2006-02-13 Robert Dewar <dewar@adacore.com> * s-gloloc-mingw.adb, a-cgaaso.ads, a-stzmap.adb, a-stzmap.adb, a-stzmap.ads, a-ztcoio.adb, a-ztedit.adb, a-ztedit.ads, a-ztenau.adb, a-ztenau.ads, a-colien.adb, a-colien.ads, a-colire.adb, a-colire.ads, a-comlin.adb, a-decima.adb, a-decima.ads, a-direio.adb, a-direio.adb, a-direio.adb, a-direio.ads, a-ngcoty.adb, a-ngcoty.ads, a-nuflra.adb, a-nuflra.ads, a-sequio.adb, a-sequio.ads, a-sequio.ads, a-storio.ads, a-stream.ads, a-ststio.adb, a-ststio.adb, a-ststio.ads, a-ststio.ads, a-stwima.adb, a-stwima.adb, a-stwima.ads, a-stwise.adb, a-teioed.adb, a-teioed.ads, a-ticoau.adb, a-ticoau.ads, a-ticoio.adb, a-tasatt.ads, a-tideau.adb, a-tideau.ads, a-tideio.adb, a-tideio.ads, a-tienau.adb, a-tienau.ads, a-tienio.adb, a-tienio.ads, a-tifiio.ads, a-tiflau.adb, a-tiflau.ads, a-tiflio.adb, a-tiflio.adb, a-tiflio.ads, a-tigeau.ads, a-tiinau.adb, a-tiinau.ads, a-tiinio.adb, a-tiinio.ads, a-timoio.adb, a-timoio.ads, a-titest.adb, a-titest.ads, a-wtcoio.adb, a-wtdeau.adb, a-wtdeau.ads, a-wtdeio.adb, a-wtdeio.ads, a-wtedit.adb, a-wtedit.adb, a-wtedit.ads, a-wtenau.adb, a-wtenau.ads, a-wtenau.ads, a-wtenio.adb, a-wtenio.ads, a-wtfiio.adb, a-wtfiio.ads, a-wtflau.adb, a-wtflau.ads, a-wtflio.adb, a-wtflio.adb, a-wtflio.ads, a-wtgeau.ads, a-wtinau.adb, a-wtinau.ads, a-wtinio.adb, a-wtinio.ads, a-wtmoau.adb, a-wtmoau.ads, a-wtmoio.adb, a-wtmoio.ads, xref_lib.adb, xref_lib.ads, xr_tabls.adb, g-boubuf.adb, g-boubuf.ads, g-cgideb.adb, g-io.adb, gnatdll.adb, g-pehage.adb, i-c.ads, g-spitbo.adb, g-spitbo.ads, mdll.adb, mlib-fil.adb, mlib-utl.adb, mlib-utl.ads, prj-env.adb, prj-tree.adb, prj-tree.ads, prj-util.adb, s-arit64.adb, s-asthan.ads, s-auxdec.adb, s-auxdec.ads, s-chepoo.ads, s-direio.adb, s-direio.ads, s-errrep.adb, s-errrep.ads, s-fileio.adb, s-fileio.ads, s-finroo.adb, s-finroo.ads, s-gloloc.adb, s-gloloc.ads, s-io.adb, s-io.ads, s-rpc.adb, s-rpc.ads, s-shasto.ads, s-sequio.adb, s-stopoo.ads, s-stratt.adb, s-stratt.ads, s-taasde.adb, s-taasde.ads, s-tadert.adb, s-sequio.ads, s-taskin.adb, s-tasque.adb, s-tasque.ads, s-wchjis.ads, makegpr.adb, a-coinve.adb, a-cidlli.adb, eval_fat.adb, exp_dist.ads, exp_smem.adb, fmap.adb, g-dyntab.ads, g-expect.adb, lib-xref.ads, osint.adb, par-load.adb, restrict.adb, sinput-c.ads, a-cdlili.adb, system-vms.ads, system-vms-zcx.ads, system-vms_64.ads: Minor reformatting. From-SVN: r111023
914 lines
26 KiB
Ada
914 lines
26 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT COMPILER COMPONENTS --
|
|
-- --
|
|
-- E V A L _ F A T --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
|
|
-- --
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 2, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
|
-- for more details. You should have received a copy of the GNU General --
|
|
-- Public License distributed with GNAT; see file COPYING. If not, write --
|
|
-- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
|
|
-- Boston, MA 02110-1301, USA. --
|
|
-- --
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
with Einfo; use Einfo;
|
|
with Errout; use Errout;
|
|
with Sem_Util; use Sem_Util;
|
|
with Ttypef; use Ttypef;
|
|
with Targparm; use Targparm;
|
|
|
|
package body Eval_Fat is
|
|
|
|
Radix : constant Int := 2;
|
|
-- This code is currently only correct for the radix 2 case. We use
|
|
-- the symbolic value Radix where possible to help in the unlikely
|
|
-- case of anyone ever having to adjust this code for another value,
|
|
-- and for documentation purposes.
|
|
|
|
-- Another assumption is that the range of the floating-point type
|
|
-- is symmetric around zero.
|
|
|
|
type Radix_Power_Table is array (Int range 1 .. 4) of Int;
|
|
|
|
Radix_Powers : constant Radix_Power_Table :=
|
|
(Radix ** 1, Radix ** 2, Radix ** 3, Radix ** 4);
|
|
|
|
-----------------------
|
|
-- Local Subprograms --
|
|
-----------------------
|
|
|
|
procedure Decompose
|
|
(RT : R;
|
|
X : T;
|
|
Fraction : out T;
|
|
Exponent : out UI;
|
|
Mode : Rounding_Mode := Round);
|
|
-- Decomposes a non-zero floating-point number into fraction and
|
|
-- exponent parts. The fraction is in the interval 1.0 / Radix ..
|
|
-- T'Pred (1.0) and uses Rbase = Radix.
|
|
-- The result is rounded to a nearest machine number.
|
|
|
|
procedure Decompose_Int
|
|
(RT : R;
|
|
X : T;
|
|
Fraction : out UI;
|
|
Exponent : out UI;
|
|
Mode : Rounding_Mode);
|
|
-- This is similar to Decompose, except that the Fraction value returned
|
|
-- is an integer representing the value Fraction * Scale, where Scale is
|
|
-- the value (Radix ** Machine_Mantissa (RT)). The value is obtained by
|
|
-- using biased rounding (halfway cases round away from zero), round to
|
|
-- even, a floor operation or a ceiling operation depending on the setting
|
|
-- of Mode (see corresponding descriptions in Urealp).
|
|
|
|
function Machine_Emin (RT : R) return Int;
|
|
-- Return value of the Machine_Emin attribute
|
|
|
|
--------------
|
|
-- Adjacent --
|
|
--------------
|
|
|
|
function Adjacent (RT : R; X, Towards : T) return T is
|
|
begin
|
|
if Towards = X then
|
|
return X;
|
|
elsif Towards > X then
|
|
return Succ (RT, X);
|
|
else
|
|
return Pred (RT, X);
|
|
end if;
|
|
end Adjacent;
|
|
|
|
-------------
|
|
-- Ceiling --
|
|
-------------
|
|
|
|
function Ceiling (RT : R; X : T) return T is
|
|
XT : constant T := Truncation (RT, X);
|
|
begin
|
|
if UR_Is_Negative (X) then
|
|
return XT;
|
|
elsif X = XT then
|
|
return X;
|
|
else
|
|
return XT + Ureal_1;
|
|
end if;
|
|
end Ceiling;
|
|
|
|
-------------
|
|
-- Compose --
|
|
-------------
|
|
|
|
function Compose (RT : R; Fraction : T; Exponent : UI) return T is
|
|
Arg_Frac : T;
|
|
Arg_Exp : UI;
|
|
begin
|
|
if UR_Is_Zero (Fraction) then
|
|
return Fraction;
|
|
else
|
|
Decompose (RT, Fraction, Arg_Frac, Arg_Exp);
|
|
return Scaling (RT, Arg_Frac, Exponent);
|
|
end if;
|
|
end Compose;
|
|
|
|
---------------
|
|
-- Copy_Sign --
|
|
---------------
|
|
|
|
function Copy_Sign (RT : R; Value, Sign : T) return T is
|
|
pragma Warnings (Off, RT);
|
|
Result : T;
|
|
|
|
begin
|
|
Result := abs Value;
|
|
|
|
if UR_Is_Negative (Sign) then
|
|
return -Result;
|
|
else
|
|
return Result;
|
|
end if;
|
|
end Copy_Sign;
|
|
|
|
---------------
|
|
-- Decompose --
|
|
---------------
|
|
|
|
procedure Decompose
|
|
(RT : R;
|
|
X : T;
|
|
Fraction : out T;
|
|
Exponent : out UI;
|
|
Mode : Rounding_Mode := Round)
|
|
is
|
|
Int_F : UI;
|
|
|
|
begin
|
|
Decompose_Int (RT, abs X, Int_F, Exponent, Mode);
|
|
|
|
Fraction := UR_From_Components
|
|
(Num => Int_F,
|
|
Den => UI_From_Int (Machine_Mantissa (RT)),
|
|
Rbase => Radix,
|
|
Negative => False);
|
|
|
|
if UR_Is_Negative (X) then
|
|
Fraction := -Fraction;
|
|
end if;
|
|
|
|
return;
|
|
end Decompose;
|
|
|
|
-------------------
|
|
-- Decompose_Int --
|
|
-------------------
|
|
|
|
-- This procedure should be modified with care, as there are many
|
|
-- non-obvious details that may cause problems that are hard to
|
|
-- detect. The cases of positive and negative zeroes are also
|
|
-- special and should be verified separately.
|
|
|
|
procedure Decompose_Int
|
|
(RT : R;
|
|
X : T;
|
|
Fraction : out UI;
|
|
Exponent : out UI;
|
|
Mode : Rounding_Mode)
|
|
is
|
|
Base : Int := Rbase (X);
|
|
N : UI := abs Numerator (X);
|
|
D : UI := Denominator (X);
|
|
|
|
N_Times_Radix : UI;
|
|
|
|
Even : Boolean;
|
|
-- True iff Fraction is even
|
|
|
|
Most_Significant_Digit : constant UI :=
|
|
Radix ** (Machine_Mantissa (RT) - 1);
|
|
|
|
Uintp_Mark : Uintp.Save_Mark;
|
|
-- The code is divided into blocks that systematically release
|
|
-- intermediate values (this routine generates lots of junk!)
|
|
|
|
begin
|
|
Calculate_D_And_Exponent_1 : begin
|
|
Uintp_Mark := Mark;
|
|
Exponent := Uint_0;
|
|
|
|
-- In cases where Base > 1, the actual denominator is
|
|
-- Base**D. For cases where Base is a power of Radix, use
|
|
-- the value 1 for the Denominator and adjust the exponent.
|
|
|
|
-- Note: Exponent has different sign from D, because D is a divisor
|
|
|
|
for Power in 1 .. Radix_Powers'Last loop
|
|
if Base = Radix_Powers (Power) then
|
|
Exponent := -D * Power;
|
|
Base := 0;
|
|
D := Uint_1;
|
|
exit;
|
|
end if;
|
|
end loop;
|
|
|
|
Release_And_Save (Uintp_Mark, D, Exponent);
|
|
end Calculate_D_And_Exponent_1;
|
|
|
|
if Base > 0 then
|
|
Calculate_Exponent : begin
|
|
Uintp_Mark := Mark;
|
|
|
|
-- For bases that are a multiple of the Radix, divide
|
|
-- the base by Radix and adjust the Exponent. This will
|
|
-- help because D will be much smaller and faster to process.
|
|
|
|
-- This occurs for decimal bases on a machine with binary
|
|
-- floating-point for example. When calculating 1E40,
|
|
-- with Radix = 2, N will be 93 bits instead of 133.
|
|
|
|
-- N E
|
|
-- ------ * Radix
|
|
-- D
|
|
-- Base
|
|
|
|
-- N E
|
|
-- = -------------------------- * Radix
|
|
-- D D
|
|
-- (Base/Radix) * Radix
|
|
|
|
-- N E-D
|
|
-- = --------------- * Radix
|
|
-- D
|
|
-- (Base/Radix)
|
|
|
|
-- This code is commented out, because it causes numerous
|
|
-- failures in the regression suite. To be studied ???
|
|
|
|
while False and then Base > 0 and then Base mod Radix = 0 loop
|
|
Base := Base / Radix;
|
|
Exponent := Exponent + D;
|
|
end loop;
|
|
|
|
Release_And_Save (Uintp_Mark, Exponent);
|
|
end Calculate_Exponent;
|
|
|
|
-- For remaining bases we must actually compute
|
|
-- the exponentiation.
|
|
|
|
-- Because the exponentiation can be negative, and D must
|
|
-- be integer, the numerator is corrected instead.
|
|
|
|
Calculate_N_And_D : begin
|
|
Uintp_Mark := Mark;
|
|
|
|
if D < 0 then
|
|
N := N * Base ** (-D);
|
|
D := Uint_1;
|
|
else
|
|
D := Base ** D;
|
|
end if;
|
|
|
|
Release_And_Save (Uintp_Mark, N, D);
|
|
end Calculate_N_And_D;
|
|
|
|
Base := 0;
|
|
end if;
|
|
|
|
-- Now scale N and D so that N / D is a value in the
|
|
-- interval [1.0 / Radix, 1.0) and adjust Exponent accordingly,
|
|
-- so the value N / D * Radix ** Exponent remains unchanged.
|
|
|
|
-- Step 1 - Adjust N so N / D >= 1 / Radix, or N = 0
|
|
|
|
-- N and D are positive, so N / D >= 1 / Radix implies N * Radix >= D.
|
|
-- This scaling is not possible for N is Uint_0 as there
|
|
-- is no way to scale Uint_0 so the first digit is non-zero.
|
|
|
|
Calculate_N_And_Exponent : begin
|
|
Uintp_Mark := Mark;
|
|
|
|
N_Times_Radix := N * Radix;
|
|
|
|
if N /= Uint_0 then
|
|
while not (N_Times_Radix >= D) loop
|
|
N := N_Times_Radix;
|
|
Exponent := Exponent - 1;
|
|
|
|
N_Times_Radix := N * Radix;
|
|
end loop;
|
|
end if;
|
|
|
|
Release_And_Save (Uintp_Mark, N, Exponent);
|
|
end Calculate_N_And_Exponent;
|
|
|
|
-- Step 2 - Adjust D so N / D < 1
|
|
|
|
-- Scale up D so N / D < 1, so N < D
|
|
|
|
Calculate_D_And_Exponent_2 : begin
|
|
Uintp_Mark := Mark;
|
|
|
|
while not (N < D) loop
|
|
|
|
-- As N / D >= 1, N / (D * Radix) will be at least 1 / Radix,
|
|
-- so the result of Step 1 stays valid
|
|
|
|
D := D * Radix;
|
|
Exponent := Exponent + 1;
|
|
end loop;
|
|
|
|
Release_And_Save (Uintp_Mark, D, Exponent);
|
|
end Calculate_D_And_Exponent_2;
|
|
|
|
-- Here the value N / D is in the range [1.0 / Radix .. 1.0)
|
|
|
|
-- Now find the fraction by doing a very simple-minded
|
|
-- division until enough digits have been computed.
|
|
|
|
-- This division works for all radices, but is only efficient for
|
|
-- a binary radix. It is just like a manual division algorithm,
|
|
-- but instead of moving the denominator one digit right, we move
|
|
-- the numerator one digit left so the numerator and denominator
|
|
-- remain integral.
|
|
|
|
Fraction := Uint_0;
|
|
Even := True;
|
|
|
|
Calculate_Fraction_And_N : begin
|
|
Uintp_Mark := Mark;
|
|
|
|
loop
|
|
while N >= D loop
|
|
N := N - D;
|
|
Fraction := Fraction + 1;
|
|
Even := not Even;
|
|
end loop;
|
|
|
|
-- Stop when the result is in [1.0 / Radix, 1.0)
|
|
|
|
exit when Fraction >= Most_Significant_Digit;
|
|
|
|
N := N * Radix;
|
|
Fraction := Fraction * Radix;
|
|
Even := True;
|
|
end loop;
|
|
|
|
Release_And_Save (Uintp_Mark, Fraction, N);
|
|
end Calculate_Fraction_And_N;
|
|
|
|
Calculate_Fraction_And_Exponent : begin
|
|
Uintp_Mark := Mark;
|
|
|
|
-- Determine correct rounding based on the remainder which is in
|
|
-- N and the divisor D. The rounding is performed on the absolute
|
|
-- value of X, so Ceiling and Floor need to check for the sign of
|
|
-- X explicitly.
|
|
|
|
case Mode is
|
|
when Round_Even =>
|
|
|
|
-- This rounding mode should not be used for static
|
|
-- expressions, but only for compile-time evaluation
|
|
-- of non-static expressions.
|
|
|
|
if (Even and then N * 2 > D)
|
|
or else
|
|
(not Even and then N * 2 >= D)
|
|
then
|
|
Fraction := Fraction + 1;
|
|
end if;
|
|
|
|
when Round =>
|
|
|
|
-- Do not round to even as is done with IEEE arithmetic,
|
|
-- but instead round away from zero when the result is
|
|
-- exactly between two machine numbers. See RM 4.9(38).
|
|
|
|
if N * 2 >= D then
|
|
Fraction := Fraction + 1;
|
|
end if;
|
|
|
|
when Ceiling =>
|
|
if N > Uint_0 and then not UR_Is_Negative (X) then
|
|
Fraction := Fraction + 1;
|
|
end if;
|
|
|
|
when Floor =>
|
|
if N > Uint_0 and then UR_Is_Negative (X) then
|
|
Fraction := Fraction + 1;
|
|
end if;
|
|
end case;
|
|
|
|
-- The result must be normalized to [1.0/Radix, 1.0),
|
|
-- so adjust if the result is 1.0 because of rounding.
|
|
|
|
if Fraction = Most_Significant_Digit * Radix then
|
|
Fraction := Most_Significant_Digit;
|
|
Exponent := Exponent + 1;
|
|
end if;
|
|
|
|
-- Put back sign after applying the rounding
|
|
|
|
if UR_Is_Negative (X) then
|
|
Fraction := -Fraction;
|
|
end if;
|
|
|
|
Release_And_Save (Uintp_Mark, Fraction, Exponent);
|
|
end Calculate_Fraction_And_Exponent;
|
|
end Decompose_Int;
|
|
|
|
--------------
|
|
-- Exponent --
|
|
--------------
|
|
|
|
function Exponent (RT : R; X : T) return UI is
|
|
X_Frac : UI;
|
|
X_Exp : UI;
|
|
begin
|
|
if UR_Is_Zero (X) then
|
|
return Uint_0;
|
|
else
|
|
Decompose_Int (RT, X, X_Frac, X_Exp, Round_Even);
|
|
return X_Exp;
|
|
end if;
|
|
end Exponent;
|
|
|
|
-----------
|
|
-- Floor --
|
|
-----------
|
|
|
|
function Floor (RT : R; X : T) return T is
|
|
XT : constant T := Truncation (RT, X);
|
|
|
|
begin
|
|
if UR_Is_Positive (X) then
|
|
return XT;
|
|
|
|
elsif XT = X then
|
|
return X;
|
|
|
|
else
|
|
return XT - Ureal_1;
|
|
end if;
|
|
end Floor;
|
|
|
|
--------------
|
|
-- Fraction --
|
|
--------------
|
|
|
|
function Fraction (RT : R; X : T) return T is
|
|
X_Frac : T;
|
|
X_Exp : UI;
|
|
begin
|
|
if UR_Is_Zero (X) then
|
|
return X;
|
|
else
|
|
Decompose (RT, X, X_Frac, X_Exp);
|
|
return X_Frac;
|
|
end if;
|
|
end Fraction;
|
|
|
|
------------------
|
|
-- Leading_Part --
|
|
------------------
|
|
|
|
function Leading_Part (RT : R; X : T; Radix_Digits : UI) return T is
|
|
RD : constant UI := UI_Min (Radix_Digits, Machine_Mantissa (RT));
|
|
L : UI;
|
|
Y : T;
|
|
begin
|
|
L := Exponent (RT, X) - RD;
|
|
Y := UR_From_Uint (UR_Trunc (Scaling (RT, X, -L)));
|
|
return Scaling (RT, Y, L);
|
|
end Leading_Part;
|
|
|
|
-------------
|
|
-- Machine --
|
|
-------------
|
|
|
|
function Machine
|
|
(RT : R;
|
|
X : T;
|
|
Mode : Rounding_Mode;
|
|
Enode : Node_Id) return T
|
|
is
|
|
X_Frac : T;
|
|
X_Exp : UI;
|
|
Emin : constant UI := UI_From_Int (Machine_Emin (RT));
|
|
|
|
begin
|
|
if UR_Is_Zero (X) then
|
|
return X;
|
|
|
|
else
|
|
Decompose (RT, X, X_Frac, X_Exp, Mode);
|
|
|
|
-- Case of denormalized number or (gradual) underflow
|
|
|
|
-- A denormalized number is one with the minimum exponent Emin, but
|
|
-- that breaks the assumption that the first digit of the mantissa
|
|
-- is a one. This allows the first non-zero digit to be in any
|
|
-- of the remaining Mant - 1 spots. The gap between subsequent
|
|
-- denormalized numbers is the same as for the smallest normalized
|
|
-- numbers. However, the number of significant digits left decreases
|
|
-- as a result of the mantissa now having leading seros.
|
|
|
|
if X_Exp < Emin then
|
|
declare
|
|
Emin_Den : constant UI :=
|
|
UI_From_Int
|
|
(Machine_Emin (RT) - Machine_Mantissa (RT) + 1);
|
|
begin
|
|
if X_Exp < Emin_Den or not Denorm_On_Target then
|
|
if UR_Is_Negative (X) then
|
|
Error_Msg_N
|
|
("floating-point value underflows to -0.0?", Enode);
|
|
return Ureal_M_0;
|
|
|
|
else
|
|
Error_Msg_N
|
|
("floating-point value underflows to 0.0?", Enode);
|
|
return Ureal_0;
|
|
end if;
|
|
|
|
elsif Denorm_On_Target then
|
|
|
|
-- Emin - Mant <= X_Exp < Emin, so result is denormal.
|
|
-- Handle gradual underflow by first computing the
|
|
-- number of significant bits still available for the
|
|
-- mantissa and then truncating the fraction to this
|
|
-- number of bits.
|
|
|
|
-- If this value is different from the original
|
|
-- fraction, precision is lost due to gradual underflow.
|
|
|
|
-- We probably should round here and prevent double
|
|
-- rounding as a result of first rounding to a model
|
|
-- number and then to a machine number. However, this
|
|
-- is an extremely rare case that is not worth the extra
|
|
-- complexity. In any case, a warning is issued in cases
|
|
-- where gradual underflow occurs.
|
|
|
|
declare
|
|
Denorm_Sig_Bits : constant UI := X_Exp - Emin_Den + 1;
|
|
|
|
X_Frac_Denorm : constant T := UR_From_Components
|
|
(UR_Trunc (Scaling (RT, abs X_Frac, Denorm_Sig_Bits)),
|
|
Denorm_Sig_Bits,
|
|
Radix,
|
|
UR_Is_Negative (X));
|
|
|
|
begin
|
|
if X_Frac_Denorm /= X_Frac then
|
|
Error_Msg_N
|
|
("gradual underflow causes loss of precision?",
|
|
Enode);
|
|
X_Frac := X_Frac_Denorm;
|
|
end if;
|
|
end;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
return Scaling (RT, X_Frac, X_Exp);
|
|
end if;
|
|
end Machine;
|
|
|
|
------------------
|
|
-- Machine_Emin --
|
|
------------------
|
|
|
|
function Machine_Emin (RT : R) return Int is
|
|
Digs : constant UI := Digits_Value (RT);
|
|
Emin : Int;
|
|
|
|
begin
|
|
if Vax_Float (RT) then
|
|
if Digs = VAXFF_Digits then
|
|
Emin := VAXFF_Machine_Emin;
|
|
|
|
elsif Digs = VAXDF_Digits then
|
|
Emin := VAXDF_Machine_Emin;
|
|
|
|
else
|
|
pragma Assert (Digs = VAXGF_Digits);
|
|
Emin := VAXGF_Machine_Emin;
|
|
end if;
|
|
|
|
elsif Is_AAMP_Float (RT) then
|
|
if Digs = AAMPS_Digits then
|
|
Emin := AAMPS_Machine_Emin;
|
|
|
|
else
|
|
pragma Assert (Digs = AAMPL_Digits);
|
|
Emin := AAMPL_Machine_Emin;
|
|
end if;
|
|
|
|
else
|
|
if Digs = IEEES_Digits then
|
|
Emin := IEEES_Machine_Emin;
|
|
|
|
elsif Digs = IEEEL_Digits then
|
|
Emin := IEEEL_Machine_Emin;
|
|
|
|
else
|
|
pragma Assert (Digs = IEEEX_Digits);
|
|
Emin := IEEEX_Machine_Emin;
|
|
end if;
|
|
end if;
|
|
|
|
return Emin;
|
|
end Machine_Emin;
|
|
|
|
----------------------
|
|
-- Machine_Mantissa --
|
|
----------------------
|
|
|
|
function Machine_Mantissa (RT : R) return Nat is
|
|
Digs : constant UI := Digits_Value (RT);
|
|
Mant : Nat;
|
|
|
|
begin
|
|
if Vax_Float (RT) then
|
|
if Digs = VAXFF_Digits then
|
|
Mant := VAXFF_Machine_Mantissa;
|
|
|
|
elsif Digs = VAXDF_Digits then
|
|
Mant := VAXDF_Machine_Mantissa;
|
|
|
|
else
|
|
pragma Assert (Digs = VAXGF_Digits);
|
|
Mant := VAXGF_Machine_Mantissa;
|
|
end if;
|
|
|
|
elsif Is_AAMP_Float (RT) then
|
|
if Digs = AAMPS_Digits then
|
|
Mant := AAMPS_Machine_Mantissa;
|
|
|
|
else
|
|
pragma Assert (Digs = AAMPL_Digits);
|
|
Mant := AAMPL_Machine_Mantissa;
|
|
end if;
|
|
|
|
else
|
|
if Digs = IEEES_Digits then
|
|
Mant := IEEES_Machine_Mantissa;
|
|
|
|
elsif Digs = IEEEL_Digits then
|
|
Mant := IEEEL_Machine_Mantissa;
|
|
|
|
else
|
|
pragma Assert (Digs = IEEEX_Digits);
|
|
Mant := IEEEX_Machine_Mantissa;
|
|
end if;
|
|
end if;
|
|
|
|
return Mant;
|
|
end Machine_Mantissa;
|
|
|
|
-------------------
|
|
-- Machine_Radix --
|
|
-------------------
|
|
|
|
function Machine_Radix (RT : R) return Nat is
|
|
pragma Warnings (Off, RT);
|
|
begin
|
|
return Radix;
|
|
end Machine_Radix;
|
|
|
|
-----------
|
|
-- Model --
|
|
-----------
|
|
|
|
function Model (RT : R; X : T) return T is
|
|
X_Frac : T;
|
|
X_Exp : UI;
|
|
begin
|
|
Decompose (RT, X, X_Frac, X_Exp);
|
|
return Compose (RT, X_Frac, X_Exp);
|
|
end Model;
|
|
|
|
----------
|
|
-- Pred --
|
|
----------
|
|
|
|
function Pred (RT : R; X : T) return T is
|
|
begin
|
|
return -Succ (RT, -X);
|
|
end Pred;
|
|
|
|
---------------
|
|
-- Remainder --
|
|
---------------
|
|
|
|
function Remainder (RT : R; X, Y : T) return T is
|
|
A : T;
|
|
B : T;
|
|
Arg : T;
|
|
P : T;
|
|
Arg_Frac : T;
|
|
P_Frac : T;
|
|
Sign_X : T;
|
|
IEEE_Rem : T;
|
|
Arg_Exp : UI;
|
|
P_Exp : UI;
|
|
K : UI;
|
|
P_Even : Boolean;
|
|
|
|
begin
|
|
if UR_Is_Positive (X) then
|
|
Sign_X := Ureal_1;
|
|
else
|
|
Sign_X := -Ureal_1;
|
|
end if;
|
|
|
|
Arg := abs X;
|
|
P := abs Y;
|
|
|
|
if Arg < P then
|
|
P_Even := True;
|
|
IEEE_Rem := Arg;
|
|
P_Exp := Exponent (RT, P);
|
|
|
|
else
|
|
-- ??? what about zero cases?
|
|
Decompose (RT, Arg, Arg_Frac, Arg_Exp);
|
|
Decompose (RT, P, P_Frac, P_Exp);
|
|
|
|
P := Compose (RT, P_Frac, Arg_Exp);
|
|
K := Arg_Exp - P_Exp;
|
|
P_Even := True;
|
|
IEEE_Rem := Arg;
|
|
|
|
for Cnt in reverse 0 .. UI_To_Int (K) loop
|
|
if IEEE_Rem >= P then
|
|
P_Even := False;
|
|
IEEE_Rem := IEEE_Rem - P;
|
|
else
|
|
P_Even := True;
|
|
end if;
|
|
|
|
P := P * Ureal_Half;
|
|
end loop;
|
|
end if;
|
|
|
|
-- That completes the calculation of modulus remainder. The final step
|
|
-- is get the IEEE remainder. Here we compare Rem with (abs Y) / 2.
|
|
|
|
if P_Exp >= 0 then
|
|
A := IEEE_Rem;
|
|
B := abs Y * Ureal_Half;
|
|
|
|
else
|
|
A := IEEE_Rem * Ureal_2;
|
|
B := abs Y;
|
|
end if;
|
|
|
|
if A > B or else (A = B and then not P_Even) then
|
|
IEEE_Rem := IEEE_Rem - abs Y;
|
|
end if;
|
|
|
|
return Sign_X * IEEE_Rem;
|
|
end Remainder;
|
|
|
|
--------------
|
|
-- Rounding --
|
|
--------------
|
|
|
|
function Rounding (RT : R; X : T) return T is
|
|
Result : T;
|
|
Tail : T;
|
|
|
|
begin
|
|
Result := Truncation (RT, abs X);
|
|
Tail := abs X - Result;
|
|
|
|
if Tail >= Ureal_Half then
|
|
Result := Result + Ureal_1;
|
|
end if;
|
|
|
|
if UR_Is_Negative (X) then
|
|
return -Result;
|
|
else
|
|
return Result;
|
|
end if;
|
|
end Rounding;
|
|
|
|
-------------
|
|
-- Scaling --
|
|
-------------
|
|
|
|
function Scaling (RT : R; X : T; Adjustment : UI) return T is
|
|
pragma Warnings (Off, RT);
|
|
|
|
begin
|
|
if Rbase (X) = Radix then
|
|
return UR_From_Components
|
|
(Num => Numerator (X),
|
|
Den => Denominator (X) - Adjustment,
|
|
Rbase => Radix,
|
|
Negative => UR_Is_Negative (X));
|
|
|
|
elsif Adjustment >= 0 then
|
|
return X * Radix ** Adjustment;
|
|
else
|
|
return X / Radix ** (-Adjustment);
|
|
end if;
|
|
end Scaling;
|
|
|
|
----------
|
|
-- Succ --
|
|
----------
|
|
|
|
function Succ (RT : R; X : T) return T is
|
|
Emin : constant UI := UI_From_Int (Machine_Emin (RT));
|
|
Mantissa : constant UI := UI_From_Int (Machine_Mantissa (RT));
|
|
Exp : UI := UI_Max (Emin, Exponent (RT, X));
|
|
Frac : T;
|
|
New_Frac : T;
|
|
|
|
begin
|
|
if UR_Is_Zero (X) then
|
|
Exp := Emin;
|
|
end if;
|
|
|
|
-- Set exponent such that the radix point will be directly
|
|
-- following the mantissa after scaling
|
|
|
|
if Denorm_On_Target or Exp /= Emin then
|
|
Exp := Exp - Mantissa;
|
|
else
|
|
Exp := Exp - 1;
|
|
end if;
|
|
|
|
Frac := Scaling (RT, X, -Exp);
|
|
New_Frac := Ceiling (RT, Frac);
|
|
|
|
if New_Frac = Frac then
|
|
if New_Frac = Scaling (RT, -Ureal_1, Mantissa - 1) then
|
|
New_Frac := New_Frac + Scaling (RT, Ureal_1, Uint_Minus_1);
|
|
else
|
|
New_Frac := New_Frac + Ureal_1;
|
|
end if;
|
|
end if;
|
|
|
|
return Scaling (RT, New_Frac, Exp);
|
|
end Succ;
|
|
|
|
----------------
|
|
-- Truncation --
|
|
----------------
|
|
|
|
function Truncation (RT : R; X : T) return T is
|
|
pragma Warnings (Off, RT);
|
|
begin
|
|
return UR_From_Uint (UR_Trunc (X));
|
|
end Truncation;
|
|
|
|
-----------------------
|
|
-- Unbiased_Rounding --
|
|
-----------------------
|
|
|
|
function Unbiased_Rounding (RT : R; X : T) return T is
|
|
Abs_X : constant T := abs X;
|
|
Result : T;
|
|
Tail : T;
|
|
|
|
begin
|
|
Result := Truncation (RT, Abs_X);
|
|
Tail := Abs_X - Result;
|
|
|
|
if Tail > Ureal_Half then
|
|
Result := Result + Ureal_1;
|
|
|
|
elsif Tail = Ureal_Half then
|
|
Result := Ureal_2 *
|
|
Truncation (RT, (Result / Ureal_2) + Ureal_Half);
|
|
end if;
|
|
|
|
if UR_Is_Negative (X) then
|
|
return -Result;
|
|
elsif UR_Is_Positive (X) then
|
|
return Result;
|
|
|
|
-- For zero case, make sure sign of zero is preserved
|
|
|
|
else
|
|
return X;
|
|
end if;
|
|
end Unbiased_Rounding;
|
|
|
|
end Eval_Fat;
|