|
elsif Etype (Choice) = Base_Type (Enumtype) then
|
|
if not Is_Static_Expression (Choice) then
|
|
Flag_Non_Static_Expr
|
|
("non-static expression used for choice!", Choice);
|
|
Err := True;
|
|
|
|
else
|
|
Elit := Expr_Value_E (Choice);
|
|
|
|
if Present (Enumeration_Rep_Expr (Elit)) then
|
|
Error_Msg_Sloc := Sloc (Enumeration_Rep_Expr (Elit));
|
|
Error_Msg_NE
|
|
("representation for& previously given#",
|
|
Choice, Elit);
|
|
Err := True;
|
|
end if;
|
|
|
|
Set_Enumeration_Rep_Expr (Elit, Choice);
|
|
|
|
Expr := Expression (Assoc);
|
|
Val := Static_Integer (Expr);
|
|
|
|
if Val = No_Uint then
|
|
Err := True;
|
|
|
|
elsif Val < Lo or else Hi < Val then
|
|
Error_Msg_N ("value outside permitted range", Expr);
|
|
Err := True;
|
|
end if;
|
|
|
|
Set_Enumeration_Rep (Elit, Val);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
Next (Assoc);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Aggregate is fully processed. Now we check that a full set of
|
|
-- representations was given, and that they are in range and in order.
|
|
-- These checks are only done if no other errors occurred.
|
|
|
|
if not Err then
|
|
Min := No_Uint;
|
|
Max := No_Uint;
|
|
|
|
Elit := First_Literal (Enumtype);
|
|
while Present (Elit) loop
|
|
if No (Enumeration_Rep_Expr (Elit)) then
|
|
Error_Msg_NE ("missing representation for&!", N, Elit);
|
|
|
|
else
|
|
Val := Enumeration_Rep (Elit);
|
|
|
|
if Min = No_Uint then
|
|
Min := Val;
|
|
end if;
|
|
|
|
if Val /= No_Uint then
|
|
if Max /= No_Uint and then Val <= Max then
|
|
Error_Msg_NE
|
|
("enumeration value for& not ordered!",
|
|
Enumeration_Rep_Expr (Elit), Elit);
|
|
end if;
|
|
|
|
Max := Val;
|
|
end if;
|
|
|
|
-- If there is at least one literal whose representation
|
|
-- is not equal to the Pos value, then note that this
|
|
-- enumeration type has a non-standard representation.
|
|
|
|
if Val /= Enumeration_Pos (Elit) then
|
|
Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
|
|
end if;
|
|
end if;
|
|
|
|
Next (Elit);
|
|
end loop;
|
|
|
|
-- Now set proper size information
|
|
|
|
declare
|
|
Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
|
|
|
|
begin
|
|
if Has_Size_Clause (Enumtype) then
|
|
if Esize (Enumtype) >= Minsize then
|
|
null;
|
|
|
|
else
|
|
Minsize :=
|
|
UI_From_Int (Minimum_Size (Enumtype, Biased => True));
|
|
|
|
if Esize (Enumtype) < Minsize then
|
|
Error_Msg_N ("previously given size is too small", N);
|
|
|
|
else
|
|
Set_Has_Biased_Representation (Enumtype);
|
|
end if;
|
|
end if;
|
|
|
|
else
|
|
Set_RM_Size (Enumtype, Minsize);
|
|
Set_Enum_Esize (Enumtype);
|
|
end if;
|
|
|
|
Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
|
|
Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
|
|
Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
|
|
end;
|
|
end if;
|
|
|
|
-- We repeat the too late test in case it froze itself!
|
|
|
|
if Rep_Item_Too_Late (Enumtype, N) then
|
|
null;
|
|
end if;
|
|
end Analyze_Enumeration_Representation_Clause;
|
|
|
|
----------------------------
|
|
-- Analyze_Free_Statement --
|
|
----------------------------
|
|
|
|
procedure Analyze_Free_Statement (N : Node_Id) is
|
|
begin
|
|
Analyze (Expression (N));
|
|
end Analyze_Free_Statement;
|
|
|
|
------------------------------------------
|
|
-- Analyze_Record_Representation_Clause --
|
|
------------------------------------------
|
|
|
|
procedure Analyze_Record_Representation_Clause (N : Node_Id) is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Ident : constant Node_Id := Identifier (N);
|
|
Rectype : Entity_Id;
|
|
Fent : Entity_Id;
|
|
CC : Node_Id;
|
|
Posit : Uint;
|
|
Fbit : Uint;
|
|
Lbit : Uint;
|
|
Hbit : Uint := Uint_0;
|
|
Comp : Entity_Id;
|
|
Ocomp : Entity_Id;
|
|
Biased : Boolean;
|
|
|
|
Max_Bit_So_Far : Uint;
|
|
-- Records the maximum bit position so far. If all field positions
|
|
-- are monotonically increasing, then we can skip the circuit for
|
|
-- checking for overlap, since no overlap is possible.
|
|
|
|
Overlap_Check_Required : Boolean;
|
|
-- Used to keep track of whether or not an overlap check is required
|
|
|
|
Ccount : Natural := 0;
|
|
-- Number of component clauses in record rep clause
|
|
|
|
CR_Pragma : Node_Id := Empty;
|
|
-- Points to N_Pragma node if Complete_Representation pragma present
|
|
|
|
begin
|
|
Find_Type (Ident);
|
|
Rectype := Entity (Ident);
|
|
|
|
if Rectype = Any_Type
|
|
or else Rep_Item_Too_Early (Rectype, N)
|
|
then
|
|
return;
|
|
else
|
|
Rectype := Underlying_Type (Rectype);
|
|
end if;
|
|
|
|
-- First some basic error checks
|
|
|
|
if not Is_Record_Type (Rectype) then
|
|
Error_Msg_NE
|
|
("record type required, found}", Ident, First_Subtype (Rectype));
|
|
return;
|
|
|
|
elsif Is_Unchecked_Union (Rectype) then
|
|
Error_Msg_N
|
|
("record rep clause not allowed for Unchecked_Union", N);
|
|
|
|
elsif Scope (Rectype) /= Current_Scope then
|
|
Error_Msg_N ("type must be declared in this scope", N);
|
|
return;
|
|
|
|
elsif not Is_First_Subtype (Rectype) then
|
|
Error_Msg_N ("cannot give record rep clause for subtype", N);
|
|
return;
|
|
|
|
elsif Has_Record_Rep_Clause (Rectype) then
|
|
Error_Msg_N ("duplicate record rep clause ignored", N);
|
|
return;
|
|
|
|
elsif Rep_Item_Too_Late (Rectype, N) then
|
|
return;
|
|
end if;
|
|
|
|
if Present (Mod_Clause (N)) then
|
|
declare
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
M : constant Node_Id := Mod_Clause (N);
|
|
P : constant List_Id := Pragmas_Before (M);
|
|
AtM_Nod : Node_Id;
|
|
|
|
Mod_Val : Uint;
|
|
pragma Warnings (Off, Mod_Val);
|
|
|
|
begin
|
|
Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
|
|
|
|
if Warn_On_Obsolescent_Feature then
|
|
Error_Msg_N
|
|
("mod clause is an obsolescent feature ('R'M 'J.8)?", N);
|
|
Error_Msg_N
|
|
("\use alignment attribute definition clause instead?", N);
|
|
end if;
|
|
|
|
if Present (P) then
|
|
Analyze_List (P);
|
|
end if;
|
|
|
|
-- In ASIS_Mode mode, expansion is disabled, but we must
|
|
-- convert the Mod clause into an alignment clause anyway, so
|
|
-- that the back-end can compute and back-annotate properly the
|
|
-- size and alignment of types that may include this record.
|
|
|
|
if Operating_Mode = Check_Semantics
|
|
and then ASIS_Mode
|
|
then
|
|
AtM_Nod :=
|
|
Make_Attribute_Definition_Clause (Loc,
|
|
Name => New_Reference_To (Base_Type (Rectype), Loc),
|
|
Chars => Name_Alignment,
|
|
Expression => Relocate_Node (Expression (M)));
|
|
|
|
Set_From_At_Mod (AtM_Nod);
|
|
Insert_After (N, AtM_Nod);
|
|
Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
|
|
Set_Mod_Clause (N, Empty);
|
|
|
|
else
|
|
-- Get the alignment value to perform error checking
|
|
|
|
Mod_Val := Get_Alignment_Value (Expression (M));
|
|
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
-- Clear any existing component clauses for the type (this happens
|
|
-- with derived types, where we are now overriding the original)
|
|
|
|
Fent := First_Entity (Rectype);
|
|
|
|
Comp := Fent;
|
|
while Present (Comp) loop
|
|
if Ekind (Comp) = E_Component
|
|
or else Ekind (Comp) = E_Discriminant
|
|
then
|
|
Set_Component_Clause (Comp, Empty);
|
|
end if;
|
|
|
|
Next_Entity (Comp);
|
|
end loop;
|
|
|
|
-- All done if no component clauses
|
|
|
|
CC := First (Component_Clauses (N));
|
|
|
|
if No (CC) then
|
|
return;
|
|
end if;
|
|
|
|
-- If a tag is present, then create a component clause that places
|
|
-- it at the start of the record (otherwise gigi may place it after
|
|
-- other fields that have rep clauses).
|
|
|
|
if Nkind (Fent) = N_Defining_Identifier
|
|
and then Chars (Fent) = Name_uTag
|
|
then
|
|
Set_Component_Bit_Offset (Fent, Uint_0);
|
|
Set_Normalized_Position (Fent, Uint_0);
|
|
Set_Normalized_First_Bit (Fent, Uint_0);
|
|
Set_Normalized_Position_Max (Fent, Uint_0);
|
|
Init_Esize (Fent, System_Address_Size);
|
|
|
|
Set_Component_Clause (Fent,
|
|
Make_Component_Clause (Loc,
|
|
Component_Name =>
|
|
Make_Identifier (Loc,
|
|
Chars => Name_uTag),
|
|
|
|
Position =>
|
|
Make_Integer_Literal (Loc,
|
|
Intval => Uint_0),
|
|
|
|
First_Bit =>
|
|
Make_Integer_Literal (Loc,
|
|
Intval => Uint_0),
|
|
|
|
Last_Bit =>
|
|
Make_Integer_Literal (Loc,
|
|
UI_From_Int (System_Address_Size))));
|
|
|
|
Ccount := Ccount + 1;
|
|
end if;
|
|
|
|
-- A representation like this applies to the base type
|
|
|
|
Set_Has_Record_Rep_Clause (Base_Type (Rectype));
|
|
Set_Has_Non_Standard_Rep (Base_Type (Rectype));
|
|
Set_Has_Specified_Layout (Base_Type (Rectype));
|
|
|
|
Max_Bit_So_Far := Uint_Minus_1;
|
|
Overlap_Check_Required := False;
|
|
|
|
-- Process the component clauses
|
|
|
|
while Present (CC) loop
|
|
|
|
-- Pragma
|
|
|
|
if Nkind (CC) = N_Pragma then
|
|
Analyze (CC);
|
|
|
|
-- The only pragma of interest is Complete_Representation
|
|
|
|
if Chars (CC) = Name_Complete_Representation then
|
|
CR_Pragma := CC;
|
|
end if;
|
|
|
|
-- Processing for real component clause
|
|
|
|
else
|
|
Ccount := Ccount + 1;
|
|
Posit := Static_Integer (Position (CC));
|
|
Fbit := Static_Integer (First_Bit (CC));
|
|
Lbit := Static_Integer (Last_Bit (CC));
|
|
|
|
if Posit /= No_Uint
|
|
and then Fbit /= No_Uint
|
|
and then Lbit /= No_Uint
|
|
then
|
|
if Posit < 0 then
|
|
Error_Msg_N
|
|
("position cannot be negative", Position (CC));
|
|
|
|
elsif Fbit < 0 then
|
|
Error_Msg_N
|
|
("first bit cannot be negative", First_Bit (CC));
|
|
|
|
-- Values look OK, so find the corresponding record component
|
|
-- Even though the syntax allows an attribute reference for
|
|
-- implementation-defined components, GNAT does not allow the
|
|
-- tag to get an explicit position.
|
|
|
|
elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
|
|
if Attribute_Name (Component_Name (CC)) = Name_Tag then
|
|
Error_Msg_N ("position of tag cannot be specified", CC);
|
|
else
|
|
Error_Msg_N ("illegal component name", CC);
|
|
end if;
|
|
|
|
else
|
|
Comp := First_Entity (Rectype);
|
|
while Present (Comp) loop
|
|
exit when Chars (Comp) = Chars (Component_Name (CC));
|
|
Next_Entity (Comp);
|
|
end loop;
|
|
|
|
if No (Comp) then
|
|
|
|
-- Maybe component of base type that is absent from
|
|
-- statically constrained first subtype.
|
|
|
|
Comp := First_Entity (Base_Type (Rectype));
|
|
while Present (Comp) loop
|
|
exit when Chars (Comp) = Chars (Component_Name (CC));
|
|
Next_Entity (Comp);
|
|
end loop;
|
|
end if;
|
|
|
|
if No (Comp) then
|
|
Error_Msg_N
|
|
("component clause is for non-existent field", CC);
|
|
|
|
elsif Present (Component_Clause (Comp)) then
|
|
Error_Msg_Sloc := Sloc (Component_Clause (Comp));
|
|
Error_Msg_N
|
|
("component clause previously given#", CC);
|
|
|
|
else
|
|
-- Update Fbit and Lbit to the actual bit number
|
|
|
|
Fbit := Fbit + UI_From_Int (SSU) * Posit;
|
|
Lbit := Lbit + UI_From_Int (SSU) * Posit;
|
|
|
|
if Fbit <= Max_Bit_So_Far then
|
|
Overlap_Check_Required := True;
|
|
else
|
|
Max_Bit_So_Far := Lbit;
|
|
end if;
|
|
|
|
if Has_Size_Clause (Rectype)
|
|
and then Esize (Rectype) <= Lbit
|
|
then
|
|
Error_Msg_N
|
|
("bit number out of range of specified size",
|
|
Last_Bit (CC));
|
|
else
|
|
Set_Component_Clause (Comp, CC);
|
|
Set_Component_Bit_Offset (Comp, Fbit);
|
|
Set_Esize (Comp, 1 + (Lbit - Fbit));
|
|
Set_Normalized_First_Bit (Comp, Fbit mod SSU);
|
|
Set_Normalized_Position (Comp, Fbit / SSU);
|
|
|
|
Set_Normalized_Position_Max
|
|
(Fent, Normalized_Position (Fent));
|
|
|
|
if Is_Tagged_Type (Rectype)
|
|
and then Fbit < System_Address_Size
|
|
then
|
|
Error_Msg_NE
|
|
("component overlaps tag field of&",
|
|
CC, Rectype);
|
|
end if;
|
|
|
|
-- This information is also set in the corresponding
|
|
-- component of the base type, found by accessing the
|
|
-- Original_Record_Component link if it is present.
|
|
|
|
Ocomp := Original_Record_Component (Comp);
|
|
|
|
if Hbit < Lbit then
|
|
Hbit := Lbit;
|
|
end if;
|
|
|
|
Check_Size
|
|
(Component_Name (CC),
|
|
Etype (Comp),
|
|
Esize (Comp),
|
|
Biased);
|
|
|
|
Set_Has_Biased_Representation (Comp, Biased);
|
|
|
|
if Present (Ocomp) then
|
|
Set_Component_Clause (Ocomp, CC);
|
|
Set_Component_Bit_Offset (Ocomp, Fbit);
|
|
Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
|
|
Set_Normalized_Position (Ocomp, Fbit / SSU);
|
|
Set_Esize (Ocomp, 1 + (Lbit - Fbit));
|
|
|
|
Set_Normalized_Position_Max
|
|
(Ocomp, Normalized_Position (Ocomp));
|
|
|
|
Set_Has_Biased_Representation
|
|
(Ocomp, Has_Biased_Representation (Comp));
|
|
end if;
|
|
|
|
if Esize (Comp) < 0 then
|
|
Error_Msg_N ("component size is negative", CC);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
Next (CC);
|
|
end loop;
|
|
|
|
-- Now that we have processed all the component clauses, check for
|
|
-- overlap. We have to leave this till last, since the components
|
|
-- can appear in any arbitrary order in the representation clause.
|
|
|
|
-- We do not need this check if all specified ranges were monotonic,
|
|
-- as recorded by Overlap_Check_Required being False at this stage.
|
|
|
|
-- This first section checks if there are any overlapping entries
|
|
-- at all. It does this by sorting all entries and then seeing if
|
|
-- there are any overlaps. If there are none, then that is decisive,
|
|
-- but if there are overlaps, they may still be OK (they may result
|
|
-- from fields in different variants).
|
|
|
|
if Overlap_Check_Required then
|
|
Overlap_Check1 : declare
|
|
|
|
OC_Fbit : array (0 .. Ccount) of Uint;
|
|
-- First-bit values for component clauses, the value is the
|
|
-- offset of the first bit of the field from start of record.
|
|
-- The zero entry is for use in sorting.
|
|
|
|
OC_Lbit : array (0 .. Ccount) of Uint;
|
|
-- Last-bit values for component clauses, the value is the
|
|
-- offset of the last bit of the field from start of record.
|
|
-- The zero entry is for use in sorting.
|
|
|
|
OC_Count : Natural := 0;
|
|
-- Count of entries in OC_Fbit and OC_Lbit
|
|
|
|
function OC_Lt (Op1, Op2 : Natural) return Boolean;
|
|
-- Compare routine for Sort (See GNAT.Heap_Sort_A)
|
|
|
|
procedure OC_Move (From : Natural; To : Natural);
|
|
-- Move routine for Sort (see GNAT.Heap_Sort_A)
|
|
|
|
function OC_Lt (Op1, Op2 : Natural) return Boolean is
|
|
begin
|
|
return OC_Fbit (Op1) < OC_Fbit (Op2);
|
|
end OC_Lt;
|
|
|
|
procedure OC_Move (From : Natural; To : Natural) is
|
|
begin
|
|
OC_Fbit (To) := OC_Fbit (From);
|
|
OC_Lbit (To) := OC_Lbit (From);
|
|
end OC_Move;
|
|
|
|
begin
|
|
CC := First (Component_Clauses (N));
|
|
while Present (CC) loop
|
|
if Nkind (CC) /= N_Pragma then
|
|
Posit := Static_Integer (Position (CC));
|
|
Fbit := Static_Integer (First_Bit (CC));
|
|
Lbit := Static_Integer (Last_Bit (CC));
|
|
|
|
if Posit /= No_Uint
|
|
and then Fbit /= No_Uint
|
|
and then Lbit /= No_Uint
|
|
then
|
|
OC_Count := OC_Count + 1;
|
|
Posit := Posit * SSU;
|
|
OC_Fbit (OC_Count) := Fbit + Posit;
|
|
OC_Lbit (OC_Count) := Lbit + Posit;
|
|
end if;
|
|
end if;
|
|
|
|
Next (CC);
|
|
end loop;
|
|
|
|
Sort
|
|
(OC_Count,
|
|
OC_Move'Unrestricted_Access,
|
|
OC_Lt'Unrestricted_Access);
|
|
|
|
Overlap_Check_Required := False;
|
|
for J in 1 .. OC_Count - 1 loop
|
|
if OC_Lbit (J) >= OC_Fbit (J + 1) then
|
|
Overlap_Check_Required := True;
|
|
exit;
|
|
end if;
|
|
end loop;
|
|
end Overlap_Check1;
|
|
end if;
|
|
|
|
-- If Overlap_Check_Required is still True, then we have to do
|
|
-- the full scale overlap check, since we have at least two fields
|
|
-- that do overlap, and we need to know if that is OK since they
|
|
-- are in the same variant, or whether we have a definite problem
|
|
|
|
if Overlap_Check_Required then
|
|
Overlap_Check2 : declare
|
|
C1_Ent, C2_Ent : Entity_Id;
|
|
-- Entities of components being checked for overlap
|
|
|
|
Clist : Node_Id;
|
|
-- Component_List node whose Component_Items are being checked
|
|
|
|
Citem : Node_Id;
|
|
-- Component declaration for component being checked
|
|
|
|
begin
|
|
C1_Ent := First_Entity (Base_Type (Rectype));
|
|
|
|
-- Loop through all components in record. For each component check
|
|
-- for overlap with any of the preceding elements on the component
|
|
-- list containing the component, and also, if the component is in
|
|
-- a variant, check against components outside the case structure.
|
|
-- This latter test is repeated recursively up the variant tree.
|
|
|
|
Main_Component_Loop : while Present (C1_Ent) loop
|
|
if Ekind (C1_Ent) /= E_Component
|
|
and then Ekind (C1_Ent) /= E_Discriminant
|
|
then
|
|
goto Continue_Main_Component_Loop;
|
|
end if;
|
|
|
|
-- Skip overlap check if entity has no declaration node. This
|
|
-- happens with discriminants in constrained derived types.
|
|
-- Probably we are missing some checks as a result, but that
|
|
-- does not seem terribly serious ???
|
|
|
|
if No (Declaration_Node (C1_Ent)) then
|
|
goto Continue_Main_Component_Loop;
|
|
end if;
|
|
|
|
Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
|
|
|
|
-- Loop through component lists that need checking. Check the
|
|
-- current component list and all lists in variants above us.
|
|
|
|
Component_List_Loop : loop
|
|
|
|
-- If derived type definition, go to full declaration
|
|
-- If at outer level, check discriminants if there are any
|
|
|
|
if Nkind (Clist) = N_Derived_Type_Definition then
|
|
Clist := Parent (Clist);
|
|
end if;
|
|
|
|
-- Outer level of record definition, check discriminants
|
|
|
|
if Nkind (Clist) = N_Full_Type_Declaration
|
|
or else Nkind (Clist) = N_Private_Type_Declaration
|
|
then
|
|
if Has_Discriminants (Defining_Identifier (Clist)) then
|
|
C2_Ent :=
|
|
First_Discriminant (Defining_Identifier (Clist));
|
|
|
|
while Present (C2_Ent) loop
|
|
exit when C1_Ent = C2_Ent;
|
|
Check_Component_Overlap (C1_Ent, C2_Ent);
|
|
Next_Discriminant (C2_Ent);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Record extension case
|
|
|
|
elsif Nkind (Clist) = N_Derived_Type_Definition then
|
|
Clist := Empty;
|
|
|
|
-- Otherwise check one component list
|
|
|
|
else
|
|
Citem := First (Component_Items (Clist));
|
|
|
|
while Present (Citem) loop
|
|
if Nkind (Citem) = N_Component_Declaration then
|
|
C2_Ent := Defining_Identifier (Citem);
|
|
exit when C1_Ent = C2_Ent;
|
|
Check_Component_Overlap (C1_Ent, C2_Ent);
|
|
end if;
|
|
|
|
Next (Citem);
|
|
end loop;
|
|
end if;
|
|
|
|
-- Check for variants above us (the parent of the Clist can
|
|
-- be a variant, in which case its parent is a variant part,
|
|
-- and the parent of the variant part is a component list
|
|
-- whose components must all be checked against the current
|
|
-- component for overlap.
|
|
|
|
if Nkind (Parent (Clist)) = N_Variant then
|
|
Clist := Parent (Parent (Parent (Clist)));
|
|
|
|
-- Check for possible discriminant part in record, this is
|
|
-- treated essentially as another level in the recursion.
|
|
-- For this case we have the parent of the component list
|
|
-- is the record definition, and its parent is the full
|
|
-- type declaration which contains the discriminant
|
|
-- specifications.
|
|
|
|
elsif Nkind (Parent (Clist)) = N_Record_Definition then
|
|
Clist := Parent (Parent ((Clist)));
|
|
|
|
-- If neither of these two cases, we are at the top of
|
|
-- the tree
|
|
|
|
else
|
|
exit Component_List_Loop;
|
|
end if;
|
|
end loop Component_List_Loop;
|
|
|
|
<<Continue_Main_Component_Loop>>
|
|
Next_Entity (C1_Ent);
|
|
|
|
end loop Main_Component_Loop;
|
|
end Overlap_Check2;
|
|
end if;
|
|
|
|
-- For records that have component clauses for all components, and
|
|
-- whose size is less than or equal to 32, we need to know the size
|
|
-- in the front end to activate possible packed array processing
|
|
-- where the component type is a record.
|
|
|
|
-- At this stage Hbit + 1 represents the first unused bit from all
|
|
-- the component clauses processed, so if the component clauses are
|
|
-- complete, then this is the length of the record.
|
|
|
|
-- For records longer than System.Storage_Unit, and for those where
|
|
-- not all components have component clauses, the back end determines
|
|
-- the length (it may for example be appopriate to round up the size
|
|
-- to some convenient boundary, based on alignment considerations etc).
|
|
|
|
if Unknown_RM_Size (Rectype)
|
|
and then Hbit + 1 <= 32
|
|
then
|
|
-- Nothing to do if at least one component with no component clause
|
|
|
|
Comp := First_Entity (Rectype);
|
|
while Present (Comp) loop
|
|
if Ekind (Comp) = E_Component
|
|
or else Ekind (Comp) = E_Discriminant
|
|
then
|
|
exit when No (Component_Clause (Comp));
|
|
end if;
|
|
|
|
Next_Entity (Comp);
|
|
end loop;
|
|
|
|
-- If we fall out of loop, all components have component clauses
|
|
-- and so we can set the size to the maximum value.
|
|
|
|
if No (Comp) then
|
|
Set_RM_Size (Rectype, Hbit + 1);
|
|
end if;
|
|
end if;
|
|
|
|
-- Check missing components if Complete_Representation pragma appeared
|
|
|
|
if Present (CR_Pragma) then
|
|
Comp := First_Entity (Rectype);
|
|
while Present (Comp) loop
|
|
if Ekind (Comp) = E_Component
|
|
or else
|
|
Ekind (Comp) = E_Discriminant
|
|
then
|
|
if No (Component_Clause (Comp)) then
|
|
Error_Msg_NE
|
|
("missing component clause for &", CR_Pragma, Comp);
|
|
end if;
|
|
end if;
|
|
|
|
Next_Entity (Comp);
|
|
end loop;
|
|
end if;
|
|
end Analyze_Record_Representation_Clause;
|
|
|
|
-----------------------------
|
|
-- Check_Component_Overlap --
|
|
-----------------------------
|
|
|
|
procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
|
|
begin
|
|
if Present (Component_Clause (C1_Ent))
|
|
and then Present (Component_Clause (C2_Ent))
|
|
then
|
|
-- Exclude odd case where we have two tag fields in the same
|
|
-- record, both at location zero. This seems a bit strange,
|
|
-- but it seems to happen in some circumstances ???
|
|
|
|
if Chars (C1_Ent) = Name_uTag
|
|
and then Chars (C2_Ent) = Name_uTag
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
-- Here we check if the two fields overlap
|
|
|
|
declare
|
|
S1 : constant Uint := Component_Bit_Offset (C1_Ent);
|
|
S2 : constant Uint := Component_Bit_Offset (C2_Ent);
|
|
E1 : constant Uint := S1 + Esize (C1_Ent);
|
|
E2 : constant Uint := S2 + Esize (C2_Ent);
|
|
|
|
begin
|
|
if E2 <= S1 or else E1 <= S2 then
|
|
null;
|
|
else
|
|
Error_Msg_Node_2 :=
|
|
Component_Name (Component_Clause (C2_Ent));
|
|
Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
|
|
Error_Msg_Node_1 :=
|
|
Component_Name (Component_Clause (C1_Ent));
|
|
Error_Msg_N
|
|
("component& overlaps & #",
|
|
Component_Name (Component_Clause (C1_Ent)));
|
|
end if;
|
|
end;
|
|
end if;
|
|
end Check_Component_Overlap;
|
|
|
|
-----------------------------------
|
|
-- Check_Constant_Address_Clause --
|
|
-----------------------------------
|
|
|
|
procedure Check_Constant_Address_Clause
|
|
(Expr : Node_Id;
|
|
U_Ent : Entity_Id)
|
|
is
|
|
procedure Check_At_Constant_Address (Nod : Node_Id);
|
|
-- Checks that the given node N represents a name whose 'Address
|
|
-- is constant (in the same sense as OK_Constant_Address_Clause,
|
|
-- i.e. the address value is the same at the point of declaration
|
|
-- of U_Ent and at the time of elaboration of the address clause.
|
|
|
|
procedure Check_Expr_Constants (Nod : Node_Id);
|
|
-- Checks that Nod meets the requirements for a constant address
|
|
-- clause in the sense of the enclosing procedure.
|
|
|
|
procedure Check_List_Constants (Lst : List_Id);
|
|
-- Check that all elements of list Lst meet the requirements for a
|
|
-- constant address clause in the sense of the enclosing procedure.
|
|
|
|
-------------------------------
|
|
-- Check_At_Constant_Address --
|
|
-------------------------------
|
|
|
|
procedure Check_At_Constant_Address (Nod : Node_Id) is
|
|
begin
|
|
if Is_Entity_Name (Nod) then
|
|
if Present (Address_Clause (Entity ((Nod)))) then
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
Error_Msg_NE
|
|
("address for& cannot" &
|
|
" depend on another address clause! ('R'M 13.1(22))!",
|
|
Nod, U_Ent);
|
|
|
|
elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
|
|
and then Sloc (U_Ent) < Sloc (Entity (Nod))
|
|
then
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
Error_Msg_Name_1 := Chars (Entity (Nod));
|
|
Error_Msg_Name_2 := Chars (U_Ent);
|
|
Error_Msg_N
|
|
("\% must be defined before % ('R'M 13.1(22))!",
|
|
Nod);
|
|
end if;
|
|
|
|
elsif Nkind (Nod) = N_Selected_Component then
|
|
declare
|
|
T : constant Entity_Id := Etype (Prefix (Nod));
|
|
|
|
begin
|
|
if (Is_Record_Type (T)
|
|
and then Has_Discriminants (T))
|
|
or else
|
|
(Is_Access_Type (T)
|
|
and then Is_Record_Type (Designated_Type (T))
|
|
and then Has_Discriminants (Designated_Type (T)))
|
|
then
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
Error_Msg_N
|
|
("\address cannot depend on component" &
|
|
" of discriminated record ('R'M 13.1(22))!",
|
|
Nod);
|
|
else
|
|
Check_At_Constant_Address (Prefix (Nod));
|
|
end if;
|
|
end;
|
|
|
|
elsif Nkind (Nod) = N_Indexed_Component then
|
|
Check_At_Constant_Address (Prefix (Nod));
|
|
Check_List_Constants (Expressions (Nod));
|
|
|
|
else
|
|
Check_Expr_Constants (Nod);
|
|
end if;
|
|
end Check_At_Constant_Address;
|
|
|
|
--------------------------
|
|
-- Check_Expr_Constants --
|
|
--------------------------
|
|
|
|
procedure Check_Expr_Constants (Nod : Node_Id) is
|
|
Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
|
|
Ent : Entity_Id := Empty;
|
|
|
|
begin
|
|
if Nkind (Nod) in N_Has_Etype
|
|
and then Etype (Nod) = Any_Type
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
case Nkind (Nod) is
|
|
when N_Empty | N_Error =>
|
|
return;
|
|
|
|
when N_Identifier | N_Expanded_Name =>
|
|
Ent := Entity (Nod);
|
|
|
|
-- We need to look at the original node if it is different
|
|
-- from the node, since we may have rewritten things and
|
|
-- substituted an identifier representing the rewrite.
|
|
|
|
if Original_Node (Nod) /= Nod then
|
|
Check_Expr_Constants (Original_Node (Nod));
|
|
|
|
-- If the node is an object declaration without initial
|
|
-- value, some code has been expanded, and the expression
|
|
-- is not constant, even if the constituents might be
|
|
-- acceptable, as in A'Address + offset.
|
|
|
|
if Ekind (Ent) = E_Variable
|
|
and then Nkind (Declaration_Node (Ent))
|
|
= N_Object_Declaration
|
|
and then
|
|
No (Expression (Declaration_Node (Ent)))
|
|
then
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
|
|
-- If entity is constant, it may be the result of expanding
|
|
-- a check. We must verify that its declaration appears
|
|
-- before the object in question, else we also reject the
|
|
-- address clause.
|
|
|
|
elsif Ekind (Ent) = E_Constant
|
|
and then In_Same_Source_Unit (Ent, U_Ent)
|
|
and then Sloc (Ent) > Loc_U_Ent
|
|
then
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
|
|
-- Otherwise look at the identifier and see if it is OK
|
|
|
|
if Ekind (Ent) = E_Named_Integer
|
|
or else
|
|
Ekind (Ent) = E_Named_Real
|
|
or else
|
|
Is_Type (Ent)
|
|
then
|
|
return;
|
|
|
|
elsif
|
|
Ekind (Ent) = E_Constant
|
|
or else
|
|
Ekind (Ent) = E_In_Parameter
|
|
then
|
|
-- This is the case where we must have Ent defined
|
|
-- before U_Ent. Clearly if they are in different
|
|
-- units this requirement is met since the unit
|
|
-- containing Ent is already processed.
|
|
|
|
if not In_Same_Source_Unit (Ent, U_Ent) then
|
|
return;
|
|
|
|
-- Otherwise location of Ent must be before the
|
|
-- location of U_Ent, that's what prior defined means.
|
|
|
|
elsif Sloc (Ent) < Loc_U_Ent then
|
|
return;
|
|
|
|
else
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
Error_Msg_Name_1 := Chars (Ent);
|
|
Error_Msg_Name_2 := Chars (U_Ent);
|
|
Error_Msg_N
|
|
("\% must be defined before % ('R'M 13.1(22))!",
|
|
Nod);
|
|
end if;
|
|
|
|
elsif Nkind (Original_Node (Nod)) = N_Function_Call then
|
|
Check_Expr_Constants (Original_Node (Nod));
|
|
|
|
else
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
|
|
if Comes_From_Source (Ent) then
|
|
Error_Msg_Name_1 := Chars (Ent);
|
|
Error_Msg_N
|
|
("\reference to variable% not allowed"
|
|
& " ('R'M 13.1(22))!", Nod);
|
|
else
|
|
Error_Msg_N
|
|
("non-static expression not allowed"
|
|
& " ('R'M 13.1(22))!", Nod);
|
|
end if;
|
|
end if;
|
|
|
|
when N_Integer_Literal =>
|
|
|
|
-- If this is a rewritten unchecked conversion, in a system
|
|
-- where Address is an integer type, always use the base type
|
|
-- for a literal value. This is user-friendly and prevents
|
|
-- order-of-elaboration issues with instances of unchecked
|
|
-- conversion.
|
|
|
|
if Nkind (Original_Node (Nod)) = N_Function_Call then
|
|
Set_Etype (Nod, Base_Type (Etype (Nod)));
|
|
end if;
|
|
|
|
when N_Real_Literal |
|
|
N_String_Literal |
|
|
N_Character_Literal =>
|
|
return;
|
|
|
|
when N_Range =>
|
|
Check_Expr_Constants (Low_Bound (Nod));
|
|
Check_Expr_Constants (High_Bound (Nod));
|
|
|
|
when N_Explicit_Dereference =>
|
|
Check_Expr_Constants (Prefix (Nod));
|
|
|
|
when N_Indexed_Component =>
|
|
Check_Expr_Constants (Prefix (Nod));
|
|
Check_List_Constants (Expressions (Nod));
|
|
|
|
when N_Slice =>
|
|
Check_Expr_Constants (Prefix (Nod));
|
|
Check_Expr_Constants (Discrete_Range (Nod));
|
|
|
|
when N_Selected_Component =>
|
|
Check_Expr_Constants (Prefix (Nod));
|
|
|
|
when N_Attribute_Reference =>
|
|
if Attribute_Name (Nod) = Name_Address
|
|
or else
|
|
Attribute_Name (Nod) = Name_Access
|
|
or else
|
|
Attribute_Name (Nod) = Name_Unchecked_Access
|
|
or else
|
|
Attribute_Name (Nod) = Name_Unrestricted_Access
|
|
then
|
|
Check_At_Constant_Address (Prefix (Nod));
|
|
|
|
else
|
|
Check_Expr_Constants (Prefix (Nod));
|
|
Check_List_Constants (Expressions (Nod));
|
|
end if;
|
|
|
|
when N_Aggregate =>
|
|
Check_List_Constants (Component_Associations (Nod));
|
|
Check_List_Constants (Expressions (Nod));
|
|
|
|
when N_Component_Association =>
|
|
Check_Expr_Constants (Expression (Nod));
|
|
|
|
when N_Extension_Aggregate =>
|
|
Check_Expr_Constants (Ancestor_Part (Nod));
|
|
Check_List_Constants (Component_Associations (Nod));
|
|
Check_List_Constants (Expressions (Nod));
|
|
|
|
when N_Null =>
|
|
return;
|
|
|
|
when N_Binary_Op | N_And_Then | N_Or_Else | N_Membership_Test =>
|
|
Check_Expr_Constants (Left_Opnd (Nod));
|
|
Check_Expr_Constants (Right_Opnd (Nod));
|
|
|
|
when N_Unary_Op =>
|
|
Check_Expr_Constants (Right_Opnd (Nod));
|
|
|
|
when N_Type_Conversion |
|
|
N_Qualified_Expression |
|
|
N_Allocator =>
|
|
Check_Expr_Constants (Expression (Nod));
|
|
|
|
when N_Unchecked_Type_Conversion =>
|
|
Check_Expr_Constants (Expression (Nod));
|
|
|
|
-- If this is a rewritten unchecked conversion, subtypes
|
|
-- in this node are those created within the instance.
|
|
-- To avoid order of elaboration issues, replace them
|
|
-- with their base types. Note that address clauses can
|
|
-- cause order of elaboration problems because they are
|
|
-- elaborated by the back-end at the point of definition,
|
|
-- and may mention entities declared in between (as long
|
|
-- as everything is static). It is user-friendly to allow
|
|
-- unchecked conversions in this context.
|
|
|
|
if Nkind (Original_Node (Nod)) = N_Function_Call then
|
|
Set_Etype (Expression (Nod),
|
|
Base_Type (Etype (Expression (Nod))));
|
|
Set_Etype (Nod, Base_Type (Etype (Nod)));
|
|
end if;
|
|
|
|
when N_Function_Call =>
|
|
if not Is_Pure (Entity (Name (Nod))) then
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
|
|
Error_Msg_NE
|
|
("\function & is not pure ('R'M 13.1(22))!",
|
|
Nod, Entity (Name (Nod)));
|
|
|
|
else
|
|
Check_List_Constants (Parameter_Associations (Nod));
|
|
end if;
|
|
|
|
when N_Parameter_Association =>
|
|
Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
|
|
|
|
when others =>
|
|
Error_Msg_NE
|
|
("invalid address clause for initialized object &!",
|
|
Nod, U_Ent);
|
|
Error_Msg_NE
|
|
("\must be constant defined before& ('R'M 13.1(22))!",
|
|
Nod, U_Ent);
|
|
end case;
|
|
end Check_Expr_Constants;
|
|
|
|
--------------------------
|
|
-- Check_List_Constants --
|
|
--------------------------
|
|
|
|
procedure Check_List_Constants (Lst : List_Id) is
|
|
Nod1 : Node_Id;
|
|
|
|
begin
|
|
if Present (Lst) then
|
|
Nod1 := First (Lst);
|
|
while Present (Nod1) loop
|
|
Check_Expr_Constants (Nod1);
|
|
Next (Nod1);
|
|
end loop;
|
|
end if;
|
|
end Check_List_Constants;
|
|
|
|
-- Start of processing for Check_Constant_Address_Clause
|
|
|
|
begin
|
|
Check_Expr_Constants (Expr);
|
|
end Check_Constant_Address_Clause;
|
|
|
|
----------------
|
|
-- Check_Size --
|
|
----------------
|
|
|
|
procedure Check_Size
|
|
(N : Node_Id;
|
|
T : Entity_Id;
|
|
Siz : Uint;
|
|
Biased : out Boolean)
|
|
is
|
|
UT : constant Entity_Id := Underlying_Type (T);
|
|
M : Uint;
|
|
|
|
begin
|
|
Biased := False;
|
|
|
|
-- Dismiss cases for generic types or types with previous errors
|
|
|
|
if No (UT)
|
|
or else UT = Any_Type
|
|
or else Is_Generic_Type (UT)
|
|
or else Is_Generic_Type (Root_Type (UT))
|
|
then
|
|
return;
|
|
|
|
-- Check case of bit packed array
|
|
|
|
elsif Is_Array_Type (UT)
|
|
and then Known_Static_Component_Size (UT)
|
|
and then Is_Bit_Packed_Array (UT)
|
|
then
|
|
declare
|
|
Asiz : Uint;
|
|
Indx : Node_Id;
|
|
Ityp : Entity_Id;
|
|
|
|
begin
|
|
Asiz := Component_Size (UT);
|
|
Indx := First_Index (UT);
|
|
loop
|
|
Ityp := Etype (Indx);
|
|
|
|
-- If non-static bound, then we are not in the business of
|
|
-- trying to check the length, and indeed an error will be
|
|
-- issued elsewhere, since sizes of non-static array types
|
|
-- cannot be set implicitly or explicitly.
|
|
|
|
if not Is_Static_Subtype (Ityp) then
|
|
return;
|
|
end if;
|
|
|
|
-- Otherwise accumulate next dimension
|
|
|
|
Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
|
|
Expr_Value (Type_Low_Bound (Ityp)) +
|
|
Uint_1);
|
|
|
|
Next_Index (Indx);
|
|
exit when No (Indx);
|
|
end loop;
|
|
|
|
if Asiz <= Siz then
|
|
return;
|
|
else
|
|
Error_Msg_Uint_1 := Asiz;
|
|
Error_Msg_NE
|
|
("size for& too small, minimum allowed is ^", N, T);
|
|
Set_Esize (T, Asiz);
|
|
Set_RM_Size (T, Asiz);
|
|
end if;
|
|
end;
|
|
|
|
-- All other composite types are ignored
|
|
|
|
elsif Is_Composite_Type (UT) then
|
|
return;
|
|
|
|
-- For fixed-point types, don't check minimum if type is not frozen,
|
|
-- since we don't know all the characteristics of the type that can
|
|
-- affect the size (e.g. a specified small) till freeze time.
|
|
|
|
elsif Is_Fixed_Point_Type (UT)
|
|
and then not Is_Frozen (UT)
|
|
then
|
|
null;
|
|
|
|
-- Cases for which a minimum check is required
|
|
|
|
else
|
|
-- Ignore if specified size is correct for the type
|
|
|
|
if Known_Esize (UT) and then Siz = Esize (UT) then
|
|
return;
|
|
end if;
|
|
|
|
-- Otherwise get minimum size
|
|
|
|
M := UI_From_Int (Minimum_Size (UT));
|
|
|
|
if Siz < M then
|
|
|
|
-- Size is less than minimum size, but one possibility remains
|
|
-- that we can manage with the new size if we bias the type
|
|
|
|
M := UI_From_Int (Minimum_Size (UT, Biased => True));
|
|
|
|
if Siz < M then
|
|
Error_Msg_Uint_1 := M;
|
|
Error_Msg_NE
|
|
("size for& too small, minimum allowed is ^", N, T);
|
|
Set_Esize (T, M);
|
|
Set_RM_Size (T, M);
|
|
else
|
|
Biased := True;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end Check_Size;
|
|
|
|
-------------------------
|
|
-- Get_Alignment_Value --
|
|
-------------------------
|
|
|
|
function Get_Alignment_Value (Expr : Node_Id) return Uint is
|
|
Align : constant Uint := Static_Integer (Expr);
|
|
|
|
begin
|
|
if Align = No_Uint then
|
|
return No_Uint;
|
|
|
|
elsif Align <= 0 then
|
|
Error_Msg_N ("alignment value must be positive", Expr);
|
|
return No_Uint;
|
|
|
|
else
|
|
for J in Int range 0 .. 64 loop
|
|
declare
|
|
M : constant Uint := Uint_2 ** J;
|
|
|
|
begin
|
|
exit when M = Align;
|
|
|
|
if M > Align then
|
|
Error_Msg_N
|
|
("alignment value must be power of 2", Expr);
|
|
return No_Uint;
|
|
end if;
|
|
end;
|
|
end loop;
|
|
|
|
return Align;
|
|
end if;
|
|
end Get_Alignment_Value;
|
|
|
|
----------------
|
|
-- Initialize --
|
|
----------------
|
|
|
|
procedure Initialize is
|
|
begin
|
|
Unchecked_Conversions.Init;
|
|
end Initialize;
|
|
|
|
-------------------------
|
|
-- Is_Operational_Item --
|
|
-------------------------
|
|
|
|
function Is_Operational_Item (N : Node_Id) return Boolean is
|
|
begin
|
|
if Nkind (N) /= N_Attribute_Definition_Clause then
|
|
return False;
|
|
else
|
|
declare
|
|
Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
|
|
|
|
begin
|
|
return Id = Attribute_Input
|
|
or else Id = Attribute_Output
|
|
or else Id = Attribute_Read
|
|
or else Id = Attribute_Write
|
|
or else Id = Attribute_External_Tag;
|
|
end;
|
|
end if;
|
|
end Is_Operational_Item;
|
|
|
|
--------------------------------------
|
|
-- Mark_Aliased_Address_As_Volatile --
|
|
--------------------------------------
|
|
|
|
procedure Mark_Aliased_Address_As_Volatile (N : Node_Id) is
|
|
Ent : constant Entity_Id := Address_Aliased_Entity (N);
|
|
|
|
begin
|
|
if Present (Ent) then
|
|
Set_Treat_As_Volatile (Ent);
|
|
end if;
|
|
end Mark_Aliased_Address_As_Volatile;
|
|
|
|
------------------
|
|
-- Minimum_Size --
|
|
------------------
|
|
|
|
function Minimum_Size
|
|
(T : Entity_Id;
|
|
Biased : Boolean := False) return Nat
|
|
is
|
|
Lo : Uint := No_Uint;
|
|
Hi : Uint := No_Uint;
|
|
LoR : Ureal := No_Ureal;
|
|
HiR : Ureal := No_Ureal;
|
|
LoSet : Boolean := False;
|
|
HiSet : Boolean := False;
|
|
B : Uint;
|
|
S : Nat;
|
|
Ancest : Entity_Id;
|
|
R_Typ : constant Entity_Id := Root_Type (T);
|
|
|
|
begin
|
|
-- If bad type, return 0
|
|
|
|
if T = Any_Type then
|
|
return 0;
|
|
|
|
-- For generic types, just return zero. There cannot be any legitimate
|
|
-- need to know such a size, but this routine may be called with a
|
|
-- generic type as part of normal processing.
|
|
|
|
elsif Is_Generic_Type (R_Typ)
|
|
or else R_Typ = Any_Type
|
|
then
|
|
return 0;
|
|
|
|
-- Access types. Normally an access type cannot have a size smaller
|
|
-- than the size of System.Address. The exception is on VMS, where
|
|
-- we have short and long addresses, and it is possible for an access
|
|
-- type to have a short address size (and thus be less than the size
|
|
-- of System.Address itself). We simply skip the check for VMS, and
|
|
-- leave the back end to do the check.
|
|
|
|
elsif Is_Access_Type (T) then
|
|
if OpenVMS_On_Target then
|
|
return 0;
|
|
else
|
|
return System_Address_Size;
|
|
end if;
|
|
|
|
-- Floating-point types
|
|
|
|
elsif Is_Floating_Point_Type (T) then
|
|
return UI_To_Int (Esize (R_Typ));
|
|
|
|
-- Discrete types
|
|
|
|
elsif Is_Discrete_Type (T) then
|
|
|
|
-- The following loop is looking for the nearest compile time
|
|
-- known bounds following the ancestor subtype chain. The idea
|
|
-- is to find the most restrictive known bounds information.
|
|
|
|
Ancest := T;
|
|
loop
|
|
if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
|
|
return 0;
|
|
end if;
|
|
|
|
if not LoSet then
|
|
if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
|
|
Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
|
|
LoSet := True;
|
|
exit when HiSet;
|
|
end if;
|
|
end if;
|
|
|
|
if not HiSet then
|
|
if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
|
|
Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
|
|
HiSet := True;
|
|
exit when LoSet;
|
|
end if;
|
|
end if;
|
|
|
|
Ancest := Ancestor_Subtype (Ancest);
|
|
|
|
if No (Ancest) then
|
|
Ancest := Base_Type (T);
|
|
|
|
if Is_Generic_Type (Ancest) then
|
|
return 0;
|
|
end if;
|
|
end if;
|
|
end loop;
|
|
|
|
-- Fixed-point types. We can't simply use Expr_Value to get the
|
|
-- Corresponding_Integer_Value values of the bounds, since these
|
|
-- do not get set till the type is frozen, and this routine can
|
|
-- be called before the type is frozen. Similarly the test for
|
|
-- bounds being static needs to include the case where we have
|
|
-- unanalyzed real literals for the same reason.
|
|
|
|
elsif Is_Fixed_Point_Type (T) then
|
|
|
|
-- The following loop is looking for the nearest compile time
|
|
-- known bounds following the ancestor subtype chain. The idea
|
|
-- is to find the most restrictive known bounds information.
|
|
|
|
Ancest := T;
|
|
loop
|
|
if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
|
|
return 0;
|
|
end if;
|
|
|
|
if not LoSet then
|
|
if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
|
|
or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
|
|
then
|
|
LoR := Expr_Value_R (Type_Low_Bound (Ancest));
|
|
LoSet := True;
|
|
exit when HiSet;
|
|
end if;
|
|
end if;
|
|
|
|
if not HiSet then
|
|
if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
|
|
or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
|
|
then
|
|
HiR := Expr_Value_R (Type_High_Bound (Ancest));
|
|
HiSet := True;
|
|
exit when LoSet;
|
|
end if;
|
|
end if;
|
|
|
|
Ancest := Ancestor_Subtype (Ancest);
|
|
|
|
if No (Ancest) then
|
|
Ancest := Base_Type (T);
|
|
|
|
if Is_Generic_Type (Ancest) then
|
|
return 0;
|
|
end if;
|
|
end if;
|
|
end loop;
|
|
|
|
Lo := UR_To_Uint (LoR / Small_Value (T));
|
|
Hi := UR_To_Uint (HiR / Small_Value (T));
|
|
|
|
-- No other types allowed
|
|
|
|
else
|
|
raise Program_Error;
|
|
end if;
|
|
|
|
-- Fall through with Hi and Lo set. Deal with biased case
|
|
|
|
if (Biased and then not Is_Fixed_Point_Type (T))
|
|
or else Has_Biased_Representation (T)
|
|
then
|
|
Hi := Hi - Lo;
|
|
Lo := Uint_0;
|
|
end if;
|
|
|
|
-- Signed case. Note that we consider types like range 1 .. -1 to be
|
|
-- signed for the purpose of computing the size, since the bounds
|
|
-- have to be accomodated in the base type.
|
|
|
|
if Lo < 0 or else Hi < 0 then
|
|
S := 1;
|
|
B := Uint_1;
|
|
|
|
-- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
|
|
-- Note that we accommodate the case where the bounds cross. This
|
|
-- can happen either because of the way the bounds are declared
|
|
-- or because of the algorithm in Freeze_Fixed_Point_Type.
|
|
|
|
while Lo < -B
|
|
or else Hi < -B
|
|
or else Lo >= B
|
|
or else Hi >= B
|
|
loop
|
|
B := Uint_2 ** S;
|
|
S := S + 1;
|
|
end loop;
|
|
|
|
-- Unsigned case
|
|
|
|
else
|
|
-- If both bounds are positive, make sure that both are represen-
|
|
-- table in the case where the bounds are crossed. This can happen
|
|
-- either because of the way the bounds are declared, or because of
|
|
-- the algorithm in Freeze_Fixed_Point_Type.
|
|
|
|
if Lo > Hi then
|
|
Hi := Lo;
|
|
end if;
|
|
|
|
-- S = size, (can accommodate 0 .. (2**size - 1))
|
|
|
|
S := 0;
|
|
while Hi >= Uint_2 ** S loop
|
|
S := S + 1;
|
|
end loop;
|
|
end if;
|
|
|
|
return S;
|
|
end Minimum_Size;
|
|
|
|
---------------------------
|
|
-- New_Stream_Subprogram --
|
|
---------------------------
|
|
|
|
procedure New_Stream_Subprogram
|
|
(N : Node_Id;
|
|
Ent : Entity_Id;
|
|
Subp : Entity_Id;
|
|
Nam : TSS_Name_Type)
|
|
is
|
|
Loc : constant Source_Ptr := Sloc (N);
|
|
Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
|
|
Subp_Id : Entity_Id;
|
|
Subp_Decl : Node_Id;
|
|
F : Entity_Id;
|
|
Etyp : Entity_Id;
|
|
|
|
Defer_Declaration : constant Boolean :=
|
|
Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
|
|
-- For a tagged type, there is a declaration for each stream attribute
|
|
-- at the freeze point, and we must generate only a completion of this
|
|
-- declaration. We do the same for private types, because the full view
|
|
-- might be tagged. Otherwise we generate a declaration at the point of
|
|
-- the attribute definition clause.
|
|
|
|
function Build_Spec return Node_Id;
|
|
-- Used for declaration and renaming declaration, so that this is
|
|
-- treated as a renaming_as_body.
|
|
|
|
----------------
|
|
-- Build_Spec --
|
|
----------------
|
|
|
|
function Build_Spec return Node_Id is
|
|
Out_P : constant Boolean := (Nam = TSS_Stream_Read);
|
|
Formals : List_Id;
|
|
Spec : Node_Id;
|
|
T_Ref : constant Node_Id := New_Reference_To (Etyp, Loc);
|
|
|
|
begin
|
|
Subp_Id := Make_Defining_Identifier (Loc, Sname);
|
|
|
|
-- S : access Root_Stream_Type'Class
|
|
|
|
Formals := New_List (
|
|
Make_Parameter_Specification (Loc,
|
|
Defining_Identifier =>
|
|
Make_Defining_Identifier (Loc, Name_S),
|
|
Parameter_Type =>
|
|
Make_Access_Definition (Loc,
|
|
Subtype_Mark =>
|
|
New_Reference_To (
|
|
Designated_Type (Etype (F)), Loc))));
|
|
|
|
if Nam = TSS_Stream_Input then
|
|
Spec := Make_Function_Specification (Loc,
|
|
Defining_Unit_Name => Subp_Id,
|
|
Parameter_Specifications => Formals,
|
|
Result_Definition => T_Ref);
|
|
else
|
|
-- V : [out] T
|
|
|
|
Append_To (Formals,
|
|
Make_Parameter_Specification (Loc,
|
|
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
|
|
Out_Present => Out_P,
|
|
Parameter_Type => T_Ref));
|
|
|
|
Spec := Make_Procedure_Specification (Loc,
|
|
Defining_Unit_Name => Subp_Id,
|
|
Parameter_Specifications => Formals);
|
|
end if;
|
|
|
|
return Spec;
|
|
end Build_Spec;
|
|
|
|
-- Start of processing for New_Stream_Subprogram
|
|
|
|
begin
|
|
F := First_Formal (Subp);
|
|
|
|
if Ekind (Subp) = E_Procedure then
|
|
Etyp := Etype (Next_Formal (F));
|
|
else
|
|
Etyp := Etype (Subp);
|
|
end if;
|
|
|
|
-- Prepare subprogram declaration and insert it as an action on the
|
|
-- clause node. The visibility for this entity is used to test for
|
|
-- visibility of the attribute definition clause (in the sense of
|
|
-- 8.3(23) as amended by AI-195).
|
|
|
|
if not Defer_Declaration then
|
|
Subp_Decl :=
|
|
Make_Subprogram_Declaration (Loc,
|
|
Specification => Build_Spec);
|
|
|
|
-- For a tagged type, there is always a visible declaration for each
|
|
-- stream TSS (it is a predefined primitive operation), and the for the
|
|
-- completion of this declaration occurs at the freeze point, which is
|
|
-- not always visible at places where the attribute definition clause is
|
|
-- visible. So, we create a dummy entity here for the purpose of
|
|
-- tracking the visibility of the attribute definition clause itself.
|
|
|
|
else
|
|
Subp_Id :=
|
|
Make_Defining_Identifier (Loc,
|
|
Chars => New_External_Name (Sname, 'V'));
|
|
Subp_Decl :=
|
|
Make_Object_Declaration (Loc,
|
|
Defining_Identifier => Subp_Id,
|
|
Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
|
|
end if;
|
|
|
|
Insert_Action (N, Subp_Decl);
|
|
Set_Entity (N, Subp_Id);
|
|
|
|
Subp_Decl :=
|
|
Make_Subprogram_Renaming_Declaration (Loc,
|
|
Specification => Build_Spec,
|
|
Name => New_Reference_To (Subp, Loc));
|
|
|
|
if Defer_Declaration then
|
|
Set_TSS (Base_Type (Ent), Subp_Id);
|
|
else
|
|
Insert_Action (N, Subp_Decl);
|
|
Copy_TSS (Subp_Id, Base_Type (Ent));
|
|
end if;
|
|
end New_Stream_Subprogram;
|
|
|
|
------------------------
|
|
-- Rep_Item_Too_Early --
|
|
------------------------
|
|
|
|
function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
|
|
begin
|
|
-- Cannot apply non-operational rep items to generic types
|
|
|
|
if Is_Operational_Item (N) then
|
|
return False;
|
|
|
|
elsif Is_Type (T)
|
|
and then Is_Generic_Type (Root_Type (T))
|
|
then
|
|
Error_Msg_N
|
|
("representation item not allowed for generic type", N);
|
|
return True;
|
|
end if;
|
|
|
|
-- Otherwise check for incompleted type
|
|
|
|
if Is_Incomplete_Or_Private_Type (T)
|
|
and then No (Underlying_Type (T))
|
|
then
|
|
Error_Msg_N
|
|
("representation item must be after full type declaration", N);
|
|
return True;
|
|
|
|
-- If the type has incompleted components, a representation clause is
|
|
-- illegal but stream attributes and Convention pragmas are correct.
|
|
|
|
elsif Has_Private_Component (T) then
|
|
if Nkind (N) = N_Pragma then
|
|
return False;
|
|
else
|
|
Error_Msg_N
|
|
("representation item must appear after type is fully defined",
|
|
N);
|
|
return True;
|
|
end if;
|
|
else
|
|
return False;
|
|
end if;
|
|
end Rep_Item_Too_Early;
|
|
|
|
-----------------------
|
|
-- Rep_Item_Too_Late --
|
|
-----------------------
|
|
|
|
function Rep_Item_Too_Late
|
|
(T : Entity_Id;
|
|
N : Node_Id;
|
|
FOnly : Boolean := False) return Boolean
|
|
is
|
|
S : Entity_Id;
|
|
Parent_Type : Entity_Id;
|
|
|
|
procedure Too_Late;
|
|
-- Output the too late message. Note that this is not considered a
|
|
-- serious error, since the effect is simply that we ignore the
|
|
-- representation clause in this case.
|
|
|
|
--------------
|
|
-- Too_Late --
|
|
--------------
|
|
|
|
procedure Too_Late is
|
|
begin
|
|
Error_Msg_N ("|representation item appears too late!", N);
|
|
end Too_Late;
|
|
|
|
-- Start of processing for Rep_Item_Too_Late
|
|
|
|
begin
|
|
-- First make sure entity is not frozen (RM 13.1(9)). Exclude imported
|
|
-- types, which may be frozen if they appear in a representation clause
|
|
-- for a local type.
|
|
|
|
if Is_Frozen (T)
|
|
and then not From_With_Type (T)
|
|
then
|
|
Too_Late;
|
|
S := First_Subtype (T);
|
|
|
|
if Present (Freeze_Node (S)) then
|
|
Error_Msg_NE
|
|
("?no more representation items for }", Freeze_Node (S), S);
|
|
end if;
|
|
|
|
return True;
|
|
|
|
-- Check for case of non-tagged derived type whose parent either has
|
|
-- primitive operations, or is a by reference type (RM 13.1(10)).
|
|
|
|
elsif Is_Type (T)
|
|
and then not FOnly
|
|
and then Is_Derived_Type (T)
|
|
and then not Is_Tagged_Type (T)
|
|
then
|
|
Parent_Type := Etype (Base_Type (T));
|
|
|
|
if Has_Primitive_Operations (Parent_Type) then
|
|
Too_Late;
|
|
Error_Msg_NE
|
|
("primitive operations already defined for&!", N, Parent_Type);
|
|
return True;
|
|
|
|
elsif Is_By_Reference_Type (Parent_Type) then
|
|
Too_Late;
|
|
Error_Msg_NE
|
|
("parent type & is a by reference type!", N, Parent_Type);
|
|
return True;
|
|
end if;
|
|
end if;
|
|
|
|
-- No error, link item into head of chain of rep items for the entity
|
|
|
|
Record_Rep_Item (T, N);
|
|
return False;
|
|
end Rep_Item_Too_Late;
|
|
|
|
-------------------------
|
|
-- Same_Representation --
|
|
-------------------------
|
|
|
|
function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
|
|
T1 : constant Entity_Id := Underlying_Type (Typ1);
|
|
T2 : constant Entity_Id := Underlying_Type (Typ2);
|
|
|
|
begin
|
|
-- A quick check, if base types are the same, then we definitely have
|
|
-- the same representation, because the subtype specific representation
|
|
-- attributes (Size and Alignment) do not affect representation from
|
|
-- the point of view of this test.
|
|
|
|
if Base_Type (T1) = Base_Type (T2) then
|
|
return True;
|
|
|
|
elsif Is_Private_Type (Base_Type (T2))
|
|
and then Base_Type (T1) = Full_View (Base_Type (T2))
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
-- Tagged types never have differing representations
|
|
|
|
if Is_Tagged_Type (T1) then
|
|
return True;
|
|
end if;
|
|
|
|
-- Representations are definitely different if conventions differ
|
|
|
|
if Convention (T1) /= Convention (T2) then
|
|
return False;
|
|
end if;
|
|
|
|
-- Representations are different if component alignments differ
|
|
|
|
if (Is_Record_Type (T1) or else Is_Array_Type (T1))
|
|
and then
|
|
(Is_Record_Type (T2) or else Is_Array_Type (T2))
|
|
and then Component_Alignment (T1) /= Component_Alignment (T2)
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
-- For arrays, the only real issue is component size. If we know the
|
|
-- component size for both arrays, and it is the same, then that's
|
|
-- good enough to know we don't have a change of representation.
|
|
|
|
if Is_Array_Type (T1) then
|
|
if Known_Component_Size (T1)
|
|
and then Known_Component_Size (T2)
|
|
and then Component_Size (T1) = Component_Size (T2)
|
|
then
|
|
return True;
|
|
end if;
|
|
end if;
|
|
|
|
-- Types definitely have same representation if neither has non-standard
|
|
-- representation since default representations are always consistent.
|
|
-- If only one has non-standard representation, and the other does not,
|
|
-- then we consider that they do not have the same representation. They
|
|
-- might, but there is no way of telling early enough.
|
|
|
|
if Has_Non_Standard_Rep (T1) then
|
|
if not Has_Non_Standard_Rep (T2) then
|
|
return False;
|
|
end if;
|
|
else
|
|
return not Has_Non_Standard_Rep (T2);
|
|
end if;
|
|
|
|
-- Here the two types both have non-standard representation, and we
|
|
-- need to determine if they have the same non-standard representation
|
|
|
|
-- For arrays, we simply need to test if the component sizes are the
|
|
-- same. Pragma Pack is reflected in modified component sizes, so this
|
|
-- check also deals with pragma Pack.
|
|
|
|
if Is_Array_Type (T1) then
|
|
return Component_Size (T1) = Component_Size (T2);
|
|
|
|
-- Tagged types always have the same representation, because it is not
|
|
-- possible to specify different representations for common fields.
|
|
|
|
elsif Is_Tagged_Type (T1) then
|
|
return True;
|
|
|
|
-- Case of record types
|
|
|
|
elsif Is_Record_Type (T1) then
|
|
|
|
-- Packed status must conform
|
|
|
|
if Is_Packed (T1) /= Is_Packed (T2) then
|
|
return False;
|
|
|
|
-- Otherwise we must check components. Typ2 maybe a constrained
|
|
-- subtype with fewer components, so we compare the components
|
|
-- of the base types.
|
|
|
|
else
|
|
Record_Case : declare
|
|
CD1, CD2 : Entity_Id;
|
|
|
|
function Same_Rep return Boolean;
|
|
-- CD1 and CD2 are either components or discriminants. This
|
|
-- function tests whether the two have the same representation
|
|
|
|
--------------
|
|
-- Same_Rep --
|
|
--------------
|
|
|
|
function Same_Rep return Boolean is
|
|
begin
|
|
if No (Component_Clause (CD1)) then
|
|
return No (Component_Clause (CD2));
|
|
|
|
else
|
|
return
|
|
Present (Component_Clause (CD2))
|
|
and then
|
|
Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
|
|
and then
|
|
Esize (CD1) = Esize (CD2);
|
|
end if;
|
|
end Same_Rep;
|
|
|
|
-- Start processing for Record_Case
|
|
|
|
begin
|
|
if Has_Discriminants (T1) then
|
|
CD1 := First_Discriminant (T1);
|
|
CD2 := First_Discriminant (T2);
|
|
|
|
-- The number of discriminants may be different if the
|
|
-- derived type has fewer (constrained by values). The
|
|
-- invisible discriminants retain the representation of
|
|
-- the original, so the discrepancy does not per se
|
|
-- indicate a different representation.
|
|
|
|
while Present (CD1)
|
|
and then Present (CD2)
|
|
loop
|
|
if not Same_Rep then
|
|
return False;
|
|
else
|
|
Next_Discriminant (CD1);
|
|
Next_Discriminant (CD2);
|
|
end if;
|
|
end loop;
|
|
end if;
|
|
|
|
CD1 := First_Component (Underlying_Type (Base_Type (T1)));
|
|
CD2 := First_Component (Underlying_Type (Base_Type (T2)));
|
|
|
|
while Present (CD1) loop
|
|
if not Same_Rep then
|
|
return False;
|
|
else
|
|
Next_Component (CD1);
|
|
Next_Component (CD2);
|
|
end if;
|
|
end loop;
|
|
|
|
return True;
|
|
end Record_Case;
|
|
end if;
|
|
|
|
-- For enumeration types, we must check each literal to see if the
|
|
-- representation is the same. Note that we do not permit enumeration
|
|
-- reprsentation clauses for Character and Wide_Character, so these
|
|
-- cases were already dealt with.
|
|
|
|
elsif Is_Enumeration_Type (T1) then
|
|
|
|
Enumeration_Case : declare
|
|
L1, L2 : Entity_Id;
|
|
|
|
begin
|
|
L1 := First_Literal (T1);
|
|
L2 := First_Literal (T2);
|
|
|
|
while Present (L1) loop
|
|
if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
|
|
return False;
|
|
else
|
|
Next_Literal (L1);
|
|
Next_Literal (L2);
|
|
end if;
|
|
end loop;
|
|
|
|
return True;
|
|
|
|
end Enumeration_Case;
|
|
|
|
-- Any other types have the same representation for these purposes
|
|
|
|
else
|
|
return True;
|
|
end if;
|
|
end Same_Representation;
|
|
|
|
--------------------
|
|
-- Set_Enum_Esize --
|
|
--------------------
|
|
|
|
procedure Set_Enum_Esize (T : Entity_Id) is
|
|
Lo : Uint;
|
|
Hi : Uint;
|
|
Sz : Nat;
|
|
|
|
begin
|
|
Init_Alignment (T);
|
|
|
|
-- Find the minimum standard size (8,16,32,64) that fits
|
|
|
|
Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
|
|
Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
|
|
|
|
if Lo < 0 then
|
|
if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
|
|
Sz := Standard_Character_Size; -- May be > 8 on some targets
|
|
|
|
elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
|
|
Sz := 16;
|
|
|
|
elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
|
|
Sz := 32;
|
|
|
|
else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
|
|
Sz := 64;
|
|
end if;
|
|
|
|
else
|
|
if Hi < Uint_2**08 then
|
|
Sz := Standard_Character_Size; -- May be > 8 on some targets
|
|
|
|
elsif Hi < Uint_2**16 then
|
|
Sz := 16;
|
|
|
|
elsif Hi < Uint_2**32 then
|
|
Sz := 32;
|
|
|
|
else pragma Assert (Hi < Uint_2**63);
|
|
Sz := 64;
|
|
end if;
|
|
end if;
|
|
|
|
-- That minimum is the proper size unless we have a foreign convention
|
|
-- and the size required is 32 or less, in which case we bump the size
|
|
-- up to 32. This is required for C and C++ and seems reasonable for
|
|
-- all other foreign conventions.
|
|
|
|
if Has_Foreign_Convention (T)
|
|
and then Esize (T) < Standard_Integer_Size
|
|
then
|
|
Init_Esize (T, Standard_Integer_Size);
|
|
|
|
else
|
|
Init_Esize (T, Sz);
|
|
end if;
|
|
end Set_Enum_Esize;
|
|
|
|
-----------------------------------
|
|
-- Validate_Unchecked_Conversion --
|
|
-----------------------------------
|
|
|
|
procedure Validate_Unchecked_Conversion
|
|
(N : Node_Id;
|
|
Act_Unit : Entity_Id)
|
|
is
|
|
Source : Entity_Id;
|
|
Target : Entity_Id;
|
|
Vnode : Node_Id;
|
|
|
|
begin
|
|
-- Obtain source and target types. Note that we call Ancestor_Subtype
|
|
-- here because the processing for generic instantiation always makes
|
|
-- subtypes, and we want the original frozen actual types.
|
|
|
|
-- If we are dealing with private types, then do the check on their
|
|
-- fully declared counterparts if the full declarations have been
|
|
-- encountered (they don't have to be visible, but they must exist!)
|
|
|
|
Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
|
|
|
|
if Is_Private_Type (Source)
|
|
and then Present (Underlying_Type (Source))
|
|
then
|
|
Source := Underlying_Type (Source);
|
|
end if;
|
|
|
|
Target := Ancestor_Subtype (Etype (Act_Unit));
|
|
|
|
-- If either type is generic, the instantiation happens within a
|
|
-- generic unit, and there is nothing to check. The proper check
|
|
-- will happen when the enclosing generic is instantiated.
|
|
|
|
if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
|
|
return;
|
|
end if;
|
|
|
|
if Is_Private_Type (Target)
|
|
and then Present (Underlying_Type (Target))
|
|
then
|
|
Target := Underlying_Type (Target);
|
|
end if;
|
|
|
|
-- Source may be unconstrained array, but not target
|
|
|
|
if Is_Array_Type (Target)
|
|
and then not Is_Constrained (Target)
|
|
then
|
|
Error_Msg_N
|
|
("unchecked conversion to unconstrained array not allowed", N);
|
|
return;
|
|
end if;
|
|
|
|
-- Make entry in unchecked conversion table for later processing
|
|
-- by Validate_Unchecked_Conversions, which will check sizes and
|
|
-- alignments (using values set by the back-end where possible).
|
|
-- This is only done if the appropriate warning is active
|
|
|
|
if Warn_On_Unchecked_Conversion then
|
|
Unchecked_Conversions.Append
|
|
(New_Val => UC_Entry'
|
|
(Enode => N,
|
|
Source => Source,
|
|
Target => Target));
|
|
|
|
-- If both sizes are known statically now, then back end annotation
|
|
-- is not required to do a proper check but if either size is not
|
|
-- known statically, then we need the annotation.
|
|
|
|
if Known_Static_RM_Size (Source)
|
|
and then Known_Static_RM_Size (Target)
|
|
then
|
|
null;
|
|
else
|
|
Back_Annotate_Rep_Info := True;
|
|
end if;
|
|
end if;
|
|
|
|
-- If unchecked conversion to access type, and access type is
|
|
-- declared in the same unit as the unchecked conversion, then
|
|
-- set the No_Strict_Aliasing flag (no strict aliasing is
|
|
-- implicit in this situation).
|
|
|
|
if Is_Access_Type (Target) and then
|
|
In_Same_Source_Unit (Target, N)
|
|
then
|
|
Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
|
|
end if;
|
|
|
|
-- Generate N_Validate_Unchecked_Conversion node for back end in
|
|
-- case the back end needs to perform special validation checks.
|
|
|
|
-- Shouldn't this be in exp_ch13, since the check only gets done
|
|
-- if we have full expansion and the back end is called ???
|
|
|
|
Vnode :=
|
|
Make_Validate_Unchecked_Conversion (Sloc (N));
|
|
Set_Source_Type (Vnode, Source);
|
|
Set_Target_Type (Vnode, Target);
|
|
|
|
-- If the unchecked conversion node is in a list, just insert before
|
|
-- it. If not we have some strange case, not worth bothering about.
|
|
|
|
if Is_List_Member (N) then
|
|
Insert_After (N, Vnode);
|
|
end if;
|
|
end Validate_Unchecked_Conversion;
|
|
|
|
------------------------------------
|
|
-- Validate_Unchecked_Conversions --
|
|
------------------------------------
|
|
|
|
procedure Validate_Unchecked_Conversions is
|
|
begin
|
|
for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
|
|
declare
|
|
T : UC_Entry renames Unchecked_Conversions.Table (N);
|
|
|
|
Enode : constant Node_Id := T.Enode;
|
|
Source : constant Entity_Id := T.Source;
|
|
Target : constant Entity_Id := T.Target;
|
|
|
|
Source_Siz : Uint;
|
|
Target_Siz : Uint;
|
|
|
|
begin
|
|
-- This validation check, which warns if we have unequal sizes
|
|
-- for unchecked conversion, and thus potentially implementation
|
|
-- dependent semantics, is one of the few occasions on which we
|
|
-- use the official RM size instead of Esize. See description
|
|
-- in Einfo "Handling of Type'Size Values" for details.
|
|
|
|
if Serious_Errors_Detected = 0
|
|
and then Known_Static_RM_Size (Source)
|
|
and then Known_Static_RM_Size (Target)
|
|
then
|
|
Source_Siz := RM_Size (Source);
|
|
Target_Siz := RM_Size (Target);
|
|
|
|
if Source_Siz /= Target_Siz then
|
|
Error_Msg_N
|
|
("types for unchecked conversion have different sizes?",
|
|
Enode);
|
|
|
|
if All_Errors_Mode then
|
|
Error_Msg_Name_1 := Chars (Source);
|
|
Error_Msg_Uint_1 := Source_Siz;
|
|
Error_Msg_Name_2 := Chars (Target);
|
|
Error_Msg_Uint_2 := Target_Siz;
|
|
Error_Msg_N
|
|
("\size of % is ^, size of % is ^?", Enode);
|
|
|
|
Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
|
|
|
|
if Is_Discrete_Type (Source)
|
|
and then Is_Discrete_Type (Target)
|
|
then
|
|
if Source_Siz > Target_Siz then
|
|
Error_Msg_N
|
|
("\^ high order bits of source will be ignored?",
|
|
Enode);
|
|
|
|
elsif Is_Unsigned_Type (Source) then
|
|
Error_Msg_N
|
|
("\source will be extended with ^ high order " &
|
|
"zero bits?", Enode);
|
|
|
|
else
|
|
Error_Msg_N
|
|
("\source will be extended with ^ high order " &
|
|
"sign bits?",
|
|
Enode);
|
|
end if;
|
|
|
|
elsif Source_Siz < Target_Siz then
|
|
if Is_Discrete_Type (Target) then
|
|
if Bytes_Big_Endian then
|
|
Error_Msg_N
|
|
("\target value will include ^ undefined " &
|
|
"low order bits?",
|
|
Enode);
|
|
else
|
|
Error_Msg_N
|
|
("\target value will include ^ undefined " &
|
|
"high order bits?",
|
|
Enode);
|
|
end if;
|
|
|
|
else
|
|
Error_Msg_N
|
|
("\^ trailing bits of target value will be " &
|
|
"undefined?", Enode);
|
|
end if;
|
|
|
|
else pragma Assert (Source_Siz > Target_Siz);
|
|
Error_Msg_N
|
|
("\^ trailing bits of source will be ignored?",
|
|
Enode);
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
|
|
-- If both types are access types, we need to check the alignment.
|
|
-- If the alignment of both is specified, we can do it here.
|
|
|
|
if Serious_Errors_Detected = 0
|
|
and then Ekind (Source) in Access_Kind
|
|
and then Ekind (Target) in Access_Kind
|
|
and then Target_Strict_Alignment
|
|
and then Present (Designated_Type (Source))
|
|
and then Present (Designated_Type (Target))
|
|
then
|
|
declare
|
|
D_Source : constant Entity_Id := Designated_Type (Source);
|
|
D_Target : constant Entity_Id := Designated_Type (Target);
|
|
|
|
begin
|
|
if Known_Alignment (D_Source)
|
|
and then Known_Alignment (D_Target)
|
|
then
|
|
declare
|
|
Source_Align : constant Uint := Alignment (D_Source);
|
|
Target_Align : constant Uint := Alignment (D_Target);
|
|
|
|
begin
|
|
if Source_Align < Target_Align
|
|
and then not Is_Tagged_Type (D_Source)
|
|
then
|
|
Error_Msg_Uint_1 := Target_Align;
|
|
Error_Msg_Uint_2 := Source_Align;
|
|
Error_Msg_Node_2 := D_Source;
|
|
Error_Msg_NE
|
|
("alignment of & (^) is stricter than " &
|
|
"alignment of & (^)?", Enode, D_Target);
|
|
|
|
if All_Errors_Mode then
|
|
Error_Msg_N
|
|
("\resulting access value may have invalid " &
|
|
"alignment?", Enode);
|
|
end if;
|
|
end if;
|
|
end;
|
|
end if;
|
|
end;
|
|
end if;
|
|
end;
|
|
end loop;
|
|
end Validate_Unchecked_Conversions;
|
|
|
|
end Sem_Ch13;
|