fortran/ PR fortran/32147 * module.c (write_symbol): Fix whitespace. (write_symbol0): Walk symtree from left-to-right instead breadth-first. (write_symbol1): Similarly change walk of pointer info tree. (write_module): Insert linebreak. * symbol.c (gfc_traverse_symtree): Change to left-to-right order. (traverse_ns): Likewise. testsuite/ PR fortran/32147 * gfortran.dg/module_md5_1.f90: Update hash-value. From-SVN: r129701
4042 lines
99 KiB
C
4042 lines
99 KiB
C
/* Maintain binary trees of symbols.
|
|
Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
|
Free Software Foundation, Inc.
|
|
Contributed by Andy Vaught
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "flags.h"
|
|
#include "gfortran.h"
|
|
#include "parse.h"
|
|
|
|
|
|
/* Strings for all symbol attributes. We use these for dumping the
|
|
parse tree, in error messages, and also when reading and writing
|
|
modules. */
|
|
|
|
const mstring flavors[] =
|
|
{
|
|
minit ("UNKNOWN-FL", FL_UNKNOWN), minit ("PROGRAM", FL_PROGRAM),
|
|
minit ("BLOCK-DATA", FL_BLOCK_DATA), minit ("MODULE", FL_MODULE),
|
|
minit ("VARIABLE", FL_VARIABLE), minit ("PARAMETER", FL_PARAMETER),
|
|
minit ("LABEL", FL_LABEL), minit ("PROCEDURE", FL_PROCEDURE),
|
|
minit ("DERIVED", FL_DERIVED), minit ("NAMELIST", FL_NAMELIST),
|
|
minit (NULL, -1)
|
|
};
|
|
|
|
const mstring procedures[] =
|
|
{
|
|
minit ("UNKNOWN-PROC", PROC_UNKNOWN),
|
|
minit ("MODULE-PROC", PROC_MODULE),
|
|
minit ("INTERNAL-PROC", PROC_INTERNAL),
|
|
minit ("DUMMY-PROC", PROC_DUMMY),
|
|
minit ("INTRINSIC-PROC", PROC_INTRINSIC),
|
|
minit ("EXTERNAL-PROC", PROC_EXTERNAL),
|
|
minit ("STATEMENT-PROC", PROC_ST_FUNCTION),
|
|
minit (NULL, -1)
|
|
};
|
|
|
|
const mstring intents[] =
|
|
{
|
|
minit ("UNKNOWN-INTENT", INTENT_UNKNOWN),
|
|
minit ("IN", INTENT_IN),
|
|
minit ("OUT", INTENT_OUT),
|
|
minit ("INOUT", INTENT_INOUT),
|
|
minit (NULL, -1)
|
|
};
|
|
|
|
const mstring access_types[] =
|
|
{
|
|
minit ("UNKNOWN-ACCESS", ACCESS_UNKNOWN),
|
|
minit ("PUBLIC", ACCESS_PUBLIC),
|
|
minit ("PRIVATE", ACCESS_PRIVATE),
|
|
minit (NULL, -1)
|
|
};
|
|
|
|
const mstring ifsrc_types[] =
|
|
{
|
|
minit ("UNKNOWN", IFSRC_UNKNOWN),
|
|
minit ("DECL", IFSRC_DECL),
|
|
minit ("BODY", IFSRC_IFBODY),
|
|
minit ("USAGE", IFSRC_USAGE)
|
|
};
|
|
|
|
const mstring save_status[] =
|
|
{
|
|
minit ("UNKNOWN", SAVE_NONE),
|
|
minit ("EXPLICIT-SAVE", SAVE_EXPLICIT),
|
|
minit ("IMPLICIT-SAVE", SAVE_IMPLICIT),
|
|
};
|
|
|
|
/* This is to make sure the backend generates setup code in the correct
|
|
order. */
|
|
|
|
static int next_dummy_order = 1;
|
|
|
|
|
|
gfc_namespace *gfc_current_ns;
|
|
|
|
gfc_gsymbol *gfc_gsym_root = NULL;
|
|
|
|
static gfc_symbol *changed_syms = NULL;
|
|
|
|
gfc_dt_list *gfc_derived_types;
|
|
|
|
|
|
/*********** IMPLICIT NONE and IMPLICIT statement handlers ***********/
|
|
|
|
/* The following static variable indicates whether a particular element has
|
|
been explicitly set or not. */
|
|
|
|
static int new_flag[GFC_LETTERS];
|
|
|
|
|
|
/* Handle a correctly parsed IMPLICIT NONE. */
|
|
|
|
void
|
|
gfc_set_implicit_none (void)
|
|
{
|
|
int i;
|
|
|
|
if (gfc_current_ns->seen_implicit_none)
|
|
{
|
|
gfc_error ("Duplicate IMPLICIT NONE statement at %C");
|
|
return;
|
|
}
|
|
|
|
gfc_current_ns->seen_implicit_none = 1;
|
|
|
|
for (i = 0; i < GFC_LETTERS; i++)
|
|
{
|
|
gfc_clear_ts (&gfc_current_ns->default_type[i]);
|
|
gfc_current_ns->set_flag[i] = 1;
|
|
}
|
|
}
|
|
|
|
|
|
/* Reset the implicit range flags. */
|
|
|
|
void
|
|
gfc_clear_new_implicit (void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < GFC_LETTERS; i++)
|
|
new_flag[i] = 0;
|
|
}
|
|
|
|
|
|
/* Prepare for a new implicit range. Sets flags in new_flag[]. */
|
|
|
|
try
|
|
gfc_add_new_implicit_range (int c1, int c2)
|
|
{
|
|
int i;
|
|
|
|
c1 -= 'a';
|
|
c2 -= 'a';
|
|
|
|
for (i = c1; i <= c2; i++)
|
|
{
|
|
if (new_flag[i])
|
|
{
|
|
gfc_error ("Letter '%c' already set in IMPLICIT statement at %C",
|
|
i + 'A');
|
|
return FAILURE;
|
|
}
|
|
|
|
new_flag[i] = 1;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/* Add a matched implicit range for gfc_set_implicit(). Check if merging
|
|
the new implicit types back into the existing types will work. */
|
|
|
|
try
|
|
gfc_merge_new_implicit (gfc_typespec *ts)
|
|
{
|
|
int i;
|
|
|
|
if (gfc_current_ns->seen_implicit_none)
|
|
{
|
|
gfc_error ("Cannot specify IMPLICIT at %C after IMPLICIT NONE");
|
|
return FAILURE;
|
|
}
|
|
|
|
for (i = 0; i < GFC_LETTERS; i++)
|
|
{
|
|
if (new_flag[i])
|
|
{
|
|
|
|
if (gfc_current_ns->set_flag[i])
|
|
{
|
|
gfc_error ("Letter %c already has an IMPLICIT type at %C",
|
|
i + 'A');
|
|
return FAILURE;
|
|
}
|
|
gfc_current_ns->default_type[i] = *ts;
|
|
gfc_current_ns->set_flag[i] = 1;
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/* Given a symbol, return a pointer to the typespec for its default type. */
|
|
|
|
gfc_typespec *
|
|
gfc_get_default_type (gfc_symbol *sym, gfc_namespace *ns)
|
|
{
|
|
char letter;
|
|
|
|
letter = sym->name[0];
|
|
|
|
if (gfc_option.flag_allow_leading_underscore && letter == '_')
|
|
gfc_internal_error ("Option -fallow_leading_underscore is for use only by "
|
|
"gfortran developers, and should not be used for "
|
|
"implicitly typed variables");
|
|
|
|
if (letter < 'a' || letter > 'z')
|
|
gfc_internal_error ("gfc_get_default_type(): Bad symbol");
|
|
|
|
if (ns == NULL)
|
|
ns = gfc_current_ns;
|
|
|
|
return &ns->default_type[letter - 'a'];
|
|
}
|
|
|
|
|
|
/* Given a pointer to a symbol, set its type according to the first
|
|
letter of its name. Fails if the letter in question has no default
|
|
type. */
|
|
|
|
try
|
|
gfc_set_default_type (gfc_symbol *sym, int error_flag, gfc_namespace *ns)
|
|
{
|
|
gfc_typespec *ts;
|
|
|
|
if (sym->ts.type != BT_UNKNOWN)
|
|
gfc_internal_error ("gfc_set_default_type(): symbol already has a type");
|
|
|
|
ts = gfc_get_default_type (sym, ns);
|
|
|
|
if (ts->type == BT_UNKNOWN)
|
|
{
|
|
if (error_flag && !sym->attr.untyped)
|
|
{
|
|
gfc_error ("Symbol '%s' at %L has no IMPLICIT type",
|
|
sym->name, &sym->declared_at);
|
|
sym->attr.untyped = 1; /* Ensure we only give an error once. */
|
|
}
|
|
|
|
return FAILURE;
|
|
}
|
|
|
|
sym->ts = *ts;
|
|
sym->attr.implicit_type = 1;
|
|
|
|
if (sym->attr.is_bind_c == 1)
|
|
{
|
|
/* BIND(C) variables should not be implicitly declared. */
|
|
gfc_warning_now ("Implicitly declared BIND(C) variable '%s' at %L may "
|
|
"not be C interoperable", sym->name, &sym->declared_at);
|
|
sym->ts.f90_type = sym->ts.type;
|
|
}
|
|
|
|
if (sym->attr.dummy != 0)
|
|
{
|
|
if (sym->ns->proc_name != NULL
|
|
&& (sym->ns->proc_name->attr.subroutine != 0
|
|
|| sym->ns->proc_name->attr.function != 0)
|
|
&& sym->ns->proc_name->attr.is_bind_c != 0)
|
|
{
|
|
/* Dummy args to a BIND(C) routine may not be interoperable if
|
|
they are implicitly typed. */
|
|
gfc_warning_now ("Implicity declared variable '%s' at %L may not "
|
|
"be C interoperable but it is a dummy argument to "
|
|
"the BIND(C) procedure '%s' at %L", sym->name,
|
|
&(sym->declared_at), sym->ns->proc_name->name,
|
|
&(sym->ns->proc_name->declared_at));
|
|
sym->ts.f90_type = sym->ts.type;
|
|
}
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/* This function is called from parse.c(parse_progunit) to check the
|
|
type of the function is not implicitly typed in the host namespace
|
|
and to implicitly type the function result, if necessary. */
|
|
|
|
void
|
|
gfc_check_function_type (gfc_namespace *ns)
|
|
{
|
|
gfc_symbol *proc = ns->proc_name;
|
|
|
|
if (!proc->attr.contained || proc->result->attr.implicit_type)
|
|
return;
|
|
|
|
if (proc->result->ts.type == BT_UNKNOWN)
|
|
{
|
|
if (gfc_set_default_type (proc->result, 0, gfc_current_ns)
|
|
== SUCCESS)
|
|
{
|
|
if (proc->result != proc)
|
|
{
|
|
proc->ts = proc->result->ts;
|
|
proc->as = gfc_copy_array_spec (proc->result->as);
|
|
proc->attr.dimension = proc->result->attr.dimension;
|
|
proc->attr.pointer = proc->result->attr.pointer;
|
|
proc->attr.allocatable = proc->result->attr.allocatable;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
gfc_error ("Function result '%s' at %L has no IMPLICIT type",
|
|
proc->result->name, &proc->result->declared_at);
|
|
proc->result->attr.untyped = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/******************** Symbol attribute stuff *********************/
|
|
|
|
/* This is a generic conflict-checker. We do this to avoid having a
|
|
single conflict in two places. */
|
|
|
|
#define conf(a, b) if (attr->a && attr->b) { a1 = a; a2 = b; goto conflict; }
|
|
#define conf2(a) if (attr->a) { a2 = a; goto conflict; }
|
|
#define conf_std(a, b, std) if (attr->a && attr->b)\
|
|
{\
|
|
a1 = a;\
|
|
a2 = b;\
|
|
standard = std;\
|
|
goto conflict_std;\
|
|
}
|
|
|
|
static try
|
|
check_conflict (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
static const char *dummy = "DUMMY", *save = "SAVE", *pointer = "POINTER",
|
|
*target = "TARGET", *external = "EXTERNAL", *intent = "INTENT",
|
|
*intent_in = "INTENT(IN)", *intrinsic = "INTRINSIC",
|
|
*intent_out = "INTENT(OUT)", *intent_inout = "INTENT(INOUT)",
|
|
*allocatable = "ALLOCATABLE", *elemental = "ELEMENTAL",
|
|
*private = "PRIVATE", *recursive = "RECURSIVE",
|
|
*in_common = "COMMON", *result = "RESULT", *in_namelist = "NAMELIST",
|
|
*public = "PUBLIC", *optional = "OPTIONAL", *entry = "ENTRY",
|
|
*function = "FUNCTION", *subroutine = "SUBROUTINE",
|
|
*dimension = "DIMENSION", *in_equivalence = "EQUIVALENCE",
|
|
*use_assoc = "USE ASSOCIATED", *cray_pointer = "CRAY POINTER",
|
|
*cray_pointee = "CRAY POINTEE", *data = "DATA", *value = "VALUE",
|
|
*volatile_ = "VOLATILE", *protected = "PROTECTED",
|
|
*is_bind_c = "BIND(C)", *procedure = "PROCEDURE";
|
|
static const char *threadprivate = "THREADPRIVATE";
|
|
|
|
const char *a1, *a2;
|
|
int standard;
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
if (attr->pointer && attr->intent != INTENT_UNKNOWN)
|
|
{
|
|
a1 = pointer;
|
|
a2 = intent;
|
|
standard = GFC_STD_F2003;
|
|
goto conflict_std;
|
|
}
|
|
|
|
/* Check for attributes not allowed in a BLOCK DATA. */
|
|
if (gfc_current_state () == COMP_BLOCK_DATA)
|
|
{
|
|
a1 = NULL;
|
|
|
|
if (attr->in_namelist)
|
|
a1 = in_namelist;
|
|
if (attr->allocatable)
|
|
a1 = allocatable;
|
|
if (attr->external)
|
|
a1 = external;
|
|
if (attr->optional)
|
|
a1 = optional;
|
|
if (attr->access == ACCESS_PRIVATE)
|
|
a1 = private;
|
|
if (attr->access == ACCESS_PUBLIC)
|
|
a1 = public;
|
|
if (attr->intent != INTENT_UNKNOWN)
|
|
a1 = intent;
|
|
|
|
if (a1 != NULL)
|
|
{
|
|
gfc_error
|
|
("%s attribute not allowed in BLOCK DATA program unit at %L",
|
|
a1, where);
|
|
return FAILURE;
|
|
}
|
|
}
|
|
|
|
if (attr->save == SAVE_EXPLICIT)
|
|
{
|
|
conf (dummy, save);
|
|
conf (in_common, save);
|
|
conf (result, save);
|
|
|
|
switch (attr->flavor)
|
|
{
|
|
case FL_PROGRAM:
|
|
case FL_BLOCK_DATA:
|
|
case FL_MODULE:
|
|
case FL_LABEL:
|
|
case FL_PROCEDURE:
|
|
case FL_DERIVED:
|
|
case FL_PARAMETER:
|
|
a1 = gfc_code2string (flavors, attr->flavor);
|
|
a2 = save;
|
|
goto conflict;
|
|
|
|
case FL_VARIABLE:
|
|
case FL_NAMELIST:
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
conf (dummy, entry);
|
|
conf (dummy, intrinsic);
|
|
conf (dummy, threadprivate);
|
|
conf (pointer, target);
|
|
conf (pointer, intrinsic);
|
|
conf (pointer, elemental);
|
|
conf (allocatable, elemental);
|
|
|
|
conf (target, external);
|
|
conf (target, intrinsic);
|
|
conf (external, dimension); /* See Fortran 95's R504. */
|
|
|
|
conf (external, intrinsic);
|
|
conf (entry, intrinsic);
|
|
|
|
if ((attr->if_source && !attr->procedure) || attr->contained)
|
|
{
|
|
conf (external, subroutine);
|
|
conf (external, function);
|
|
}
|
|
|
|
conf (allocatable, pointer);
|
|
conf_std (allocatable, dummy, GFC_STD_F2003);
|
|
conf_std (allocatable, function, GFC_STD_F2003);
|
|
conf_std (allocatable, result, GFC_STD_F2003);
|
|
conf (elemental, recursive);
|
|
|
|
conf (in_common, dummy);
|
|
conf (in_common, allocatable);
|
|
conf (in_common, result);
|
|
|
|
conf (dummy, result);
|
|
|
|
conf (in_equivalence, use_assoc);
|
|
conf (in_equivalence, dummy);
|
|
conf (in_equivalence, target);
|
|
conf (in_equivalence, pointer);
|
|
conf (in_equivalence, function);
|
|
conf (in_equivalence, result);
|
|
conf (in_equivalence, entry);
|
|
conf (in_equivalence, allocatable);
|
|
conf (in_equivalence, threadprivate);
|
|
|
|
conf (in_namelist, pointer);
|
|
conf (in_namelist, allocatable);
|
|
|
|
conf (entry, result);
|
|
|
|
conf (function, subroutine);
|
|
|
|
if (!function && !subroutine)
|
|
conf (is_bind_c, dummy);
|
|
|
|
conf (is_bind_c, cray_pointer);
|
|
conf (is_bind_c, cray_pointee);
|
|
conf (is_bind_c, allocatable);
|
|
conf (is_bind_c, elemental);
|
|
|
|
/* Need to also get volatile attr, according to 5.1 of F2003 draft.
|
|
Parameter conflict caught below. Also, value cannot be specified
|
|
for a dummy procedure. */
|
|
|
|
/* Cray pointer/pointee conflicts. */
|
|
conf (cray_pointer, cray_pointee);
|
|
conf (cray_pointer, dimension);
|
|
conf (cray_pointer, pointer);
|
|
conf (cray_pointer, target);
|
|
conf (cray_pointer, allocatable);
|
|
conf (cray_pointer, external);
|
|
conf (cray_pointer, intrinsic);
|
|
conf (cray_pointer, in_namelist);
|
|
conf (cray_pointer, function);
|
|
conf (cray_pointer, subroutine);
|
|
conf (cray_pointer, entry);
|
|
|
|
conf (cray_pointee, allocatable);
|
|
conf (cray_pointee, intent);
|
|
conf (cray_pointee, optional);
|
|
conf (cray_pointee, dummy);
|
|
conf (cray_pointee, target);
|
|
conf (cray_pointee, intrinsic);
|
|
conf (cray_pointee, pointer);
|
|
conf (cray_pointee, entry);
|
|
conf (cray_pointee, in_common);
|
|
conf (cray_pointee, in_equivalence);
|
|
conf (cray_pointee, threadprivate);
|
|
|
|
conf (data, dummy);
|
|
conf (data, function);
|
|
conf (data, result);
|
|
conf (data, allocatable);
|
|
conf (data, use_assoc);
|
|
|
|
conf (value, pointer)
|
|
conf (value, allocatable)
|
|
conf (value, subroutine)
|
|
conf (value, function)
|
|
conf (value, volatile_)
|
|
conf (value, dimension)
|
|
conf (value, external)
|
|
|
|
if (attr->value
|
|
&& (attr->intent == INTENT_OUT || attr->intent == INTENT_INOUT))
|
|
{
|
|
a1 = value;
|
|
a2 = attr->intent == INTENT_OUT ? intent_out : intent_inout;
|
|
goto conflict;
|
|
}
|
|
|
|
conf (protected, intrinsic)
|
|
conf (protected, external)
|
|
conf (protected, in_common)
|
|
|
|
conf (volatile_, intrinsic)
|
|
conf (volatile_, external)
|
|
|
|
if (attr->volatile_ && attr->intent == INTENT_IN)
|
|
{
|
|
a1 = volatile_;
|
|
a2 = intent_in;
|
|
goto conflict;
|
|
}
|
|
|
|
conf (procedure, allocatable)
|
|
conf (procedure, dimension)
|
|
conf (procedure, intrinsic)
|
|
conf (procedure, protected)
|
|
conf (procedure, target)
|
|
conf (procedure, value)
|
|
conf (procedure, volatile_)
|
|
conf (procedure, entry)
|
|
/* TODO: Implement procedure pointers. */
|
|
if (attr->procedure && attr->pointer)
|
|
{
|
|
gfc_error ("Fortran 2003: Procedure pointers at %L are "
|
|
"not yet implemented in gfortran", where);
|
|
return FAILURE;
|
|
}
|
|
|
|
a1 = gfc_code2string (flavors, attr->flavor);
|
|
|
|
if (attr->in_namelist
|
|
&& attr->flavor != FL_VARIABLE
|
|
&& attr->flavor != FL_PROCEDURE
|
|
&& attr->flavor != FL_UNKNOWN)
|
|
{
|
|
a2 = in_namelist;
|
|
goto conflict;
|
|
}
|
|
|
|
switch (attr->flavor)
|
|
{
|
|
case FL_PROGRAM:
|
|
case FL_BLOCK_DATA:
|
|
case FL_MODULE:
|
|
case FL_LABEL:
|
|
conf2 (dimension);
|
|
conf2 (dummy);
|
|
conf2 (volatile_);
|
|
conf2 (pointer);
|
|
conf2 (protected);
|
|
conf2 (target);
|
|
conf2 (external);
|
|
conf2 (intrinsic);
|
|
conf2 (allocatable);
|
|
conf2 (result);
|
|
conf2 (in_namelist);
|
|
conf2 (optional);
|
|
conf2 (function);
|
|
conf2 (subroutine);
|
|
conf2 (threadprivate);
|
|
break;
|
|
|
|
case FL_VARIABLE:
|
|
case FL_NAMELIST:
|
|
break;
|
|
|
|
case FL_PROCEDURE:
|
|
conf2 (intent);
|
|
|
|
if (attr->subroutine)
|
|
{
|
|
conf2 (pointer);
|
|
conf2 (target);
|
|
conf2 (allocatable);
|
|
conf2 (result);
|
|
conf2 (in_namelist);
|
|
conf2 (dimension);
|
|
conf2 (function);
|
|
conf2 (threadprivate);
|
|
}
|
|
|
|
switch (attr->proc)
|
|
{
|
|
case PROC_ST_FUNCTION:
|
|
conf2 (in_common);
|
|
conf2 (dummy);
|
|
break;
|
|
|
|
case PROC_MODULE:
|
|
conf2 (dummy);
|
|
break;
|
|
|
|
case PROC_DUMMY:
|
|
conf2 (result);
|
|
conf2 (in_common);
|
|
conf2 (threadprivate);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
break;
|
|
|
|
case FL_DERIVED:
|
|
conf2 (dummy);
|
|
conf2 (pointer);
|
|
conf2 (target);
|
|
conf2 (external);
|
|
conf2 (intrinsic);
|
|
conf2 (allocatable);
|
|
conf2 (optional);
|
|
conf2 (entry);
|
|
conf2 (function);
|
|
conf2 (subroutine);
|
|
conf2 (threadprivate);
|
|
|
|
if (attr->intent != INTENT_UNKNOWN)
|
|
{
|
|
a2 = intent;
|
|
goto conflict;
|
|
}
|
|
break;
|
|
|
|
case FL_PARAMETER:
|
|
conf2 (external);
|
|
conf2 (intrinsic);
|
|
conf2 (optional);
|
|
conf2 (allocatable);
|
|
conf2 (function);
|
|
conf2 (subroutine);
|
|
conf2 (entry);
|
|
conf2 (pointer);
|
|
conf2 (protected);
|
|
conf2 (target);
|
|
conf2 (dummy);
|
|
conf2 (in_common);
|
|
conf2 (value);
|
|
conf2 (volatile_);
|
|
conf2 (threadprivate);
|
|
conf2 (value);
|
|
conf2 (is_bind_c);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return SUCCESS;
|
|
|
|
conflict:
|
|
if (name == NULL)
|
|
gfc_error ("%s attribute conflicts with %s attribute at %L",
|
|
a1, a2, where);
|
|
else
|
|
gfc_error ("%s attribute conflicts with %s attribute in '%s' at %L",
|
|
a1, a2, name, where);
|
|
|
|
return FAILURE;
|
|
|
|
conflict_std:
|
|
if (name == NULL)
|
|
{
|
|
return gfc_notify_std (standard, "Fortran 2003: %s attribute "
|
|
"with %s attribute at %L", a1, a2,
|
|
where);
|
|
}
|
|
else
|
|
{
|
|
return gfc_notify_std (standard, "Fortran 2003: %s attribute "
|
|
"with %s attribute in '%s' at %L",
|
|
a1, a2, name, where);
|
|
}
|
|
}
|
|
|
|
#undef conf
|
|
#undef conf2
|
|
#undef conf_std
|
|
|
|
|
|
/* Mark a symbol as referenced. */
|
|
|
|
void
|
|
gfc_set_sym_referenced (gfc_symbol *sym)
|
|
{
|
|
|
|
if (sym->attr.referenced)
|
|
return;
|
|
|
|
sym->attr.referenced = 1;
|
|
|
|
/* Remember which order dummy variables are accessed in. */
|
|
if (sym->attr.dummy)
|
|
sym->dummy_order = next_dummy_order++;
|
|
}
|
|
|
|
|
|
/* Common subroutine called by attribute changing subroutines in order
|
|
to prevent them from changing a symbol that has been
|
|
use-associated. Returns zero if it is OK to change the symbol,
|
|
nonzero if not. */
|
|
|
|
static int
|
|
check_used (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (attr->use_assoc == 0)
|
|
return 0;
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
if (name == NULL)
|
|
gfc_error ("Cannot change attributes of USE-associated symbol at %L",
|
|
where);
|
|
else
|
|
gfc_error ("Cannot change attributes of USE-associated symbol %s at %L",
|
|
name, where);
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Generate an error because of a duplicate attribute. */
|
|
|
|
static void
|
|
duplicate_attr (const char *attr, locus *where)
|
|
{
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
gfc_error ("Duplicate %s attribute specified at %L", attr, where);
|
|
}
|
|
|
|
|
|
/* Called from decl.c (attr_decl1) to check attributes, when declared
|
|
separately. */
|
|
|
|
try
|
|
gfc_add_attribute (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return FAILURE;
|
|
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
try
|
|
gfc_add_allocatable (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return FAILURE;
|
|
|
|
if (attr->allocatable)
|
|
{
|
|
duplicate_attr ("ALLOCATABLE", where);
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->allocatable = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_dimension (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return FAILURE;
|
|
|
|
if (attr->dimension)
|
|
{
|
|
duplicate_attr ("DIMENSION", where);
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->dimension = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_external (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return FAILURE;
|
|
|
|
if (attr->external)
|
|
{
|
|
duplicate_attr ("EXTERNAL", where);
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->external = 1;
|
|
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_intrinsic (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return FAILURE;
|
|
|
|
if (attr->intrinsic)
|
|
{
|
|
duplicate_attr ("INTRINSIC", where);
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->intrinsic = 1;
|
|
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_optional (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return FAILURE;
|
|
|
|
if (attr->optional)
|
|
{
|
|
duplicate_attr ("OPTIONAL", where);
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->optional = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_pointer (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return FAILURE;
|
|
|
|
attr->pointer = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_cray_pointer (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return FAILURE;
|
|
|
|
attr->cray_pointer = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_cray_pointee (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return FAILURE;
|
|
|
|
if (attr->cray_pointee)
|
|
{
|
|
gfc_error ("Cray Pointee at %L appears in multiple pointer()"
|
|
" statements", where);
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->cray_pointee = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_protected (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
if (check_used (attr, name, where))
|
|
return FAILURE;
|
|
|
|
if (attr->protected)
|
|
{
|
|
if (gfc_notify_std (GFC_STD_LEGACY,
|
|
"Duplicate PROTECTED attribute specified at %L",
|
|
where)
|
|
== FAILURE)
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->protected = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_result (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return FAILURE;
|
|
|
|
attr->result = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_save (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return FAILURE;
|
|
|
|
if (gfc_pure (NULL))
|
|
{
|
|
gfc_error
|
|
("SAVE attribute at %L cannot be specified in a PURE procedure",
|
|
where);
|
|
return FAILURE;
|
|
}
|
|
|
|
if (attr->save == SAVE_EXPLICIT)
|
|
{
|
|
if (gfc_notify_std (GFC_STD_LEGACY,
|
|
"Duplicate SAVE attribute specified at %L",
|
|
where)
|
|
== FAILURE)
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->save = SAVE_EXPLICIT;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_value (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return FAILURE;
|
|
|
|
if (attr->value)
|
|
{
|
|
if (gfc_notify_std (GFC_STD_LEGACY,
|
|
"Duplicate VALUE attribute specified at %L",
|
|
where)
|
|
== FAILURE)
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->value = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_volatile (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
/* No check_used needed as 11.2.1 of the F2003 standard allows
|
|
that the local identifier made accessible by a use statement can be
|
|
given a VOLATILE attribute. */
|
|
|
|
if (attr->volatile_ && attr->volatile_ns == gfc_current_ns)
|
|
if (gfc_notify_std (GFC_STD_LEGACY,
|
|
"Duplicate VOLATILE attribute specified at %L", where)
|
|
== FAILURE)
|
|
return FAILURE;
|
|
|
|
attr->volatile_ = 1;
|
|
attr->volatile_ns = gfc_current_ns;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_threadprivate (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return FAILURE;
|
|
|
|
if (attr->threadprivate)
|
|
{
|
|
duplicate_attr ("THREADPRIVATE", where);
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->threadprivate = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_target (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return FAILURE;
|
|
|
|
if (attr->target)
|
|
{
|
|
duplicate_attr ("TARGET", where);
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->target = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_dummy (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return FAILURE;
|
|
|
|
/* Duplicate dummy arguments are allowed due to ENTRY statements. */
|
|
attr->dummy = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_in_common (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return FAILURE;
|
|
|
|
/* Duplicate attribute already checked for. */
|
|
attr->in_common = 1;
|
|
if (check_conflict (attr, name, where) == FAILURE)
|
|
return FAILURE;
|
|
|
|
if (attr->flavor == FL_VARIABLE)
|
|
return SUCCESS;
|
|
|
|
return gfc_add_flavor (attr, FL_VARIABLE, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_in_equivalence (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
/* Duplicate attribute already checked for. */
|
|
attr->in_equivalence = 1;
|
|
if (check_conflict (attr, name, where) == FAILURE)
|
|
return FAILURE;
|
|
|
|
if (attr->flavor == FL_VARIABLE)
|
|
return SUCCESS;
|
|
|
|
return gfc_add_flavor (attr, FL_VARIABLE, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_data (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return FAILURE;
|
|
|
|
attr->data = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_in_namelist (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
attr->in_namelist = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_sequence (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return FAILURE;
|
|
|
|
attr->sequence = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_elemental (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return FAILURE;
|
|
|
|
if (attr->elemental)
|
|
{
|
|
duplicate_attr ("ELEMENTAL", where);
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->elemental = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_pure (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return FAILURE;
|
|
|
|
if (attr->pure)
|
|
{
|
|
duplicate_attr ("PURE", where);
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->pure = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_recursive (symbol_attribute *attr, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return FAILURE;
|
|
|
|
if (attr->recursive)
|
|
{
|
|
duplicate_attr ("RECURSIVE", where);
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->recursive = 1;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_entry (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return FAILURE;
|
|
|
|
if (attr->entry)
|
|
{
|
|
duplicate_attr ("ENTRY", where);
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->entry = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_function (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (attr->flavor != FL_PROCEDURE
|
|
&& gfc_add_flavor (attr, FL_PROCEDURE, name, where) == FAILURE)
|
|
return FAILURE;
|
|
|
|
attr->function = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_subroutine (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (attr->flavor != FL_PROCEDURE
|
|
&& gfc_add_flavor (attr, FL_PROCEDURE, name, where) == FAILURE)
|
|
return FAILURE;
|
|
|
|
attr->subroutine = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_generic (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (attr->flavor != FL_PROCEDURE
|
|
&& gfc_add_flavor (attr, FL_PROCEDURE, name, where) == FAILURE)
|
|
return FAILURE;
|
|
|
|
attr->generic = 1;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_proc (symbol_attribute *attr, const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return FAILURE;
|
|
|
|
if (attr->flavor != FL_PROCEDURE
|
|
&& gfc_add_flavor (attr, FL_PROCEDURE, name, where) == FAILURE)
|
|
return FAILURE;
|
|
|
|
if (attr->procedure)
|
|
{
|
|
duplicate_attr ("PROCEDURE", where);
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->procedure = 1;
|
|
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
|
|
/* Flavors are special because some flavors are not what Fortran
|
|
considers attributes and can be reaffirmed multiple times. */
|
|
|
|
try
|
|
gfc_add_flavor (symbol_attribute *attr, sym_flavor f, const char *name,
|
|
locus *where)
|
|
{
|
|
|
|
if ((f == FL_PROGRAM || f == FL_BLOCK_DATA || f == FL_MODULE
|
|
|| f == FL_PARAMETER || f == FL_LABEL || f == FL_DERIVED
|
|
|| f == FL_NAMELIST) && check_used (attr, name, where))
|
|
return FAILURE;
|
|
|
|
if (attr->flavor == f && f == FL_VARIABLE)
|
|
return SUCCESS;
|
|
|
|
if (attr->flavor != FL_UNKNOWN)
|
|
{
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
if (name)
|
|
gfc_error ("%s attribute of '%s' conflicts with %s attribute at %L",
|
|
gfc_code2string (flavors, attr->flavor), name,
|
|
gfc_code2string (flavors, f), where);
|
|
else
|
|
gfc_error ("%s attribute conflicts with %s attribute at %L",
|
|
gfc_code2string (flavors, attr->flavor),
|
|
gfc_code2string (flavors, f), where);
|
|
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->flavor = f;
|
|
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_procedure (symbol_attribute *attr, procedure_type t,
|
|
const char *name, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, name, where))
|
|
return FAILURE;
|
|
|
|
if (attr->flavor != FL_PROCEDURE
|
|
&& gfc_add_flavor (attr, FL_PROCEDURE, name, where) == FAILURE)
|
|
return FAILURE;
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
if (attr->proc != PROC_UNKNOWN)
|
|
{
|
|
gfc_error ("%s procedure at %L is already declared as %s procedure",
|
|
gfc_code2string (procedures, t), where,
|
|
gfc_code2string (procedures, attr->proc));
|
|
|
|
return FAILURE;
|
|
}
|
|
|
|
attr->proc = t;
|
|
|
|
/* Statement functions are always scalar and functions. */
|
|
if (t == PROC_ST_FUNCTION
|
|
&& ((!attr->function && gfc_add_function (attr, name, where) == FAILURE)
|
|
|| attr->dimension))
|
|
return FAILURE;
|
|
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_intent (symbol_attribute *attr, sym_intent intent, locus *where)
|
|
{
|
|
|
|
if (check_used (attr, NULL, where))
|
|
return FAILURE;
|
|
|
|
if (attr->intent == INTENT_UNKNOWN)
|
|
{
|
|
attr->intent = intent;
|
|
return check_conflict (attr, NULL, where);
|
|
}
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
gfc_error ("INTENT (%s) conflicts with INTENT(%s) at %L",
|
|
gfc_intent_string (attr->intent),
|
|
gfc_intent_string (intent), where);
|
|
|
|
return FAILURE;
|
|
}
|
|
|
|
|
|
/* No checks for use-association in public and private statements. */
|
|
|
|
try
|
|
gfc_add_access (symbol_attribute *attr, gfc_access access,
|
|
const char *name, locus *where)
|
|
{
|
|
|
|
if (attr->access == ACCESS_UNKNOWN)
|
|
{
|
|
attr->access = access;
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
gfc_error ("ACCESS specification at %L was already specified", where);
|
|
|
|
return FAILURE;
|
|
}
|
|
|
|
|
|
/* Set the is_bind_c field for the given symbol_attribute. */
|
|
|
|
try
|
|
gfc_add_is_bind_c (symbol_attribute *attr, const char *name, locus *where,
|
|
int is_proc_lang_bind_spec)
|
|
{
|
|
|
|
if (is_proc_lang_bind_spec == 0 && attr->flavor == FL_PROCEDURE)
|
|
gfc_error_now ("BIND(C) attribute at %L can only be used for "
|
|
"variables or common blocks", where);
|
|
else if (attr->is_bind_c)
|
|
gfc_error_now ("Duplicate BIND attribute specified at %L", where);
|
|
else
|
|
attr->is_bind_c = 1;
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
if (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: BIND(C) at %L", where)
|
|
== FAILURE)
|
|
return FAILURE;
|
|
|
|
return check_conflict (attr, name, where);
|
|
}
|
|
|
|
|
|
try
|
|
gfc_add_explicit_interface (gfc_symbol *sym, ifsrc source,
|
|
gfc_formal_arglist * formal, locus *where)
|
|
{
|
|
|
|
if (check_used (&sym->attr, sym->name, where))
|
|
return FAILURE;
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
if (sym->attr.if_source != IFSRC_UNKNOWN
|
|
&& sym->attr.if_source != IFSRC_DECL)
|
|
{
|
|
gfc_error ("Symbol '%s' at %L already has an explicit interface",
|
|
sym->name, where);
|
|
return FAILURE;
|
|
}
|
|
|
|
sym->formal = formal;
|
|
sym->attr.if_source = source;
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/* Add a type to a symbol. */
|
|
|
|
try
|
|
gfc_add_type (gfc_symbol *sym, gfc_typespec *ts, locus *where)
|
|
{
|
|
sym_flavor flavor;
|
|
|
|
if (where == NULL)
|
|
where = &gfc_current_locus;
|
|
|
|
if (sym->ts.type != BT_UNKNOWN)
|
|
{
|
|
const char *msg = "Symbol '%s' at %L already has basic type of %s";
|
|
if (!(sym->ts.type == ts->type
|
|
&& (sym->attr.flavor == FL_PROCEDURE || sym->attr.result))
|
|
|| gfc_notification_std (GFC_STD_GNU) == ERROR
|
|
|| pedantic)
|
|
{
|
|
gfc_error (msg, sym->name, where, gfc_basic_typename (sym->ts.type));
|
|
return FAILURE;
|
|
}
|
|
else if (gfc_notify_std (GFC_STD_GNU, msg, sym->name, where,
|
|
gfc_basic_typename (sym->ts.type)) == FAILURE)
|
|
return FAILURE;
|
|
}
|
|
|
|
flavor = sym->attr.flavor;
|
|
|
|
if (flavor == FL_PROGRAM || flavor == FL_BLOCK_DATA || flavor == FL_MODULE
|
|
|| flavor == FL_LABEL
|
|
|| (flavor == FL_PROCEDURE && sym->attr.subroutine)
|
|
|| flavor == FL_DERIVED || flavor == FL_NAMELIST)
|
|
{
|
|
gfc_error ("Symbol '%s' at %L cannot have a type", sym->name, where);
|
|
return FAILURE;
|
|
}
|
|
|
|
sym->ts = *ts;
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/* Clears all attributes. */
|
|
|
|
void
|
|
gfc_clear_attr (symbol_attribute *attr)
|
|
{
|
|
memset (attr, 0, sizeof (symbol_attribute));
|
|
}
|
|
|
|
|
|
/* Check for missing attributes in the new symbol. Currently does
|
|
nothing, but it's not clear that it is unnecessary yet. */
|
|
|
|
try
|
|
gfc_missing_attr (symbol_attribute *attr ATTRIBUTE_UNUSED,
|
|
locus *where ATTRIBUTE_UNUSED)
|
|
{
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/* Copy an attribute to a symbol attribute, bit by bit. Some
|
|
attributes have a lot of side-effects but cannot be present given
|
|
where we are called from, so we ignore some bits. */
|
|
|
|
try
|
|
gfc_copy_attr (symbol_attribute *dest, symbol_attribute *src, locus *where)
|
|
{
|
|
int is_proc_lang_bind_spec;
|
|
|
|
if (src->allocatable && gfc_add_allocatable (dest, where) == FAILURE)
|
|
goto fail;
|
|
|
|
if (src->dimension && gfc_add_dimension (dest, NULL, where) == FAILURE)
|
|
goto fail;
|
|
if (src->optional && gfc_add_optional (dest, where) == FAILURE)
|
|
goto fail;
|
|
if (src->pointer && gfc_add_pointer (dest, where) == FAILURE)
|
|
goto fail;
|
|
if (src->protected && gfc_add_protected (dest, NULL, where) == FAILURE)
|
|
goto fail;
|
|
if (src->save && gfc_add_save (dest, NULL, where) == FAILURE)
|
|
goto fail;
|
|
if (src->value && gfc_add_value (dest, NULL, where) == FAILURE)
|
|
goto fail;
|
|
if (src->volatile_ && gfc_add_volatile (dest, NULL, where) == FAILURE)
|
|
goto fail;
|
|
if (src->threadprivate
|
|
&& gfc_add_threadprivate (dest, NULL, where) == FAILURE)
|
|
goto fail;
|
|
if (src->target && gfc_add_target (dest, where) == FAILURE)
|
|
goto fail;
|
|
if (src->dummy && gfc_add_dummy (dest, NULL, where) == FAILURE)
|
|
goto fail;
|
|
if (src->result && gfc_add_result (dest, NULL, where) == FAILURE)
|
|
goto fail;
|
|
if (src->entry)
|
|
dest->entry = 1;
|
|
|
|
if (src->in_namelist && gfc_add_in_namelist (dest, NULL, where) == FAILURE)
|
|
goto fail;
|
|
|
|
if (src->in_common && gfc_add_in_common (dest, NULL, where) == FAILURE)
|
|
goto fail;
|
|
|
|
if (src->generic && gfc_add_generic (dest, NULL, where) == FAILURE)
|
|
goto fail;
|
|
if (src->function && gfc_add_function (dest, NULL, where) == FAILURE)
|
|
goto fail;
|
|
if (src->subroutine && gfc_add_subroutine (dest, NULL, where) == FAILURE)
|
|
goto fail;
|
|
|
|
if (src->sequence && gfc_add_sequence (dest, NULL, where) == FAILURE)
|
|
goto fail;
|
|
if (src->elemental && gfc_add_elemental (dest, where) == FAILURE)
|
|
goto fail;
|
|
if (src->pure && gfc_add_pure (dest, where) == FAILURE)
|
|
goto fail;
|
|
if (src->recursive && gfc_add_recursive (dest, where) == FAILURE)
|
|
goto fail;
|
|
|
|
if (src->flavor != FL_UNKNOWN
|
|
&& gfc_add_flavor (dest, src->flavor, NULL, where) == FAILURE)
|
|
goto fail;
|
|
|
|
if (src->intent != INTENT_UNKNOWN
|
|
&& gfc_add_intent (dest, src->intent, where) == FAILURE)
|
|
goto fail;
|
|
|
|
if (src->access != ACCESS_UNKNOWN
|
|
&& gfc_add_access (dest, src->access, NULL, where) == FAILURE)
|
|
goto fail;
|
|
|
|
if (gfc_missing_attr (dest, where) == FAILURE)
|
|
goto fail;
|
|
|
|
if (src->cray_pointer && gfc_add_cray_pointer (dest, where) == FAILURE)
|
|
goto fail;
|
|
if (src->cray_pointee && gfc_add_cray_pointee (dest, where) == FAILURE)
|
|
goto fail;
|
|
|
|
is_proc_lang_bind_spec = (src->flavor == FL_PROCEDURE ? 1 : 0);
|
|
if (src->is_bind_c
|
|
&& gfc_add_is_bind_c (dest, NULL, where, is_proc_lang_bind_spec)
|
|
!= SUCCESS)
|
|
return FAILURE;
|
|
|
|
if (src->is_c_interop)
|
|
dest->is_c_interop = 1;
|
|
if (src->is_iso_c)
|
|
dest->is_iso_c = 1;
|
|
|
|
if (src->external && gfc_add_external (dest, where) == FAILURE)
|
|
goto fail;
|
|
if (src->intrinsic && gfc_add_intrinsic (dest, where) == FAILURE)
|
|
goto fail;
|
|
|
|
return SUCCESS;
|
|
|
|
fail:
|
|
return FAILURE;
|
|
}
|
|
|
|
|
|
/************** Component name management ************/
|
|
|
|
/* Component names of a derived type form their own little namespaces
|
|
that are separate from all other spaces. The space is composed of
|
|
a singly linked list of gfc_component structures whose head is
|
|
located in the parent symbol. */
|
|
|
|
|
|
/* Add a component name to a symbol. The call fails if the name is
|
|
already present. On success, the component pointer is modified to
|
|
point to the additional component structure. */
|
|
|
|
try
|
|
gfc_add_component (gfc_symbol *sym, const char *name,
|
|
gfc_component **component)
|
|
{
|
|
gfc_component *p, *tail;
|
|
|
|
tail = NULL;
|
|
|
|
for (p = sym->components; p; p = p->next)
|
|
{
|
|
if (strcmp (p->name, name) == 0)
|
|
{
|
|
gfc_error ("Component '%s' at %C already declared at %L",
|
|
name, &p->loc);
|
|
return FAILURE;
|
|
}
|
|
|
|
tail = p;
|
|
}
|
|
|
|
/* Allocate a new component. */
|
|
p = gfc_get_component ();
|
|
|
|
if (tail == NULL)
|
|
sym->components = p;
|
|
else
|
|
tail->next = p;
|
|
|
|
p->name = gfc_get_string (name);
|
|
p->loc = gfc_current_locus;
|
|
|
|
*component = p;
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/* Recursive function to switch derived types of all symbol in a
|
|
namespace. */
|
|
|
|
static void
|
|
switch_types (gfc_symtree *st, gfc_symbol *from, gfc_symbol *to)
|
|
{
|
|
gfc_symbol *sym;
|
|
|
|
if (st == NULL)
|
|
return;
|
|
|
|
sym = st->n.sym;
|
|
if (sym->ts.type == BT_DERIVED && sym->ts.derived == from)
|
|
sym->ts.derived = to;
|
|
|
|
switch_types (st->left, from, to);
|
|
switch_types (st->right, from, to);
|
|
}
|
|
|
|
|
|
/* This subroutine is called when a derived type is used in order to
|
|
make the final determination about which version to use. The
|
|
standard requires that a type be defined before it is 'used', but
|
|
such types can appear in IMPLICIT statements before the actual
|
|
definition. 'Using' in this context means declaring a variable to
|
|
be that type or using the type constructor.
|
|
|
|
If a type is used and the components haven't been defined, then we
|
|
have to have a derived type in a parent unit. We find the node in
|
|
the other namespace and point the symtree node in this namespace to
|
|
that node. Further reference to this name point to the correct
|
|
node. If we can't find the node in a parent namespace, then we have
|
|
an error.
|
|
|
|
This subroutine takes a pointer to a symbol node and returns a
|
|
pointer to the translated node or NULL for an error. Usually there
|
|
is no translation and we return the node we were passed. */
|
|
|
|
gfc_symbol *
|
|
gfc_use_derived (gfc_symbol *sym)
|
|
{
|
|
gfc_symbol *s;
|
|
gfc_typespec *t;
|
|
gfc_symtree *st;
|
|
int i;
|
|
|
|
if (sym->components != NULL || sym->attr.zero_comp)
|
|
return sym; /* Already defined. */
|
|
|
|
if (sym->ns->parent == NULL)
|
|
goto bad;
|
|
|
|
if (gfc_find_symbol (sym->name, sym->ns->parent, 1, &s))
|
|
{
|
|
gfc_error ("Symbol '%s' at %C is ambiguous", sym->name);
|
|
return NULL;
|
|
}
|
|
|
|
if (s == NULL || s->attr.flavor != FL_DERIVED)
|
|
goto bad;
|
|
|
|
/* Get rid of symbol sym, translating all references to s. */
|
|
for (i = 0; i < GFC_LETTERS; i++)
|
|
{
|
|
t = &sym->ns->default_type[i];
|
|
if (t->derived == sym)
|
|
t->derived = s;
|
|
}
|
|
|
|
st = gfc_find_symtree (sym->ns->sym_root, sym->name);
|
|
st->n.sym = s;
|
|
|
|
s->refs++;
|
|
|
|
/* Unlink from list of modified symbols. */
|
|
gfc_commit_symbol (sym);
|
|
|
|
switch_types (sym->ns->sym_root, sym, s);
|
|
|
|
/* TODO: Also have to replace sym -> s in other lists like
|
|
namelists, common lists and interface lists. */
|
|
gfc_free_symbol (sym);
|
|
|
|
return s;
|
|
|
|
bad:
|
|
gfc_error ("Derived type '%s' at %C is being used before it is defined",
|
|
sym->name);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Given a derived type node and a component name, try to locate the
|
|
component structure. Returns the NULL pointer if the component is
|
|
not found or the components are private. */
|
|
|
|
gfc_component *
|
|
gfc_find_component (gfc_symbol *sym, const char *name)
|
|
{
|
|
gfc_component *p;
|
|
|
|
if (name == NULL)
|
|
return NULL;
|
|
|
|
sym = gfc_use_derived (sym);
|
|
|
|
if (sym == NULL)
|
|
return NULL;
|
|
|
|
for (p = sym->components; p; p = p->next)
|
|
if (strcmp (p->name, name) == 0)
|
|
break;
|
|
|
|
if (p == NULL)
|
|
gfc_error ("'%s' at %C is not a member of the '%s' structure",
|
|
name, sym->name);
|
|
else
|
|
{
|
|
if (sym->attr.use_assoc && (sym->component_access == ACCESS_PRIVATE
|
|
|| p->access == ACCESS_PRIVATE))
|
|
{
|
|
gfc_error ("Component '%s' at %C is a PRIVATE component of '%s'",
|
|
name, sym->name);
|
|
p = NULL;
|
|
}
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
|
|
/* Given a symbol, free all of the component structures and everything
|
|
they point to. */
|
|
|
|
static void
|
|
free_components (gfc_component *p)
|
|
{
|
|
gfc_component *q;
|
|
|
|
for (; p; p = q)
|
|
{
|
|
q = p->next;
|
|
|
|
gfc_free_array_spec (p->as);
|
|
gfc_free_expr (p->initializer);
|
|
|
|
gfc_free (p);
|
|
}
|
|
}
|
|
|
|
|
|
/* Set component attributes from a standard symbol attribute structure. */
|
|
|
|
void
|
|
gfc_set_component_attr (gfc_component *c, symbol_attribute *attr)
|
|
{
|
|
|
|
c->dimension = attr->dimension;
|
|
c->pointer = attr->pointer;
|
|
c->allocatable = attr->allocatable;
|
|
c->access = attr->access;
|
|
}
|
|
|
|
|
|
/* Get a standard symbol attribute structure given the component
|
|
structure. */
|
|
|
|
void
|
|
gfc_get_component_attr (symbol_attribute *attr, gfc_component *c)
|
|
{
|
|
|
|
gfc_clear_attr (attr);
|
|
attr->dimension = c->dimension;
|
|
attr->pointer = c->pointer;
|
|
attr->allocatable = c->allocatable;
|
|
attr->access = c->access;
|
|
}
|
|
|
|
|
|
/******************** Statement label management ********************/
|
|
|
|
/* Comparison function for statement labels, used for managing the
|
|
binary tree. */
|
|
|
|
static int
|
|
compare_st_labels (void *a1, void *b1)
|
|
{
|
|
int a = ((gfc_st_label *) a1)->value;
|
|
int b = ((gfc_st_label *) b1)->value;
|
|
|
|
return (b - a);
|
|
}
|
|
|
|
|
|
/* Free a single gfc_st_label structure, making sure the tree is not
|
|
messed up. This function is called only when some parse error
|
|
occurs. */
|
|
|
|
void
|
|
gfc_free_st_label (gfc_st_label *label)
|
|
{
|
|
|
|
if (label == NULL)
|
|
return;
|
|
|
|
gfc_delete_bbt (&gfc_current_ns->st_labels, label, compare_st_labels);
|
|
|
|
if (label->format != NULL)
|
|
gfc_free_expr (label->format);
|
|
|
|
gfc_free (label);
|
|
}
|
|
|
|
|
|
/* Free a whole tree of gfc_st_label structures. */
|
|
|
|
static void
|
|
free_st_labels (gfc_st_label *label)
|
|
{
|
|
|
|
if (label == NULL)
|
|
return;
|
|
|
|
free_st_labels (label->left);
|
|
free_st_labels (label->right);
|
|
|
|
if (label->format != NULL)
|
|
gfc_free_expr (label->format);
|
|
gfc_free (label);
|
|
}
|
|
|
|
|
|
/* Given a label number, search for and return a pointer to the label
|
|
structure, creating it if it does not exist. */
|
|
|
|
gfc_st_label *
|
|
gfc_get_st_label (int labelno)
|
|
{
|
|
gfc_st_label *lp;
|
|
|
|
/* First see if the label is already in this namespace. */
|
|
lp = gfc_current_ns->st_labels;
|
|
while (lp)
|
|
{
|
|
if (lp->value == labelno)
|
|
return lp;
|
|
|
|
if (lp->value < labelno)
|
|
lp = lp->left;
|
|
else
|
|
lp = lp->right;
|
|
}
|
|
|
|
lp = gfc_getmem (sizeof (gfc_st_label));
|
|
|
|
lp->value = labelno;
|
|
lp->defined = ST_LABEL_UNKNOWN;
|
|
lp->referenced = ST_LABEL_UNKNOWN;
|
|
|
|
gfc_insert_bbt (&gfc_current_ns->st_labels, lp, compare_st_labels);
|
|
|
|
return lp;
|
|
}
|
|
|
|
|
|
/* Called when a statement with a statement label is about to be
|
|
accepted. We add the label to the list of the current namespace,
|
|
making sure it hasn't been defined previously and referenced
|
|
correctly. */
|
|
|
|
void
|
|
gfc_define_st_label (gfc_st_label *lp, gfc_sl_type type, locus *label_locus)
|
|
{
|
|
int labelno;
|
|
|
|
labelno = lp->value;
|
|
|
|
if (lp->defined != ST_LABEL_UNKNOWN)
|
|
gfc_error ("Duplicate statement label %d at %L and %L", labelno,
|
|
&lp->where, label_locus);
|
|
else
|
|
{
|
|
lp->where = *label_locus;
|
|
|
|
switch (type)
|
|
{
|
|
case ST_LABEL_FORMAT:
|
|
if (lp->referenced == ST_LABEL_TARGET)
|
|
gfc_error ("Label %d at %C already referenced as branch target",
|
|
labelno);
|
|
else
|
|
lp->defined = ST_LABEL_FORMAT;
|
|
|
|
break;
|
|
|
|
case ST_LABEL_TARGET:
|
|
if (lp->referenced == ST_LABEL_FORMAT)
|
|
gfc_error ("Label %d at %C already referenced as a format label",
|
|
labelno);
|
|
else
|
|
lp->defined = ST_LABEL_TARGET;
|
|
|
|
break;
|
|
|
|
default:
|
|
lp->defined = ST_LABEL_BAD_TARGET;
|
|
lp->referenced = ST_LABEL_BAD_TARGET;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Reference a label. Given a label and its type, see if that
|
|
reference is consistent with what is known about that label,
|
|
updating the unknown state. Returns FAILURE if something goes
|
|
wrong. */
|
|
|
|
try
|
|
gfc_reference_st_label (gfc_st_label *lp, gfc_sl_type type)
|
|
{
|
|
gfc_sl_type label_type;
|
|
int labelno;
|
|
try rc;
|
|
|
|
if (lp == NULL)
|
|
return SUCCESS;
|
|
|
|
labelno = lp->value;
|
|
|
|
if (lp->defined != ST_LABEL_UNKNOWN)
|
|
label_type = lp->defined;
|
|
else
|
|
{
|
|
label_type = lp->referenced;
|
|
lp->where = gfc_current_locus;
|
|
}
|
|
|
|
if (label_type == ST_LABEL_FORMAT && type == ST_LABEL_TARGET)
|
|
{
|
|
gfc_error ("Label %d at %C previously used as a FORMAT label", labelno);
|
|
rc = FAILURE;
|
|
goto done;
|
|
}
|
|
|
|
if ((label_type == ST_LABEL_TARGET || label_type == ST_LABEL_BAD_TARGET)
|
|
&& type == ST_LABEL_FORMAT)
|
|
{
|
|
gfc_error ("Label %d at %C previously used as branch target", labelno);
|
|
rc = FAILURE;
|
|
goto done;
|
|
}
|
|
|
|
lp->referenced = type;
|
|
rc = SUCCESS;
|
|
|
|
done:
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*******A helper function for creating new expressions*************/
|
|
|
|
|
|
gfc_expr *
|
|
gfc_lval_expr_from_sym (gfc_symbol *sym)
|
|
{
|
|
gfc_expr *lval;
|
|
lval = gfc_get_expr ();
|
|
lval->expr_type = EXPR_VARIABLE;
|
|
lval->where = sym->declared_at;
|
|
lval->ts = sym->ts;
|
|
lval->symtree = gfc_find_symtree (sym->ns->sym_root, sym->name);
|
|
|
|
/* It will always be a full array. */
|
|
lval->rank = sym->as ? sym->as->rank : 0;
|
|
if (lval->rank)
|
|
{
|
|
lval->ref = gfc_get_ref ();
|
|
lval->ref->type = REF_ARRAY;
|
|
lval->ref->u.ar.type = AR_FULL;
|
|
lval->ref->u.ar.dimen = lval->rank;
|
|
lval->ref->u.ar.where = sym->declared_at;
|
|
lval->ref->u.ar.as = sym->as;
|
|
}
|
|
|
|
return lval;
|
|
}
|
|
|
|
|
|
/************** Symbol table management subroutines ****************/
|
|
|
|
/* Basic details: Fortran 95 requires a potentially unlimited number
|
|
of distinct namespaces when compiling a program unit. This case
|
|
occurs during a compilation of internal subprograms because all of
|
|
the internal subprograms must be read before we can start
|
|
generating code for the host.
|
|
|
|
Given the tricky nature of the Fortran grammar, we must be able to
|
|
undo changes made to a symbol table if the current interpretation
|
|
of a statement is found to be incorrect. Whenever a symbol is
|
|
looked up, we make a copy of it and link to it. All of these
|
|
symbols are kept in a singly linked list so that we can commit or
|
|
undo the changes at a later time.
|
|
|
|
A symtree may point to a symbol node outside of its namespace. In
|
|
this case, that symbol has been used as a host associated variable
|
|
at some previous time. */
|
|
|
|
/* Allocate a new namespace structure. Copies the implicit types from
|
|
PARENT if PARENT_TYPES is set. */
|
|
|
|
gfc_namespace *
|
|
gfc_get_namespace (gfc_namespace *parent, int parent_types)
|
|
{
|
|
gfc_namespace *ns;
|
|
gfc_typespec *ts;
|
|
gfc_intrinsic_op in;
|
|
int i;
|
|
|
|
ns = gfc_getmem (sizeof (gfc_namespace));
|
|
ns->sym_root = NULL;
|
|
ns->uop_root = NULL;
|
|
ns->default_access = ACCESS_UNKNOWN;
|
|
ns->parent = parent;
|
|
|
|
for (in = GFC_INTRINSIC_BEGIN; in != GFC_INTRINSIC_END; in++)
|
|
ns->operator_access[in] = ACCESS_UNKNOWN;
|
|
|
|
/* Initialize default implicit types. */
|
|
for (i = 'a'; i <= 'z'; i++)
|
|
{
|
|
ns->set_flag[i - 'a'] = 0;
|
|
ts = &ns->default_type[i - 'a'];
|
|
|
|
if (parent_types && ns->parent != NULL)
|
|
{
|
|
/* Copy parent settings. */
|
|
*ts = ns->parent->default_type[i - 'a'];
|
|
continue;
|
|
}
|
|
|
|
if (gfc_option.flag_implicit_none != 0)
|
|
{
|
|
gfc_clear_ts (ts);
|
|
continue;
|
|
}
|
|
|
|
if ('i' <= i && i <= 'n')
|
|
{
|
|
ts->type = BT_INTEGER;
|
|
ts->kind = gfc_default_integer_kind;
|
|
}
|
|
else
|
|
{
|
|
ts->type = BT_REAL;
|
|
ts->kind = gfc_default_real_kind;
|
|
}
|
|
}
|
|
|
|
ns->refs = 1;
|
|
|
|
return ns;
|
|
}
|
|
|
|
|
|
/* Comparison function for symtree nodes. */
|
|
|
|
static int
|
|
compare_symtree (void *_st1, void *_st2)
|
|
{
|
|
gfc_symtree *st1, *st2;
|
|
|
|
st1 = (gfc_symtree *) _st1;
|
|
st2 = (gfc_symtree *) _st2;
|
|
|
|
return strcmp (st1->name, st2->name);
|
|
}
|
|
|
|
|
|
/* Allocate a new symtree node and associate it with the new symbol. */
|
|
|
|
gfc_symtree *
|
|
gfc_new_symtree (gfc_symtree **root, const char *name)
|
|
{
|
|
gfc_symtree *st;
|
|
|
|
st = gfc_getmem (sizeof (gfc_symtree));
|
|
st->name = gfc_get_string (name);
|
|
|
|
gfc_insert_bbt (root, st, compare_symtree);
|
|
return st;
|
|
}
|
|
|
|
|
|
/* Delete a symbol from the tree. Does not free the symbol itself! */
|
|
|
|
static void
|
|
delete_symtree (gfc_symtree **root, const char *name)
|
|
{
|
|
gfc_symtree st, *st0;
|
|
|
|
st0 = gfc_find_symtree (*root, name);
|
|
|
|
st.name = gfc_get_string (name);
|
|
gfc_delete_bbt (root, &st, compare_symtree);
|
|
|
|
gfc_free (st0);
|
|
}
|
|
|
|
|
|
/* Given a root symtree node and a name, try to find the symbol within
|
|
the namespace. Returns NULL if the symbol is not found. */
|
|
|
|
gfc_symtree *
|
|
gfc_find_symtree (gfc_symtree *st, const char *name)
|
|
{
|
|
int c;
|
|
|
|
while (st != NULL)
|
|
{
|
|
c = strcmp (name, st->name);
|
|
if (c == 0)
|
|
return st;
|
|
|
|
st = (c < 0) ? st->left : st->right;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Return a symtree node with a name that is guaranteed to be unique
|
|
within the namespace and corresponds to an illegal fortran name. */
|
|
|
|
gfc_symtree *
|
|
gfc_get_unique_symtree (gfc_namespace *ns)
|
|
{
|
|
char name[GFC_MAX_SYMBOL_LEN + 1];
|
|
static int serial = 0;
|
|
|
|
sprintf (name, "@%d", serial++);
|
|
return gfc_new_symtree (&ns->sym_root, name);
|
|
}
|
|
|
|
|
|
/* Given a name find a user operator node, creating it if it doesn't
|
|
exist. These are much simpler than symbols because they can't be
|
|
ambiguous with one another. */
|
|
|
|
gfc_user_op *
|
|
gfc_get_uop (const char *name)
|
|
{
|
|
gfc_user_op *uop;
|
|
gfc_symtree *st;
|
|
|
|
st = gfc_find_symtree (gfc_current_ns->uop_root, name);
|
|
if (st != NULL)
|
|
return st->n.uop;
|
|
|
|
st = gfc_new_symtree (&gfc_current_ns->uop_root, name);
|
|
|
|
uop = st->n.uop = gfc_getmem (sizeof (gfc_user_op));
|
|
uop->name = gfc_get_string (name);
|
|
uop->access = ACCESS_UNKNOWN;
|
|
uop->ns = gfc_current_ns;
|
|
|
|
return uop;
|
|
}
|
|
|
|
|
|
/* Given a name find the user operator node. Returns NULL if it does
|
|
not exist. */
|
|
|
|
gfc_user_op *
|
|
gfc_find_uop (const char *name, gfc_namespace *ns)
|
|
{
|
|
gfc_symtree *st;
|
|
|
|
if (ns == NULL)
|
|
ns = gfc_current_ns;
|
|
|
|
st = gfc_find_symtree (ns->uop_root, name);
|
|
return (st == NULL) ? NULL : st->n.uop;
|
|
}
|
|
|
|
|
|
/* Remove a gfc_symbol structure and everything it points to. */
|
|
|
|
void
|
|
gfc_free_symbol (gfc_symbol *sym)
|
|
{
|
|
|
|
if (sym == NULL)
|
|
return;
|
|
|
|
gfc_free_array_spec (sym->as);
|
|
|
|
free_components (sym->components);
|
|
|
|
gfc_free_expr (sym->value);
|
|
|
|
gfc_free_namelist (sym->namelist);
|
|
|
|
gfc_free_namespace (sym->formal_ns);
|
|
|
|
if (!sym->attr.generic_copy)
|
|
gfc_free_interface (sym->generic);
|
|
|
|
gfc_free_formal_arglist (sym->formal);
|
|
|
|
gfc_free (sym);
|
|
}
|
|
|
|
|
|
/* Allocate and initialize a new symbol node. */
|
|
|
|
gfc_symbol *
|
|
gfc_new_symbol (const char *name, gfc_namespace *ns)
|
|
{
|
|
gfc_symbol *p;
|
|
|
|
p = gfc_getmem (sizeof (gfc_symbol));
|
|
|
|
gfc_clear_ts (&p->ts);
|
|
gfc_clear_attr (&p->attr);
|
|
p->ns = ns;
|
|
|
|
p->declared_at = gfc_current_locus;
|
|
|
|
if (strlen (name) > GFC_MAX_SYMBOL_LEN)
|
|
gfc_internal_error ("new_symbol(): Symbol name too long");
|
|
|
|
p->name = gfc_get_string (name);
|
|
|
|
/* Make sure flags for symbol being C bound are clear initially. */
|
|
p->attr.is_bind_c = 0;
|
|
p->attr.is_iso_c = 0;
|
|
/* Make sure the binding label field has a Nul char to start. */
|
|
p->binding_label[0] = '\0';
|
|
|
|
/* Clear the ptrs we may need. */
|
|
p->common_block = NULL;
|
|
|
|
return p;
|
|
}
|
|
|
|
|
|
/* Generate an error if a symbol is ambiguous. */
|
|
|
|
static void
|
|
ambiguous_symbol (const char *name, gfc_symtree *st)
|
|
{
|
|
|
|
if (st->n.sym->module)
|
|
gfc_error ("Name '%s' at %C is an ambiguous reference to '%s' "
|
|
"from module '%s'", name, st->n.sym->name, st->n.sym->module);
|
|
else
|
|
gfc_error ("Name '%s' at %C is an ambiguous reference to '%s' "
|
|
"from current program unit", name, st->n.sym->name);
|
|
}
|
|
|
|
|
|
/* Search for a symtree starting in the current namespace, resorting to
|
|
any parent namespaces if requested by a nonzero parent_flag.
|
|
Returns nonzero if the name is ambiguous. */
|
|
|
|
int
|
|
gfc_find_sym_tree (const char *name, gfc_namespace *ns, int parent_flag,
|
|
gfc_symtree **result)
|
|
{
|
|
gfc_symtree *st;
|
|
|
|
if (ns == NULL)
|
|
ns = gfc_current_ns;
|
|
|
|
do
|
|
{
|
|
st = gfc_find_symtree (ns->sym_root, name);
|
|
if (st != NULL)
|
|
{
|
|
*result = st;
|
|
/* Ambiguous generic interfaces are permitted, as long
|
|
as the specific interfaces are different. */
|
|
if (st->ambiguous && !st->n.sym->attr.generic)
|
|
{
|
|
ambiguous_symbol (name, st);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (!parent_flag)
|
|
break;
|
|
|
|
ns = ns->parent;
|
|
}
|
|
while (ns != NULL);
|
|
|
|
*result = NULL;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Same, but returns the symbol instead. */
|
|
|
|
int
|
|
gfc_find_symbol (const char *name, gfc_namespace *ns, int parent_flag,
|
|
gfc_symbol **result)
|
|
{
|
|
gfc_symtree *st;
|
|
int i;
|
|
|
|
i = gfc_find_sym_tree (name, ns, parent_flag, &st);
|
|
|
|
if (st == NULL)
|
|
*result = NULL;
|
|
else
|
|
*result = st->n.sym;
|
|
|
|
return i;
|
|
}
|
|
|
|
|
|
/* Save symbol with the information necessary to back it out. */
|
|
|
|
static void
|
|
save_symbol_data (gfc_symbol *sym)
|
|
{
|
|
|
|
if (sym->new || sym->old_symbol != NULL)
|
|
return;
|
|
|
|
sym->old_symbol = gfc_getmem (sizeof (gfc_symbol));
|
|
*(sym->old_symbol) = *sym;
|
|
|
|
sym->tlink = changed_syms;
|
|
changed_syms = sym;
|
|
}
|
|
|
|
|
|
/* Given a name, find a symbol, or create it if it does not exist yet
|
|
in the current namespace. If the symbol is found we make sure that
|
|
it's OK.
|
|
|
|
The integer return code indicates
|
|
0 All OK
|
|
1 The symbol name was ambiguous
|
|
2 The name meant to be established was already host associated.
|
|
|
|
So if the return value is nonzero, then an error was issued. */
|
|
|
|
int
|
|
gfc_get_sym_tree (const char *name, gfc_namespace *ns, gfc_symtree **result)
|
|
{
|
|
gfc_symtree *st;
|
|
gfc_symbol *p;
|
|
|
|
/* This doesn't usually happen during resolution. */
|
|
if (ns == NULL)
|
|
ns = gfc_current_ns;
|
|
|
|
/* Try to find the symbol in ns. */
|
|
st = gfc_find_symtree (ns->sym_root, name);
|
|
|
|
if (st == NULL)
|
|
{
|
|
/* If not there, create a new symbol. */
|
|
p = gfc_new_symbol (name, ns);
|
|
|
|
/* Add to the list of tentative symbols. */
|
|
p->old_symbol = NULL;
|
|
p->tlink = changed_syms;
|
|
p->mark = 1;
|
|
p->new = 1;
|
|
changed_syms = p;
|
|
|
|
st = gfc_new_symtree (&ns->sym_root, name);
|
|
st->n.sym = p;
|
|
p->refs++;
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Make sure the existing symbol is OK. Ambiguous
|
|
generic interfaces are permitted, as long as the
|
|
specific interfaces are different. */
|
|
if (st->ambiguous && !st->n.sym->attr.generic)
|
|
{
|
|
ambiguous_symbol (name, st);
|
|
return 1;
|
|
}
|
|
|
|
p = st->n.sym;
|
|
|
|
if (p->ns != ns && (!p->attr.function || ns->proc_name != p)
|
|
&& !(ns->proc_name
|
|
&& ns->proc_name->attr.if_source == IFSRC_IFBODY
|
|
&& (ns->has_import_set || p->attr.imported)))
|
|
{
|
|
/* Symbol is from another namespace. */
|
|
gfc_error ("Symbol '%s' at %C has already been host associated",
|
|
name);
|
|
return 2;
|
|
}
|
|
|
|
p->mark = 1;
|
|
|
|
/* Copy in case this symbol is changed. */
|
|
save_symbol_data (p);
|
|
}
|
|
|
|
*result = st;
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
gfc_get_symbol (const char *name, gfc_namespace *ns, gfc_symbol **result)
|
|
{
|
|
gfc_symtree *st;
|
|
int i;
|
|
|
|
i = gfc_get_sym_tree (name, ns, &st);
|
|
if (i != 0)
|
|
return i;
|
|
|
|
if (st)
|
|
*result = st->n.sym;
|
|
else
|
|
*result = NULL;
|
|
return i;
|
|
}
|
|
|
|
|
|
/* Subroutine that searches for a symbol, creating it if it doesn't
|
|
exist, but tries to host-associate the symbol if possible. */
|
|
|
|
int
|
|
gfc_get_ha_sym_tree (const char *name, gfc_symtree **result)
|
|
{
|
|
gfc_symtree *st;
|
|
int i;
|
|
|
|
i = gfc_find_sym_tree (name, gfc_current_ns, 0, &st);
|
|
if (st != NULL)
|
|
{
|
|
save_symbol_data (st->n.sym);
|
|
*result = st;
|
|
return i;
|
|
}
|
|
|
|
if (gfc_current_ns->parent != NULL)
|
|
{
|
|
i = gfc_find_sym_tree (name, gfc_current_ns->parent, 1, &st);
|
|
if (i)
|
|
return i;
|
|
|
|
if (st != NULL)
|
|
{
|
|
*result = st;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return gfc_get_sym_tree (name, gfc_current_ns, result);
|
|
}
|
|
|
|
|
|
int
|
|
gfc_get_ha_symbol (const char *name, gfc_symbol **result)
|
|
{
|
|
int i;
|
|
gfc_symtree *st;
|
|
|
|
i = gfc_get_ha_sym_tree (name, &st);
|
|
|
|
if (st)
|
|
*result = st->n.sym;
|
|
else
|
|
*result = NULL;
|
|
|
|
return i;
|
|
}
|
|
|
|
/* Return true if both symbols could refer to the same data object. Does
|
|
not take account of aliasing due to equivalence statements. */
|
|
|
|
int
|
|
gfc_symbols_could_alias (gfc_symbol *lsym, gfc_symbol *rsym)
|
|
{
|
|
/* Aliasing isn't possible if the symbols have different base types. */
|
|
if (gfc_compare_types (&lsym->ts, &rsym->ts) == 0)
|
|
return 0;
|
|
|
|
/* Pointers can point to other pointers, target objects and allocatable
|
|
objects. Two allocatable objects cannot share the same storage. */
|
|
if (lsym->attr.pointer
|
|
&& (rsym->attr.pointer || rsym->attr.allocatable || rsym->attr.target))
|
|
return 1;
|
|
if (lsym->attr.target && rsym->attr.pointer)
|
|
return 1;
|
|
if (lsym->attr.allocatable && rsym->attr.pointer)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Undoes all the changes made to symbols in the current statement.
|
|
This subroutine is made simpler due to the fact that attributes are
|
|
never removed once added. */
|
|
|
|
void
|
|
gfc_undo_symbols (void)
|
|
{
|
|
gfc_symbol *p, *q, *old;
|
|
|
|
for (p = changed_syms; p; p = q)
|
|
{
|
|
q = p->tlink;
|
|
|
|
if (p->new)
|
|
{
|
|
/* Symbol was new. */
|
|
delete_symtree (&p->ns->sym_root, p->name);
|
|
|
|
p->refs--;
|
|
if (p->refs < 0)
|
|
gfc_internal_error ("gfc_undo_symbols(): Negative refs");
|
|
if (p->refs == 0)
|
|
gfc_free_symbol (p);
|
|
continue;
|
|
}
|
|
|
|
/* Restore previous state of symbol. Just copy simple stuff. */
|
|
p->mark = 0;
|
|
old = p->old_symbol;
|
|
|
|
p->ts.type = old->ts.type;
|
|
p->ts.kind = old->ts.kind;
|
|
|
|
p->attr = old->attr;
|
|
|
|
if (p->value != old->value)
|
|
{
|
|
gfc_free_expr (old->value);
|
|
p->value = NULL;
|
|
}
|
|
|
|
if (p->as != old->as)
|
|
{
|
|
if (p->as)
|
|
gfc_free_array_spec (p->as);
|
|
p->as = old->as;
|
|
}
|
|
|
|
p->generic = old->generic;
|
|
p->component_access = old->component_access;
|
|
|
|
if (p->namelist != NULL && old->namelist == NULL)
|
|
{
|
|
gfc_free_namelist (p->namelist);
|
|
p->namelist = NULL;
|
|
}
|
|
else
|
|
{
|
|
if (p->namelist_tail != old->namelist_tail)
|
|
{
|
|
gfc_free_namelist (old->namelist_tail);
|
|
old->namelist_tail->next = NULL;
|
|
}
|
|
}
|
|
|
|
p->namelist_tail = old->namelist_tail;
|
|
|
|
if (p->formal != old->formal)
|
|
{
|
|
gfc_free_formal_arglist (p->formal);
|
|
p->formal = old->formal;
|
|
}
|
|
|
|
gfc_free (p->old_symbol);
|
|
p->old_symbol = NULL;
|
|
p->tlink = NULL;
|
|
}
|
|
|
|
changed_syms = NULL;
|
|
}
|
|
|
|
|
|
/* Free sym->old_symbol. sym->old_symbol is mostly a shallow copy of sym; the
|
|
components of old_symbol that might need deallocation are the "allocatables"
|
|
that are restored in gfc_undo_symbols(), with two exceptions: namelist and
|
|
namelist_tail. In case these differ between old_symbol and sym, it's just
|
|
because sym->namelist has gotten a few more items. */
|
|
|
|
static void
|
|
free_old_symbol (gfc_symbol *sym)
|
|
{
|
|
|
|
if (sym->old_symbol == NULL)
|
|
return;
|
|
|
|
if (sym->old_symbol->as != sym->as)
|
|
gfc_free_array_spec (sym->old_symbol->as);
|
|
|
|
if (sym->old_symbol->value != sym->value)
|
|
gfc_free_expr (sym->old_symbol->value);
|
|
|
|
if (sym->old_symbol->formal != sym->formal)
|
|
gfc_free_formal_arglist (sym->old_symbol->formal);
|
|
|
|
gfc_free (sym->old_symbol);
|
|
sym->old_symbol = NULL;
|
|
}
|
|
|
|
|
|
/* Makes the changes made in the current statement permanent-- gets
|
|
rid of undo information. */
|
|
|
|
void
|
|
gfc_commit_symbols (void)
|
|
{
|
|
gfc_symbol *p, *q;
|
|
|
|
for (p = changed_syms; p; p = q)
|
|
{
|
|
q = p->tlink;
|
|
p->tlink = NULL;
|
|
p->mark = 0;
|
|
p->new = 0;
|
|
free_old_symbol (p);
|
|
}
|
|
changed_syms = NULL;
|
|
}
|
|
|
|
|
|
/* Makes the changes made in one symbol permanent -- gets rid of undo
|
|
information. */
|
|
|
|
void
|
|
gfc_commit_symbol (gfc_symbol *sym)
|
|
{
|
|
gfc_symbol *p;
|
|
|
|
if (changed_syms == sym)
|
|
changed_syms = sym->tlink;
|
|
else
|
|
{
|
|
for (p = changed_syms; p; p = p->tlink)
|
|
if (p->tlink == sym)
|
|
{
|
|
p->tlink = sym->tlink;
|
|
break;
|
|
}
|
|
}
|
|
|
|
sym->tlink = NULL;
|
|
sym->mark = 0;
|
|
sym->new = 0;
|
|
|
|
free_old_symbol (sym);
|
|
}
|
|
|
|
|
|
/* Recursive function that deletes an entire tree and all the common
|
|
head structures it points to. */
|
|
|
|
static void
|
|
free_common_tree (gfc_symtree * common_tree)
|
|
{
|
|
if (common_tree == NULL)
|
|
return;
|
|
|
|
free_common_tree (common_tree->left);
|
|
free_common_tree (common_tree->right);
|
|
|
|
gfc_free (common_tree);
|
|
}
|
|
|
|
|
|
/* Recursive function that deletes an entire tree and all the user
|
|
operator nodes that it contains. */
|
|
|
|
static void
|
|
free_uop_tree (gfc_symtree *uop_tree)
|
|
{
|
|
|
|
if (uop_tree == NULL)
|
|
return;
|
|
|
|
free_uop_tree (uop_tree->left);
|
|
free_uop_tree (uop_tree->right);
|
|
|
|
gfc_free_interface (uop_tree->n.uop->operator);
|
|
|
|
gfc_free (uop_tree->n.uop);
|
|
gfc_free (uop_tree);
|
|
}
|
|
|
|
|
|
/* Recursive function that deletes an entire tree and all the symbols
|
|
that it contains. */
|
|
|
|
static void
|
|
free_sym_tree (gfc_symtree *sym_tree)
|
|
{
|
|
gfc_namespace *ns;
|
|
gfc_symbol *sym;
|
|
|
|
if (sym_tree == NULL)
|
|
return;
|
|
|
|
free_sym_tree (sym_tree->left);
|
|
free_sym_tree (sym_tree->right);
|
|
|
|
sym = sym_tree->n.sym;
|
|
|
|
sym->refs--;
|
|
if (sym->refs < 0)
|
|
gfc_internal_error ("free_sym_tree(): Negative refs");
|
|
|
|
if (sym->formal_ns != NULL && sym->refs == 1)
|
|
{
|
|
/* As formal_ns contains a reference to sym, delete formal_ns just
|
|
before the deletion of sym. */
|
|
ns = sym->formal_ns;
|
|
sym->formal_ns = NULL;
|
|
gfc_free_namespace (ns);
|
|
}
|
|
else if (sym->refs == 0)
|
|
{
|
|
/* Go ahead and delete the symbol. */
|
|
gfc_free_symbol (sym);
|
|
}
|
|
|
|
gfc_free (sym_tree);
|
|
}
|
|
|
|
|
|
/* Free the derived type list. */
|
|
|
|
static void
|
|
gfc_free_dt_list (void)
|
|
{
|
|
gfc_dt_list *dt, *n;
|
|
|
|
for (dt = gfc_derived_types; dt; dt = n)
|
|
{
|
|
n = dt->next;
|
|
gfc_free (dt);
|
|
}
|
|
|
|
gfc_derived_types = NULL;
|
|
}
|
|
|
|
|
|
/* Free the gfc_equiv_info's. */
|
|
|
|
static void
|
|
gfc_free_equiv_infos (gfc_equiv_info *s)
|
|
{
|
|
if (s == NULL)
|
|
return;
|
|
gfc_free_equiv_infos (s->next);
|
|
gfc_free (s);
|
|
}
|
|
|
|
|
|
/* Free the gfc_equiv_lists. */
|
|
|
|
static void
|
|
gfc_free_equiv_lists (gfc_equiv_list *l)
|
|
{
|
|
if (l == NULL)
|
|
return;
|
|
gfc_free_equiv_lists (l->next);
|
|
gfc_free_equiv_infos (l->equiv);
|
|
gfc_free (l);
|
|
}
|
|
|
|
|
|
/* Free a namespace structure and everything below it. Interface
|
|
lists associated with intrinsic operators are not freed. These are
|
|
taken care of when a specific name is freed. */
|
|
|
|
void
|
|
gfc_free_namespace (gfc_namespace *ns)
|
|
{
|
|
gfc_charlen *cl, *cl2;
|
|
gfc_namespace *p, *q;
|
|
gfc_intrinsic_op i;
|
|
|
|
if (ns == NULL)
|
|
return;
|
|
|
|
ns->refs--;
|
|
if (ns->refs > 0)
|
|
return;
|
|
gcc_assert (ns->refs == 0);
|
|
|
|
gfc_free_statements (ns->code);
|
|
|
|
free_sym_tree (ns->sym_root);
|
|
free_uop_tree (ns->uop_root);
|
|
free_common_tree (ns->common_root);
|
|
|
|
for (cl = ns->cl_list; cl; cl = cl2)
|
|
{
|
|
cl2 = cl->next;
|
|
gfc_free_expr (cl->length);
|
|
gfc_free (cl);
|
|
}
|
|
|
|
free_st_labels (ns->st_labels);
|
|
|
|
gfc_free_equiv (ns->equiv);
|
|
gfc_free_equiv_lists (ns->equiv_lists);
|
|
|
|
for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
|
|
gfc_free_interface (ns->operator[i]);
|
|
|
|
gfc_free_data (ns->data);
|
|
p = ns->contained;
|
|
gfc_free (ns);
|
|
|
|
/* Recursively free any contained namespaces. */
|
|
while (p != NULL)
|
|
{
|
|
q = p;
|
|
p = p->sibling;
|
|
gfc_free_namespace (q);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
gfc_symbol_init_2 (void)
|
|
{
|
|
|
|
gfc_current_ns = gfc_get_namespace (NULL, 0);
|
|
}
|
|
|
|
|
|
void
|
|
gfc_symbol_done_2 (void)
|
|
{
|
|
|
|
gfc_free_namespace (gfc_current_ns);
|
|
gfc_current_ns = NULL;
|
|
gfc_free_dt_list ();
|
|
}
|
|
|
|
|
|
/* Clear mark bits from symbol nodes associated with a symtree node. */
|
|
|
|
static void
|
|
clear_sym_mark (gfc_symtree *st)
|
|
{
|
|
|
|
st->n.sym->mark = 0;
|
|
}
|
|
|
|
|
|
/* Recursively traverse the symtree nodes. */
|
|
|
|
void
|
|
gfc_traverse_symtree (gfc_symtree *st, void (*func) (gfc_symtree *))
|
|
{
|
|
if (!st)
|
|
return;
|
|
|
|
gfc_traverse_symtree (st->left, func);
|
|
(*func) (st);
|
|
gfc_traverse_symtree (st->right, func);
|
|
}
|
|
|
|
|
|
/* Recursive namespace traversal function. */
|
|
|
|
static void
|
|
traverse_ns (gfc_symtree *st, void (*func) (gfc_symbol *))
|
|
{
|
|
|
|
if (st == NULL)
|
|
return;
|
|
|
|
traverse_ns (st->left, func);
|
|
|
|
if (st->n.sym->mark == 0)
|
|
(*func) (st->n.sym);
|
|
st->n.sym->mark = 1;
|
|
|
|
traverse_ns (st->right, func);
|
|
}
|
|
|
|
|
|
/* Call a given function for all symbols in the namespace. We take
|
|
care that each gfc_symbol node is called exactly once. */
|
|
|
|
void
|
|
gfc_traverse_ns (gfc_namespace *ns, void (*func) (gfc_symbol *))
|
|
{
|
|
|
|
gfc_traverse_symtree (ns->sym_root, clear_sym_mark);
|
|
|
|
traverse_ns (ns->sym_root, func);
|
|
}
|
|
|
|
|
|
/* Return TRUE when name is the name of an intrinsic type. */
|
|
|
|
bool
|
|
gfc_is_intrinsic_typename (const char *name)
|
|
{
|
|
if (strcmp (name, "integer") == 0
|
|
|| strcmp (name, "real") == 0
|
|
|| strcmp (name, "character") == 0
|
|
|| strcmp (name, "logical") == 0
|
|
|| strcmp (name, "complex") == 0
|
|
|| strcmp (name, "doubleprecision") == 0
|
|
|| strcmp (name, "doublecomplex") == 0)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Return TRUE if the symbol is an automatic variable. */
|
|
|
|
static bool
|
|
gfc_is_var_automatic (gfc_symbol *sym)
|
|
{
|
|
/* Pointer and allocatable variables are never automatic. */
|
|
if (sym->attr.pointer || sym->attr.allocatable)
|
|
return false;
|
|
/* Check for arrays with non-constant size. */
|
|
if (sym->attr.dimension && sym->as
|
|
&& !gfc_is_compile_time_shape (sym->as))
|
|
return true;
|
|
/* Check for non-constant length character variables. */
|
|
if (sym->ts.type == BT_CHARACTER
|
|
&& sym->ts.cl
|
|
&& !gfc_is_constant_expr (sym->ts.cl->length))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Given a symbol, mark it as SAVEd if it is allowed. */
|
|
|
|
static void
|
|
save_symbol (gfc_symbol *sym)
|
|
{
|
|
|
|
if (sym->attr.use_assoc)
|
|
return;
|
|
|
|
if (sym->attr.in_common
|
|
|| sym->attr.dummy
|
|
|| sym->attr.flavor != FL_VARIABLE)
|
|
return;
|
|
/* Automatic objects are not saved. */
|
|
if (gfc_is_var_automatic (sym))
|
|
return;
|
|
gfc_add_save (&sym->attr, sym->name, &sym->declared_at);
|
|
}
|
|
|
|
|
|
/* Mark those symbols which can be SAVEd as such. */
|
|
|
|
void
|
|
gfc_save_all (gfc_namespace *ns)
|
|
{
|
|
|
|
gfc_traverse_ns (ns, save_symbol);
|
|
}
|
|
|
|
|
|
#ifdef GFC_DEBUG
|
|
/* Make sure that no changes to symbols are pending. */
|
|
|
|
void
|
|
gfc_symbol_state(void) {
|
|
|
|
if (changed_syms != NULL)
|
|
gfc_internal_error("Symbol changes still pending!");
|
|
}
|
|
#endif
|
|
|
|
|
|
/************** Global symbol handling ************/
|
|
|
|
|
|
/* Search a tree for the global symbol. */
|
|
|
|
gfc_gsymbol *
|
|
gfc_find_gsymbol (gfc_gsymbol *symbol, const char *name)
|
|
{
|
|
int c;
|
|
|
|
if (symbol == NULL)
|
|
return NULL;
|
|
|
|
while (symbol)
|
|
{
|
|
c = strcmp (name, symbol->name);
|
|
if (!c)
|
|
return symbol;
|
|
|
|
symbol = (c < 0) ? symbol->left : symbol->right;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Compare two global symbols. Used for managing the BB tree. */
|
|
|
|
static int
|
|
gsym_compare (void *_s1, void *_s2)
|
|
{
|
|
gfc_gsymbol *s1, *s2;
|
|
|
|
s1 = (gfc_gsymbol *) _s1;
|
|
s2 = (gfc_gsymbol *) _s2;
|
|
return strcmp (s1->name, s2->name);
|
|
}
|
|
|
|
|
|
/* Get a global symbol, creating it if it doesn't exist. */
|
|
|
|
gfc_gsymbol *
|
|
gfc_get_gsymbol (const char *name)
|
|
{
|
|
gfc_gsymbol *s;
|
|
|
|
s = gfc_find_gsymbol (gfc_gsym_root, name);
|
|
if (s != NULL)
|
|
return s;
|
|
|
|
s = gfc_getmem (sizeof (gfc_gsymbol));
|
|
s->type = GSYM_UNKNOWN;
|
|
s->name = gfc_get_string (name);
|
|
|
|
gfc_insert_bbt (&gfc_gsym_root, s, gsym_compare);
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
static gfc_symbol *
|
|
get_iso_c_binding_dt (int sym_id)
|
|
{
|
|
gfc_dt_list *dt_list;
|
|
|
|
dt_list = gfc_derived_types;
|
|
|
|
/* Loop through the derived types in the name list, searching for
|
|
the desired symbol from iso_c_binding. Search the parent namespaces
|
|
if necessary and requested to (parent_flag). */
|
|
while (dt_list != NULL)
|
|
{
|
|
if (dt_list->derived->from_intmod != INTMOD_NONE
|
|
&& dt_list->derived->intmod_sym_id == sym_id)
|
|
return dt_list->derived;
|
|
|
|
dt_list = dt_list->next;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Verifies that the given derived type symbol, derived_sym, is interoperable
|
|
with C. This is necessary for any derived type that is BIND(C) and for
|
|
derived types that are parameters to functions that are BIND(C). All
|
|
fields of the derived type are required to be interoperable, and are tested
|
|
for such. If an error occurs, the errors are reported here, allowing for
|
|
multiple errors to be handled for a single derived type. */
|
|
|
|
try
|
|
verify_bind_c_derived_type (gfc_symbol *derived_sym)
|
|
{
|
|
gfc_component *curr_comp = NULL;
|
|
try is_c_interop = FAILURE;
|
|
try retval = SUCCESS;
|
|
|
|
if (derived_sym == NULL)
|
|
gfc_internal_error ("verify_bind_c_derived_type(): Given symbol is "
|
|
"unexpectedly NULL");
|
|
|
|
/* If we've already looked at this derived symbol, do not look at it again
|
|
so we don't repeat warnings/errors. */
|
|
if (derived_sym->ts.is_c_interop)
|
|
return SUCCESS;
|
|
|
|
/* The derived type must have the BIND attribute to be interoperable
|
|
J3/04-007, Section 15.2.3. */
|
|
if (derived_sym->attr.is_bind_c != 1)
|
|
{
|
|
derived_sym->ts.is_c_interop = 0;
|
|
gfc_error_now ("Derived type '%s' declared at %L must have the BIND "
|
|
"attribute to be C interoperable", derived_sym->name,
|
|
&(derived_sym->declared_at));
|
|
retval = FAILURE;
|
|
}
|
|
|
|
curr_comp = derived_sym->components;
|
|
|
|
/* TODO: is this really an error? */
|
|
if (curr_comp == NULL)
|
|
{
|
|
gfc_error ("Derived type '%s' at %L is empty",
|
|
derived_sym->name, &(derived_sym->declared_at));
|
|
return FAILURE;
|
|
}
|
|
|
|
/* Initialize the derived type as being C interoperable.
|
|
If we find an error in the components, this will be set false. */
|
|
derived_sym->ts.is_c_interop = 1;
|
|
|
|
/* Loop through the list of components to verify that the kind of
|
|
each is a C interoperable type. */
|
|
do
|
|
{
|
|
/* The components cannot be pointers (fortran sense).
|
|
J3/04-007, Section 15.2.3, C1505. */
|
|
if (curr_comp->pointer != 0)
|
|
{
|
|
gfc_error ("Component '%s' at %L cannot have the "
|
|
"POINTER attribute because it is a member "
|
|
"of the BIND(C) derived type '%s' at %L",
|
|
curr_comp->name, &(curr_comp->loc),
|
|
derived_sym->name, &(derived_sym->declared_at));
|
|
retval = FAILURE;
|
|
}
|
|
|
|
/* The components cannot be allocatable.
|
|
J3/04-007, Section 15.2.3, C1505. */
|
|
if (curr_comp->allocatable != 0)
|
|
{
|
|
gfc_error ("Component '%s' at %L cannot have the "
|
|
"ALLOCATABLE attribute because it is a member "
|
|
"of the BIND(C) derived type '%s' at %L",
|
|
curr_comp->name, &(curr_comp->loc),
|
|
derived_sym->name, &(derived_sym->declared_at));
|
|
retval = FAILURE;
|
|
}
|
|
|
|
/* BIND(C) derived types must have interoperable components. */
|
|
if (curr_comp->ts.type == BT_DERIVED
|
|
&& curr_comp->ts.derived->ts.is_iso_c != 1
|
|
&& curr_comp->ts.derived != derived_sym)
|
|
{
|
|
/* This should be allowed; the draft says a derived-type can not
|
|
have type parameters if it is has the BIND attribute. Type
|
|
parameters seem to be for making parameterized derived types.
|
|
There's no need to verify the type if it is c_ptr/c_funptr. */
|
|
retval = verify_bind_c_derived_type (curr_comp->ts.derived);
|
|
}
|
|
else
|
|
{
|
|
/* Grab the typespec for the given component and test the kind. */
|
|
is_c_interop = verify_c_interop (&(curr_comp->ts), curr_comp->name,
|
|
&(curr_comp->loc));
|
|
|
|
if (is_c_interop != SUCCESS)
|
|
{
|
|
/* Report warning and continue since not fatal. The
|
|
draft does specify a constraint that requires all fields
|
|
to interoperate, but if the user says real(4), etc., it
|
|
may interoperate with *something* in C, but the compiler
|
|
most likely won't know exactly what. Further, it may not
|
|
interoperate with the same data type(s) in C if the user
|
|
recompiles with different flags (e.g., -m32 and -m64 on
|
|
x86_64 and using integer(4) to claim interop with a
|
|
C_LONG). */
|
|
if (derived_sym->attr.is_bind_c == 1)
|
|
/* If the derived type is bind(c), all fields must be
|
|
interop. */
|
|
gfc_warning ("Component '%s' in derived type '%s' at %L "
|
|
"may not be C interoperable, even though "
|
|
"derived type '%s' is BIND(C)",
|
|
curr_comp->name, derived_sym->name,
|
|
&(curr_comp->loc), derived_sym->name);
|
|
else
|
|
/* If derived type is param to bind(c) routine, or to one
|
|
of the iso_c_binding procs, it must be interoperable, so
|
|
all fields must interop too. */
|
|
gfc_warning ("Component '%s' in derived type '%s' at %L "
|
|
"may not be C interoperable",
|
|
curr_comp->name, derived_sym->name,
|
|
&(curr_comp->loc));
|
|
}
|
|
}
|
|
|
|
curr_comp = curr_comp->next;
|
|
} while (curr_comp != NULL);
|
|
|
|
|
|
/* Make sure we don't have conflicts with the attributes. */
|
|
if (derived_sym->attr.access == ACCESS_PRIVATE)
|
|
{
|
|
gfc_error ("Derived type '%s' at %L cannot be declared with both "
|
|
"PRIVATE and BIND(C) attributes", derived_sym->name,
|
|
&(derived_sym->declared_at));
|
|
retval = FAILURE;
|
|
}
|
|
|
|
if (derived_sym->attr.sequence != 0)
|
|
{
|
|
gfc_error ("Derived type '%s' at %L cannot have the SEQUENCE "
|
|
"attribute because it is BIND(C)", derived_sym->name,
|
|
&(derived_sym->declared_at));
|
|
retval = FAILURE;
|
|
}
|
|
|
|
/* Mark the derived type as not being C interoperable if we found an
|
|
error. If there were only warnings, proceed with the assumption
|
|
it's interoperable. */
|
|
if (retval == FAILURE)
|
|
derived_sym->ts.is_c_interop = 0;
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
/* Generate symbols for the named constants c_null_ptr and c_null_funptr. */
|
|
|
|
static try
|
|
gen_special_c_interop_ptr (int ptr_id, const char *ptr_name,
|
|
const char *module_name)
|
|
{
|
|
gfc_symtree *tmp_symtree;
|
|
gfc_symbol *tmp_sym;
|
|
|
|
tmp_symtree = gfc_find_symtree (gfc_current_ns->sym_root, ptr_name);
|
|
|
|
if (tmp_symtree != NULL)
|
|
tmp_sym = tmp_symtree->n.sym;
|
|
else
|
|
{
|
|
tmp_sym = NULL;
|
|
gfc_internal_error ("gen_special_c_interop_ptr(): Unable to "
|
|
"create symbol for %s", ptr_name);
|
|
}
|
|
|
|
/* Set up the symbol's important fields. Save attr required so we can
|
|
initialize the ptr to NULL. */
|
|
tmp_sym->attr.save = SAVE_EXPLICIT;
|
|
tmp_sym->ts.is_c_interop = 1;
|
|
tmp_sym->attr.is_c_interop = 1;
|
|
tmp_sym->ts.is_iso_c = 1;
|
|
tmp_sym->ts.type = BT_DERIVED;
|
|
|
|
/* The c_ptr and c_funptr derived types will provide the
|
|
definition for c_null_ptr and c_null_funptr, respectively. */
|
|
if (ptr_id == ISOCBINDING_NULL_PTR)
|
|
tmp_sym->ts.derived = get_iso_c_binding_dt (ISOCBINDING_PTR);
|
|
else
|
|
tmp_sym->ts.derived = get_iso_c_binding_dt (ISOCBINDING_FUNPTR);
|
|
if (tmp_sym->ts.derived == NULL)
|
|
{
|
|
/* This can occur if the user forgot to declare c_ptr or
|
|
c_funptr and they're trying to use one of the procedures
|
|
that has arg(s) of the missing type. In this case, a
|
|
regular version of the thing should have been put in the
|
|
current ns. */
|
|
generate_isocbinding_symbol (module_name, ptr_id == ISOCBINDING_NULL_PTR
|
|
? ISOCBINDING_PTR : ISOCBINDING_FUNPTR,
|
|
(const char *) (ptr_id == ISOCBINDING_NULL_PTR
|
|
? "_gfortran_iso_c_binding_c_ptr"
|
|
: "_gfortran_iso_c_binding_c_funptr"));
|
|
|
|
tmp_sym->ts.derived =
|
|
get_iso_c_binding_dt (ptr_id == ISOCBINDING_NULL_PTR
|
|
? ISOCBINDING_PTR : ISOCBINDING_FUNPTR);
|
|
}
|
|
|
|
/* Module name is some mangled version of iso_c_binding. */
|
|
tmp_sym->module = gfc_get_string (module_name);
|
|
|
|
/* Say it's from the iso_c_binding module. */
|
|
tmp_sym->attr.is_iso_c = 1;
|
|
|
|
tmp_sym->attr.use_assoc = 1;
|
|
tmp_sym->attr.is_bind_c = 1;
|
|
/* Set the binding_label. */
|
|
sprintf (tmp_sym->binding_label, "%s_%s", module_name, tmp_sym->name);
|
|
|
|
/* Set the c_address field of c_null_ptr and c_null_funptr to
|
|
the value of NULL. */
|
|
tmp_sym->value = gfc_get_expr ();
|
|
tmp_sym->value->expr_type = EXPR_STRUCTURE;
|
|
tmp_sym->value->ts.type = BT_DERIVED;
|
|
tmp_sym->value->ts.derived = tmp_sym->ts.derived;
|
|
/* Create a constructor with no expr, that way we can recognize if the user
|
|
tries to call the structure constructor for one of the iso_c_binding
|
|
derived types during resolution (resolve_structure_cons). */
|
|
tmp_sym->value->value.constructor = gfc_get_constructor ();
|
|
/* Must declare c_null_ptr and c_null_funptr as having the
|
|
PARAMETER attribute so they can be used in init expressions. */
|
|
tmp_sym->attr.flavor = FL_PARAMETER;
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/* Add a formal argument, gfc_formal_arglist, to the
|
|
end of the given list of arguments. Set the reference to the
|
|
provided symbol, param_sym, in the argument. */
|
|
|
|
static void
|
|
add_formal_arg (gfc_formal_arglist **head,
|
|
gfc_formal_arglist **tail,
|
|
gfc_formal_arglist *formal_arg,
|
|
gfc_symbol *param_sym)
|
|
{
|
|
/* Put in list, either as first arg or at the tail (curr arg). */
|
|
if (*head == NULL)
|
|
*head = *tail = formal_arg;
|
|
else
|
|
{
|
|
(*tail)->next = formal_arg;
|
|
(*tail) = formal_arg;
|
|
}
|
|
|
|
(*tail)->sym = param_sym;
|
|
(*tail)->next = NULL;
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/* Generates a symbol representing the CPTR argument to an
|
|
iso_c_binding procedure. Also, create a gfc_formal_arglist for the
|
|
CPTR and add it to the provided argument list. */
|
|
|
|
static void
|
|
gen_cptr_param (gfc_formal_arglist **head,
|
|
gfc_formal_arglist **tail,
|
|
const char *module_name,
|
|
gfc_namespace *ns, const char *c_ptr_name,
|
|
int iso_c_sym_id)
|
|
{
|
|
gfc_symbol *param_sym = NULL;
|
|
gfc_symbol *c_ptr_sym = NULL;
|
|
gfc_symtree *param_symtree = NULL;
|
|
gfc_formal_arglist *formal_arg = NULL;
|
|
const char *c_ptr_in;
|
|
const char *c_ptr_type = NULL;
|
|
|
|
if (iso_c_sym_id == ISOCBINDING_F_PROCPOINTER)
|
|
c_ptr_type = "_gfortran_iso_c_binding_c_funptr";
|
|
else
|
|
c_ptr_type = "_gfortran_iso_c_binding_c_ptr";
|
|
|
|
if(c_ptr_name == NULL)
|
|
c_ptr_in = "gfc_cptr__";
|
|
else
|
|
c_ptr_in = c_ptr_name;
|
|
gfc_get_sym_tree (c_ptr_in, ns, ¶m_symtree);
|
|
if (param_symtree != NULL)
|
|
param_sym = param_symtree->n.sym;
|
|
else
|
|
gfc_internal_error ("gen_cptr_param(): Unable to "
|
|
"create symbol for %s", c_ptr_in);
|
|
|
|
/* Set up the appropriate fields for the new c_ptr param sym. */
|
|
param_sym->refs++;
|
|
param_sym->attr.flavor = FL_DERIVED;
|
|
param_sym->ts.type = BT_DERIVED;
|
|
param_sym->attr.intent = INTENT_IN;
|
|
param_sym->attr.dummy = 1;
|
|
|
|
/* This will pass the ptr to the iso_c routines as a (void *). */
|
|
param_sym->attr.value = 1;
|
|
param_sym->attr.use_assoc = 1;
|
|
|
|
/* Get the symbol for c_ptr or c_funptr, no matter what it's name is
|
|
(user renamed). */
|
|
if (iso_c_sym_id == ISOCBINDING_F_PROCPOINTER)
|
|
c_ptr_sym = get_iso_c_binding_dt (ISOCBINDING_FUNPTR);
|
|
else
|
|
c_ptr_sym = get_iso_c_binding_dt (ISOCBINDING_PTR);
|
|
if (c_ptr_sym == NULL)
|
|
{
|
|
/* This can happen if the user did not define c_ptr but they are
|
|
trying to use one of the iso_c_binding functions that need it. */
|
|
if (iso_c_sym_id == ISOCBINDING_F_PROCPOINTER)
|
|
generate_isocbinding_symbol (module_name, ISOCBINDING_FUNPTR,
|
|
(const char *)c_ptr_type);
|
|
else
|
|
generate_isocbinding_symbol (module_name, ISOCBINDING_PTR,
|
|
(const char *)c_ptr_type);
|
|
|
|
gfc_get_ha_symbol (c_ptr_type, &(c_ptr_sym));
|
|
}
|
|
|
|
param_sym->ts.derived = c_ptr_sym;
|
|
param_sym->module = gfc_get_string (module_name);
|
|
|
|
/* Make new formal arg. */
|
|
formal_arg = gfc_get_formal_arglist ();
|
|
/* Add arg to list of formal args (the CPTR arg). */
|
|
add_formal_arg (head, tail, formal_arg, param_sym);
|
|
}
|
|
|
|
|
|
/* Generates a symbol representing the FPTR argument to an
|
|
iso_c_binding procedure. Also, create a gfc_formal_arglist for the
|
|
FPTR and add it to the provided argument list. */
|
|
|
|
static void
|
|
gen_fptr_param (gfc_formal_arglist **head,
|
|
gfc_formal_arglist **tail,
|
|
const char *module_name,
|
|
gfc_namespace *ns, const char *f_ptr_name)
|
|
{
|
|
gfc_symbol *param_sym = NULL;
|
|
gfc_symtree *param_symtree = NULL;
|
|
gfc_formal_arglist *formal_arg = NULL;
|
|
const char *f_ptr_out = "gfc_fptr__";
|
|
|
|
if (f_ptr_name != NULL)
|
|
f_ptr_out = f_ptr_name;
|
|
|
|
gfc_get_sym_tree (f_ptr_out, ns, ¶m_symtree);
|
|
if (param_symtree != NULL)
|
|
param_sym = param_symtree->n.sym;
|
|
else
|
|
gfc_internal_error ("generateFPtrParam(): Unable to "
|
|
"create symbol for %s", f_ptr_out);
|
|
|
|
/* Set up the necessary fields for the fptr output param sym. */
|
|
param_sym->refs++;
|
|
param_sym->attr.pointer = 1;
|
|
param_sym->attr.dummy = 1;
|
|
param_sym->attr.use_assoc = 1;
|
|
|
|
/* ISO C Binding type to allow any pointer type as actual param. */
|
|
param_sym->ts.type = BT_VOID;
|
|
param_sym->module = gfc_get_string (module_name);
|
|
|
|
/* Make the arg. */
|
|
formal_arg = gfc_get_formal_arglist ();
|
|
/* Add arg to list of formal args. */
|
|
add_formal_arg (head, tail, formal_arg, param_sym);
|
|
}
|
|
|
|
|
|
/* Generates a symbol representing the optional SHAPE argument for the
|
|
iso_c_binding c_f_pointer() procedure. Also, create a
|
|
gfc_formal_arglist for the SHAPE and add it to the provided
|
|
argument list. */
|
|
|
|
static void
|
|
gen_shape_param (gfc_formal_arglist **head,
|
|
gfc_formal_arglist **tail,
|
|
const char *module_name,
|
|
gfc_namespace *ns, const char *shape_param_name)
|
|
{
|
|
gfc_symbol *param_sym = NULL;
|
|
gfc_symtree *param_symtree = NULL;
|
|
gfc_formal_arglist *formal_arg = NULL;
|
|
const char *shape_param = "gfc_shape_array__";
|
|
int i;
|
|
|
|
if (shape_param_name != NULL)
|
|
shape_param = shape_param_name;
|
|
|
|
gfc_get_sym_tree (shape_param, ns, ¶m_symtree);
|
|
if (param_symtree != NULL)
|
|
param_sym = param_symtree->n.sym;
|
|
else
|
|
gfc_internal_error ("generateShapeParam(): Unable to "
|
|
"create symbol for %s", shape_param);
|
|
|
|
/* Set up the necessary fields for the shape input param sym. */
|
|
param_sym->refs++;
|
|
param_sym->attr.dummy = 1;
|
|
param_sym->attr.use_assoc = 1;
|
|
|
|
/* Integer array, rank 1, describing the shape of the object. Make it's
|
|
type BT_VOID initially so we can accept any type/kind combination of
|
|
integer. During gfc_iso_c_sub_interface (resolve.c), we'll make it
|
|
of BT_INTEGER type. */
|
|
param_sym->ts.type = BT_VOID;
|
|
|
|
/* Initialize the kind to default integer. However, it will be overridden
|
|
during resolution to match the kind of the SHAPE parameter given as
|
|
the actual argument (to allow for any valid integer kind). */
|
|
param_sym->ts.kind = gfc_default_integer_kind;
|
|
param_sym->as = gfc_get_array_spec ();
|
|
|
|
/* Clear out the dimension info for the array. */
|
|
for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
|
|
{
|
|
param_sym->as->lower[i] = NULL;
|
|
param_sym->as->upper[i] = NULL;
|
|
}
|
|
param_sym->as->rank = 1;
|
|
param_sym->as->lower[0] = gfc_int_expr (1);
|
|
|
|
/* The extent is unknown until we get it. The length give us
|
|
the rank the incoming pointer. */
|
|
param_sym->as->type = AS_ASSUMED_SHAPE;
|
|
|
|
/* The arg is also optional; it is required iff the second arg
|
|
(fptr) is to an array, otherwise, it's ignored. */
|
|
param_sym->attr.optional = 1;
|
|
param_sym->attr.intent = INTENT_IN;
|
|
param_sym->attr.dimension = 1;
|
|
param_sym->module = gfc_get_string (module_name);
|
|
|
|
/* Make the arg. */
|
|
formal_arg = gfc_get_formal_arglist ();
|
|
/* Add arg to list of formal args. */
|
|
add_formal_arg (head, tail, formal_arg, param_sym);
|
|
}
|
|
|
|
/* Add a procedure interface to the given symbol (i.e., store a
|
|
reference to the list of formal arguments). */
|
|
|
|
static void
|
|
add_proc_interface (gfc_symbol *sym, ifsrc source,
|
|
gfc_formal_arglist *formal)
|
|
{
|
|
|
|
sym->formal = formal;
|
|
sym->attr.if_source = source;
|
|
}
|
|
|
|
/* Copy the formal args from an existing symbol, src, into a new
|
|
symbol, dest. New formal args are created, and the description of
|
|
each arg is set according to the existing ones. This function is
|
|
used when creating procedure declaration variables from a procedure
|
|
declaration statement (see match_proc_decl()) to create the formal
|
|
args based on the args of a given named interface. */
|
|
|
|
void copy_formal_args (gfc_symbol *dest, gfc_symbol *src)
|
|
{
|
|
gfc_formal_arglist *head = NULL;
|
|
gfc_formal_arglist *tail = NULL;
|
|
gfc_formal_arglist *formal_arg = NULL;
|
|
gfc_formal_arglist *curr_arg = NULL;
|
|
gfc_formal_arglist *formal_prev = NULL;
|
|
/* Save current namespace so we can change it for formal args. */
|
|
gfc_namespace *parent_ns = gfc_current_ns;
|
|
|
|
/* Create a new namespace, which will be the formal ns (namespace
|
|
of the formal args). */
|
|
gfc_current_ns = gfc_get_namespace (parent_ns, 0);
|
|
gfc_current_ns->proc_name = dest;
|
|
|
|
for (curr_arg = src->formal; curr_arg; curr_arg = curr_arg->next)
|
|
{
|
|
formal_arg = gfc_get_formal_arglist ();
|
|
gfc_get_symbol (curr_arg->sym->name, gfc_current_ns, &(formal_arg->sym));
|
|
|
|
/* May need to copy more info for the symbol. */
|
|
formal_arg->sym->attr = curr_arg->sym->attr;
|
|
formal_arg->sym->ts = curr_arg->sym->ts;
|
|
|
|
/* If this isn't the first arg, set up the next ptr. For the
|
|
last arg built, the formal_arg->next will never get set to
|
|
anything other than NULL. */
|
|
if (formal_prev != NULL)
|
|
formal_prev->next = formal_arg;
|
|
else
|
|
formal_arg->next = NULL;
|
|
|
|
formal_prev = formal_arg;
|
|
|
|
/* Add arg to list of formal args. */
|
|
add_formal_arg (&head, &tail, formal_arg, formal_arg->sym);
|
|
}
|
|
|
|
/* Add the interface to the symbol. */
|
|
add_proc_interface (dest, IFSRC_DECL, head);
|
|
|
|
/* Store the formal namespace information. */
|
|
if (dest->formal != NULL)
|
|
/* The current ns should be that for the dest proc. */
|
|
dest->formal_ns = gfc_current_ns;
|
|
/* Restore the current namespace to what it was on entry. */
|
|
gfc_current_ns = parent_ns;
|
|
}
|
|
|
|
/* Builds the parameter list for the iso_c_binding procedure
|
|
c_f_pointer or c_f_procpointer. The old_sym typically refers to a
|
|
generic version of either the c_f_pointer or c_f_procpointer
|
|
functions. The new_proc_sym represents a "resolved" version of the
|
|
symbol. The functions are resolved to match the types of their
|
|
parameters; for example, c_f_pointer(cptr, fptr) would resolve to
|
|
something similar to c_f_pointer_i4 if the type of data object fptr
|
|
pointed to was a default integer. The actual name of the resolved
|
|
procedure symbol is further mangled with the module name, etc., but
|
|
the idea holds true. */
|
|
|
|
static void
|
|
build_formal_args (gfc_symbol *new_proc_sym,
|
|
gfc_symbol *old_sym, int add_optional_arg)
|
|
{
|
|
gfc_formal_arglist *head = NULL, *tail = NULL;
|
|
gfc_namespace *parent_ns = NULL;
|
|
|
|
parent_ns = gfc_current_ns;
|
|
/* Create a new namespace, which will be the formal ns (namespace
|
|
of the formal args). */
|
|
gfc_current_ns = gfc_get_namespace(parent_ns, 0);
|
|
gfc_current_ns->proc_name = new_proc_sym;
|
|
|
|
/* Generate the params. */
|
|
if ((old_sym->intmod_sym_id == ISOCBINDING_F_POINTER) ||
|
|
(old_sym->intmod_sym_id == ISOCBINDING_F_PROCPOINTER))
|
|
{
|
|
gen_cptr_param (&head, &tail, (const char *) new_proc_sym->module,
|
|
gfc_current_ns, "cptr", old_sym->intmod_sym_id);
|
|
gen_fptr_param (&head, &tail, (const char *) new_proc_sym->module,
|
|
gfc_current_ns, "fptr");
|
|
|
|
/* If we're dealing with c_f_pointer, it has an optional third arg. */
|
|
if (old_sym->intmod_sym_id == ISOCBINDING_F_POINTER)
|
|
{
|
|
gen_shape_param (&head, &tail,
|
|
(const char *) new_proc_sym->module,
|
|
gfc_current_ns, "shape");
|
|
}
|
|
}
|
|
else if (old_sym->intmod_sym_id == ISOCBINDING_ASSOCIATED)
|
|
{
|
|
/* c_associated has one required arg and one optional; both
|
|
are c_ptrs. */
|
|
gen_cptr_param (&head, &tail, (const char *) new_proc_sym->module,
|
|
gfc_current_ns, "c_ptr_1", ISOCBINDING_ASSOCIATED);
|
|
if (add_optional_arg)
|
|
{
|
|
gen_cptr_param (&head, &tail, (const char *) new_proc_sym->module,
|
|
gfc_current_ns, "c_ptr_2", ISOCBINDING_ASSOCIATED);
|
|
/* The last param is optional so mark it as such. */
|
|
tail->sym->attr.optional = 1;
|
|
}
|
|
}
|
|
|
|
/* Add the interface (store formal args to new_proc_sym). */
|
|
add_proc_interface (new_proc_sym, IFSRC_DECL, head);
|
|
|
|
/* Set up the formal_ns pointer to the one created for the
|
|
new procedure so it'll get cleaned up during gfc_free_symbol(). */
|
|
new_proc_sym->formal_ns = gfc_current_ns;
|
|
|
|
gfc_current_ns = parent_ns;
|
|
}
|
|
|
|
|
|
/* Generate the given set of C interoperable kind objects, or all
|
|
interoperable kinds. This function will only be given kind objects
|
|
for valid iso_c_binding defined types because this is verified when
|
|
the 'use' statement is parsed. If the user gives an 'only' clause,
|
|
the specific kinds are looked up; if they don't exist, an error is
|
|
reported. If the user does not give an 'only' clause, all
|
|
iso_c_binding symbols are generated. If a list of specific kinds
|
|
is given, it must have a NULL in the first empty spot to mark the
|
|
end of the list. */
|
|
|
|
|
|
void
|
|
generate_isocbinding_symbol (const char *mod_name, iso_c_binding_symbol s,
|
|
const char *local_name)
|
|
{
|
|
const char *const name = (local_name && local_name[0]) ? local_name
|
|
: c_interop_kinds_table[s].name;
|
|
gfc_symtree *tmp_symtree = NULL;
|
|
gfc_symbol *tmp_sym = NULL;
|
|
gfc_dt_list **dt_list_ptr = NULL;
|
|
gfc_component *tmp_comp = NULL;
|
|
char comp_name[(GFC_MAX_SYMBOL_LEN * 2) + 1];
|
|
int index;
|
|
|
|
tmp_symtree = gfc_find_symtree (gfc_current_ns->sym_root, name);
|
|
|
|
/* Already exists in this scope so don't re-add it.
|
|
TODO: we should probably check that it's really the same symbol. */
|
|
if (tmp_symtree != NULL)
|
|
return;
|
|
|
|
/* Create the sym tree in the current ns. */
|
|
gfc_get_sym_tree (name, gfc_current_ns, &tmp_symtree);
|
|
if (tmp_symtree)
|
|
tmp_sym = tmp_symtree->n.sym;
|
|
else
|
|
gfc_internal_error ("generate_isocbinding_symbol(): Unable to "
|
|
"create symbol");
|
|
|
|
/* Say what module this symbol belongs to. */
|
|
tmp_sym->module = gfc_get_string (mod_name);
|
|
tmp_sym->from_intmod = INTMOD_ISO_C_BINDING;
|
|
tmp_sym->intmod_sym_id = s;
|
|
|
|
switch (s)
|
|
{
|
|
|
|
#define NAMED_INTCST(a,b,c) case a :
|
|
#define NAMED_REALCST(a,b,c) case a :
|
|
#define NAMED_CMPXCST(a,b,c) case a :
|
|
#define NAMED_LOGCST(a,b,c) case a :
|
|
#define NAMED_CHARKNDCST(a,b,c) case a :
|
|
#include "iso-c-binding.def"
|
|
|
|
tmp_sym->value = gfc_int_expr (c_interop_kinds_table[s].value);
|
|
|
|
/* Initialize an integer constant expression node. */
|
|
tmp_sym->attr.flavor = FL_PARAMETER;
|
|
tmp_sym->ts.type = BT_INTEGER;
|
|
tmp_sym->ts.kind = gfc_default_integer_kind;
|
|
|
|
/* Mark this type as a C interoperable one. */
|
|
tmp_sym->ts.is_c_interop = 1;
|
|
tmp_sym->ts.is_iso_c = 1;
|
|
tmp_sym->value->ts.is_c_interop = 1;
|
|
tmp_sym->value->ts.is_iso_c = 1;
|
|
tmp_sym->attr.is_c_interop = 1;
|
|
|
|
/* Tell what f90 type this c interop kind is valid. */
|
|
tmp_sym->ts.f90_type = c_interop_kinds_table[s].f90_type;
|
|
|
|
/* Say it's from the iso_c_binding module. */
|
|
tmp_sym->attr.is_iso_c = 1;
|
|
|
|
/* Make it use associated. */
|
|
tmp_sym->attr.use_assoc = 1;
|
|
break;
|
|
|
|
|
|
#define NAMED_CHARCST(a,b,c) case a :
|
|
#include "iso-c-binding.def"
|
|
|
|
/* Initialize an integer constant expression node for the
|
|
length of the character. */
|
|
tmp_sym->value = gfc_get_expr ();
|
|
tmp_sym->value->expr_type = EXPR_CONSTANT;
|
|
tmp_sym->value->ts.type = BT_CHARACTER;
|
|
tmp_sym->value->ts.kind = gfc_default_character_kind;
|
|
tmp_sym->value->where = gfc_current_locus;
|
|
tmp_sym->value->ts.is_c_interop = 1;
|
|
tmp_sym->value->ts.is_iso_c = 1;
|
|
tmp_sym->value->value.character.length = 1;
|
|
tmp_sym->value->value.character.string = gfc_getmem (2);
|
|
tmp_sym->value->value.character.string[0]
|
|
= (char) c_interop_kinds_table[s].value;
|
|
tmp_sym->value->value.character.string[1] = '\0';
|
|
|
|
/* May not need this in both attr and ts, but do need in
|
|
attr for writing module file. */
|
|
tmp_sym->attr.is_c_interop = 1;
|
|
|
|
tmp_sym->attr.flavor = FL_PARAMETER;
|
|
tmp_sym->ts.type = BT_CHARACTER;
|
|
|
|
/* Need to set it to the C_CHAR kind. */
|
|
tmp_sym->ts.kind = gfc_default_character_kind;
|
|
|
|
/* Mark this type as a C interoperable one. */
|
|
tmp_sym->ts.is_c_interop = 1;
|
|
tmp_sym->ts.is_iso_c = 1;
|
|
|
|
/* Tell what f90 type this c interop kind is valid. */
|
|
tmp_sym->ts.f90_type = BT_CHARACTER;
|
|
|
|
/* Say it's from the iso_c_binding module. */
|
|
tmp_sym->attr.is_iso_c = 1;
|
|
|
|
/* Make it use associated. */
|
|
tmp_sym->attr.use_assoc = 1;
|
|
break;
|
|
|
|
case ISOCBINDING_PTR:
|
|
case ISOCBINDING_FUNPTR:
|
|
|
|
/* Initialize an integer constant expression node. */
|
|
tmp_sym->attr.flavor = FL_DERIVED;
|
|
tmp_sym->ts.is_c_interop = 1;
|
|
tmp_sym->attr.is_c_interop = 1;
|
|
tmp_sym->attr.is_iso_c = 1;
|
|
tmp_sym->ts.is_iso_c = 1;
|
|
tmp_sym->ts.type = BT_DERIVED;
|
|
|
|
/* A derived type must have the bind attribute to be
|
|
interoperable (J3/04-007, Section 15.2.3), even though
|
|
the binding label is not used. */
|
|
tmp_sym->attr.is_bind_c = 1;
|
|
|
|
tmp_sym->attr.referenced = 1;
|
|
|
|
tmp_sym->ts.derived = tmp_sym;
|
|
|
|
/* Add the symbol created for the derived type to the current ns. */
|
|
dt_list_ptr = &(gfc_derived_types);
|
|
while (*dt_list_ptr != NULL && (*dt_list_ptr)->next != NULL)
|
|
dt_list_ptr = &((*dt_list_ptr)->next);
|
|
|
|
/* There is already at least one derived type in the list, so append
|
|
the one we're currently building for c_ptr or c_funptr. */
|
|
if (*dt_list_ptr != NULL)
|
|
dt_list_ptr = &((*dt_list_ptr)->next);
|
|
(*dt_list_ptr) = gfc_get_dt_list ();
|
|
(*dt_list_ptr)->derived = tmp_sym;
|
|
(*dt_list_ptr)->next = NULL;
|
|
|
|
/* Set up the component of the derived type, which will be
|
|
an integer with kind equal to c_ptr_size. Mangle the name of
|
|
the field for the c_address to prevent the curious user from
|
|
trying to access it from Fortran. */
|
|
sprintf (comp_name, "__%s_%s", tmp_sym->name, "c_address");
|
|
gfc_add_component (tmp_sym, comp_name, &tmp_comp);
|
|
if (tmp_comp == NULL)
|
|
gfc_internal_error ("generate_isocbinding_symbol(): Unable to "
|
|
"create component for c_address");
|
|
|
|
tmp_comp->ts.type = BT_INTEGER;
|
|
|
|
/* Set this because the module will need to read/write this field. */
|
|
tmp_comp->ts.f90_type = BT_INTEGER;
|
|
|
|
/* The kinds for c_ptr and c_funptr are the same. */
|
|
index = get_c_kind ("c_ptr", c_interop_kinds_table);
|
|
tmp_comp->ts.kind = c_interop_kinds_table[index].value;
|
|
|
|
tmp_comp->pointer = 0;
|
|
tmp_comp->dimension = 0;
|
|
|
|
/* Mark the component as C interoperable. */
|
|
tmp_comp->ts.is_c_interop = 1;
|
|
|
|
/* Make it use associated (iso_c_binding module). */
|
|
tmp_sym->attr.use_assoc = 1;
|
|
break;
|
|
|
|
case ISOCBINDING_NULL_PTR:
|
|
case ISOCBINDING_NULL_FUNPTR:
|
|
gen_special_c_interop_ptr (s, name, mod_name);
|
|
break;
|
|
|
|
case ISOCBINDING_F_POINTER:
|
|
case ISOCBINDING_ASSOCIATED:
|
|
case ISOCBINDING_LOC:
|
|
case ISOCBINDING_FUNLOC:
|
|
case ISOCBINDING_F_PROCPOINTER:
|
|
|
|
tmp_sym->attr.proc = PROC_MODULE;
|
|
|
|
/* Use the procedure's name as it is in the iso_c_binding module for
|
|
setting the binding label in case the user renamed the symbol. */
|
|
sprintf (tmp_sym->binding_label, "%s_%s", mod_name,
|
|
c_interop_kinds_table[s].name);
|
|
tmp_sym->attr.is_iso_c = 1;
|
|
if (s == ISOCBINDING_F_POINTER || s == ISOCBINDING_F_PROCPOINTER)
|
|
tmp_sym->attr.subroutine = 1;
|
|
else
|
|
{
|
|
/* TODO! This needs to be finished more for the expr of the
|
|
function or something!
|
|
This may not need to be here, because trying to do c_loc
|
|
as an external. */
|
|
if (s == ISOCBINDING_ASSOCIATED)
|
|
{
|
|
tmp_sym->attr.function = 1;
|
|
tmp_sym->ts.type = BT_LOGICAL;
|
|
tmp_sym->ts.kind = gfc_default_logical_kind;
|
|
tmp_sym->result = tmp_sym;
|
|
}
|
|
else
|
|
{
|
|
/* Here, we're taking the simple approach. We're defining
|
|
c_loc as an external identifier so the compiler will put
|
|
what we expect on the stack for the address we want the
|
|
C address of. */
|
|
tmp_sym->ts.type = BT_DERIVED;
|
|
if (s == ISOCBINDING_LOC)
|
|
tmp_sym->ts.derived =
|
|
get_iso_c_binding_dt (ISOCBINDING_PTR);
|
|
else
|
|
tmp_sym->ts.derived =
|
|
get_iso_c_binding_dt (ISOCBINDING_FUNPTR);
|
|
|
|
if (tmp_sym->ts.derived == NULL)
|
|
{
|
|
/* Create the necessary derived type so we can continue
|
|
processing the file. */
|
|
generate_isocbinding_symbol
|
|
(mod_name, s == ISOCBINDING_FUNLOC
|
|
? ISOCBINDING_FUNPTR : ISOCBINDING_PTR,
|
|
(const char *)(s == ISOCBINDING_FUNLOC
|
|
? "_gfortran_iso_c_binding_c_funptr"
|
|
: "_gfortran_iso_c_binding_c_ptr"));
|
|
tmp_sym->ts.derived =
|
|
get_iso_c_binding_dt (s == ISOCBINDING_FUNLOC
|
|
? ISOCBINDING_FUNPTR
|
|
: ISOCBINDING_PTR);
|
|
}
|
|
|
|
/* The function result is itself (no result clause). */
|
|
tmp_sym->result = tmp_sym;
|
|
tmp_sym->attr.external = 1;
|
|
tmp_sym->attr.use_assoc = 0;
|
|
tmp_sym->attr.if_source = IFSRC_UNKNOWN;
|
|
tmp_sym->attr.proc = PROC_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
tmp_sym->attr.flavor = FL_PROCEDURE;
|
|
tmp_sym->attr.contained = 0;
|
|
|
|
/* Try using this builder routine, with the new and old symbols
|
|
both being the generic iso_c proc sym being created. This
|
|
will create the formal args (and the new namespace for them).
|
|
Don't build an arg list for c_loc because we're going to treat
|
|
c_loc as an external procedure. */
|
|
if (s != ISOCBINDING_LOC && s != ISOCBINDING_FUNLOC)
|
|
/* The 1 says to add any optional args, if applicable. */
|
|
build_formal_args (tmp_sym, tmp_sym, 1);
|
|
|
|
/* Set this after setting up the symbol, to prevent error messages. */
|
|
tmp_sym->attr.use_assoc = 1;
|
|
|
|
/* This symbol will not be referenced directly. It will be
|
|
resolved to the implementation for the given f90 kind. */
|
|
tmp_sym->attr.referenced = 0;
|
|
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
|
|
/* Creates a new symbol based off of an old iso_c symbol, with a new
|
|
binding label. This function can be used to create a new,
|
|
resolved, version of a procedure symbol for c_f_pointer or
|
|
c_f_procpointer that is based on the generic symbols. A new
|
|
parameter list is created for the new symbol using
|
|
build_formal_args(). The add_optional_flag specifies whether the
|
|
to add the optional SHAPE argument. The new symbol is
|
|
returned. */
|
|
|
|
gfc_symbol *
|
|
get_iso_c_sym (gfc_symbol *old_sym, char *new_name,
|
|
char *new_binding_label, int add_optional_arg)
|
|
{
|
|
gfc_symtree *new_symtree = NULL;
|
|
|
|
/* See if we have a symbol by that name already available, looking
|
|
through any parent namespaces. */
|
|
gfc_find_sym_tree (new_name, gfc_current_ns, 1, &new_symtree);
|
|
if (new_symtree != NULL)
|
|
/* Return the existing symbol. */
|
|
return new_symtree->n.sym;
|
|
|
|
/* Create the symtree/symbol, with attempted host association. */
|
|
gfc_get_ha_sym_tree (new_name, &new_symtree);
|
|
if (new_symtree == NULL)
|
|
gfc_internal_error ("get_iso_c_sym(): Unable to create "
|
|
"symtree for '%s'", new_name);
|
|
|
|
/* Now fill in the fields of the resolved symbol with the old sym. */
|
|
strcpy (new_symtree->n.sym->binding_label, new_binding_label);
|
|
new_symtree->n.sym->attr = old_sym->attr;
|
|
new_symtree->n.sym->ts = old_sym->ts;
|
|
new_symtree->n.sym->module = gfc_get_string (old_sym->module);
|
|
new_symtree->n.sym->from_intmod = old_sym->from_intmod;
|
|
new_symtree->n.sym->intmod_sym_id = old_sym->intmod_sym_id;
|
|
/* Build the formal arg list. */
|
|
build_formal_args (new_symtree->n.sym, old_sym, add_optional_arg);
|
|
|
|
gfc_commit_symbol (new_symtree->n.sym);
|
|
|
|
return new_symtree->n.sym;
|
|
}
|
|
|