PR other/61963 gcc/cp/ * parser.c (cp_parser_array_notation): Added check for array_type. gcc/testsuite/ * c-c++-common/cilk-plus/AN/pr61963.c: New test. From-SVN: r213494
32446 lines
972 KiB
C
32446 lines
972 KiB
C
/* C++ Parser.
|
||
Copyright (C) 2000-2014 Free Software Foundation, Inc.
|
||
Written by Mark Mitchell <mark@codesourcery.com>.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it
|
||
under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but
|
||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "timevar.h"
|
||
#include "cpplib.h"
|
||
#include "tree.h"
|
||
#include "print-tree.h"
|
||
#include "stringpool.h"
|
||
#include "attribs.h"
|
||
#include "trans-mem.h"
|
||
#include "cp-tree.h"
|
||
#include "intl.h"
|
||
#include "c-family/c-pragma.h"
|
||
#include "decl.h"
|
||
#include "flags.h"
|
||
#include "diagnostic-core.h"
|
||
#include "target.h"
|
||
#include "cgraph.h"
|
||
#include "c-family/c-common.h"
|
||
#include "c-family/c-objc.h"
|
||
#include "plugin.h"
|
||
#include "tree-pretty-print.h"
|
||
#include "parser.h"
|
||
#include "type-utils.h"
|
||
#include "omp-low.h"
|
||
|
||
|
||
/* The lexer. */
|
||
|
||
/* The cp_lexer_* routines mediate between the lexer proper (in libcpp
|
||
and c-lex.c) and the C++ parser. */
|
||
|
||
static cp_token eof_token =
|
||
{
|
||
CPP_EOF, RID_MAX, 0, PRAGMA_NONE, false, false, false, 0, { NULL }
|
||
};
|
||
|
||
/* The various kinds of non integral constant we encounter. */
|
||
typedef enum non_integral_constant {
|
||
NIC_NONE,
|
||
/* floating-point literal */
|
||
NIC_FLOAT,
|
||
/* %<this%> */
|
||
NIC_THIS,
|
||
/* %<__FUNCTION__%> */
|
||
NIC_FUNC_NAME,
|
||
/* %<__PRETTY_FUNCTION__%> */
|
||
NIC_PRETTY_FUNC,
|
||
/* %<__func__%> */
|
||
NIC_C99_FUNC,
|
||
/* "%<va_arg%> */
|
||
NIC_VA_ARG,
|
||
/* a cast */
|
||
NIC_CAST,
|
||
/* %<typeid%> operator */
|
||
NIC_TYPEID,
|
||
/* non-constant compound literals */
|
||
NIC_NCC,
|
||
/* a function call */
|
||
NIC_FUNC_CALL,
|
||
/* an increment */
|
||
NIC_INC,
|
||
/* an decrement */
|
||
NIC_DEC,
|
||
/* an array reference */
|
||
NIC_ARRAY_REF,
|
||
/* %<->%> */
|
||
NIC_ARROW,
|
||
/* %<.%> */
|
||
NIC_POINT,
|
||
/* the address of a label */
|
||
NIC_ADDR_LABEL,
|
||
/* %<*%> */
|
||
NIC_STAR,
|
||
/* %<&%> */
|
||
NIC_ADDR,
|
||
/* %<++%> */
|
||
NIC_PREINCREMENT,
|
||
/* %<--%> */
|
||
NIC_PREDECREMENT,
|
||
/* %<new%> */
|
||
NIC_NEW,
|
||
/* %<delete%> */
|
||
NIC_DEL,
|
||
/* calls to overloaded operators */
|
||
NIC_OVERLOADED,
|
||
/* an assignment */
|
||
NIC_ASSIGNMENT,
|
||
/* a comma operator */
|
||
NIC_COMMA,
|
||
/* a call to a constructor */
|
||
NIC_CONSTRUCTOR,
|
||
/* a transaction expression */
|
||
NIC_TRANSACTION
|
||
} non_integral_constant;
|
||
|
||
/* The various kinds of errors about name-lookup failing. */
|
||
typedef enum name_lookup_error {
|
||
/* NULL */
|
||
NLE_NULL,
|
||
/* is not a type */
|
||
NLE_TYPE,
|
||
/* is not a class or namespace */
|
||
NLE_CXX98,
|
||
/* is not a class, namespace, or enumeration */
|
||
NLE_NOT_CXX98
|
||
} name_lookup_error;
|
||
|
||
/* The various kinds of required token */
|
||
typedef enum required_token {
|
||
RT_NONE,
|
||
RT_SEMICOLON, /* ';' */
|
||
RT_OPEN_PAREN, /* '(' */
|
||
RT_CLOSE_BRACE, /* '}' */
|
||
RT_OPEN_BRACE, /* '{' */
|
||
RT_CLOSE_SQUARE, /* ']' */
|
||
RT_OPEN_SQUARE, /* '[' */
|
||
RT_COMMA, /* ',' */
|
||
RT_SCOPE, /* '::' */
|
||
RT_LESS, /* '<' */
|
||
RT_GREATER, /* '>' */
|
||
RT_EQ, /* '=' */
|
||
RT_ELLIPSIS, /* '...' */
|
||
RT_MULT, /* '*' */
|
||
RT_COMPL, /* '~' */
|
||
RT_COLON, /* ':' */
|
||
RT_COLON_SCOPE, /* ':' or '::' */
|
||
RT_CLOSE_PAREN, /* ')' */
|
||
RT_COMMA_CLOSE_PAREN, /* ',' or ')' */
|
||
RT_PRAGMA_EOL, /* end of line */
|
||
RT_NAME, /* identifier */
|
||
|
||
/* The type is CPP_KEYWORD */
|
||
RT_NEW, /* new */
|
||
RT_DELETE, /* delete */
|
||
RT_RETURN, /* return */
|
||
RT_WHILE, /* while */
|
||
RT_EXTERN, /* extern */
|
||
RT_STATIC_ASSERT, /* static_assert */
|
||
RT_DECLTYPE, /* decltype */
|
||
RT_OPERATOR, /* operator */
|
||
RT_CLASS, /* class */
|
||
RT_TEMPLATE, /* template */
|
||
RT_NAMESPACE, /* namespace */
|
||
RT_USING, /* using */
|
||
RT_ASM, /* asm */
|
||
RT_TRY, /* try */
|
||
RT_CATCH, /* catch */
|
||
RT_THROW, /* throw */
|
||
RT_LABEL, /* __label__ */
|
||
RT_AT_TRY, /* @try */
|
||
RT_AT_SYNCHRONIZED, /* @synchronized */
|
||
RT_AT_THROW, /* @throw */
|
||
|
||
RT_SELECT, /* selection-statement */
|
||
RT_INTERATION, /* iteration-statement */
|
||
RT_JUMP, /* jump-statement */
|
||
RT_CLASS_KEY, /* class-key */
|
||
RT_CLASS_TYPENAME_TEMPLATE, /* class, typename, or template */
|
||
RT_TRANSACTION_ATOMIC, /* __transaction_atomic */
|
||
RT_TRANSACTION_RELAXED, /* __transaction_relaxed */
|
||
RT_TRANSACTION_CANCEL /* __transaction_cancel */
|
||
} required_token;
|
||
|
||
/* Prototypes. */
|
||
|
||
static cp_lexer *cp_lexer_new_main
|
||
(void);
|
||
static cp_lexer *cp_lexer_new_from_tokens
|
||
(cp_token_cache *tokens);
|
||
static void cp_lexer_destroy
|
||
(cp_lexer *);
|
||
static int cp_lexer_saving_tokens
|
||
(const cp_lexer *);
|
||
static cp_token *cp_lexer_token_at
|
||
(cp_lexer *, cp_token_position);
|
||
static void cp_lexer_get_preprocessor_token
|
||
(cp_lexer *, cp_token *);
|
||
static inline cp_token *cp_lexer_peek_token
|
||
(cp_lexer *);
|
||
static cp_token *cp_lexer_peek_nth_token
|
||
(cp_lexer *, size_t);
|
||
static inline bool cp_lexer_next_token_is
|
||
(cp_lexer *, enum cpp_ttype);
|
||
static bool cp_lexer_next_token_is_not
|
||
(cp_lexer *, enum cpp_ttype);
|
||
static bool cp_lexer_next_token_is_keyword
|
||
(cp_lexer *, enum rid);
|
||
static cp_token *cp_lexer_consume_token
|
||
(cp_lexer *);
|
||
static void cp_lexer_purge_token
|
||
(cp_lexer *);
|
||
static void cp_lexer_purge_tokens_after
|
||
(cp_lexer *, cp_token_position);
|
||
static void cp_lexer_save_tokens
|
||
(cp_lexer *);
|
||
static void cp_lexer_commit_tokens
|
||
(cp_lexer *);
|
||
static void cp_lexer_rollback_tokens
|
||
(cp_lexer *);
|
||
static void cp_lexer_print_token
|
||
(FILE *, cp_token *);
|
||
static inline bool cp_lexer_debugging_p
|
||
(cp_lexer *);
|
||
static void cp_lexer_start_debugging
|
||
(cp_lexer *) ATTRIBUTE_UNUSED;
|
||
static void cp_lexer_stop_debugging
|
||
(cp_lexer *) ATTRIBUTE_UNUSED;
|
||
|
||
static cp_token_cache *cp_token_cache_new
|
||
(cp_token *, cp_token *);
|
||
|
||
static void cp_parser_initial_pragma
|
||
(cp_token *);
|
||
|
||
static tree cp_literal_operator_id
|
||
(const char *);
|
||
|
||
static void cp_parser_cilk_simd
|
||
(cp_parser *, cp_token *);
|
||
static bool cp_parser_omp_declare_reduction_exprs
|
||
(tree, cp_parser *);
|
||
static tree cp_parser_cilk_simd_vectorlength
|
||
(cp_parser *, tree, bool);
|
||
|
||
/* Manifest constants. */
|
||
#define CP_LEXER_BUFFER_SIZE ((256 * 1024) / sizeof (cp_token))
|
||
#define CP_SAVED_TOKEN_STACK 5
|
||
|
||
/* Variables. */
|
||
|
||
/* The stream to which debugging output should be written. */
|
||
static FILE *cp_lexer_debug_stream;
|
||
|
||
/* Nonzero if we are parsing an unevaluated operand: an operand to
|
||
sizeof, typeof, or alignof. */
|
||
int cp_unevaluated_operand;
|
||
|
||
/* Dump up to NUM tokens in BUFFER to FILE starting with token
|
||
START_TOKEN. If START_TOKEN is NULL, the dump starts with the
|
||
first token in BUFFER. If NUM is 0, dump all the tokens. If
|
||
CURR_TOKEN is set and it is one of the tokens in BUFFER, it will be
|
||
highlighted by surrounding it in [[ ]]. */
|
||
|
||
static void
|
||
cp_lexer_dump_tokens (FILE *file, vec<cp_token, va_gc> *buffer,
|
||
cp_token *start_token, unsigned num,
|
||
cp_token *curr_token)
|
||
{
|
||
unsigned i, nprinted;
|
||
cp_token *token;
|
||
bool do_print;
|
||
|
||
fprintf (file, "%u tokens\n", vec_safe_length (buffer));
|
||
|
||
if (buffer == NULL)
|
||
return;
|
||
|
||
if (num == 0)
|
||
num = buffer->length ();
|
||
|
||
if (start_token == NULL)
|
||
start_token = buffer->address ();
|
||
|
||
if (start_token > buffer->address ())
|
||
{
|
||
cp_lexer_print_token (file, &(*buffer)[0]);
|
||
fprintf (file, " ... ");
|
||
}
|
||
|
||
do_print = false;
|
||
nprinted = 0;
|
||
for (i = 0; buffer->iterate (i, &token) && nprinted < num; i++)
|
||
{
|
||
if (token == start_token)
|
||
do_print = true;
|
||
|
||
if (!do_print)
|
||
continue;
|
||
|
||
nprinted++;
|
||
if (token == curr_token)
|
||
fprintf (file, "[[");
|
||
|
||
cp_lexer_print_token (file, token);
|
||
|
||
if (token == curr_token)
|
||
fprintf (file, "]]");
|
||
|
||
switch (token->type)
|
||
{
|
||
case CPP_SEMICOLON:
|
||
case CPP_OPEN_BRACE:
|
||
case CPP_CLOSE_BRACE:
|
||
case CPP_EOF:
|
||
fputc ('\n', file);
|
||
break;
|
||
|
||
default:
|
||
fputc (' ', file);
|
||
}
|
||
}
|
||
|
||
if (i == num && i < buffer->length ())
|
||
{
|
||
fprintf (file, " ... ");
|
||
cp_lexer_print_token (file, &buffer->last ());
|
||
}
|
||
|
||
fprintf (file, "\n");
|
||
}
|
||
|
||
|
||
/* Dump all tokens in BUFFER to stderr. */
|
||
|
||
void
|
||
cp_lexer_debug_tokens (vec<cp_token, va_gc> *buffer)
|
||
{
|
||
cp_lexer_dump_tokens (stderr, buffer, NULL, 0, NULL);
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (vec<cp_token, va_gc> &ref)
|
||
{
|
||
cp_lexer_dump_tokens (stderr, &ref, NULL, 0, NULL);
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (vec<cp_token, va_gc> *ptr)
|
||
{
|
||
if (ptr)
|
||
debug (*ptr);
|
||
else
|
||
fprintf (stderr, "<nil>\n");
|
||
}
|
||
|
||
|
||
/* Dump the cp_parser tree field T to FILE if T is non-NULL. DESC is the
|
||
description for T. */
|
||
|
||
static void
|
||
cp_debug_print_tree_if_set (FILE *file, const char *desc, tree t)
|
||
{
|
||
if (t)
|
||
{
|
||
fprintf (file, "%s: ", desc);
|
||
print_node_brief (file, "", t, 0);
|
||
}
|
||
}
|
||
|
||
|
||
/* Dump parser context C to FILE. */
|
||
|
||
static void
|
||
cp_debug_print_context (FILE *file, cp_parser_context *c)
|
||
{
|
||
const char *status_s[] = { "OK", "ERROR", "COMMITTED" };
|
||
fprintf (file, "{ status = %s, scope = ", status_s[c->status]);
|
||
print_node_brief (file, "", c->object_type, 0);
|
||
fprintf (file, "}\n");
|
||
}
|
||
|
||
|
||
/* Print the stack of parsing contexts to FILE starting with FIRST. */
|
||
|
||
static void
|
||
cp_debug_print_context_stack (FILE *file, cp_parser_context *first)
|
||
{
|
||
unsigned i;
|
||
cp_parser_context *c;
|
||
|
||
fprintf (file, "Parsing context stack:\n");
|
||
for (i = 0, c = first; c; c = c->next, i++)
|
||
{
|
||
fprintf (file, "\t#%u: ", i);
|
||
cp_debug_print_context (file, c);
|
||
}
|
||
}
|
||
|
||
|
||
/* Print the value of FLAG to FILE. DESC is a string describing the flag. */
|
||
|
||
static void
|
||
cp_debug_print_flag (FILE *file, const char *desc, bool flag)
|
||
{
|
||
if (flag)
|
||
fprintf (file, "%s: true\n", desc);
|
||
}
|
||
|
||
|
||
/* Print an unparsed function entry UF to FILE. */
|
||
|
||
static void
|
||
cp_debug_print_unparsed_function (FILE *file, cp_unparsed_functions_entry *uf)
|
||
{
|
||
unsigned i;
|
||
cp_default_arg_entry *default_arg_fn;
|
||
tree fn;
|
||
|
||
fprintf (file, "\tFunctions with default args:\n");
|
||
for (i = 0;
|
||
vec_safe_iterate (uf->funs_with_default_args, i, &default_arg_fn);
|
||
i++)
|
||
{
|
||
fprintf (file, "\t\tClass type: ");
|
||
print_node_brief (file, "", default_arg_fn->class_type, 0);
|
||
fprintf (file, "\t\tDeclaration: ");
|
||
print_node_brief (file, "", default_arg_fn->decl, 0);
|
||
fprintf (file, "\n");
|
||
}
|
||
|
||
fprintf (file, "\n\tFunctions with definitions that require "
|
||
"post-processing\n\t\t");
|
||
for (i = 0; vec_safe_iterate (uf->funs_with_definitions, i, &fn); i++)
|
||
{
|
||
print_node_brief (file, "", fn, 0);
|
||
fprintf (file, " ");
|
||
}
|
||
fprintf (file, "\n");
|
||
|
||
fprintf (file, "\n\tNon-static data members with initializers that require "
|
||
"post-processing\n\t\t");
|
||
for (i = 0; vec_safe_iterate (uf->nsdmis, i, &fn); i++)
|
||
{
|
||
print_node_brief (file, "", fn, 0);
|
||
fprintf (file, " ");
|
||
}
|
||
fprintf (file, "\n");
|
||
}
|
||
|
||
|
||
/* Print the stack of unparsed member functions S to FILE. */
|
||
|
||
static void
|
||
cp_debug_print_unparsed_queues (FILE *file,
|
||
vec<cp_unparsed_functions_entry, va_gc> *s)
|
||
{
|
||
unsigned i;
|
||
cp_unparsed_functions_entry *uf;
|
||
|
||
fprintf (file, "Unparsed functions\n");
|
||
for (i = 0; vec_safe_iterate (s, i, &uf); i++)
|
||
{
|
||
fprintf (file, "#%u:\n", i);
|
||
cp_debug_print_unparsed_function (file, uf);
|
||
}
|
||
}
|
||
|
||
|
||
/* Dump the tokens in a window of size WINDOW_SIZE around the next_token for
|
||
the given PARSER. If FILE is NULL, the output is printed on stderr. */
|
||
|
||
static void
|
||
cp_debug_parser_tokens (FILE *file, cp_parser *parser, int window_size)
|
||
{
|
||
cp_token *next_token, *first_token, *start_token;
|
||
|
||
if (file == NULL)
|
||
file = stderr;
|
||
|
||
next_token = parser->lexer->next_token;
|
||
first_token = parser->lexer->buffer->address ();
|
||
start_token = (next_token > first_token + window_size / 2)
|
||
? next_token - window_size / 2
|
||
: first_token;
|
||
cp_lexer_dump_tokens (file, parser->lexer->buffer, start_token, window_size,
|
||
next_token);
|
||
}
|
||
|
||
|
||
/* Dump debugging information for the given PARSER. If FILE is NULL,
|
||
the output is printed on stderr. */
|
||
|
||
void
|
||
cp_debug_parser (FILE *file, cp_parser *parser)
|
||
{
|
||
const size_t window_size = 20;
|
||
cp_token *token;
|
||
expanded_location eloc;
|
||
|
||
if (file == NULL)
|
||
file = stderr;
|
||
|
||
fprintf (file, "Parser state\n\n");
|
||
fprintf (file, "Number of tokens: %u\n",
|
||
vec_safe_length (parser->lexer->buffer));
|
||
cp_debug_print_tree_if_set (file, "Lookup scope", parser->scope);
|
||
cp_debug_print_tree_if_set (file, "Object scope",
|
||
parser->object_scope);
|
||
cp_debug_print_tree_if_set (file, "Qualifying scope",
|
||
parser->qualifying_scope);
|
||
cp_debug_print_context_stack (file, parser->context);
|
||
cp_debug_print_flag (file, "Allow GNU extensions",
|
||
parser->allow_gnu_extensions_p);
|
||
cp_debug_print_flag (file, "'>' token is greater-than",
|
||
parser->greater_than_is_operator_p);
|
||
cp_debug_print_flag (file, "Default args allowed in current "
|
||
"parameter list", parser->default_arg_ok_p);
|
||
cp_debug_print_flag (file, "Parsing integral constant-expression",
|
||
parser->integral_constant_expression_p);
|
||
cp_debug_print_flag (file, "Allow non-constant expression in current "
|
||
"constant-expression",
|
||
parser->allow_non_integral_constant_expression_p);
|
||
cp_debug_print_flag (file, "Seen non-constant expression",
|
||
parser->non_integral_constant_expression_p);
|
||
cp_debug_print_flag (file, "Local names and 'this' forbidden in "
|
||
"current context",
|
||
parser->local_variables_forbidden_p);
|
||
cp_debug_print_flag (file, "In unbraced linkage specification",
|
||
parser->in_unbraced_linkage_specification_p);
|
||
cp_debug_print_flag (file, "Parsing a declarator",
|
||
parser->in_declarator_p);
|
||
cp_debug_print_flag (file, "In template argument list",
|
||
parser->in_template_argument_list_p);
|
||
cp_debug_print_flag (file, "Parsing an iteration statement",
|
||
parser->in_statement & IN_ITERATION_STMT);
|
||
cp_debug_print_flag (file, "Parsing a switch statement",
|
||
parser->in_statement & IN_SWITCH_STMT);
|
||
cp_debug_print_flag (file, "Parsing a structured OpenMP block",
|
||
parser->in_statement & IN_OMP_BLOCK);
|
||
cp_debug_print_flag (file, "Parsing a Cilk Plus for loop",
|
||
parser->in_statement & IN_CILK_SIMD_FOR);
|
||
cp_debug_print_flag (file, "Parsing a an OpenMP loop",
|
||
parser->in_statement & IN_OMP_FOR);
|
||
cp_debug_print_flag (file, "Parsing an if statement",
|
||
parser->in_statement & IN_IF_STMT);
|
||
cp_debug_print_flag (file, "Parsing a type-id in an expression "
|
||
"context", parser->in_type_id_in_expr_p);
|
||
cp_debug_print_flag (file, "Declarations are implicitly extern \"C\"",
|
||
parser->implicit_extern_c);
|
||
cp_debug_print_flag (file, "String expressions should be translated "
|
||
"to execution character set",
|
||
parser->translate_strings_p);
|
||
cp_debug_print_flag (file, "Parsing function body outside of a "
|
||
"local class", parser->in_function_body);
|
||
cp_debug_print_flag (file, "Auto correct a colon to a scope operator",
|
||
parser->colon_corrects_to_scope_p);
|
||
cp_debug_print_flag (file, "Colon doesn't start a class definition",
|
||
parser->colon_doesnt_start_class_def_p);
|
||
if (parser->type_definition_forbidden_message)
|
||
fprintf (file, "Error message for forbidden type definitions: %s\n",
|
||
parser->type_definition_forbidden_message);
|
||
cp_debug_print_unparsed_queues (file, parser->unparsed_queues);
|
||
fprintf (file, "Number of class definitions in progress: %u\n",
|
||
parser->num_classes_being_defined);
|
||
fprintf (file, "Number of template parameter lists for the current "
|
||
"declaration: %u\n", parser->num_template_parameter_lists);
|
||
cp_debug_parser_tokens (file, parser, window_size);
|
||
token = parser->lexer->next_token;
|
||
fprintf (file, "Next token to parse:\n");
|
||
fprintf (file, "\tToken: ");
|
||
cp_lexer_print_token (file, token);
|
||
eloc = expand_location (token->location);
|
||
fprintf (file, "\n\tFile: %s\n", eloc.file);
|
||
fprintf (file, "\tLine: %d\n", eloc.line);
|
||
fprintf (file, "\tColumn: %d\n", eloc.column);
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (cp_parser &ref)
|
||
{
|
||
cp_debug_parser (stderr, &ref);
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (cp_parser *ptr)
|
||
{
|
||
if (ptr)
|
||
debug (*ptr);
|
||
else
|
||
fprintf (stderr, "<nil>\n");
|
||
}
|
||
|
||
/* Allocate memory for a new lexer object and return it. */
|
||
|
||
static cp_lexer *
|
||
cp_lexer_alloc (void)
|
||
{
|
||
cp_lexer *lexer;
|
||
|
||
c_common_no_more_pch ();
|
||
|
||
/* Allocate the memory. */
|
||
lexer = ggc_cleared_alloc<cp_lexer> ();
|
||
|
||
/* Initially we are not debugging. */
|
||
lexer->debugging_p = false;
|
||
|
||
lexer->saved_tokens.create (CP_SAVED_TOKEN_STACK);
|
||
|
||
/* Create the buffer. */
|
||
vec_alloc (lexer->buffer, CP_LEXER_BUFFER_SIZE);
|
||
|
||
return lexer;
|
||
}
|
||
|
||
|
||
/* Create a new main C++ lexer, the lexer that gets tokens from the
|
||
preprocessor. */
|
||
|
||
static cp_lexer *
|
||
cp_lexer_new_main (void)
|
||
{
|
||
cp_lexer *lexer;
|
||
cp_token token;
|
||
|
||
/* It's possible that parsing the first pragma will load a PCH file,
|
||
which is a GC collection point. So we have to do that before
|
||
allocating any memory. */
|
||
cp_parser_initial_pragma (&token);
|
||
|
||
lexer = cp_lexer_alloc ();
|
||
|
||
/* Put the first token in the buffer. */
|
||
lexer->buffer->quick_push (token);
|
||
|
||
/* Get the remaining tokens from the preprocessor. */
|
||
while (token.type != CPP_EOF)
|
||
{
|
||
cp_lexer_get_preprocessor_token (lexer, &token);
|
||
vec_safe_push (lexer->buffer, token);
|
||
}
|
||
|
||
lexer->last_token = lexer->buffer->address ()
|
||
+ lexer->buffer->length ()
|
||
- 1;
|
||
lexer->next_token = lexer->buffer->length ()
|
||
? lexer->buffer->address ()
|
||
: &eof_token;
|
||
|
||
/* Subsequent preprocessor diagnostics should use compiler
|
||
diagnostic functions to get the compiler source location. */
|
||
done_lexing = true;
|
||
|
||
gcc_assert (!lexer->next_token->purged_p);
|
||
return lexer;
|
||
}
|
||
|
||
/* Create a new lexer whose token stream is primed with the tokens in
|
||
CACHE. When these tokens are exhausted, no new tokens will be read. */
|
||
|
||
static cp_lexer *
|
||
cp_lexer_new_from_tokens (cp_token_cache *cache)
|
||
{
|
||
cp_token *first = cache->first;
|
||
cp_token *last = cache->last;
|
||
cp_lexer *lexer = ggc_cleared_alloc<cp_lexer> ();
|
||
|
||
/* We do not own the buffer. */
|
||
lexer->buffer = NULL;
|
||
lexer->next_token = first == last ? &eof_token : first;
|
||
lexer->last_token = last;
|
||
|
||
lexer->saved_tokens.create (CP_SAVED_TOKEN_STACK);
|
||
|
||
/* Initially we are not debugging. */
|
||
lexer->debugging_p = false;
|
||
|
||
gcc_assert (!lexer->next_token->purged_p);
|
||
return lexer;
|
||
}
|
||
|
||
/* Frees all resources associated with LEXER. */
|
||
|
||
static void
|
||
cp_lexer_destroy (cp_lexer *lexer)
|
||
{
|
||
vec_free (lexer->buffer);
|
||
lexer->saved_tokens.release ();
|
||
ggc_free (lexer);
|
||
}
|
||
|
||
/* Returns nonzero if debugging information should be output. */
|
||
|
||
static inline bool
|
||
cp_lexer_debugging_p (cp_lexer *lexer)
|
||
{
|
||
return lexer->debugging_p;
|
||
}
|
||
|
||
|
||
static inline cp_token_position
|
||
cp_lexer_token_position (cp_lexer *lexer, bool previous_p)
|
||
{
|
||
gcc_assert (!previous_p || lexer->next_token != &eof_token);
|
||
|
||
return lexer->next_token - previous_p;
|
||
}
|
||
|
||
static inline cp_token *
|
||
cp_lexer_token_at (cp_lexer * /*lexer*/, cp_token_position pos)
|
||
{
|
||
return pos;
|
||
}
|
||
|
||
static inline void
|
||
cp_lexer_set_token_position (cp_lexer *lexer, cp_token_position pos)
|
||
{
|
||
lexer->next_token = cp_lexer_token_at (lexer, pos);
|
||
}
|
||
|
||
static inline cp_token_position
|
||
cp_lexer_previous_token_position (cp_lexer *lexer)
|
||
{
|
||
if (lexer->next_token == &eof_token)
|
||
return lexer->last_token - 1;
|
||
else
|
||
return cp_lexer_token_position (lexer, true);
|
||
}
|
||
|
||
static inline cp_token *
|
||
cp_lexer_previous_token (cp_lexer *lexer)
|
||
{
|
||
cp_token_position tp = cp_lexer_previous_token_position (lexer);
|
||
|
||
return cp_lexer_token_at (lexer, tp);
|
||
}
|
||
|
||
/* nonzero if we are presently saving tokens. */
|
||
|
||
static inline int
|
||
cp_lexer_saving_tokens (const cp_lexer* lexer)
|
||
{
|
||
return lexer->saved_tokens.length () != 0;
|
||
}
|
||
|
||
/* Store the next token from the preprocessor in *TOKEN. Return true
|
||
if we reach EOF. If LEXER is NULL, assume we are handling an
|
||
initial #pragma pch_preprocess, and thus want the lexer to return
|
||
processed strings. */
|
||
|
||
static void
|
||
cp_lexer_get_preprocessor_token (cp_lexer *lexer, cp_token *token)
|
||
{
|
||
static int is_extern_c = 0;
|
||
|
||
/* Get a new token from the preprocessor. */
|
||
token->type
|
||
= c_lex_with_flags (&token->u.value, &token->location, &token->flags,
|
||
lexer == NULL ? 0 : C_LEX_STRING_NO_JOIN);
|
||
token->keyword = RID_MAX;
|
||
token->pragma_kind = PRAGMA_NONE;
|
||
token->purged_p = false;
|
||
token->error_reported = false;
|
||
|
||
/* On some systems, some header files are surrounded by an
|
||
implicit extern "C" block. Set a flag in the token if it
|
||
comes from such a header. */
|
||
is_extern_c += pending_lang_change;
|
||
pending_lang_change = 0;
|
||
token->implicit_extern_c = is_extern_c > 0;
|
||
|
||
/* Check to see if this token is a keyword. */
|
||
if (token->type == CPP_NAME)
|
||
{
|
||
if (C_IS_RESERVED_WORD (token->u.value))
|
||
{
|
||
/* Mark this token as a keyword. */
|
||
token->type = CPP_KEYWORD;
|
||
/* Record which keyword. */
|
||
token->keyword = C_RID_CODE (token->u.value);
|
||
}
|
||
else
|
||
{
|
||
if (warn_cxx0x_compat
|
||
&& C_RID_CODE (token->u.value) >= RID_FIRST_CXX0X
|
||
&& C_RID_CODE (token->u.value) <= RID_LAST_CXX0X)
|
||
{
|
||
/* Warn about the C++0x keyword (but still treat it as
|
||
an identifier). */
|
||
warning (OPT_Wc__0x_compat,
|
||
"identifier %qE is a keyword in C++11",
|
||
token->u.value);
|
||
|
||
/* Clear out the C_RID_CODE so we don't warn about this
|
||
particular identifier-turned-keyword again. */
|
||
C_SET_RID_CODE (token->u.value, RID_MAX);
|
||
}
|
||
|
||
token->keyword = RID_MAX;
|
||
}
|
||
}
|
||
else if (token->type == CPP_AT_NAME)
|
||
{
|
||
/* This only happens in Objective-C++; it must be a keyword. */
|
||
token->type = CPP_KEYWORD;
|
||
switch (C_RID_CODE (token->u.value))
|
||
{
|
||
/* Replace 'class' with '@class', 'private' with '@private',
|
||
etc. This prevents confusion with the C++ keyword
|
||
'class', and makes the tokens consistent with other
|
||
Objective-C 'AT' keywords. For example '@class' is
|
||
reported as RID_AT_CLASS which is consistent with
|
||
'@synchronized', which is reported as
|
||
RID_AT_SYNCHRONIZED.
|
||
*/
|
||
case RID_CLASS: token->keyword = RID_AT_CLASS; break;
|
||
case RID_PRIVATE: token->keyword = RID_AT_PRIVATE; break;
|
||
case RID_PROTECTED: token->keyword = RID_AT_PROTECTED; break;
|
||
case RID_PUBLIC: token->keyword = RID_AT_PUBLIC; break;
|
||
case RID_THROW: token->keyword = RID_AT_THROW; break;
|
||
case RID_TRY: token->keyword = RID_AT_TRY; break;
|
||
case RID_CATCH: token->keyword = RID_AT_CATCH; break;
|
||
default: token->keyword = C_RID_CODE (token->u.value);
|
||
}
|
||
}
|
||
else if (token->type == CPP_PRAGMA)
|
||
{
|
||
/* We smuggled the cpp_token->u.pragma value in an INTEGER_CST. */
|
||
token->pragma_kind = ((enum pragma_kind)
|
||
TREE_INT_CST_LOW (token->u.value));
|
||
token->u.value = NULL_TREE;
|
||
}
|
||
}
|
||
|
||
/* Update the globals input_location and the input file stack from TOKEN. */
|
||
static inline void
|
||
cp_lexer_set_source_position_from_token (cp_token *token)
|
||
{
|
||
if (token->type != CPP_EOF)
|
||
{
|
||
input_location = token->location;
|
||
}
|
||
}
|
||
|
||
/* Update the globals input_location and the input file stack from LEXER. */
|
||
static inline void
|
||
cp_lexer_set_source_position (cp_lexer *lexer)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (lexer);
|
||
cp_lexer_set_source_position_from_token (token);
|
||
}
|
||
|
||
/* Return a pointer to the next token in the token stream, but do not
|
||
consume it. */
|
||
|
||
static inline cp_token *
|
||
cp_lexer_peek_token (cp_lexer *lexer)
|
||
{
|
||
if (cp_lexer_debugging_p (lexer))
|
||
{
|
||
fputs ("cp_lexer: peeking at token: ", cp_lexer_debug_stream);
|
||
cp_lexer_print_token (cp_lexer_debug_stream, lexer->next_token);
|
||
putc ('\n', cp_lexer_debug_stream);
|
||
}
|
||
return lexer->next_token;
|
||
}
|
||
|
||
/* Return true if the next token has the indicated TYPE. */
|
||
|
||
static inline bool
|
||
cp_lexer_next_token_is (cp_lexer* lexer, enum cpp_ttype type)
|
||
{
|
||
return cp_lexer_peek_token (lexer)->type == type;
|
||
}
|
||
|
||
/* Return true if the next token does not have the indicated TYPE. */
|
||
|
||
static inline bool
|
||
cp_lexer_next_token_is_not (cp_lexer* lexer, enum cpp_ttype type)
|
||
{
|
||
return !cp_lexer_next_token_is (lexer, type);
|
||
}
|
||
|
||
/* Return true if the next token is the indicated KEYWORD. */
|
||
|
||
static inline bool
|
||
cp_lexer_next_token_is_keyword (cp_lexer* lexer, enum rid keyword)
|
||
{
|
||
return cp_lexer_peek_token (lexer)->keyword == keyword;
|
||
}
|
||
|
||
static inline bool
|
||
cp_lexer_nth_token_is (cp_lexer* lexer, size_t n, enum cpp_ttype type)
|
||
{
|
||
return cp_lexer_peek_nth_token (lexer, n)->type == type;
|
||
}
|
||
|
||
static inline bool
|
||
cp_lexer_nth_token_is_keyword (cp_lexer* lexer, size_t n, enum rid keyword)
|
||
{
|
||
return cp_lexer_peek_nth_token (lexer, n)->keyword == keyword;
|
||
}
|
||
|
||
/* Return true if the next token is not the indicated KEYWORD. */
|
||
|
||
static inline bool
|
||
cp_lexer_next_token_is_not_keyword (cp_lexer* lexer, enum rid keyword)
|
||
{
|
||
return cp_lexer_peek_token (lexer)->keyword != keyword;
|
||
}
|
||
|
||
/* Return true if the next token is a keyword for a decl-specifier. */
|
||
|
||
static bool
|
||
cp_lexer_next_token_is_decl_specifier_keyword (cp_lexer *lexer)
|
||
{
|
||
cp_token *token;
|
||
|
||
token = cp_lexer_peek_token (lexer);
|
||
switch (token->keyword)
|
||
{
|
||
/* auto specifier: storage-class-specifier in C++,
|
||
simple-type-specifier in C++0x. */
|
||
case RID_AUTO:
|
||
/* Storage classes. */
|
||
case RID_REGISTER:
|
||
case RID_STATIC:
|
||
case RID_EXTERN:
|
||
case RID_MUTABLE:
|
||
case RID_THREAD:
|
||
/* Elaborated type specifiers. */
|
||
case RID_ENUM:
|
||
case RID_CLASS:
|
||
case RID_STRUCT:
|
||
case RID_UNION:
|
||
case RID_TYPENAME:
|
||
/* Simple type specifiers. */
|
||
case RID_CHAR:
|
||
case RID_CHAR16:
|
||
case RID_CHAR32:
|
||
case RID_WCHAR:
|
||
case RID_BOOL:
|
||
case RID_SHORT:
|
||
case RID_INT:
|
||
case RID_LONG:
|
||
case RID_INT128:
|
||
case RID_SIGNED:
|
||
case RID_UNSIGNED:
|
||
case RID_FLOAT:
|
||
case RID_DOUBLE:
|
||
case RID_VOID:
|
||
/* GNU extensions. */
|
||
case RID_ATTRIBUTE:
|
||
case RID_TYPEOF:
|
||
/* C++0x extensions. */
|
||
case RID_DECLTYPE:
|
||
case RID_UNDERLYING_TYPE:
|
||
return true;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Returns TRUE iff the token T begins a decltype type. */
|
||
|
||
static bool
|
||
token_is_decltype (cp_token *t)
|
||
{
|
||
return (t->keyword == RID_DECLTYPE
|
||
|| t->type == CPP_DECLTYPE);
|
||
}
|
||
|
||
/* Returns TRUE iff the next token begins a decltype type. */
|
||
|
||
static bool
|
||
cp_lexer_next_token_is_decltype (cp_lexer *lexer)
|
||
{
|
||
cp_token *t = cp_lexer_peek_token (lexer);
|
||
return token_is_decltype (t);
|
||
}
|
||
|
||
/* Return a pointer to the Nth token in the token stream. If N is 1,
|
||
then this is precisely equivalent to cp_lexer_peek_token (except
|
||
that it is not inline). One would like to disallow that case, but
|
||
there is one case (cp_parser_nth_token_starts_template_id) where
|
||
the caller passes a variable for N and it might be 1. */
|
||
|
||
static cp_token *
|
||
cp_lexer_peek_nth_token (cp_lexer* lexer, size_t n)
|
||
{
|
||
cp_token *token;
|
||
|
||
/* N is 1-based, not zero-based. */
|
||
gcc_assert (n > 0);
|
||
|
||
if (cp_lexer_debugging_p (lexer))
|
||
fprintf (cp_lexer_debug_stream,
|
||
"cp_lexer: peeking ahead %ld at token: ", (long)n);
|
||
|
||
--n;
|
||
token = lexer->next_token;
|
||
gcc_assert (!n || token != &eof_token);
|
||
while (n != 0)
|
||
{
|
||
++token;
|
||
if (token == lexer->last_token)
|
||
{
|
||
token = &eof_token;
|
||
break;
|
||
}
|
||
|
||
if (!token->purged_p)
|
||
--n;
|
||
}
|
||
|
||
if (cp_lexer_debugging_p (lexer))
|
||
{
|
||
cp_lexer_print_token (cp_lexer_debug_stream, token);
|
||
putc ('\n', cp_lexer_debug_stream);
|
||
}
|
||
|
||
return token;
|
||
}
|
||
|
||
/* Return the next token, and advance the lexer's next_token pointer
|
||
to point to the next non-purged token. */
|
||
|
||
static cp_token *
|
||
cp_lexer_consume_token (cp_lexer* lexer)
|
||
{
|
||
cp_token *token = lexer->next_token;
|
||
|
||
gcc_assert (token != &eof_token);
|
||
gcc_assert (!lexer->in_pragma || token->type != CPP_PRAGMA_EOL);
|
||
|
||
do
|
||
{
|
||
lexer->next_token++;
|
||
if (lexer->next_token == lexer->last_token)
|
||
{
|
||
lexer->next_token = &eof_token;
|
||
break;
|
||
}
|
||
|
||
}
|
||
while (lexer->next_token->purged_p);
|
||
|
||
cp_lexer_set_source_position_from_token (token);
|
||
|
||
/* Provide debugging output. */
|
||
if (cp_lexer_debugging_p (lexer))
|
||
{
|
||
fputs ("cp_lexer: consuming token: ", cp_lexer_debug_stream);
|
||
cp_lexer_print_token (cp_lexer_debug_stream, token);
|
||
putc ('\n', cp_lexer_debug_stream);
|
||
}
|
||
|
||
return token;
|
||
}
|
||
|
||
/* Permanently remove the next token from the token stream, and
|
||
advance the next_token pointer to refer to the next non-purged
|
||
token. */
|
||
|
||
static void
|
||
cp_lexer_purge_token (cp_lexer *lexer)
|
||
{
|
||
cp_token *tok = lexer->next_token;
|
||
|
||
gcc_assert (tok != &eof_token);
|
||
tok->purged_p = true;
|
||
tok->location = UNKNOWN_LOCATION;
|
||
tok->u.value = NULL_TREE;
|
||
tok->keyword = RID_MAX;
|
||
|
||
do
|
||
{
|
||
tok++;
|
||
if (tok == lexer->last_token)
|
||
{
|
||
tok = &eof_token;
|
||
break;
|
||
}
|
||
}
|
||
while (tok->purged_p);
|
||
lexer->next_token = tok;
|
||
}
|
||
|
||
/* Permanently remove all tokens after TOK, up to, but not
|
||
including, the token that will be returned next by
|
||
cp_lexer_peek_token. */
|
||
|
||
static void
|
||
cp_lexer_purge_tokens_after (cp_lexer *lexer, cp_token *tok)
|
||
{
|
||
cp_token *peek = lexer->next_token;
|
||
|
||
if (peek == &eof_token)
|
||
peek = lexer->last_token;
|
||
|
||
gcc_assert (tok < peek);
|
||
|
||
for ( tok += 1; tok != peek; tok += 1)
|
||
{
|
||
tok->purged_p = true;
|
||
tok->location = UNKNOWN_LOCATION;
|
||
tok->u.value = NULL_TREE;
|
||
tok->keyword = RID_MAX;
|
||
}
|
||
}
|
||
|
||
/* Begin saving tokens. All tokens consumed after this point will be
|
||
preserved. */
|
||
|
||
static void
|
||
cp_lexer_save_tokens (cp_lexer* lexer)
|
||
{
|
||
/* Provide debugging output. */
|
||
if (cp_lexer_debugging_p (lexer))
|
||
fprintf (cp_lexer_debug_stream, "cp_lexer: saving tokens\n");
|
||
|
||
lexer->saved_tokens.safe_push (lexer->next_token);
|
||
}
|
||
|
||
/* Commit to the portion of the token stream most recently saved. */
|
||
|
||
static void
|
||
cp_lexer_commit_tokens (cp_lexer* lexer)
|
||
{
|
||
/* Provide debugging output. */
|
||
if (cp_lexer_debugging_p (lexer))
|
||
fprintf (cp_lexer_debug_stream, "cp_lexer: committing tokens\n");
|
||
|
||
lexer->saved_tokens.pop ();
|
||
}
|
||
|
||
/* Return all tokens saved since the last call to cp_lexer_save_tokens
|
||
to the token stream. Stop saving tokens. */
|
||
|
||
static void
|
||
cp_lexer_rollback_tokens (cp_lexer* lexer)
|
||
{
|
||
/* Provide debugging output. */
|
||
if (cp_lexer_debugging_p (lexer))
|
||
fprintf (cp_lexer_debug_stream, "cp_lexer: restoring tokens\n");
|
||
|
||
lexer->next_token = lexer->saved_tokens.pop ();
|
||
}
|
||
|
||
/* Print a representation of the TOKEN on the STREAM. */
|
||
|
||
static void
|
||
cp_lexer_print_token (FILE * stream, cp_token *token)
|
||
{
|
||
/* We don't use cpp_type2name here because the parser defines
|
||
a few tokens of its own. */
|
||
static const char *const token_names[] = {
|
||
/* cpplib-defined token types */
|
||
#define OP(e, s) #e,
|
||
#define TK(e, s) #e,
|
||
TTYPE_TABLE
|
||
#undef OP
|
||
#undef TK
|
||
/* C++ parser token types - see "Manifest constants", above. */
|
||
"KEYWORD",
|
||
"TEMPLATE_ID",
|
||
"NESTED_NAME_SPECIFIER",
|
||
};
|
||
|
||
/* For some tokens, print the associated data. */
|
||
switch (token->type)
|
||
{
|
||
case CPP_KEYWORD:
|
||
/* Some keywords have a value that is not an IDENTIFIER_NODE.
|
||
For example, `struct' is mapped to an INTEGER_CST. */
|
||
if (!identifier_p (token->u.value))
|
||
break;
|
||
/* else fall through */
|
||
case CPP_NAME:
|
||
fputs (IDENTIFIER_POINTER (token->u.value), stream);
|
||
break;
|
||
|
||
case CPP_STRING:
|
||
case CPP_STRING16:
|
||
case CPP_STRING32:
|
||
case CPP_WSTRING:
|
||
case CPP_UTF8STRING:
|
||
fprintf (stream, " \"%s\"", TREE_STRING_POINTER (token->u.value));
|
||
break;
|
||
|
||
case CPP_NUMBER:
|
||
print_generic_expr (stream, token->u.value, 0);
|
||
break;
|
||
|
||
default:
|
||
/* If we have a name for the token, print it out. Otherwise, we
|
||
simply give the numeric code. */
|
||
if (token->type < ARRAY_SIZE(token_names))
|
||
fputs (token_names[token->type], stream);
|
||
else
|
||
fprintf (stream, "[%d]", token->type);
|
||
break;
|
||
}
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (cp_token &ref)
|
||
{
|
||
cp_lexer_print_token (stderr, &ref);
|
||
fprintf (stderr, "\n");
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (cp_token *ptr)
|
||
{
|
||
if (ptr)
|
||
debug (*ptr);
|
||
else
|
||
fprintf (stderr, "<nil>\n");
|
||
}
|
||
|
||
|
||
/* Start emitting debugging information. */
|
||
|
||
static void
|
||
cp_lexer_start_debugging (cp_lexer* lexer)
|
||
{
|
||
lexer->debugging_p = true;
|
||
cp_lexer_debug_stream = stderr;
|
||
}
|
||
|
||
/* Stop emitting debugging information. */
|
||
|
||
static void
|
||
cp_lexer_stop_debugging (cp_lexer* lexer)
|
||
{
|
||
lexer->debugging_p = false;
|
||
cp_lexer_debug_stream = NULL;
|
||
}
|
||
|
||
/* Create a new cp_token_cache, representing a range of tokens. */
|
||
|
||
static cp_token_cache *
|
||
cp_token_cache_new (cp_token *first, cp_token *last)
|
||
{
|
||
cp_token_cache *cache = ggc_alloc<cp_token_cache> ();
|
||
cache->first = first;
|
||
cache->last = last;
|
||
return cache;
|
||
}
|
||
|
||
/* Diagnose if #pragma omp declare simd isn't followed immediately
|
||
by function declaration or definition. */
|
||
|
||
static inline void
|
||
cp_ensure_no_omp_declare_simd (cp_parser *parser)
|
||
{
|
||
if (parser->omp_declare_simd && !parser->omp_declare_simd->error_seen)
|
||
{
|
||
error ("%<#pragma omp declare simd%> not immediately followed by "
|
||
"function declaration or definition");
|
||
parser->omp_declare_simd = NULL;
|
||
}
|
||
}
|
||
|
||
/* Finalize #pragma omp declare simd clauses after FNDECL has been parsed,
|
||
and put that into "omp declare simd" attribute. */
|
||
|
||
static inline void
|
||
cp_finalize_omp_declare_simd (cp_parser *parser, tree fndecl)
|
||
{
|
||
if (__builtin_expect (parser->omp_declare_simd != NULL, 0))
|
||
{
|
||
if (fndecl == error_mark_node)
|
||
{
|
||
parser->omp_declare_simd = NULL;
|
||
return;
|
||
}
|
||
if (TREE_CODE (fndecl) != FUNCTION_DECL)
|
||
{
|
||
cp_ensure_no_omp_declare_simd (parser);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Decl-specifiers. */
|
||
|
||
/* Set *DECL_SPECS to represent an empty decl-specifier-seq. */
|
||
|
||
static void
|
||
clear_decl_specs (cp_decl_specifier_seq *decl_specs)
|
||
{
|
||
memset (decl_specs, 0, sizeof (cp_decl_specifier_seq));
|
||
}
|
||
|
||
/* Declarators. */
|
||
|
||
/* Nothing other than the parser should be creating declarators;
|
||
declarators are a semi-syntactic representation of C++ entities.
|
||
Other parts of the front end that need to create entities (like
|
||
VAR_DECLs or FUNCTION_DECLs) should do that directly. */
|
||
|
||
static cp_declarator *make_call_declarator
|
||
(cp_declarator *, tree, cp_cv_quals, cp_virt_specifiers, cp_ref_qualifier, tree, tree);
|
||
static cp_declarator *make_array_declarator
|
||
(cp_declarator *, tree);
|
||
static cp_declarator *make_pointer_declarator
|
||
(cp_cv_quals, cp_declarator *, tree);
|
||
static cp_declarator *make_reference_declarator
|
||
(cp_cv_quals, cp_declarator *, bool, tree);
|
||
static cp_parameter_declarator *make_parameter_declarator
|
||
(cp_decl_specifier_seq *, cp_declarator *, tree);
|
||
static cp_declarator *make_ptrmem_declarator
|
||
(cp_cv_quals, tree, cp_declarator *, tree);
|
||
|
||
/* An erroneous declarator. */
|
||
static cp_declarator *cp_error_declarator;
|
||
|
||
/* The obstack on which declarators and related data structures are
|
||
allocated. */
|
||
static struct obstack declarator_obstack;
|
||
|
||
/* Alloc BYTES from the declarator memory pool. */
|
||
|
||
static inline void *
|
||
alloc_declarator (size_t bytes)
|
||
{
|
||
return obstack_alloc (&declarator_obstack, bytes);
|
||
}
|
||
|
||
/* Allocate a declarator of the indicated KIND. Clear fields that are
|
||
common to all declarators. */
|
||
|
||
static cp_declarator *
|
||
make_declarator (cp_declarator_kind kind)
|
||
{
|
||
cp_declarator *declarator;
|
||
|
||
declarator = (cp_declarator *) alloc_declarator (sizeof (cp_declarator));
|
||
declarator->kind = kind;
|
||
declarator->attributes = NULL_TREE;
|
||
declarator->std_attributes = NULL_TREE;
|
||
declarator->declarator = NULL;
|
||
declarator->parameter_pack_p = false;
|
||
declarator->id_loc = UNKNOWN_LOCATION;
|
||
|
||
return declarator;
|
||
}
|
||
|
||
/* Make a declarator for a generalized identifier. If
|
||
QUALIFYING_SCOPE is non-NULL, the identifier is
|
||
QUALIFYING_SCOPE::UNQUALIFIED_NAME; otherwise, it is just
|
||
UNQUALIFIED_NAME. SFK indicates the kind of special function this
|
||
is, if any. */
|
||
|
||
static cp_declarator *
|
||
make_id_declarator (tree qualifying_scope, tree unqualified_name,
|
||
special_function_kind sfk)
|
||
{
|
||
cp_declarator *declarator;
|
||
|
||
/* It is valid to write:
|
||
|
||
class C { void f(); };
|
||
typedef C D;
|
||
void D::f();
|
||
|
||
The standard is not clear about whether `typedef const C D' is
|
||
legal; as of 2002-09-15 the committee is considering that
|
||
question. EDG 3.0 allows that syntax. Therefore, we do as
|
||
well. */
|
||
if (qualifying_scope && TYPE_P (qualifying_scope))
|
||
qualifying_scope = TYPE_MAIN_VARIANT (qualifying_scope);
|
||
|
||
gcc_assert (identifier_p (unqualified_name)
|
||
|| TREE_CODE (unqualified_name) == BIT_NOT_EXPR
|
||
|| TREE_CODE (unqualified_name) == TEMPLATE_ID_EXPR);
|
||
|
||
declarator = make_declarator (cdk_id);
|
||
declarator->u.id.qualifying_scope = qualifying_scope;
|
||
declarator->u.id.unqualified_name = unqualified_name;
|
||
declarator->u.id.sfk = sfk;
|
||
|
||
return declarator;
|
||
}
|
||
|
||
/* Make a declarator for a pointer to TARGET. CV_QUALIFIERS is a list
|
||
of modifiers such as const or volatile to apply to the pointer
|
||
type, represented as identifiers. ATTRIBUTES represent the attributes that
|
||
appertain to the pointer or reference. */
|
||
|
||
cp_declarator *
|
||
make_pointer_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target,
|
||
tree attributes)
|
||
{
|
||
cp_declarator *declarator;
|
||
|
||
declarator = make_declarator (cdk_pointer);
|
||
declarator->declarator = target;
|
||
declarator->u.pointer.qualifiers = cv_qualifiers;
|
||
declarator->u.pointer.class_type = NULL_TREE;
|
||
if (target)
|
||
{
|
||
declarator->id_loc = target->id_loc;
|
||
declarator->parameter_pack_p = target->parameter_pack_p;
|
||
target->parameter_pack_p = false;
|
||
}
|
||
else
|
||
declarator->parameter_pack_p = false;
|
||
|
||
declarator->std_attributes = attributes;
|
||
|
||
return declarator;
|
||
}
|
||
|
||
/* Like make_pointer_declarator -- but for references. ATTRIBUTES
|
||
represent the attributes that appertain to the pointer or
|
||
reference. */
|
||
|
||
cp_declarator *
|
||
make_reference_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target,
|
||
bool rvalue_ref, tree attributes)
|
||
{
|
||
cp_declarator *declarator;
|
||
|
||
declarator = make_declarator (cdk_reference);
|
||
declarator->declarator = target;
|
||
declarator->u.reference.qualifiers = cv_qualifiers;
|
||
declarator->u.reference.rvalue_ref = rvalue_ref;
|
||
if (target)
|
||
{
|
||
declarator->id_loc = target->id_loc;
|
||
declarator->parameter_pack_p = target->parameter_pack_p;
|
||
target->parameter_pack_p = false;
|
||
}
|
||
else
|
||
declarator->parameter_pack_p = false;
|
||
|
||
declarator->std_attributes = attributes;
|
||
|
||
return declarator;
|
||
}
|
||
|
||
/* Like make_pointer_declarator -- but for a pointer to a non-static
|
||
member of CLASS_TYPE. ATTRIBUTES represent the attributes that
|
||
appertain to the pointer or reference. */
|
||
|
||
cp_declarator *
|
||
make_ptrmem_declarator (cp_cv_quals cv_qualifiers, tree class_type,
|
||
cp_declarator *pointee,
|
||
tree attributes)
|
||
{
|
||
cp_declarator *declarator;
|
||
|
||
declarator = make_declarator (cdk_ptrmem);
|
||
declarator->declarator = pointee;
|
||
declarator->u.pointer.qualifiers = cv_qualifiers;
|
||
declarator->u.pointer.class_type = class_type;
|
||
|
||
if (pointee)
|
||
{
|
||
declarator->parameter_pack_p = pointee->parameter_pack_p;
|
||
pointee->parameter_pack_p = false;
|
||
}
|
||
else
|
||
declarator->parameter_pack_p = false;
|
||
|
||
declarator->std_attributes = attributes;
|
||
|
||
return declarator;
|
||
}
|
||
|
||
/* Make a declarator for the function given by TARGET, with the
|
||
indicated PARMS. The CV_QUALIFIERS aply to the function, as in
|
||
"const"-qualified member function. The EXCEPTION_SPECIFICATION
|
||
indicates what exceptions can be thrown. */
|
||
|
||
cp_declarator *
|
||
make_call_declarator (cp_declarator *target,
|
||
tree parms,
|
||
cp_cv_quals cv_qualifiers,
|
||
cp_virt_specifiers virt_specifiers,
|
||
cp_ref_qualifier ref_qualifier,
|
||
tree exception_specification,
|
||
tree late_return_type)
|
||
{
|
||
cp_declarator *declarator;
|
||
|
||
declarator = make_declarator (cdk_function);
|
||
declarator->declarator = target;
|
||
declarator->u.function.parameters = parms;
|
||
declarator->u.function.qualifiers = cv_qualifiers;
|
||
declarator->u.function.virt_specifiers = virt_specifiers;
|
||
declarator->u.function.ref_qualifier = ref_qualifier;
|
||
declarator->u.function.exception_specification = exception_specification;
|
||
declarator->u.function.late_return_type = late_return_type;
|
||
if (target)
|
||
{
|
||
declarator->id_loc = target->id_loc;
|
||
declarator->parameter_pack_p = target->parameter_pack_p;
|
||
target->parameter_pack_p = false;
|
||
}
|
||
else
|
||
declarator->parameter_pack_p = false;
|
||
|
||
return declarator;
|
||
}
|
||
|
||
/* Make a declarator for an array of BOUNDS elements, each of which is
|
||
defined by ELEMENT. */
|
||
|
||
cp_declarator *
|
||
make_array_declarator (cp_declarator *element, tree bounds)
|
||
{
|
||
cp_declarator *declarator;
|
||
|
||
declarator = make_declarator (cdk_array);
|
||
declarator->declarator = element;
|
||
declarator->u.array.bounds = bounds;
|
||
if (element)
|
||
{
|
||
declarator->id_loc = element->id_loc;
|
||
declarator->parameter_pack_p = element->parameter_pack_p;
|
||
element->parameter_pack_p = false;
|
||
}
|
||
else
|
||
declarator->parameter_pack_p = false;
|
||
|
||
return declarator;
|
||
}
|
||
|
||
/* Determine whether the declarator we've seen so far can be a
|
||
parameter pack, when followed by an ellipsis. */
|
||
static bool
|
||
declarator_can_be_parameter_pack (cp_declarator *declarator)
|
||
{
|
||
/* Search for a declarator name, or any other declarator that goes
|
||
after the point where the ellipsis could appear in a parameter
|
||
pack. If we find any of these, then this declarator can not be
|
||
made into a parameter pack. */
|
||
bool found = false;
|
||
while (declarator && !found)
|
||
{
|
||
switch ((int)declarator->kind)
|
||
{
|
||
case cdk_id:
|
||
case cdk_array:
|
||
found = true;
|
||
break;
|
||
|
||
case cdk_error:
|
||
return true;
|
||
|
||
default:
|
||
declarator = declarator->declarator;
|
||
break;
|
||
}
|
||
}
|
||
|
||
return !found;
|
||
}
|
||
|
||
cp_parameter_declarator *no_parameters;
|
||
|
||
/* Create a parameter declarator with the indicated DECL_SPECIFIERS,
|
||
DECLARATOR and DEFAULT_ARGUMENT. */
|
||
|
||
cp_parameter_declarator *
|
||
make_parameter_declarator (cp_decl_specifier_seq *decl_specifiers,
|
||
cp_declarator *declarator,
|
||
tree default_argument)
|
||
{
|
||
cp_parameter_declarator *parameter;
|
||
|
||
parameter = ((cp_parameter_declarator *)
|
||
alloc_declarator (sizeof (cp_parameter_declarator)));
|
||
parameter->next = NULL;
|
||
if (decl_specifiers)
|
||
parameter->decl_specifiers = *decl_specifiers;
|
||
else
|
||
clear_decl_specs (¶meter->decl_specifiers);
|
||
parameter->declarator = declarator;
|
||
parameter->default_argument = default_argument;
|
||
parameter->ellipsis_p = false;
|
||
|
||
return parameter;
|
||
}
|
||
|
||
/* Returns true iff DECLARATOR is a declaration for a function. */
|
||
|
||
static bool
|
||
function_declarator_p (const cp_declarator *declarator)
|
||
{
|
||
while (declarator)
|
||
{
|
||
if (declarator->kind == cdk_function
|
||
&& declarator->declarator->kind == cdk_id)
|
||
return true;
|
||
if (declarator->kind == cdk_id
|
||
|| declarator->kind == cdk_error)
|
||
return false;
|
||
declarator = declarator->declarator;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* The parser. */
|
||
|
||
/* Overview
|
||
--------
|
||
|
||
A cp_parser parses the token stream as specified by the C++
|
||
grammar. Its job is purely parsing, not semantic analysis. For
|
||
example, the parser breaks the token stream into declarators,
|
||
expressions, statements, and other similar syntactic constructs.
|
||
It does not check that the types of the expressions on either side
|
||
of an assignment-statement are compatible, or that a function is
|
||
not declared with a parameter of type `void'.
|
||
|
||
The parser invokes routines elsewhere in the compiler to perform
|
||
semantic analysis and to build up the abstract syntax tree for the
|
||
code processed.
|
||
|
||
The parser (and the template instantiation code, which is, in a
|
||
way, a close relative of parsing) are the only parts of the
|
||
compiler that should be calling push_scope and pop_scope, or
|
||
related functions. The parser (and template instantiation code)
|
||
keeps track of what scope is presently active; everything else
|
||
should simply honor that. (The code that generates static
|
||
initializers may also need to set the scope, in order to check
|
||
access control correctly when emitting the initializers.)
|
||
|
||
Methodology
|
||
-----------
|
||
|
||
The parser is of the standard recursive-descent variety. Upcoming
|
||
tokens in the token stream are examined in order to determine which
|
||
production to use when parsing a non-terminal. Some C++ constructs
|
||
require arbitrary look ahead to disambiguate. For example, it is
|
||
impossible, in the general case, to tell whether a statement is an
|
||
expression or declaration without scanning the entire statement.
|
||
Therefore, the parser is capable of "parsing tentatively." When the
|
||
parser is not sure what construct comes next, it enters this mode.
|
||
Then, while we attempt to parse the construct, the parser queues up
|
||
error messages, rather than issuing them immediately, and saves the
|
||
tokens it consumes. If the construct is parsed successfully, the
|
||
parser "commits", i.e., it issues any queued error messages and
|
||
the tokens that were being preserved are permanently discarded.
|
||
If, however, the construct is not parsed successfully, the parser
|
||
rolls back its state completely so that it can resume parsing using
|
||
a different alternative.
|
||
|
||
Future Improvements
|
||
-------------------
|
||
|
||
The performance of the parser could probably be improved substantially.
|
||
We could often eliminate the need to parse tentatively by looking ahead
|
||
a little bit. In some places, this approach might not entirely eliminate
|
||
the need to parse tentatively, but it might still speed up the average
|
||
case. */
|
||
|
||
/* Flags that are passed to some parsing functions. These values can
|
||
be bitwise-ored together. */
|
||
|
||
enum
|
||
{
|
||
/* No flags. */
|
||
CP_PARSER_FLAGS_NONE = 0x0,
|
||
/* The construct is optional. If it is not present, then no error
|
||
should be issued. */
|
||
CP_PARSER_FLAGS_OPTIONAL = 0x1,
|
||
/* When parsing a type-specifier, treat user-defined type-names
|
||
as non-type identifiers. */
|
||
CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES = 0x2,
|
||
/* When parsing a type-specifier, do not try to parse a class-specifier
|
||
or enum-specifier. */
|
||
CP_PARSER_FLAGS_NO_TYPE_DEFINITIONS = 0x4,
|
||
/* When parsing a decl-specifier-seq, only allow type-specifier or
|
||
constexpr. */
|
||
CP_PARSER_FLAGS_ONLY_TYPE_OR_CONSTEXPR = 0x8
|
||
};
|
||
|
||
/* This type is used for parameters and variables which hold
|
||
combinations of the above flags. */
|
||
typedef int cp_parser_flags;
|
||
|
||
/* The different kinds of declarators we want to parse. */
|
||
|
||
typedef enum cp_parser_declarator_kind
|
||
{
|
||
/* We want an abstract declarator. */
|
||
CP_PARSER_DECLARATOR_ABSTRACT,
|
||
/* We want a named declarator. */
|
||
CP_PARSER_DECLARATOR_NAMED,
|
||
/* We don't mind, but the name must be an unqualified-id. */
|
||
CP_PARSER_DECLARATOR_EITHER
|
||
} cp_parser_declarator_kind;
|
||
|
||
/* The precedence values used to parse binary expressions. The minimum value
|
||
of PREC must be 1, because zero is reserved to quickly discriminate
|
||
binary operators from other tokens. */
|
||
|
||
enum cp_parser_prec
|
||
{
|
||
PREC_NOT_OPERATOR,
|
||
PREC_LOGICAL_OR_EXPRESSION,
|
||
PREC_LOGICAL_AND_EXPRESSION,
|
||
PREC_INCLUSIVE_OR_EXPRESSION,
|
||
PREC_EXCLUSIVE_OR_EXPRESSION,
|
||
PREC_AND_EXPRESSION,
|
||
PREC_EQUALITY_EXPRESSION,
|
||
PREC_RELATIONAL_EXPRESSION,
|
||
PREC_SHIFT_EXPRESSION,
|
||
PREC_ADDITIVE_EXPRESSION,
|
||
PREC_MULTIPLICATIVE_EXPRESSION,
|
||
PREC_PM_EXPRESSION,
|
||
NUM_PREC_VALUES = PREC_PM_EXPRESSION
|
||
};
|
||
|
||
/* A mapping from a token type to a corresponding tree node type, with a
|
||
precedence value. */
|
||
|
||
typedef struct cp_parser_binary_operations_map_node
|
||
{
|
||
/* The token type. */
|
||
enum cpp_ttype token_type;
|
||
/* The corresponding tree code. */
|
||
enum tree_code tree_type;
|
||
/* The precedence of this operator. */
|
||
enum cp_parser_prec prec;
|
||
} cp_parser_binary_operations_map_node;
|
||
|
||
typedef struct cp_parser_expression_stack_entry
|
||
{
|
||
/* Left hand side of the binary operation we are currently
|
||
parsing. */
|
||
tree lhs;
|
||
/* Original tree code for left hand side, if it was a binary
|
||
expression itself (used for -Wparentheses). */
|
||
enum tree_code lhs_type;
|
||
/* Tree code for the binary operation we are parsing. */
|
||
enum tree_code tree_type;
|
||
/* Precedence of the binary operation we are parsing. */
|
||
enum cp_parser_prec prec;
|
||
/* Location of the binary operation we are parsing. */
|
||
location_t loc;
|
||
} cp_parser_expression_stack_entry;
|
||
|
||
/* The stack for storing partial expressions. We only need NUM_PREC_VALUES
|
||
entries because precedence levels on the stack are monotonically
|
||
increasing. */
|
||
typedef struct cp_parser_expression_stack_entry
|
||
cp_parser_expression_stack[NUM_PREC_VALUES];
|
||
|
||
/* Prototypes. */
|
||
|
||
/* Constructors and destructors. */
|
||
|
||
static cp_parser_context *cp_parser_context_new
|
||
(cp_parser_context *);
|
||
|
||
/* Class variables. */
|
||
|
||
static GTY((deletable)) cp_parser_context* cp_parser_context_free_list;
|
||
|
||
/* The operator-precedence table used by cp_parser_binary_expression.
|
||
Transformed into an associative array (binops_by_token) by
|
||
cp_parser_new. */
|
||
|
||
static const cp_parser_binary_operations_map_node binops[] = {
|
||
{ CPP_DEREF_STAR, MEMBER_REF, PREC_PM_EXPRESSION },
|
||
{ CPP_DOT_STAR, DOTSTAR_EXPR, PREC_PM_EXPRESSION },
|
||
|
||
{ CPP_MULT, MULT_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
|
||
{ CPP_DIV, TRUNC_DIV_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
|
||
{ CPP_MOD, TRUNC_MOD_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
|
||
|
||
{ CPP_PLUS, PLUS_EXPR, PREC_ADDITIVE_EXPRESSION },
|
||
{ CPP_MINUS, MINUS_EXPR, PREC_ADDITIVE_EXPRESSION },
|
||
|
||
{ CPP_LSHIFT, LSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
|
||
{ CPP_RSHIFT, RSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
|
||
|
||
{ CPP_LESS, LT_EXPR, PREC_RELATIONAL_EXPRESSION },
|
||
{ CPP_GREATER, GT_EXPR, PREC_RELATIONAL_EXPRESSION },
|
||
{ CPP_LESS_EQ, LE_EXPR, PREC_RELATIONAL_EXPRESSION },
|
||
{ CPP_GREATER_EQ, GE_EXPR, PREC_RELATIONAL_EXPRESSION },
|
||
|
||
{ CPP_EQ_EQ, EQ_EXPR, PREC_EQUALITY_EXPRESSION },
|
||
{ CPP_NOT_EQ, NE_EXPR, PREC_EQUALITY_EXPRESSION },
|
||
|
||
{ CPP_AND, BIT_AND_EXPR, PREC_AND_EXPRESSION },
|
||
|
||
{ CPP_XOR, BIT_XOR_EXPR, PREC_EXCLUSIVE_OR_EXPRESSION },
|
||
|
||
{ CPP_OR, BIT_IOR_EXPR, PREC_INCLUSIVE_OR_EXPRESSION },
|
||
|
||
{ CPP_AND_AND, TRUTH_ANDIF_EXPR, PREC_LOGICAL_AND_EXPRESSION },
|
||
|
||
{ CPP_OR_OR, TRUTH_ORIF_EXPR, PREC_LOGICAL_OR_EXPRESSION }
|
||
};
|
||
|
||
/* The same as binops, but initialized by cp_parser_new so that
|
||
binops_by_token[N].token_type == N. Used in cp_parser_binary_expression
|
||
for speed. */
|
||
static cp_parser_binary_operations_map_node binops_by_token[N_CP_TTYPES];
|
||
|
||
/* Constructors and destructors. */
|
||
|
||
/* Construct a new context. The context below this one on the stack
|
||
is given by NEXT. */
|
||
|
||
static cp_parser_context *
|
||
cp_parser_context_new (cp_parser_context* next)
|
||
{
|
||
cp_parser_context *context;
|
||
|
||
/* Allocate the storage. */
|
||
if (cp_parser_context_free_list != NULL)
|
||
{
|
||
/* Pull the first entry from the free list. */
|
||
context = cp_parser_context_free_list;
|
||
cp_parser_context_free_list = context->next;
|
||
memset (context, 0, sizeof (*context));
|
||
}
|
||
else
|
||
context = ggc_cleared_alloc<cp_parser_context> ();
|
||
|
||
/* No errors have occurred yet in this context. */
|
||
context->status = CP_PARSER_STATUS_KIND_NO_ERROR;
|
||
/* If this is not the bottommost context, copy information that we
|
||
need from the previous context. */
|
||
if (next)
|
||
{
|
||
/* If, in the NEXT context, we are parsing an `x->' or `x.'
|
||
expression, then we are parsing one in this context, too. */
|
||
context->object_type = next->object_type;
|
||
/* Thread the stack. */
|
||
context->next = next;
|
||
}
|
||
|
||
return context;
|
||
}
|
||
|
||
/* Managing the unparsed function queues. */
|
||
|
||
#define unparsed_funs_with_default_args \
|
||
parser->unparsed_queues->last ().funs_with_default_args
|
||
#define unparsed_funs_with_definitions \
|
||
parser->unparsed_queues->last ().funs_with_definitions
|
||
#define unparsed_nsdmis \
|
||
parser->unparsed_queues->last ().nsdmis
|
||
#define unparsed_classes \
|
||
parser->unparsed_queues->last ().classes
|
||
|
||
static void
|
||
push_unparsed_function_queues (cp_parser *parser)
|
||
{
|
||
cp_unparsed_functions_entry e = {NULL, make_tree_vector (), NULL, NULL};
|
||
vec_safe_push (parser->unparsed_queues, e);
|
||
}
|
||
|
||
static void
|
||
pop_unparsed_function_queues (cp_parser *parser)
|
||
{
|
||
release_tree_vector (unparsed_funs_with_definitions);
|
||
parser->unparsed_queues->pop ();
|
||
}
|
||
|
||
/* Prototypes. */
|
||
|
||
/* Constructors and destructors. */
|
||
|
||
static cp_parser *cp_parser_new
|
||
(void);
|
||
|
||
/* Routines to parse various constructs.
|
||
|
||
Those that return `tree' will return the error_mark_node (rather
|
||
than NULL_TREE) if a parse error occurs, unless otherwise noted.
|
||
Sometimes, they will return an ordinary node if error-recovery was
|
||
attempted, even though a parse error occurred. So, to check
|
||
whether or not a parse error occurred, you should always use
|
||
cp_parser_error_occurred. If the construct is optional (indicated
|
||
either by an `_opt' in the name of the function that does the
|
||
parsing or via a FLAGS parameter), then NULL_TREE is returned if
|
||
the construct is not present. */
|
||
|
||
/* Lexical conventions [gram.lex] */
|
||
|
||
static tree cp_parser_identifier
|
||
(cp_parser *);
|
||
static tree cp_parser_string_literal
|
||
(cp_parser *, bool, bool, bool);
|
||
static tree cp_parser_userdef_char_literal
|
||
(cp_parser *);
|
||
static tree cp_parser_userdef_string_literal
|
||
(tree);
|
||
static tree cp_parser_userdef_numeric_literal
|
||
(cp_parser *);
|
||
|
||
/* Basic concepts [gram.basic] */
|
||
|
||
static bool cp_parser_translation_unit
|
||
(cp_parser *);
|
||
|
||
/* Expressions [gram.expr] */
|
||
|
||
static tree cp_parser_primary_expression
|
||
(cp_parser *, bool, bool, bool, cp_id_kind *);
|
||
static tree cp_parser_id_expression
|
||
(cp_parser *, bool, bool, bool *, bool, bool);
|
||
static tree cp_parser_unqualified_id
|
||
(cp_parser *, bool, bool, bool, bool);
|
||
static tree cp_parser_nested_name_specifier_opt
|
||
(cp_parser *, bool, bool, bool, bool);
|
||
static tree cp_parser_nested_name_specifier
|
||
(cp_parser *, bool, bool, bool, bool);
|
||
static tree cp_parser_qualifying_entity
|
||
(cp_parser *, bool, bool, bool, bool, bool);
|
||
static tree cp_parser_postfix_expression
|
||
(cp_parser *, bool, bool, bool, bool, cp_id_kind *);
|
||
static tree cp_parser_postfix_open_square_expression
|
||
(cp_parser *, tree, bool, bool);
|
||
static tree cp_parser_postfix_dot_deref_expression
|
||
(cp_parser *, enum cpp_ttype, tree, bool, cp_id_kind *, location_t);
|
||
static vec<tree, va_gc> *cp_parser_parenthesized_expression_list
|
||
(cp_parser *, int, bool, bool, bool *, bool = false);
|
||
/* Values for the second parameter of cp_parser_parenthesized_expression_list. */
|
||
enum { non_attr = 0, normal_attr = 1, id_attr = 2 };
|
||
static void cp_parser_pseudo_destructor_name
|
||
(cp_parser *, tree, tree *, tree *);
|
||
static tree cp_parser_unary_expression
|
||
(cp_parser *, bool, bool, cp_id_kind *);
|
||
static enum tree_code cp_parser_unary_operator
|
||
(cp_token *);
|
||
static tree cp_parser_new_expression
|
||
(cp_parser *);
|
||
static vec<tree, va_gc> *cp_parser_new_placement
|
||
(cp_parser *);
|
||
static tree cp_parser_new_type_id
|
||
(cp_parser *, tree *);
|
||
static cp_declarator *cp_parser_new_declarator_opt
|
||
(cp_parser *);
|
||
static cp_declarator *cp_parser_direct_new_declarator
|
||
(cp_parser *);
|
||
static vec<tree, va_gc> *cp_parser_new_initializer
|
||
(cp_parser *);
|
||
static tree cp_parser_delete_expression
|
||
(cp_parser *);
|
||
static tree cp_parser_cast_expression
|
||
(cp_parser *, bool, bool, bool, cp_id_kind *);
|
||
static tree cp_parser_binary_expression
|
||
(cp_parser *, bool, bool, enum cp_parser_prec, cp_id_kind *);
|
||
static tree cp_parser_question_colon_clause
|
||
(cp_parser *, tree);
|
||
static tree cp_parser_assignment_expression
|
||
(cp_parser *, bool, cp_id_kind *);
|
||
static enum tree_code cp_parser_assignment_operator_opt
|
||
(cp_parser *);
|
||
static tree cp_parser_expression
|
||
(cp_parser *, bool, cp_id_kind *);
|
||
static tree cp_parser_expression
|
||
(cp_parser *, bool, bool, cp_id_kind *);
|
||
static tree cp_parser_constant_expression
|
||
(cp_parser *, bool, bool *);
|
||
static tree cp_parser_builtin_offsetof
|
||
(cp_parser *);
|
||
static tree cp_parser_lambda_expression
|
||
(cp_parser *);
|
||
static void cp_parser_lambda_introducer
|
||
(cp_parser *, tree);
|
||
static bool cp_parser_lambda_declarator_opt
|
||
(cp_parser *, tree);
|
||
static void cp_parser_lambda_body
|
||
(cp_parser *, tree);
|
||
|
||
/* Statements [gram.stmt.stmt] */
|
||
|
||
static void cp_parser_statement
|
||
(cp_parser *, tree, bool, bool *);
|
||
static void cp_parser_label_for_labeled_statement
|
||
(cp_parser *, tree);
|
||
static tree cp_parser_expression_statement
|
||
(cp_parser *, tree);
|
||
static tree cp_parser_compound_statement
|
||
(cp_parser *, tree, bool, bool);
|
||
static void cp_parser_statement_seq_opt
|
||
(cp_parser *, tree);
|
||
static tree cp_parser_selection_statement
|
||
(cp_parser *, bool *);
|
||
static tree cp_parser_condition
|
||
(cp_parser *);
|
||
static tree cp_parser_iteration_statement
|
||
(cp_parser *, bool);
|
||
static bool cp_parser_for_init_statement
|
||
(cp_parser *, tree *decl);
|
||
static tree cp_parser_for
|
||
(cp_parser *, bool);
|
||
static tree cp_parser_c_for
|
||
(cp_parser *, tree, tree, bool);
|
||
static tree cp_parser_range_for
|
||
(cp_parser *, tree, tree, tree, bool);
|
||
static void do_range_for_auto_deduction
|
||
(tree, tree);
|
||
static tree cp_parser_perform_range_for_lookup
|
||
(tree, tree *, tree *);
|
||
static tree cp_parser_range_for_member_function
|
||
(tree, tree);
|
||
static tree cp_parser_jump_statement
|
||
(cp_parser *);
|
||
static void cp_parser_declaration_statement
|
||
(cp_parser *);
|
||
|
||
static tree cp_parser_implicitly_scoped_statement
|
||
(cp_parser *, bool *);
|
||
static void cp_parser_already_scoped_statement
|
||
(cp_parser *);
|
||
|
||
/* Declarations [gram.dcl.dcl] */
|
||
|
||
static void cp_parser_declaration_seq_opt
|
||
(cp_parser *);
|
||
static void cp_parser_declaration
|
||
(cp_parser *);
|
||
static void cp_parser_block_declaration
|
||
(cp_parser *, bool);
|
||
static void cp_parser_simple_declaration
|
||
(cp_parser *, bool, tree *);
|
||
static void cp_parser_decl_specifier_seq
|
||
(cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, int *);
|
||
static tree cp_parser_storage_class_specifier_opt
|
||
(cp_parser *);
|
||
static tree cp_parser_function_specifier_opt
|
||
(cp_parser *, cp_decl_specifier_seq *);
|
||
static tree cp_parser_type_specifier
|
||
(cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, bool,
|
||
int *, bool *);
|
||
static tree cp_parser_simple_type_specifier
|
||
(cp_parser *, cp_decl_specifier_seq *, cp_parser_flags);
|
||
static tree cp_parser_type_name
|
||
(cp_parser *);
|
||
static tree cp_parser_nonclass_name
|
||
(cp_parser* parser);
|
||
static tree cp_parser_elaborated_type_specifier
|
||
(cp_parser *, bool, bool);
|
||
static tree cp_parser_enum_specifier
|
||
(cp_parser *);
|
||
static void cp_parser_enumerator_list
|
||
(cp_parser *, tree);
|
||
static void cp_parser_enumerator_definition
|
||
(cp_parser *, tree);
|
||
static tree cp_parser_namespace_name
|
||
(cp_parser *);
|
||
static void cp_parser_namespace_definition
|
||
(cp_parser *);
|
||
static void cp_parser_namespace_body
|
||
(cp_parser *);
|
||
static tree cp_parser_qualified_namespace_specifier
|
||
(cp_parser *);
|
||
static void cp_parser_namespace_alias_definition
|
||
(cp_parser *);
|
||
static bool cp_parser_using_declaration
|
||
(cp_parser *, bool);
|
||
static void cp_parser_using_directive
|
||
(cp_parser *);
|
||
static tree cp_parser_alias_declaration
|
||
(cp_parser *);
|
||
static void cp_parser_asm_definition
|
||
(cp_parser *);
|
||
static void cp_parser_linkage_specification
|
||
(cp_parser *);
|
||
static void cp_parser_static_assert
|
||
(cp_parser *, bool);
|
||
static tree cp_parser_decltype
|
||
(cp_parser *);
|
||
|
||
/* Declarators [gram.dcl.decl] */
|
||
|
||
static tree cp_parser_init_declarator
|
||
(cp_parser *, cp_decl_specifier_seq *, vec<deferred_access_check, va_gc> *, bool, bool, int, bool *, tree *);
|
||
static cp_declarator *cp_parser_declarator
|
||
(cp_parser *, cp_parser_declarator_kind, int *, bool *, bool, bool);
|
||
static cp_declarator *cp_parser_direct_declarator
|
||
(cp_parser *, cp_parser_declarator_kind, int *, bool, bool);
|
||
static enum tree_code cp_parser_ptr_operator
|
||
(cp_parser *, tree *, cp_cv_quals *, tree *);
|
||
static cp_cv_quals cp_parser_cv_qualifier_seq_opt
|
||
(cp_parser *);
|
||
static cp_virt_specifiers cp_parser_virt_specifier_seq_opt
|
||
(cp_parser *);
|
||
static cp_ref_qualifier cp_parser_ref_qualifier_opt
|
||
(cp_parser *);
|
||
static tree cp_parser_late_return_type_opt
|
||
(cp_parser *, cp_declarator *, cp_cv_quals);
|
||
static tree cp_parser_declarator_id
|
||
(cp_parser *, bool);
|
||
static tree cp_parser_type_id
|
||
(cp_parser *);
|
||
static tree cp_parser_template_type_arg
|
||
(cp_parser *);
|
||
static tree cp_parser_trailing_type_id (cp_parser *);
|
||
static tree cp_parser_type_id_1
|
||
(cp_parser *, bool, bool);
|
||
static void cp_parser_type_specifier_seq
|
||
(cp_parser *, bool, bool, cp_decl_specifier_seq *);
|
||
static tree cp_parser_parameter_declaration_clause
|
||
(cp_parser *);
|
||
static tree cp_parser_parameter_declaration_list
|
||
(cp_parser *, bool *);
|
||
static cp_parameter_declarator *cp_parser_parameter_declaration
|
||
(cp_parser *, bool, bool *);
|
||
static tree cp_parser_default_argument
|
||
(cp_parser *, bool);
|
||
static void cp_parser_function_body
|
||
(cp_parser *, bool);
|
||
static tree cp_parser_initializer
|
||
(cp_parser *, bool *, bool *);
|
||
static tree cp_parser_initializer_clause
|
||
(cp_parser *, bool *);
|
||
static tree cp_parser_braced_list
|
||
(cp_parser*, bool*);
|
||
static vec<constructor_elt, va_gc> *cp_parser_initializer_list
|
||
(cp_parser *, bool *);
|
||
|
||
static bool cp_parser_ctor_initializer_opt_and_function_body
|
||
(cp_parser *, bool);
|
||
|
||
static tree cp_parser_late_parsing_omp_declare_simd
|
||
(cp_parser *, tree);
|
||
|
||
static tree cp_parser_late_parsing_cilk_simd_fn_info
|
||
(cp_parser *, tree);
|
||
|
||
static tree synthesize_implicit_template_parm
|
||
(cp_parser *);
|
||
static tree finish_fully_implicit_template
|
||
(cp_parser *, tree);
|
||
|
||
/* Classes [gram.class] */
|
||
|
||
static tree cp_parser_class_name
|
||
(cp_parser *, bool, bool, enum tag_types, bool, bool, bool);
|
||
static tree cp_parser_class_specifier
|
||
(cp_parser *);
|
||
static tree cp_parser_class_head
|
||
(cp_parser *, bool *);
|
||
static enum tag_types cp_parser_class_key
|
||
(cp_parser *);
|
||
static void cp_parser_type_parameter_key
|
||
(cp_parser* parser);
|
||
static void cp_parser_member_specification_opt
|
||
(cp_parser *);
|
||
static void cp_parser_member_declaration
|
||
(cp_parser *);
|
||
static tree cp_parser_pure_specifier
|
||
(cp_parser *);
|
||
static tree cp_parser_constant_initializer
|
||
(cp_parser *);
|
||
|
||
/* Derived classes [gram.class.derived] */
|
||
|
||
static tree cp_parser_base_clause
|
||
(cp_parser *);
|
||
static tree cp_parser_base_specifier
|
||
(cp_parser *);
|
||
|
||
/* Special member functions [gram.special] */
|
||
|
||
static tree cp_parser_conversion_function_id
|
||
(cp_parser *);
|
||
static tree cp_parser_conversion_type_id
|
||
(cp_parser *);
|
||
static cp_declarator *cp_parser_conversion_declarator_opt
|
||
(cp_parser *);
|
||
static bool cp_parser_ctor_initializer_opt
|
||
(cp_parser *);
|
||
static void cp_parser_mem_initializer_list
|
||
(cp_parser *);
|
||
static tree cp_parser_mem_initializer
|
||
(cp_parser *);
|
||
static tree cp_parser_mem_initializer_id
|
||
(cp_parser *);
|
||
|
||
/* Overloading [gram.over] */
|
||
|
||
static tree cp_parser_operator_function_id
|
||
(cp_parser *);
|
||
static tree cp_parser_operator
|
||
(cp_parser *);
|
||
|
||
/* Templates [gram.temp] */
|
||
|
||
static void cp_parser_template_declaration
|
||
(cp_parser *, bool);
|
||
static tree cp_parser_template_parameter_list
|
||
(cp_parser *);
|
||
static tree cp_parser_template_parameter
|
||
(cp_parser *, bool *, bool *);
|
||
static tree cp_parser_type_parameter
|
||
(cp_parser *, bool *);
|
||
static tree cp_parser_template_id
|
||
(cp_parser *, bool, bool, enum tag_types, bool);
|
||
static tree cp_parser_template_name
|
||
(cp_parser *, bool, bool, bool, enum tag_types, bool *);
|
||
static tree cp_parser_template_argument_list
|
||
(cp_parser *);
|
||
static tree cp_parser_template_argument
|
||
(cp_parser *);
|
||
static void cp_parser_explicit_instantiation
|
||
(cp_parser *);
|
||
static void cp_parser_explicit_specialization
|
||
(cp_parser *);
|
||
|
||
/* Exception handling [gram.exception] */
|
||
|
||
static tree cp_parser_try_block
|
||
(cp_parser *);
|
||
static bool cp_parser_function_try_block
|
||
(cp_parser *);
|
||
static void cp_parser_handler_seq
|
||
(cp_parser *);
|
||
static void cp_parser_handler
|
||
(cp_parser *);
|
||
static tree cp_parser_exception_declaration
|
||
(cp_parser *);
|
||
static tree cp_parser_throw_expression
|
||
(cp_parser *);
|
||
static tree cp_parser_exception_specification_opt
|
||
(cp_parser *);
|
||
static tree cp_parser_type_id_list
|
||
(cp_parser *);
|
||
|
||
/* GNU Extensions */
|
||
|
||
static tree cp_parser_asm_specification_opt
|
||
(cp_parser *);
|
||
static tree cp_parser_asm_operand_list
|
||
(cp_parser *);
|
||
static tree cp_parser_asm_clobber_list
|
||
(cp_parser *);
|
||
static tree cp_parser_asm_label_list
|
||
(cp_parser *);
|
||
static bool cp_next_tokens_can_be_attribute_p
|
||
(cp_parser *);
|
||
static bool cp_next_tokens_can_be_gnu_attribute_p
|
||
(cp_parser *);
|
||
static bool cp_next_tokens_can_be_std_attribute_p
|
||
(cp_parser *);
|
||
static bool cp_nth_tokens_can_be_std_attribute_p
|
||
(cp_parser *, size_t);
|
||
static bool cp_nth_tokens_can_be_gnu_attribute_p
|
||
(cp_parser *, size_t);
|
||
static bool cp_nth_tokens_can_be_attribute_p
|
||
(cp_parser *, size_t);
|
||
static tree cp_parser_attributes_opt
|
||
(cp_parser *);
|
||
static tree cp_parser_gnu_attributes_opt
|
||
(cp_parser *);
|
||
static tree cp_parser_gnu_attribute_list
|
||
(cp_parser *);
|
||
static tree cp_parser_std_attribute
|
||
(cp_parser *);
|
||
static tree cp_parser_std_attribute_spec
|
||
(cp_parser *);
|
||
static tree cp_parser_std_attribute_spec_seq
|
||
(cp_parser *);
|
||
static bool cp_parser_extension_opt
|
||
(cp_parser *, int *);
|
||
static void cp_parser_label_declaration
|
||
(cp_parser *);
|
||
|
||
/* Transactional Memory Extensions */
|
||
|
||
static tree cp_parser_transaction
|
||
(cp_parser *, enum rid);
|
||
static tree cp_parser_transaction_expression
|
||
(cp_parser *, enum rid);
|
||
static bool cp_parser_function_transaction
|
||
(cp_parser *, enum rid);
|
||
static tree cp_parser_transaction_cancel
|
||
(cp_parser *);
|
||
|
||
enum pragma_context {
|
||
pragma_external,
|
||
pragma_member,
|
||
pragma_objc_icode,
|
||
pragma_stmt,
|
||
pragma_compound
|
||
};
|
||
static bool cp_parser_pragma
|
||
(cp_parser *, enum pragma_context);
|
||
|
||
/* Objective-C++ Productions */
|
||
|
||
static tree cp_parser_objc_message_receiver
|
||
(cp_parser *);
|
||
static tree cp_parser_objc_message_args
|
||
(cp_parser *);
|
||
static tree cp_parser_objc_message_expression
|
||
(cp_parser *);
|
||
static tree cp_parser_objc_encode_expression
|
||
(cp_parser *);
|
||
static tree cp_parser_objc_defs_expression
|
||
(cp_parser *);
|
||
static tree cp_parser_objc_protocol_expression
|
||
(cp_parser *);
|
||
static tree cp_parser_objc_selector_expression
|
||
(cp_parser *);
|
||
static tree cp_parser_objc_expression
|
||
(cp_parser *);
|
||
static bool cp_parser_objc_selector_p
|
||
(enum cpp_ttype);
|
||
static tree cp_parser_objc_selector
|
||
(cp_parser *);
|
||
static tree cp_parser_objc_protocol_refs_opt
|
||
(cp_parser *);
|
||
static void cp_parser_objc_declaration
|
||
(cp_parser *, tree);
|
||
static tree cp_parser_objc_statement
|
||
(cp_parser *);
|
||
static bool cp_parser_objc_valid_prefix_attributes
|
||
(cp_parser *, tree *);
|
||
static void cp_parser_objc_at_property_declaration
|
||
(cp_parser *) ;
|
||
static void cp_parser_objc_at_synthesize_declaration
|
||
(cp_parser *) ;
|
||
static void cp_parser_objc_at_dynamic_declaration
|
||
(cp_parser *) ;
|
||
static tree cp_parser_objc_struct_declaration
|
||
(cp_parser *) ;
|
||
|
||
/* Utility Routines */
|
||
|
||
static tree cp_parser_lookup_name
|
||
(cp_parser *, tree, enum tag_types, bool, bool, bool, tree *, location_t);
|
||
static tree cp_parser_lookup_name_simple
|
||
(cp_parser *, tree, location_t);
|
||
static tree cp_parser_maybe_treat_template_as_class
|
||
(tree, bool);
|
||
static bool cp_parser_check_declarator_template_parameters
|
||
(cp_parser *, cp_declarator *, location_t);
|
||
static bool cp_parser_check_template_parameters
|
||
(cp_parser *, unsigned, location_t, cp_declarator *);
|
||
static tree cp_parser_simple_cast_expression
|
||
(cp_parser *);
|
||
static tree cp_parser_global_scope_opt
|
||
(cp_parser *, bool);
|
||
static bool cp_parser_constructor_declarator_p
|
||
(cp_parser *, bool);
|
||
static tree cp_parser_function_definition_from_specifiers_and_declarator
|
||
(cp_parser *, cp_decl_specifier_seq *, tree, const cp_declarator *);
|
||
static tree cp_parser_function_definition_after_declarator
|
||
(cp_parser *, bool);
|
||
static void cp_parser_template_declaration_after_export
|
||
(cp_parser *, bool);
|
||
static void cp_parser_perform_template_parameter_access_checks
|
||
(vec<deferred_access_check, va_gc> *);
|
||
static tree cp_parser_single_declaration
|
||
(cp_parser *, vec<deferred_access_check, va_gc> *, bool, bool, bool *);
|
||
static tree cp_parser_functional_cast
|
||
(cp_parser *, tree);
|
||
static tree cp_parser_save_member_function_body
|
||
(cp_parser *, cp_decl_specifier_seq *, cp_declarator *, tree);
|
||
static tree cp_parser_save_nsdmi
|
||
(cp_parser *);
|
||
static tree cp_parser_enclosed_template_argument_list
|
||
(cp_parser *);
|
||
static void cp_parser_save_default_args
|
||
(cp_parser *, tree);
|
||
static void cp_parser_late_parsing_for_member
|
||
(cp_parser *, tree);
|
||
static tree cp_parser_late_parse_one_default_arg
|
||
(cp_parser *, tree, tree, tree);
|
||
static void cp_parser_late_parsing_nsdmi
|
||
(cp_parser *, tree);
|
||
static void cp_parser_late_parsing_default_args
|
||
(cp_parser *, tree);
|
||
static tree cp_parser_sizeof_operand
|
||
(cp_parser *, enum rid);
|
||
static tree cp_parser_trait_expr
|
||
(cp_parser *, enum rid);
|
||
static bool cp_parser_declares_only_class_p
|
||
(cp_parser *);
|
||
static void cp_parser_set_storage_class
|
||
(cp_parser *, cp_decl_specifier_seq *, enum rid, cp_token *);
|
||
static void cp_parser_set_decl_spec_type
|
||
(cp_decl_specifier_seq *, tree, cp_token *, bool);
|
||
static void set_and_check_decl_spec_loc
|
||
(cp_decl_specifier_seq *decl_specs,
|
||
cp_decl_spec ds, cp_token *);
|
||
static bool cp_parser_friend_p
|
||
(const cp_decl_specifier_seq *);
|
||
static void cp_parser_required_error
|
||
(cp_parser *, required_token, bool);
|
||
static cp_token *cp_parser_require
|
||
(cp_parser *, enum cpp_ttype, required_token);
|
||
static cp_token *cp_parser_require_keyword
|
||
(cp_parser *, enum rid, required_token);
|
||
static bool cp_parser_token_starts_function_definition_p
|
||
(cp_token *);
|
||
static bool cp_parser_next_token_starts_class_definition_p
|
||
(cp_parser *);
|
||
static bool cp_parser_next_token_ends_template_argument_p
|
||
(cp_parser *);
|
||
static bool cp_parser_nth_token_starts_template_argument_list_p
|
||
(cp_parser *, size_t);
|
||
static enum tag_types cp_parser_token_is_class_key
|
||
(cp_token *);
|
||
static enum tag_types cp_parser_token_is_type_parameter_key
|
||
(cp_token *);
|
||
static void cp_parser_check_class_key
|
||
(enum tag_types, tree type);
|
||
static void cp_parser_check_access_in_redeclaration
|
||
(tree type, location_t location);
|
||
static bool cp_parser_optional_template_keyword
|
||
(cp_parser *);
|
||
static void cp_parser_pre_parsed_nested_name_specifier
|
||
(cp_parser *);
|
||
static bool cp_parser_cache_group
|
||
(cp_parser *, enum cpp_ttype, unsigned);
|
||
static tree cp_parser_cache_defarg
|
||
(cp_parser *parser, bool nsdmi);
|
||
static void cp_parser_parse_tentatively
|
||
(cp_parser *);
|
||
static void cp_parser_commit_to_tentative_parse
|
||
(cp_parser *);
|
||
static void cp_parser_commit_to_topmost_tentative_parse
|
||
(cp_parser *);
|
||
static void cp_parser_abort_tentative_parse
|
||
(cp_parser *);
|
||
static bool cp_parser_parse_definitely
|
||
(cp_parser *);
|
||
static inline bool cp_parser_parsing_tentatively
|
||
(cp_parser *);
|
||
static bool cp_parser_uncommitted_to_tentative_parse_p
|
||
(cp_parser *);
|
||
static void cp_parser_error
|
||
(cp_parser *, const char *);
|
||
static void cp_parser_name_lookup_error
|
||
(cp_parser *, tree, tree, name_lookup_error, location_t);
|
||
static bool cp_parser_simulate_error
|
||
(cp_parser *);
|
||
static bool cp_parser_check_type_definition
|
||
(cp_parser *);
|
||
static void cp_parser_check_for_definition_in_return_type
|
||
(cp_declarator *, tree, location_t type_location);
|
||
static void cp_parser_check_for_invalid_template_id
|
||
(cp_parser *, tree, enum tag_types, location_t location);
|
||
static bool cp_parser_non_integral_constant_expression
|
||
(cp_parser *, non_integral_constant);
|
||
static void cp_parser_diagnose_invalid_type_name
|
||
(cp_parser *, tree, tree, location_t);
|
||
static bool cp_parser_parse_and_diagnose_invalid_type_name
|
||
(cp_parser *);
|
||
static int cp_parser_skip_to_closing_parenthesis
|
||
(cp_parser *, bool, bool, bool);
|
||
static void cp_parser_skip_to_end_of_statement
|
||
(cp_parser *);
|
||
static void cp_parser_consume_semicolon_at_end_of_statement
|
||
(cp_parser *);
|
||
static void cp_parser_skip_to_end_of_block_or_statement
|
||
(cp_parser *);
|
||
static bool cp_parser_skip_to_closing_brace
|
||
(cp_parser *);
|
||
static void cp_parser_skip_to_end_of_template_parameter_list
|
||
(cp_parser *);
|
||
static void cp_parser_skip_to_pragma_eol
|
||
(cp_parser*, cp_token *);
|
||
static bool cp_parser_error_occurred
|
||
(cp_parser *);
|
||
static bool cp_parser_allow_gnu_extensions_p
|
||
(cp_parser *);
|
||
static bool cp_parser_is_pure_string_literal
|
||
(cp_token *);
|
||
static bool cp_parser_is_string_literal
|
||
(cp_token *);
|
||
static bool cp_parser_is_keyword
|
||
(cp_token *, enum rid);
|
||
static tree cp_parser_make_typename_type
|
||
(cp_parser *, tree, tree, location_t location);
|
||
static cp_declarator * cp_parser_make_indirect_declarator
|
||
(enum tree_code, tree, cp_cv_quals, cp_declarator *, tree);
|
||
static bool cp_parser_compound_literal_p
|
||
(cp_parser *);
|
||
|
||
/* Returns nonzero if we are parsing tentatively. */
|
||
|
||
static inline bool
|
||
cp_parser_parsing_tentatively (cp_parser* parser)
|
||
{
|
||
return parser->context->next != NULL;
|
||
}
|
||
|
||
/* Returns nonzero if TOKEN is a string literal. */
|
||
|
||
static bool
|
||
cp_parser_is_pure_string_literal (cp_token* token)
|
||
{
|
||
return (token->type == CPP_STRING ||
|
||
token->type == CPP_STRING16 ||
|
||
token->type == CPP_STRING32 ||
|
||
token->type == CPP_WSTRING ||
|
||
token->type == CPP_UTF8STRING);
|
||
}
|
||
|
||
/* Returns nonzero if TOKEN is a string literal
|
||
of a user-defined string literal. */
|
||
|
||
static bool
|
||
cp_parser_is_string_literal (cp_token* token)
|
||
{
|
||
return (cp_parser_is_pure_string_literal (token) ||
|
||
token->type == CPP_STRING_USERDEF ||
|
||
token->type == CPP_STRING16_USERDEF ||
|
||
token->type == CPP_STRING32_USERDEF ||
|
||
token->type == CPP_WSTRING_USERDEF ||
|
||
token->type == CPP_UTF8STRING_USERDEF);
|
||
}
|
||
|
||
/* Returns nonzero if TOKEN is the indicated KEYWORD. */
|
||
|
||
static bool
|
||
cp_parser_is_keyword (cp_token* token, enum rid keyword)
|
||
{
|
||
return token->keyword == keyword;
|
||
}
|
||
|
||
/* If not parsing tentatively, issue a diagnostic of the form
|
||
FILE:LINE: MESSAGE before TOKEN
|
||
where TOKEN is the next token in the input stream. MESSAGE
|
||
(specified by the caller) is usually of the form "expected
|
||
OTHER-TOKEN". */
|
||
|
||
static void
|
||
cp_parser_error (cp_parser* parser, const char* gmsgid)
|
||
{
|
||
if (!cp_parser_simulate_error (parser))
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
/* This diagnostic makes more sense if it is tagged to the line
|
||
of the token we just peeked at. */
|
||
cp_lexer_set_source_position_from_token (token);
|
||
|
||
if (token->type == CPP_PRAGMA)
|
||
{
|
||
error_at (token->location,
|
||
"%<#pragma%> is not allowed here");
|
||
cp_parser_skip_to_pragma_eol (parser, token);
|
||
return;
|
||
}
|
||
|
||
c_parse_error (gmsgid,
|
||
/* Because c_parser_error does not understand
|
||
CPP_KEYWORD, keywords are treated like
|
||
identifiers. */
|
||
(token->type == CPP_KEYWORD ? CPP_NAME : token->type),
|
||
token->u.value, token->flags);
|
||
}
|
||
}
|
||
|
||
/* Issue an error about name-lookup failing. NAME is the
|
||
IDENTIFIER_NODE DECL is the result of
|
||
the lookup (as returned from cp_parser_lookup_name). DESIRED is
|
||
the thing that we hoped to find. */
|
||
|
||
static void
|
||
cp_parser_name_lookup_error (cp_parser* parser,
|
||
tree name,
|
||
tree decl,
|
||
name_lookup_error desired,
|
||
location_t location)
|
||
{
|
||
/* If name lookup completely failed, tell the user that NAME was not
|
||
declared. */
|
||
if (decl == error_mark_node)
|
||
{
|
||
if (parser->scope && parser->scope != global_namespace)
|
||
error_at (location, "%<%E::%E%> has not been declared",
|
||
parser->scope, name);
|
||
else if (parser->scope == global_namespace)
|
||
error_at (location, "%<::%E%> has not been declared", name);
|
||
else if (parser->object_scope
|
||
&& !CLASS_TYPE_P (parser->object_scope))
|
||
error_at (location, "request for member %qE in non-class type %qT",
|
||
name, parser->object_scope);
|
||
else if (parser->object_scope)
|
||
error_at (location, "%<%T::%E%> has not been declared",
|
||
parser->object_scope, name);
|
||
else
|
||
error_at (location, "%qE has not been declared", name);
|
||
}
|
||
else if (parser->scope && parser->scope != global_namespace)
|
||
{
|
||
switch (desired)
|
||
{
|
||
case NLE_TYPE:
|
||
error_at (location, "%<%E::%E%> is not a type",
|
||
parser->scope, name);
|
||
break;
|
||
case NLE_CXX98:
|
||
error_at (location, "%<%E::%E%> is not a class or namespace",
|
||
parser->scope, name);
|
||
break;
|
||
case NLE_NOT_CXX98:
|
||
error_at (location,
|
||
"%<%E::%E%> is not a class, namespace, or enumeration",
|
||
parser->scope, name);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
|
||
}
|
||
}
|
||
else if (parser->scope == global_namespace)
|
||
{
|
||
switch (desired)
|
||
{
|
||
case NLE_TYPE:
|
||
error_at (location, "%<::%E%> is not a type", name);
|
||
break;
|
||
case NLE_CXX98:
|
||
error_at (location, "%<::%E%> is not a class or namespace", name);
|
||
break;
|
||
case NLE_NOT_CXX98:
|
||
error_at (location,
|
||
"%<::%E%> is not a class, namespace, or enumeration",
|
||
name);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
switch (desired)
|
||
{
|
||
case NLE_TYPE:
|
||
error_at (location, "%qE is not a type", name);
|
||
break;
|
||
case NLE_CXX98:
|
||
error_at (location, "%qE is not a class or namespace", name);
|
||
break;
|
||
case NLE_NOT_CXX98:
|
||
error_at (location,
|
||
"%qE is not a class, namespace, or enumeration", name);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we are parsing tentatively, remember that an error has occurred
|
||
during this tentative parse. Returns true if the error was
|
||
simulated; false if a message should be issued by the caller. */
|
||
|
||
static bool
|
||
cp_parser_simulate_error (cp_parser* parser)
|
||
{
|
||
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
|
||
{
|
||
parser->context->status = CP_PARSER_STATUS_KIND_ERROR;
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* This function is called when a type is defined. If type
|
||
definitions are forbidden at this point, an error message is
|
||
issued. */
|
||
|
||
static bool
|
||
cp_parser_check_type_definition (cp_parser* parser)
|
||
{
|
||
/* If types are forbidden here, issue a message. */
|
||
if (parser->type_definition_forbidden_message)
|
||
{
|
||
/* Don't use `%s' to print the string, because quotations (`%<', `%>')
|
||
in the message need to be interpreted. */
|
||
error (parser->type_definition_forbidden_message);
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* This function is called when the DECLARATOR is processed. The TYPE
|
||
was a type defined in the decl-specifiers. If it is invalid to
|
||
define a type in the decl-specifiers for DECLARATOR, an error is
|
||
issued. TYPE_LOCATION is the location of TYPE and is used
|
||
for error reporting. */
|
||
|
||
static void
|
||
cp_parser_check_for_definition_in_return_type (cp_declarator *declarator,
|
||
tree type, location_t type_location)
|
||
{
|
||
/* [dcl.fct] forbids type definitions in return types.
|
||
Unfortunately, it's not easy to know whether or not we are
|
||
processing a return type until after the fact. */
|
||
while (declarator
|
||
&& (declarator->kind == cdk_pointer
|
||
|| declarator->kind == cdk_reference
|
||
|| declarator->kind == cdk_ptrmem))
|
||
declarator = declarator->declarator;
|
||
if (declarator
|
||
&& declarator->kind == cdk_function)
|
||
{
|
||
error_at (type_location,
|
||
"new types may not be defined in a return type");
|
||
inform (type_location,
|
||
"(perhaps a semicolon is missing after the definition of %qT)",
|
||
type);
|
||
}
|
||
}
|
||
|
||
/* A type-specifier (TYPE) has been parsed which cannot be followed by
|
||
"<" in any valid C++ program. If the next token is indeed "<",
|
||
issue a message warning the user about what appears to be an
|
||
invalid attempt to form a template-id. LOCATION is the location
|
||
of the type-specifier (TYPE) */
|
||
|
||
static void
|
||
cp_parser_check_for_invalid_template_id (cp_parser* parser,
|
||
tree type,
|
||
enum tag_types tag_type,
|
||
location_t location)
|
||
{
|
||
cp_token_position start = 0;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
|
||
{
|
||
if (TYPE_P (type))
|
||
error_at (location, "%qT is not a template", type);
|
||
else if (identifier_p (type))
|
||
{
|
||
if (tag_type != none_type)
|
||
error_at (location, "%qE is not a class template", type);
|
||
else
|
||
error_at (location, "%qE is not a template", type);
|
||
}
|
||
else
|
||
error_at (location, "invalid template-id");
|
||
/* Remember the location of the invalid "<". */
|
||
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
|
||
start = cp_lexer_token_position (parser->lexer, true);
|
||
/* Consume the "<". */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the template arguments. */
|
||
cp_parser_enclosed_template_argument_list (parser);
|
||
/* Permanently remove the invalid template arguments so that
|
||
this error message is not issued again. */
|
||
if (start)
|
||
cp_lexer_purge_tokens_after (parser->lexer, start);
|
||
}
|
||
}
|
||
|
||
/* If parsing an integral constant-expression, issue an error message
|
||
about the fact that THING appeared and return true. Otherwise,
|
||
return false. In either case, set
|
||
PARSER->NON_INTEGRAL_CONSTANT_EXPRESSION_P. */
|
||
|
||
static bool
|
||
cp_parser_non_integral_constant_expression (cp_parser *parser,
|
||
non_integral_constant thing)
|
||
{
|
||
parser->non_integral_constant_expression_p = true;
|
||
if (parser->integral_constant_expression_p)
|
||
{
|
||
if (!parser->allow_non_integral_constant_expression_p)
|
||
{
|
||
const char *msg = NULL;
|
||
switch (thing)
|
||
{
|
||
case NIC_FLOAT:
|
||
error ("floating-point literal "
|
||
"cannot appear in a constant-expression");
|
||
return true;
|
||
case NIC_CAST:
|
||
error ("a cast to a type other than an integral or "
|
||
"enumeration type cannot appear in a "
|
||
"constant-expression");
|
||
return true;
|
||
case NIC_TYPEID:
|
||
error ("%<typeid%> operator "
|
||
"cannot appear in a constant-expression");
|
||
return true;
|
||
case NIC_NCC:
|
||
error ("non-constant compound literals "
|
||
"cannot appear in a constant-expression");
|
||
return true;
|
||
case NIC_FUNC_CALL:
|
||
error ("a function call "
|
||
"cannot appear in a constant-expression");
|
||
return true;
|
||
case NIC_INC:
|
||
error ("an increment "
|
||
"cannot appear in a constant-expression");
|
||
return true;
|
||
case NIC_DEC:
|
||
error ("an decrement "
|
||
"cannot appear in a constant-expression");
|
||
return true;
|
||
case NIC_ARRAY_REF:
|
||
error ("an array reference "
|
||
"cannot appear in a constant-expression");
|
||
return true;
|
||
case NIC_ADDR_LABEL:
|
||
error ("the address of a label "
|
||
"cannot appear in a constant-expression");
|
||
return true;
|
||
case NIC_OVERLOADED:
|
||
error ("calls to overloaded operators "
|
||
"cannot appear in a constant-expression");
|
||
return true;
|
||
case NIC_ASSIGNMENT:
|
||
error ("an assignment cannot appear in a constant-expression");
|
||
return true;
|
||
case NIC_COMMA:
|
||
error ("a comma operator "
|
||
"cannot appear in a constant-expression");
|
||
return true;
|
||
case NIC_CONSTRUCTOR:
|
||
error ("a call to a constructor "
|
||
"cannot appear in a constant-expression");
|
||
return true;
|
||
case NIC_TRANSACTION:
|
||
error ("a transaction expression "
|
||
"cannot appear in a constant-expression");
|
||
return true;
|
||
case NIC_THIS:
|
||
msg = "this";
|
||
break;
|
||
case NIC_FUNC_NAME:
|
||
msg = "__FUNCTION__";
|
||
break;
|
||
case NIC_PRETTY_FUNC:
|
||
msg = "__PRETTY_FUNCTION__";
|
||
break;
|
||
case NIC_C99_FUNC:
|
||
msg = "__func__";
|
||
break;
|
||
case NIC_VA_ARG:
|
||
msg = "va_arg";
|
||
break;
|
||
case NIC_ARROW:
|
||
msg = "->";
|
||
break;
|
||
case NIC_POINT:
|
||
msg = ".";
|
||
break;
|
||
case NIC_STAR:
|
||
msg = "*";
|
||
break;
|
||
case NIC_ADDR:
|
||
msg = "&";
|
||
break;
|
||
case NIC_PREINCREMENT:
|
||
msg = "++";
|
||
break;
|
||
case NIC_PREDECREMENT:
|
||
msg = "--";
|
||
break;
|
||
case NIC_NEW:
|
||
msg = "new";
|
||
break;
|
||
case NIC_DEL:
|
||
msg = "delete";
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
if (msg)
|
||
error ("%qs cannot appear in a constant-expression", msg);
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Emit a diagnostic for an invalid type name. SCOPE is the
|
||
qualifying scope (or NULL, if none) for ID. This function commits
|
||
to the current active tentative parse, if any. (Otherwise, the
|
||
problematic construct might be encountered again later, resulting
|
||
in duplicate error messages.) LOCATION is the location of ID. */
|
||
|
||
static void
|
||
cp_parser_diagnose_invalid_type_name (cp_parser *parser,
|
||
tree scope, tree id,
|
||
location_t location)
|
||
{
|
||
tree decl, old_scope, ambiguous_decls;
|
||
cp_parser_commit_to_tentative_parse (parser);
|
||
/* Try to lookup the identifier. */
|
||
old_scope = parser->scope;
|
||
parser->scope = scope;
|
||
decl = cp_parser_lookup_name (parser, id, none_type,
|
||
/*is_template=*/false,
|
||
/*is_namespace=*/false,
|
||
/*check_dependency=*/true,
|
||
&ambiguous_decls, location);
|
||
parser->scope = old_scope;
|
||
if (ambiguous_decls)
|
||
/* If the lookup was ambiguous, an error will already have
|
||
been issued. */
|
||
return;
|
||
/* If the lookup found a template-name, it means that the user forgot
|
||
to specify an argument list. Emit a useful error message. */
|
||
if (TREE_CODE (decl) == TEMPLATE_DECL)
|
||
error_at (location,
|
||
"invalid use of template-name %qE without an argument list",
|
||
decl);
|
||
else if (TREE_CODE (id) == BIT_NOT_EXPR)
|
||
error_at (location, "invalid use of destructor %qD as a type", id);
|
||
else if (TREE_CODE (decl) == TYPE_DECL)
|
||
/* Something like 'unsigned A a;' */
|
||
error_at (location, "invalid combination of multiple type-specifiers");
|
||
else if (!parser->scope)
|
||
{
|
||
/* Issue an error message. */
|
||
error_at (location, "%qE does not name a type", id);
|
||
/* If we're in a template class, it's possible that the user was
|
||
referring to a type from a base class. For example:
|
||
|
||
template <typename T> struct A { typedef T X; };
|
||
template <typename T> struct B : public A<T> { X x; };
|
||
|
||
The user should have said "typename A<T>::X". */
|
||
if (cxx_dialect < cxx11 && id == ridpointers[(int)RID_CONSTEXPR])
|
||
inform (location, "C++11 %<constexpr%> only available with "
|
||
"-std=c++11 or -std=gnu++11");
|
||
else if (cxx_dialect < cxx11 && id == ridpointers[(int)RID_NOEXCEPT])
|
||
inform (location, "C++11 %<noexcept%> only available with "
|
||
"-std=c++11 or -std=gnu++11");
|
||
else if (cxx_dialect < cxx11
|
||
&& !strcmp (IDENTIFIER_POINTER (id), "thread_local"))
|
||
inform (location, "C++11 %<thread_local%> only available with "
|
||
"-std=c++11 or -std=gnu++11");
|
||
else if (processing_template_decl && current_class_type
|
||
&& TYPE_BINFO (current_class_type))
|
||
{
|
||
tree b;
|
||
|
||
for (b = TREE_CHAIN (TYPE_BINFO (current_class_type));
|
||
b;
|
||
b = TREE_CHAIN (b))
|
||
{
|
||
tree base_type = BINFO_TYPE (b);
|
||
if (CLASS_TYPE_P (base_type)
|
||
&& dependent_type_p (base_type))
|
||
{
|
||
tree field;
|
||
/* Go from a particular instantiation of the
|
||
template (which will have an empty TYPE_FIELDs),
|
||
to the main version. */
|
||
base_type = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (base_type);
|
||
for (field = TYPE_FIELDS (base_type);
|
||
field;
|
||
field = DECL_CHAIN (field))
|
||
if (TREE_CODE (field) == TYPE_DECL
|
||
&& DECL_NAME (field) == id)
|
||
{
|
||
inform (location,
|
||
"(perhaps %<typename %T::%E%> was intended)",
|
||
BINFO_TYPE (b), id);
|
||
break;
|
||
}
|
||
if (field)
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
/* Here we diagnose qualified-ids where the scope is actually correct,
|
||
but the identifier does not resolve to a valid type name. */
|
||
else if (parser->scope != error_mark_node)
|
||
{
|
||
if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
|
||
{
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
|
||
error_at (location_of (id),
|
||
"%qE in namespace %qE does not name a template type",
|
||
id, parser->scope);
|
||
else
|
||
error_at (location_of (id),
|
||
"%qE in namespace %qE does not name a type",
|
||
id, parser->scope);
|
||
}
|
||
else if (CLASS_TYPE_P (parser->scope)
|
||
&& constructor_name_p (id, parser->scope))
|
||
{
|
||
/* A<T>::A<T>() */
|
||
error_at (location, "%<%T::%E%> names the constructor, not"
|
||
" the type", parser->scope, id);
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
|
||
error_at (location, "and %qT has no template constructors",
|
||
parser->scope);
|
||
}
|
||
else if (TYPE_P (parser->scope)
|
||
&& dependent_scope_p (parser->scope))
|
||
error_at (location, "need %<typename%> before %<%T::%E%> because "
|
||
"%qT is a dependent scope",
|
||
parser->scope, id, parser->scope);
|
||
else if (TYPE_P (parser->scope))
|
||
{
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
|
||
error_at (location_of (id),
|
||
"%qE in %q#T does not name a template type",
|
||
id, parser->scope);
|
||
else
|
||
error_at (location_of (id),
|
||
"%qE in %q#T does not name a type",
|
||
id, parser->scope);
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Check for a common situation where a type-name should be present,
|
||
but is not, and issue a sensible error message. Returns true if an
|
||
invalid type-name was detected.
|
||
|
||
The situation handled by this function are variable declarations of the
|
||
form `ID a', where `ID' is an id-expression and `a' is a plain identifier.
|
||
Usually, `ID' should name a type, but if we got here it means that it
|
||
does not. We try to emit the best possible error message depending on
|
||
how exactly the id-expression looks like. */
|
||
|
||
static bool
|
||
cp_parser_parse_and_diagnose_invalid_type_name (cp_parser *parser)
|
||
{
|
||
tree id;
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* Avoid duplicate error about ambiguous lookup. */
|
||
if (token->type == CPP_NESTED_NAME_SPECIFIER)
|
||
{
|
||
cp_token *next = cp_lexer_peek_nth_token (parser->lexer, 2);
|
||
if (next->type == CPP_NAME && next->error_reported)
|
||
goto out;
|
||
}
|
||
|
||
cp_parser_parse_tentatively (parser);
|
||
id = cp_parser_id_expression (parser,
|
||
/*template_keyword_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
/*template_p=*/NULL,
|
||
/*declarator_p=*/true,
|
||
/*optional_p=*/false);
|
||
/* If the next token is a (, this is a function with no explicit return
|
||
type, i.e. constructor, destructor or conversion op. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)
|
||
|| TREE_CODE (id) == TYPE_DECL)
|
||
{
|
||
cp_parser_abort_tentative_parse (parser);
|
||
return false;
|
||
}
|
||
if (!cp_parser_parse_definitely (parser))
|
||
return false;
|
||
|
||
/* Emit a diagnostic for the invalid type. */
|
||
cp_parser_diagnose_invalid_type_name (parser, parser->scope,
|
||
id, token->location);
|
||
out:
|
||
/* If we aren't in the middle of a declarator (i.e. in a
|
||
parameter-declaration-clause), skip to the end of the declaration;
|
||
there's no point in trying to process it. */
|
||
if (!parser->in_declarator_p)
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
return true;
|
||
}
|
||
|
||
/* Consume tokens up to, and including, the next non-nested closing `)'.
|
||
Returns 1 iff we found a closing `)'. RECOVERING is true, if we
|
||
are doing error recovery. Returns -1 if OR_COMMA is true and we
|
||
found an unnested comma. */
|
||
|
||
static int
|
||
cp_parser_skip_to_closing_parenthesis (cp_parser *parser,
|
||
bool recovering,
|
||
bool or_comma,
|
||
bool consume_paren)
|
||
{
|
||
unsigned paren_depth = 0;
|
||
unsigned brace_depth = 0;
|
||
unsigned square_depth = 0;
|
||
|
||
if (recovering && !or_comma
|
||
&& cp_parser_uncommitted_to_tentative_parse_p (parser))
|
||
return 0;
|
||
|
||
while (true)
|
||
{
|
||
cp_token * token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
switch (token->type)
|
||
{
|
||
case CPP_EOF:
|
||
case CPP_PRAGMA_EOL:
|
||
/* If we've run out of tokens, then there is no closing `)'. */
|
||
return 0;
|
||
|
||
/* This is good for lambda expression capture-lists. */
|
||
case CPP_OPEN_SQUARE:
|
||
++square_depth;
|
||
break;
|
||
case CPP_CLOSE_SQUARE:
|
||
if (!square_depth--)
|
||
return 0;
|
||
break;
|
||
|
||
case CPP_SEMICOLON:
|
||
/* This matches the processing in skip_to_end_of_statement. */
|
||
if (!brace_depth)
|
||
return 0;
|
||
break;
|
||
|
||
case CPP_OPEN_BRACE:
|
||
++brace_depth;
|
||
break;
|
||
case CPP_CLOSE_BRACE:
|
||
if (!brace_depth--)
|
||
return 0;
|
||
break;
|
||
|
||
case CPP_COMMA:
|
||
if (recovering && or_comma && !brace_depth && !paren_depth
|
||
&& !square_depth)
|
||
return -1;
|
||
break;
|
||
|
||
case CPP_OPEN_PAREN:
|
||
if (!brace_depth)
|
||
++paren_depth;
|
||
break;
|
||
|
||
case CPP_CLOSE_PAREN:
|
||
if (!brace_depth && !paren_depth--)
|
||
{
|
||
if (consume_paren)
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return 1;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Consume the token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
}
|
||
|
||
/* Consume tokens until we reach the end of the current statement.
|
||
Normally, that will be just before consuming a `;'. However, if a
|
||
non-nested `}' comes first, then we stop before consuming that. */
|
||
|
||
static void
|
||
cp_parser_skip_to_end_of_statement (cp_parser* parser)
|
||
{
|
||
unsigned nesting_depth = 0;
|
||
|
||
/* Unwind generic function template scope if necessary. */
|
||
if (parser->fully_implicit_function_template_p)
|
||
finish_fully_implicit_template (parser, /*member_decl_opt=*/0);
|
||
|
||
while (true)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
switch (token->type)
|
||
{
|
||
case CPP_EOF:
|
||
case CPP_PRAGMA_EOL:
|
||
/* If we've run out of tokens, stop. */
|
||
return;
|
||
|
||
case CPP_SEMICOLON:
|
||
/* If the next token is a `;', we have reached the end of the
|
||
statement. */
|
||
if (!nesting_depth)
|
||
return;
|
||
break;
|
||
|
||
case CPP_CLOSE_BRACE:
|
||
/* If this is a non-nested '}', stop before consuming it.
|
||
That way, when confronted with something like:
|
||
|
||
{ 3 + }
|
||
|
||
we stop before consuming the closing '}', even though we
|
||
have not yet reached a `;'. */
|
||
if (nesting_depth == 0)
|
||
return;
|
||
|
||
/* If it is the closing '}' for a block that we have
|
||
scanned, stop -- but only after consuming the token.
|
||
That way given:
|
||
|
||
void f g () { ... }
|
||
typedef int I;
|
||
|
||
we will stop after the body of the erroneously declared
|
||
function, but before consuming the following `typedef'
|
||
declaration. */
|
||
if (--nesting_depth == 0)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return;
|
||
}
|
||
|
||
case CPP_OPEN_BRACE:
|
||
++nesting_depth;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Consume the token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
}
|
||
|
||
/* This function is called at the end of a statement or declaration.
|
||
If the next token is a semicolon, it is consumed; otherwise, error
|
||
recovery is attempted. */
|
||
|
||
static void
|
||
cp_parser_consume_semicolon_at_end_of_statement (cp_parser *parser)
|
||
{
|
||
/* Look for the trailing `;'. */
|
||
if (!cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON))
|
||
{
|
||
/* If there is additional (erroneous) input, skip to the end of
|
||
the statement. */
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
/* If the next token is now a `;', consume it. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
}
|
||
|
||
/* Skip tokens until we have consumed an entire block, or until we
|
||
have consumed a non-nested `;'. */
|
||
|
||
static void
|
||
cp_parser_skip_to_end_of_block_or_statement (cp_parser* parser)
|
||
{
|
||
int nesting_depth = 0;
|
||
|
||
/* Unwind generic function template scope if necessary. */
|
||
if (parser->fully_implicit_function_template_p)
|
||
finish_fully_implicit_template (parser, /*member_decl_opt=*/0);
|
||
|
||
while (nesting_depth >= 0)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
switch (token->type)
|
||
{
|
||
case CPP_EOF:
|
||
case CPP_PRAGMA_EOL:
|
||
/* If we've run out of tokens, stop. */
|
||
return;
|
||
|
||
case CPP_SEMICOLON:
|
||
/* Stop if this is an unnested ';'. */
|
||
if (!nesting_depth)
|
||
nesting_depth = -1;
|
||
break;
|
||
|
||
case CPP_CLOSE_BRACE:
|
||
/* Stop if this is an unnested '}', or closes the outermost
|
||
nesting level. */
|
||
nesting_depth--;
|
||
if (nesting_depth < 0)
|
||
return;
|
||
if (!nesting_depth)
|
||
nesting_depth = -1;
|
||
break;
|
||
|
||
case CPP_OPEN_BRACE:
|
||
/* Nest. */
|
||
nesting_depth++;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Consume the token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
}
|
||
|
||
/* Skip tokens until a non-nested closing curly brace is the next
|
||
token, or there are no more tokens. Return true in the first case,
|
||
false otherwise. */
|
||
|
||
static bool
|
||
cp_parser_skip_to_closing_brace (cp_parser *parser)
|
||
{
|
||
unsigned nesting_depth = 0;
|
||
|
||
while (true)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
switch (token->type)
|
||
{
|
||
case CPP_EOF:
|
||
case CPP_PRAGMA_EOL:
|
||
/* If we've run out of tokens, stop. */
|
||
return false;
|
||
|
||
case CPP_CLOSE_BRACE:
|
||
/* If the next token is a non-nested `}', then we have reached
|
||
the end of the current block. */
|
||
if (nesting_depth-- == 0)
|
||
return true;
|
||
break;
|
||
|
||
case CPP_OPEN_BRACE:
|
||
/* If it the next token is a `{', then we are entering a new
|
||
block. Consume the entire block. */
|
||
++nesting_depth;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Consume the token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
}
|
||
|
||
/* Consume tokens until we reach the end of the pragma. The PRAGMA_TOK
|
||
parameter is the PRAGMA token, allowing us to purge the entire pragma
|
||
sequence. */
|
||
|
||
static void
|
||
cp_parser_skip_to_pragma_eol (cp_parser* parser, cp_token *pragma_tok)
|
||
{
|
||
cp_token *token;
|
||
|
||
parser->lexer->in_pragma = false;
|
||
|
||
do
|
||
token = cp_lexer_consume_token (parser->lexer);
|
||
while (token->type != CPP_PRAGMA_EOL && token->type != CPP_EOF);
|
||
|
||
/* Ensure that the pragma is not parsed again. */
|
||
cp_lexer_purge_tokens_after (parser->lexer, pragma_tok);
|
||
}
|
||
|
||
/* Require pragma end of line, resyncing with it as necessary. The
|
||
arguments are as for cp_parser_skip_to_pragma_eol. */
|
||
|
||
static void
|
||
cp_parser_require_pragma_eol (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
parser->lexer->in_pragma = false;
|
||
if (!cp_parser_require (parser, CPP_PRAGMA_EOL, RT_PRAGMA_EOL))
|
||
cp_parser_skip_to_pragma_eol (parser, pragma_tok);
|
||
}
|
||
|
||
/* This is a simple wrapper around make_typename_type. When the id is
|
||
an unresolved identifier node, we can provide a superior diagnostic
|
||
using cp_parser_diagnose_invalid_type_name. */
|
||
|
||
static tree
|
||
cp_parser_make_typename_type (cp_parser *parser, tree scope,
|
||
tree id, location_t id_location)
|
||
{
|
||
tree result;
|
||
if (identifier_p (id))
|
||
{
|
||
result = make_typename_type (scope, id, typename_type,
|
||
/*complain=*/tf_none);
|
||
if (result == error_mark_node)
|
||
cp_parser_diagnose_invalid_type_name (parser, scope, id, id_location);
|
||
return result;
|
||
}
|
||
return make_typename_type (scope, id, typename_type, tf_error);
|
||
}
|
||
|
||
/* This is a wrapper around the
|
||
make_{pointer,ptrmem,reference}_declarator functions that decides
|
||
which one to call based on the CODE and CLASS_TYPE arguments. The
|
||
CODE argument should be one of the values returned by
|
||
cp_parser_ptr_operator. ATTRIBUTES represent the attributes that
|
||
appertain to the pointer or reference. */
|
||
|
||
static cp_declarator *
|
||
cp_parser_make_indirect_declarator (enum tree_code code, tree class_type,
|
||
cp_cv_quals cv_qualifiers,
|
||
cp_declarator *target,
|
||
tree attributes)
|
||
{
|
||
if (code == ERROR_MARK)
|
||
return cp_error_declarator;
|
||
|
||
if (code == INDIRECT_REF)
|
||
if (class_type == NULL_TREE)
|
||
return make_pointer_declarator (cv_qualifiers, target, attributes);
|
||
else
|
||
return make_ptrmem_declarator (cv_qualifiers, class_type,
|
||
target, attributes);
|
||
else if (code == ADDR_EXPR && class_type == NULL_TREE)
|
||
return make_reference_declarator (cv_qualifiers, target,
|
||
false, attributes);
|
||
else if (code == NON_LVALUE_EXPR && class_type == NULL_TREE)
|
||
return make_reference_declarator (cv_qualifiers, target,
|
||
true, attributes);
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Create a new C++ parser. */
|
||
|
||
static cp_parser *
|
||
cp_parser_new (void)
|
||
{
|
||
cp_parser *parser;
|
||
cp_lexer *lexer;
|
||
unsigned i;
|
||
|
||
/* cp_lexer_new_main is called before doing GC allocation because
|
||
cp_lexer_new_main might load a PCH file. */
|
||
lexer = cp_lexer_new_main ();
|
||
|
||
/* Initialize the binops_by_token so that we can get the tree
|
||
directly from the token. */
|
||
for (i = 0; i < sizeof (binops) / sizeof (binops[0]); i++)
|
||
binops_by_token[binops[i].token_type] = binops[i];
|
||
|
||
parser = ggc_cleared_alloc<cp_parser> ();
|
||
parser->lexer = lexer;
|
||
parser->context = cp_parser_context_new (NULL);
|
||
|
||
/* For now, we always accept GNU extensions. */
|
||
parser->allow_gnu_extensions_p = 1;
|
||
|
||
/* The `>' token is a greater-than operator, not the end of a
|
||
template-id. */
|
||
parser->greater_than_is_operator_p = true;
|
||
|
||
parser->default_arg_ok_p = true;
|
||
|
||
/* We are not parsing a constant-expression. */
|
||
parser->integral_constant_expression_p = false;
|
||
parser->allow_non_integral_constant_expression_p = false;
|
||
parser->non_integral_constant_expression_p = false;
|
||
|
||
/* Local variable names are not forbidden. */
|
||
parser->local_variables_forbidden_p = false;
|
||
|
||
/* We are not processing an `extern "C"' declaration. */
|
||
parser->in_unbraced_linkage_specification_p = false;
|
||
|
||
/* We are not processing a declarator. */
|
||
parser->in_declarator_p = false;
|
||
|
||
/* We are not processing a template-argument-list. */
|
||
parser->in_template_argument_list_p = false;
|
||
|
||
/* We are not in an iteration statement. */
|
||
parser->in_statement = 0;
|
||
|
||
/* We are not in a switch statement. */
|
||
parser->in_switch_statement_p = false;
|
||
|
||
/* We are not parsing a type-id inside an expression. */
|
||
parser->in_type_id_in_expr_p = false;
|
||
|
||
/* Declarations aren't implicitly extern "C". */
|
||
parser->implicit_extern_c = false;
|
||
|
||
/* String literals should be translated to the execution character set. */
|
||
parser->translate_strings_p = true;
|
||
|
||
/* We are not parsing a function body. */
|
||
parser->in_function_body = false;
|
||
|
||
/* We can correct until told otherwise. */
|
||
parser->colon_corrects_to_scope_p = true;
|
||
|
||
/* The unparsed function queue is empty. */
|
||
push_unparsed_function_queues (parser);
|
||
|
||
/* There are no classes being defined. */
|
||
parser->num_classes_being_defined = 0;
|
||
|
||
/* No template parameters apply. */
|
||
parser->num_template_parameter_lists = 0;
|
||
|
||
/* Not declaring an implicit function template. */
|
||
parser->auto_is_implicit_function_template_parm_p = false;
|
||
parser->fully_implicit_function_template_p = false;
|
||
parser->implicit_template_parms = 0;
|
||
parser->implicit_template_scope = 0;
|
||
|
||
return parser;
|
||
}
|
||
|
||
/* Create a cp_lexer structure which will emit the tokens in CACHE
|
||
and push it onto the parser's lexer stack. This is used for delayed
|
||
parsing of in-class method bodies and default arguments, and should
|
||
not be confused with tentative parsing. */
|
||
static void
|
||
cp_parser_push_lexer_for_tokens (cp_parser *parser, cp_token_cache *cache)
|
||
{
|
||
cp_lexer *lexer = cp_lexer_new_from_tokens (cache);
|
||
lexer->next = parser->lexer;
|
||
parser->lexer = lexer;
|
||
|
||
/* Move the current source position to that of the first token in the
|
||
new lexer. */
|
||
cp_lexer_set_source_position_from_token (lexer->next_token);
|
||
}
|
||
|
||
/* Pop the top lexer off the parser stack. This is never used for the
|
||
"main" lexer, only for those pushed by cp_parser_push_lexer_for_tokens. */
|
||
static void
|
||
cp_parser_pop_lexer (cp_parser *parser)
|
||
{
|
||
cp_lexer *lexer = parser->lexer;
|
||
parser->lexer = lexer->next;
|
||
cp_lexer_destroy (lexer);
|
||
|
||
/* Put the current source position back where it was before this
|
||
lexer was pushed. */
|
||
cp_lexer_set_source_position_from_token (parser->lexer->next_token);
|
||
}
|
||
|
||
/* Lexical conventions [gram.lex] */
|
||
|
||
/* Parse an identifier. Returns an IDENTIFIER_NODE representing the
|
||
identifier. */
|
||
|
||
static tree
|
||
cp_parser_identifier (cp_parser* parser)
|
||
{
|
||
cp_token *token;
|
||
|
||
/* Look for the identifier. */
|
||
token = cp_parser_require (parser, CPP_NAME, RT_NAME);
|
||
/* Return the value. */
|
||
return token ? token->u.value : error_mark_node;
|
||
}
|
||
|
||
/* Parse a sequence of adjacent string constants. Returns a
|
||
TREE_STRING representing the combined, nul-terminated string
|
||
constant. If TRANSLATE is true, translate the string to the
|
||
execution character set. If WIDE_OK is true, a wide string is
|
||
invalid here.
|
||
|
||
C++98 [lex.string] says that if a narrow string literal token is
|
||
adjacent to a wide string literal token, the behavior is undefined.
|
||
However, C99 6.4.5p4 says that this results in a wide string literal.
|
||
We follow C99 here, for consistency with the C front end.
|
||
|
||
This code is largely lifted from lex_string() in c-lex.c.
|
||
|
||
FUTURE: ObjC++ will need to handle @-strings here. */
|
||
static tree
|
||
cp_parser_string_literal (cp_parser *parser, bool translate, bool wide_ok,
|
||
bool lookup_udlit = true)
|
||
{
|
||
tree value;
|
||
size_t count;
|
||
struct obstack str_ob;
|
||
cpp_string str, istr, *strs;
|
||
cp_token *tok;
|
||
enum cpp_ttype type, curr_type;
|
||
int have_suffix_p = 0;
|
||
tree string_tree;
|
||
tree suffix_id = NULL_TREE;
|
||
bool curr_tok_is_userdef_p = false;
|
||
|
||
tok = cp_lexer_peek_token (parser->lexer);
|
||
if (!cp_parser_is_string_literal (tok))
|
||
{
|
||
cp_parser_error (parser, "expected string-literal");
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (cpp_userdef_string_p (tok->type))
|
||
{
|
||
string_tree = USERDEF_LITERAL_VALUE (tok->u.value);
|
||
curr_type = cpp_userdef_string_remove_type (tok->type);
|
||
curr_tok_is_userdef_p = true;
|
||
}
|
||
else
|
||
{
|
||
string_tree = tok->u.value;
|
||
curr_type = tok->type;
|
||
}
|
||
type = curr_type;
|
||
|
||
/* Try to avoid the overhead of creating and destroying an obstack
|
||
for the common case of just one string. */
|
||
if (!cp_parser_is_string_literal
|
||
(cp_lexer_peek_nth_token (parser->lexer, 2)))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
str.text = (const unsigned char *)TREE_STRING_POINTER (string_tree);
|
||
str.len = TREE_STRING_LENGTH (string_tree);
|
||
count = 1;
|
||
|
||
if (curr_tok_is_userdef_p)
|
||
{
|
||
suffix_id = USERDEF_LITERAL_SUFFIX_ID (tok->u.value);
|
||
have_suffix_p = 1;
|
||
curr_type = cpp_userdef_string_remove_type (tok->type);
|
||
}
|
||
else
|
||
curr_type = tok->type;
|
||
|
||
strs = &str;
|
||
}
|
||
else
|
||
{
|
||
gcc_obstack_init (&str_ob);
|
||
count = 0;
|
||
|
||
do
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
count++;
|
||
str.text = (const unsigned char *)TREE_STRING_POINTER (string_tree);
|
||
str.len = TREE_STRING_LENGTH (string_tree);
|
||
|
||
if (curr_tok_is_userdef_p)
|
||
{
|
||
tree curr_suffix_id = USERDEF_LITERAL_SUFFIX_ID (tok->u.value);
|
||
if (have_suffix_p == 0)
|
||
{
|
||
suffix_id = curr_suffix_id;
|
||
have_suffix_p = 1;
|
||
}
|
||
else if (have_suffix_p == 1
|
||
&& curr_suffix_id != suffix_id)
|
||
{
|
||
error ("inconsistent user-defined literal suffixes"
|
||
" %qD and %qD in string literal",
|
||
suffix_id, curr_suffix_id);
|
||
have_suffix_p = -1;
|
||
}
|
||
curr_type = cpp_userdef_string_remove_type (tok->type);
|
||
}
|
||
else
|
||
curr_type = tok->type;
|
||
|
||
if (type != curr_type)
|
||
{
|
||
if (type == CPP_STRING)
|
||
type = curr_type;
|
||
else if (curr_type != CPP_STRING)
|
||
error_at (tok->location,
|
||
"unsupported non-standard concatenation "
|
||
"of string literals");
|
||
}
|
||
|
||
obstack_grow (&str_ob, &str, sizeof (cpp_string));
|
||
|
||
tok = cp_lexer_peek_token (parser->lexer);
|
||
if (cpp_userdef_string_p (tok->type))
|
||
{
|
||
string_tree = USERDEF_LITERAL_VALUE (tok->u.value);
|
||
curr_type = cpp_userdef_string_remove_type (tok->type);
|
||
curr_tok_is_userdef_p = true;
|
||
}
|
||
else
|
||
{
|
||
string_tree = tok->u.value;
|
||
curr_type = tok->type;
|
||
curr_tok_is_userdef_p = false;
|
||
}
|
||
}
|
||
while (cp_parser_is_string_literal (tok));
|
||
|
||
strs = (cpp_string *) obstack_finish (&str_ob);
|
||
}
|
||
|
||
if (type != CPP_STRING && !wide_ok)
|
||
{
|
||
cp_parser_error (parser, "a wide string is invalid in this context");
|
||
type = CPP_STRING;
|
||
}
|
||
|
||
if ((translate ? cpp_interpret_string : cpp_interpret_string_notranslate)
|
||
(parse_in, strs, count, &istr, type))
|
||
{
|
||
value = build_string (istr.len, (const char *)istr.text);
|
||
free (CONST_CAST (unsigned char *, istr.text));
|
||
|
||
switch (type)
|
||
{
|
||
default:
|
||
case CPP_STRING:
|
||
case CPP_UTF8STRING:
|
||
TREE_TYPE (value) = char_array_type_node;
|
||
break;
|
||
case CPP_STRING16:
|
||
TREE_TYPE (value) = char16_array_type_node;
|
||
break;
|
||
case CPP_STRING32:
|
||
TREE_TYPE (value) = char32_array_type_node;
|
||
break;
|
||
case CPP_WSTRING:
|
||
TREE_TYPE (value) = wchar_array_type_node;
|
||
break;
|
||
}
|
||
|
||
value = fix_string_type (value);
|
||
|
||
if (have_suffix_p)
|
||
{
|
||
tree literal = build_userdef_literal (suffix_id, value,
|
||
OT_NONE, NULL_TREE);
|
||
if (lookup_udlit)
|
||
value = cp_parser_userdef_string_literal (literal);
|
||
else
|
||
value = literal;
|
||
}
|
||
}
|
||
else
|
||
/* cpp_interpret_string has issued an error. */
|
||
value = error_mark_node;
|
||
|
||
if (count > 1)
|
||
obstack_free (&str_ob, 0);
|
||
|
||
return value;
|
||
}
|
||
|
||
/* Look up a literal operator with the name and the exact arguments. */
|
||
|
||
static tree
|
||
lookup_literal_operator (tree name, vec<tree, va_gc> *args)
|
||
{
|
||
tree decl, fns;
|
||
decl = lookup_name (name);
|
||
if (!decl || !is_overloaded_fn (decl))
|
||
return error_mark_node;
|
||
|
||
for (fns = decl; fns; fns = OVL_NEXT (fns))
|
||
{
|
||
unsigned int ix;
|
||
bool found = true;
|
||
tree fn = OVL_CURRENT (fns);
|
||
tree parmtypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
|
||
if (parmtypes != NULL_TREE)
|
||
{
|
||
for (ix = 0; ix < vec_safe_length (args) && parmtypes != NULL_TREE;
|
||
++ix, parmtypes = TREE_CHAIN (parmtypes))
|
||
{
|
||
tree tparm = TREE_VALUE (parmtypes);
|
||
tree targ = TREE_TYPE ((*args)[ix]);
|
||
bool ptr = TYPE_PTR_P (tparm);
|
||
bool arr = TREE_CODE (targ) == ARRAY_TYPE;
|
||
if ((ptr || arr || !same_type_p (tparm, targ))
|
||
&& (!ptr || !arr
|
||
|| !same_type_p (TREE_TYPE (tparm),
|
||
TREE_TYPE (targ))))
|
||
found = false;
|
||
}
|
||
if (found
|
||
&& ix == vec_safe_length (args)
|
||
/* May be this should be sufficient_parms_p instead,
|
||
depending on how exactly should user-defined literals
|
||
work in presence of default arguments on the literal
|
||
operator parameters. */
|
||
&& parmtypes == void_list_node)
|
||
return fn;
|
||
}
|
||
}
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Parse a user-defined char constant. Returns a call to a user-defined
|
||
literal operator taking the character as an argument. */
|
||
|
||
static tree
|
||
cp_parser_userdef_char_literal (cp_parser *parser)
|
||
{
|
||
cp_token *token = cp_lexer_consume_token (parser->lexer);
|
||
tree literal = token->u.value;
|
||
tree suffix_id = USERDEF_LITERAL_SUFFIX_ID (literal);
|
||
tree value = USERDEF_LITERAL_VALUE (literal);
|
||
tree name = cp_literal_operator_id (IDENTIFIER_POINTER (suffix_id));
|
||
tree decl, result;
|
||
|
||
/* Build up a call to the user-defined operator */
|
||
/* Lookup the name we got back from the id-expression. */
|
||
vec<tree, va_gc> *args = make_tree_vector ();
|
||
vec_safe_push (args, value);
|
||
decl = lookup_literal_operator (name, args);
|
||
if (!decl || decl == error_mark_node)
|
||
{
|
||
error ("unable to find character literal operator %qD with %qT argument",
|
||
name, TREE_TYPE (value));
|
||
release_tree_vector (args);
|
||
return error_mark_node;
|
||
}
|
||
result = finish_call_expr (decl, &args, false, true, tf_warning_or_error);
|
||
release_tree_vector (args);
|
||
if (result != error_mark_node)
|
||
return result;
|
||
|
||
error ("unable to find character literal operator %qD with %qT argument",
|
||
name, TREE_TYPE (value));
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* A subroutine of cp_parser_userdef_numeric_literal to
|
||
create a char... template parameter pack from a string node. */
|
||
|
||
static tree
|
||
make_char_string_pack (tree value)
|
||
{
|
||
tree charvec;
|
||
tree argpack = make_node (NONTYPE_ARGUMENT_PACK);
|
||
const char *str = TREE_STRING_POINTER (value);
|
||
int i, len = TREE_STRING_LENGTH (value) - 1;
|
||
tree argvec = make_tree_vec (1);
|
||
|
||
/* Fill in CHARVEC with all of the parameters. */
|
||
charvec = make_tree_vec (len);
|
||
for (i = 0; i < len; ++i)
|
||
TREE_VEC_ELT (charvec, i) = build_int_cst (char_type_node, str[i]);
|
||
|
||
/* Build the argument packs. */
|
||
SET_ARGUMENT_PACK_ARGS (argpack, charvec);
|
||
TREE_TYPE (argpack) = char_type_node;
|
||
|
||
TREE_VEC_ELT (argvec, 0) = argpack;
|
||
|
||
return argvec;
|
||
}
|
||
|
||
/* A subroutine of cp_parser_userdef_numeric_literal to
|
||
create a char... template parameter pack from a string node. */
|
||
|
||
static tree
|
||
make_string_pack (tree value)
|
||
{
|
||
tree charvec;
|
||
tree argpack = make_node (NONTYPE_ARGUMENT_PACK);
|
||
const unsigned char *str
|
||
= (const unsigned char *) TREE_STRING_POINTER (value);
|
||
int sz = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (value))));
|
||
int len = TREE_STRING_LENGTH (value) / sz - 1;
|
||
tree argvec = make_tree_vec (2);
|
||
|
||
tree str_char_type_node = TREE_TYPE (TREE_TYPE (value));
|
||
str_char_type_node = TYPE_MAIN_VARIANT (str_char_type_node);
|
||
|
||
/* First template parm is character type. */
|
||
TREE_VEC_ELT (argvec, 0) = str_char_type_node;
|
||
|
||
/* Fill in CHARVEC with all of the parameters. */
|
||
charvec = make_tree_vec (len);
|
||
for (int i = 0; i < len; ++i)
|
||
TREE_VEC_ELT (charvec, i)
|
||
= double_int_to_tree (str_char_type_node,
|
||
double_int::from_buffer (str + i * sz, sz));
|
||
|
||
/* Build the argument packs. */
|
||
SET_ARGUMENT_PACK_ARGS (argpack, charvec);
|
||
TREE_TYPE (argpack) = str_char_type_node;
|
||
|
||
TREE_VEC_ELT (argvec, 1) = argpack;
|
||
|
||
return argvec;
|
||
}
|
||
|
||
/* Parse a user-defined numeric constant. returns a call to a user-defined
|
||
literal operator. */
|
||
|
||
static tree
|
||
cp_parser_userdef_numeric_literal (cp_parser *parser)
|
||
{
|
||
cp_token *token = cp_lexer_consume_token (parser->lexer);
|
||
tree literal = token->u.value;
|
||
tree suffix_id = USERDEF_LITERAL_SUFFIX_ID (literal);
|
||
tree value = USERDEF_LITERAL_VALUE (literal);
|
||
int overflow = USERDEF_LITERAL_OVERFLOW (literal);
|
||
tree num_string = USERDEF_LITERAL_NUM_STRING (literal);
|
||
tree name = cp_literal_operator_id (IDENTIFIER_POINTER (suffix_id));
|
||
tree decl, result;
|
||
vec<tree, va_gc> *args;
|
||
|
||
/* Look for a literal operator taking the exact type of numeric argument
|
||
as the literal value. */
|
||
args = make_tree_vector ();
|
||
vec_safe_push (args, value);
|
||
decl = lookup_literal_operator (name, args);
|
||
if (decl && decl != error_mark_node)
|
||
{
|
||
result = finish_call_expr (decl, &args, false, true, tf_none);
|
||
if (result != error_mark_node)
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (value)) == INTEGER_TYPE && overflow > 0)
|
||
warning_at (token->location, OPT_Woverflow,
|
||
"integer literal exceeds range of %qT type",
|
||
long_long_unsigned_type_node);
|
||
else
|
||
{
|
||
if (overflow > 0)
|
||
warning_at (token->location, OPT_Woverflow,
|
||
"floating literal exceeds range of %qT type",
|
||
long_double_type_node);
|
||
else if (overflow < 0)
|
||
warning_at (token->location, OPT_Woverflow,
|
||
"floating literal truncated to zero");
|
||
}
|
||
release_tree_vector (args);
|
||
return result;
|
||
}
|
||
}
|
||
release_tree_vector (args);
|
||
|
||
/* If the numeric argument didn't work, look for a raw literal
|
||
operator taking a const char* argument consisting of the number
|
||
in string format. */
|
||
args = make_tree_vector ();
|
||
vec_safe_push (args, num_string);
|
||
decl = lookup_literal_operator (name, args);
|
||
if (decl && decl != error_mark_node)
|
||
{
|
||
result = finish_call_expr (decl, &args, false, true, tf_none);
|
||
if (result != error_mark_node)
|
||
{
|
||
release_tree_vector (args);
|
||
return result;
|
||
}
|
||
}
|
||
release_tree_vector (args);
|
||
|
||
/* If the raw literal didn't work, look for a non-type template
|
||
function with parameter pack char.... Call the function with
|
||
template parameter characters representing the number. */
|
||
args = make_tree_vector ();
|
||
decl = lookup_literal_operator (name, args);
|
||
if (decl && decl != error_mark_node)
|
||
{
|
||
tree tmpl_args = make_char_string_pack (num_string);
|
||
decl = lookup_template_function (decl, tmpl_args);
|
||
result = finish_call_expr (decl, &args, false, true, tf_none);
|
||
if (result != error_mark_node)
|
||
{
|
||
release_tree_vector (args);
|
||
return result;
|
||
}
|
||
}
|
||
release_tree_vector (args);
|
||
|
||
error ("unable to find numeric literal operator %qD", name);
|
||
if (!cpp_get_options (parse_in)->ext_numeric_literals)
|
||
inform (token->location, "use -std=gnu++11 or -fext-numeric-literals "
|
||
"to enable more built-in suffixes");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Parse a user-defined string constant. Returns a call to a user-defined
|
||
literal operator taking a character pointer and the length of the string
|
||
as arguments. */
|
||
|
||
static tree
|
||
cp_parser_userdef_string_literal (tree literal)
|
||
{
|
||
tree suffix_id = USERDEF_LITERAL_SUFFIX_ID (literal);
|
||
tree name = cp_literal_operator_id (IDENTIFIER_POINTER (suffix_id));
|
||
tree value = USERDEF_LITERAL_VALUE (literal);
|
||
int len = TREE_STRING_LENGTH (value)
|
||
/ TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (value)))) - 1;
|
||
tree decl, result;
|
||
vec<tree, va_gc> *args;
|
||
|
||
/* Look for a template function with typename parameter CharT
|
||
and parameter pack CharT... Call the function with
|
||
template parameter characters representing the string. */
|
||
args = make_tree_vector ();
|
||
decl = lookup_literal_operator (name, args);
|
||
if (decl && decl != error_mark_node)
|
||
{
|
||
tree tmpl_args = make_string_pack (value);
|
||
decl = lookup_template_function (decl, tmpl_args);
|
||
result = finish_call_expr (decl, &args, false, true, tf_none);
|
||
if (result != error_mark_node)
|
||
{
|
||
release_tree_vector (args);
|
||
return result;
|
||
}
|
||
}
|
||
release_tree_vector (args);
|
||
|
||
/* Build up a call to the user-defined operator */
|
||
/* Lookup the name we got back from the id-expression. */
|
||
args = make_tree_vector ();
|
||
vec_safe_push (args, value);
|
||
vec_safe_push (args, build_int_cst (size_type_node, len));
|
||
decl = lookup_name (name);
|
||
if (!decl || decl == error_mark_node)
|
||
{
|
||
error ("unable to find string literal operator %qD", name);
|
||
release_tree_vector (args);
|
||
return error_mark_node;
|
||
}
|
||
result = finish_call_expr (decl, &args, false, true, tf_none);
|
||
release_tree_vector (args);
|
||
if (result != error_mark_node)
|
||
return result;
|
||
|
||
error ("unable to find string literal operator %qD with %qT, %qT arguments",
|
||
name, TREE_TYPE (value), size_type_node);
|
||
return error_mark_node;
|
||
}
|
||
|
||
|
||
/* Basic concepts [gram.basic] */
|
||
|
||
/* Parse a translation-unit.
|
||
|
||
translation-unit:
|
||
declaration-seq [opt]
|
||
|
||
Returns TRUE if all went well. */
|
||
|
||
static bool
|
||
cp_parser_translation_unit (cp_parser* parser)
|
||
{
|
||
/* The address of the first non-permanent object on the declarator
|
||
obstack. */
|
||
static void *declarator_obstack_base;
|
||
|
||
bool success;
|
||
|
||
/* Create the declarator obstack, if necessary. */
|
||
if (!cp_error_declarator)
|
||
{
|
||
gcc_obstack_init (&declarator_obstack);
|
||
/* Create the error declarator. */
|
||
cp_error_declarator = make_declarator (cdk_error);
|
||
/* Create the empty parameter list. */
|
||
no_parameters = make_parameter_declarator (NULL, NULL, NULL_TREE);
|
||
/* Remember where the base of the declarator obstack lies. */
|
||
declarator_obstack_base = obstack_next_free (&declarator_obstack);
|
||
}
|
||
|
||
cp_parser_declaration_seq_opt (parser);
|
||
|
||
/* If there are no tokens left then all went well. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
|
||
{
|
||
/* Get rid of the token array; we don't need it any more. */
|
||
cp_lexer_destroy (parser->lexer);
|
||
parser->lexer = NULL;
|
||
|
||
/* This file might have been a context that's implicitly extern
|
||
"C". If so, pop the lang context. (Only relevant for PCH.) */
|
||
if (parser->implicit_extern_c)
|
||
{
|
||
pop_lang_context ();
|
||
parser->implicit_extern_c = false;
|
||
}
|
||
|
||
/* Finish up. */
|
||
finish_translation_unit ();
|
||
|
||
success = true;
|
||
}
|
||
else
|
||
{
|
||
cp_parser_error (parser, "expected declaration");
|
||
success = false;
|
||
}
|
||
|
||
/* Make sure the declarator obstack was fully cleaned up. */
|
||
gcc_assert (obstack_next_free (&declarator_obstack)
|
||
== declarator_obstack_base);
|
||
|
||
/* All went well. */
|
||
return success;
|
||
}
|
||
|
||
/* Return the appropriate tsubst flags for parsing, possibly in N3276
|
||
decltype context. */
|
||
|
||
static inline tsubst_flags_t
|
||
complain_flags (bool decltype_p)
|
||
{
|
||
tsubst_flags_t complain = tf_warning_or_error;
|
||
if (decltype_p)
|
||
complain |= tf_decltype;
|
||
return complain;
|
||
}
|
||
|
||
/* Expressions [gram.expr] */
|
||
|
||
/* Parse a primary-expression.
|
||
|
||
primary-expression:
|
||
literal
|
||
this
|
||
( expression )
|
||
id-expression
|
||
lambda-expression (C++11)
|
||
|
||
GNU Extensions:
|
||
|
||
primary-expression:
|
||
( compound-statement )
|
||
__builtin_va_arg ( assignment-expression , type-id )
|
||
__builtin_offsetof ( type-id , offsetof-expression )
|
||
|
||
C++ Extensions:
|
||
__has_nothrow_assign ( type-id )
|
||
__has_nothrow_constructor ( type-id )
|
||
__has_nothrow_copy ( type-id )
|
||
__has_trivial_assign ( type-id )
|
||
__has_trivial_constructor ( type-id )
|
||
__has_trivial_copy ( type-id )
|
||
__has_trivial_destructor ( type-id )
|
||
__has_virtual_destructor ( type-id )
|
||
__is_abstract ( type-id )
|
||
__is_base_of ( type-id , type-id )
|
||
__is_class ( type-id )
|
||
__is_convertible_to ( type-id , type-id )
|
||
__is_empty ( type-id )
|
||
__is_enum ( type-id )
|
||
__is_final ( type-id )
|
||
__is_literal_type ( type-id )
|
||
__is_pod ( type-id )
|
||
__is_polymorphic ( type-id )
|
||
__is_std_layout ( type-id )
|
||
__is_trivial ( type-id )
|
||
__is_union ( type-id )
|
||
|
||
Objective-C++ Extension:
|
||
|
||
primary-expression:
|
||
objc-expression
|
||
|
||
literal:
|
||
__null
|
||
|
||
ADDRESS_P is true iff this expression was immediately preceded by
|
||
"&" and therefore might denote a pointer-to-member. CAST_P is true
|
||
iff this expression is the target of a cast. TEMPLATE_ARG_P is
|
||
true iff this expression is a template argument.
|
||
|
||
Returns a representation of the expression. Upon return, *IDK
|
||
indicates what kind of id-expression (if any) was present. */
|
||
|
||
static tree
|
||
cp_parser_primary_expression (cp_parser *parser,
|
||
bool address_p,
|
||
bool cast_p,
|
||
bool template_arg_p,
|
||
bool decltype_p,
|
||
cp_id_kind *idk)
|
||
{
|
||
cp_token *token = NULL;
|
||
|
||
/* Assume the primary expression is not an id-expression. */
|
||
*idk = CP_ID_KIND_NONE;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
switch (token->type)
|
||
{
|
||
/* literal:
|
||
integer-literal
|
||
character-literal
|
||
floating-literal
|
||
string-literal
|
||
boolean-literal
|
||
pointer-literal
|
||
user-defined-literal */
|
||
case CPP_CHAR:
|
||
case CPP_CHAR16:
|
||
case CPP_CHAR32:
|
||
case CPP_WCHAR:
|
||
case CPP_NUMBER:
|
||
if (TREE_CODE (token->u.value) == USERDEF_LITERAL)
|
||
return cp_parser_userdef_numeric_literal (parser);
|
||
token = cp_lexer_consume_token (parser->lexer);
|
||
if (TREE_CODE (token->u.value) == FIXED_CST)
|
||
{
|
||
error_at (token->location,
|
||
"fixed-point types not supported in C++");
|
||
return error_mark_node;
|
||
}
|
||
/* Floating-point literals are only allowed in an integral
|
||
constant expression if they are cast to an integral or
|
||
enumeration type. */
|
||
if (TREE_CODE (token->u.value) == REAL_CST
|
||
&& parser->integral_constant_expression_p
|
||
&& pedantic)
|
||
{
|
||
/* CAST_P will be set even in invalid code like "int(2.7 +
|
||
...)". Therefore, we have to check that the next token
|
||
is sure to end the cast. */
|
||
if (cast_p)
|
||
{
|
||
cp_token *next_token;
|
||
|
||
next_token = cp_lexer_peek_token (parser->lexer);
|
||
if (/* The comma at the end of an
|
||
enumerator-definition. */
|
||
next_token->type != CPP_COMMA
|
||
/* The curly brace at the end of an enum-specifier. */
|
||
&& next_token->type != CPP_CLOSE_BRACE
|
||
/* The end of a statement. */
|
||
&& next_token->type != CPP_SEMICOLON
|
||
/* The end of the cast-expression. */
|
||
&& next_token->type != CPP_CLOSE_PAREN
|
||
/* The end of an array bound. */
|
||
&& next_token->type != CPP_CLOSE_SQUARE
|
||
/* The closing ">" in a template-argument-list. */
|
||
&& (next_token->type != CPP_GREATER
|
||
|| parser->greater_than_is_operator_p)
|
||
/* C++0x only: A ">>" treated like two ">" tokens,
|
||
in a template-argument-list. */
|
||
&& (next_token->type != CPP_RSHIFT
|
||
|| (cxx_dialect == cxx98)
|
||
|| parser->greater_than_is_operator_p))
|
||
cast_p = false;
|
||
}
|
||
|
||
/* If we are within a cast, then the constraint that the
|
||
cast is to an integral or enumeration type will be
|
||
checked at that point. If we are not within a cast, then
|
||
this code is invalid. */
|
||
if (!cast_p)
|
||
cp_parser_non_integral_constant_expression (parser, NIC_FLOAT);
|
||
}
|
||
return token->u.value;
|
||
|
||
case CPP_CHAR_USERDEF:
|
||
case CPP_CHAR16_USERDEF:
|
||
case CPP_CHAR32_USERDEF:
|
||
case CPP_WCHAR_USERDEF:
|
||
return cp_parser_userdef_char_literal (parser);
|
||
|
||
case CPP_STRING:
|
||
case CPP_STRING16:
|
||
case CPP_STRING32:
|
||
case CPP_WSTRING:
|
||
case CPP_UTF8STRING:
|
||
case CPP_STRING_USERDEF:
|
||
case CPP_STRING16_USERDEF:
|
||
case CPP_STRING32_USERDEF:
|
||
case CPP_WSTRING_USERDEF:
|
||
case CPP_UTF8STRING_USERDEF:
|
||
/* ??? Should wide strings be allowed when parser->translate_strings_p
|
||
is false (i.e. in attributes)? If not, we can kill the third
|
||
argument to cp_parser_string_literal. */
|
||
return cp_parser_string_literal (parser,
|
||
parser->translate_strings_p,
|
||
true);
|
||
|
||
case CPP_OPEN_PAREN:
|
||
{
|
||
tree expr;
|
||
bool saved_greater_than_is_operator_p;
|
||
|
||
/* Consume the `('. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Within a parenthesized expression, a `>' token is always
|
||
the greater-than operator. */
|
||
saved_greater_than_is_operator_p
|
||
= parser->greater_than_is_operator_p;
|
||
parser->greater_than_is_operator_p = true;
|
||
/* If we see `( { ' then we are looking at the beginning of
|
||
a GNU statement-expression. */
|
||
if (cp_parser_allow_gnu_extensions_p (parser)
|
||
&& cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
/* Statement-expressions are not allowed by the standard. */
|
||
pedwarn (token->location, OPT_Wpedantic,
|
||
"ISO C++ forbids braced-groups within expressions");
|
||
|
||
/* And they're not allowed outside of a function-body; you
|
||
cannot, for example, write:
|
||
|
||
int i = ({ int j = 3; j + 1; });
|
||
|
||
at class or namespace scope. */
|
||
if (!parser->in_function_body
|
||
|| parser->in_template_argument_list_p)
|
||
{
|
||
error_at (token->location,
|
||
"statement-expressions are not allowed outside "
|
||
"functions nor in template-argument lists");
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
expr = error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
/* Start the statement-expression. */
|
||
expr = begin_stmt_expr ();
|
||
/* Parse the compound-statement. */
|
||
cp_parser_compound_statement (parser, expr, false, false);
|
||
/* Finish up. */
|
||
expr = finish_stmt_expr (expr, false);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Parse the parenthesized expression. */
|
||
expr = cp_parser_expression (parser, cast_p, decltype_p, idk);
|
||
/* Let the front end know that this expression was
|
||
enclosed in parentheses. This matters in case, for
|
||
example, the expression is of the form `A::B', since
|
||
`&A::B' might be a pointer-to-member, but `&(A::B)' is
|
||
not. */
|
||
expr = finish_parenthesized_expr (expr);
|
||
/* DR 705: Wrapping an unqualified name in parentheses
|
||
suppresses arg-dependent lookup. We want to pass back
|
||
CP_ID_KIND_QUALIFIED for suppressing vtable lookup
|
||
(c++/37862), but none of the others. */
|
||
if (*idk != CP_ID_KIND_QUALIFIED)
|
||
*idk = CP_ID_KIND_NONE;
|
||
}
|
||
/* The `>' token might be the end of a template-id or
|
||
template-parameter-list now. */
|
||
parser->greater_than_is_operator_p
|
||
= saved_greater_than_is_operator_p;
|
||
/* Consume the `)'. */
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
|
||
return expr;
|
||
}
|
||
|
||
case CPP_OPEN_SQUARE:
|
||
if (c_dialect_objc ())
|
||
/* We have an Objective-C++ message. */
|
||
return cp_parser_objc_expression (parser);
|
||
{
|
||
tree lam = cp_parser_lambda_expression (parser);
|
||
/* Don't warn about a failed tentative parse. */
|
||
if (cp_parser_error_occurred (parser))
|
||
return error_mark_node;
|
||
maybe_warn_cpp0x (CPP0X_LAMBDA_EXPR);
|
||
return lam;
|
||
}
|
||
|
||
case CPP_OBJC_STRING:
|
||
if (c_dialect_objc ())
|
||
/* We have an Objective-C++ string literal. */
|
||
return cp_parser_objc_expression (parser);
|
||
cp_parser_error (parser, "expected primary-expression");
|
||
return error_mark_node;
|
||
|
||
case CPP_KEYWORD:
|
||
switch (token->keyword)
|
||
{
|
||
/* These two are the boolean literals. */
|
||
case RID_TRUE:
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return boolean_true_node;
|
||
case RID_FALSE:
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return boolean_false_node;
|
||
|
||
/* The `__null' literal. */
|
||
case RID_NULL:
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return null_node;
|
||
|
||
/* The `nullptr' literal. */
|
||
case RID_NULLPTR:
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return nullptr_node;
|
||
|
||
/* Recognize the `this' keyword. */
|
||
case RID_THIS:
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (parser->local_variables_forbidden_p)
|
||
{
|
||
error_at (token->location,
|
||
"%<this%> may not be used in this context");
|
||
return error_mark_node;
|
||
}
|
||
/* Pointers cannot appear in constant-expressions. */
|
||
if (cp_parser_non_integral_constant_expression (parser, NIC_THIS))
|
||
return error_mark_node;
|
||
return finish_this_expr ();
|
||
|
||
/* The `operator' keyword can be the beginning of an
|
||
id-expression. */
|
||
case RID_OPERATOR:
|
||
goto id_expression;
|
||
|
||
case RID_FUNCTION_NAME:
|
||
case RID_PRETTY_FUNCTION_NAME:
|
||
case RID_C99_FUNCTION_NAME:
|
||
{
|
||
non_integral_constant name;
|
||
|
||
/* The symbols __FUNCTION__, __PRETTY_FUNCTION__, and
|
||
__func__ are the names of variables -- but they are
|
||
treated specially. Therefore, they are handled here,
|
||
rather than relying on the generic id-expression logic
|
||
below. Grammatically, these names are id-expressions.
|
||
|
||
Consume the token. */
|
||
token = cp_lexer_consume_token (parser->lexer);
|
||
|
||
switch (token->keyword)
|
||
{
|
||
case RID_FUNCTION_NAME:
|
||
name = NIC_FUNC_NAME;
|
||
break;
|
||
case RID_PRETTY_FUNCTION_NAME:
|
||
name = NIC_PRETTY_FUNC;
|
||
break;
|
||
case RID_C99_FUNCTION_NAME:
|
||
name = NIC_C99_FUNC;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (cp_parser_non_integral_constant_expression (parser, name))
|
||
return error_mark_node;
|
||
|
||
/* Look up the name. */
|
||
return finish_fname (token->u.value);
|
||
}
|
||
|
||
case RID_VA_ARG:
|
||
{
|
||
tree expression;
|
||
tree type;
|
||
source_location type_location;
|
||
|
||
/* The `__builtin_va_arg' construct is used to handle
|
||
`va_arg'. Consume the `__builtin_va_arg' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Look for the opening `('. */
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
/* Now, parse the assignment-expression. */
|
||
expression = cp_parser_assignment_expression (parser,
|
||
/*cast_p=*/false, NULL);
|
||
/* Look for the `,'. */
|
||
cp_parser_require (parser, CPP_COMMA, RT_COMMA);
|
||
type_location = cp_lexer_peek_token (parser->lexer)->location;
|
||
/* Parse the type-id. */
|
||
type = cp_parser_type_id (parser);
|
||
/* Look for the closing `)'. */
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
/* Using `va_arg' in a constant-expression is not
|
||
allowed. */
|
||
if (cp_parser_non_integral_constant_expression (parser,
|
||
NIC_VA_ARG))
|
||
return error_mark_node;
|
||
return build_x_va_arg (type_location, expression, type);
|
||
}
|
||
|
||
case RID_OFFSETOF:
|
||
return cp_parser_builtin_offsetof (parser);
|
||
|
||
case RID_HAS_NOTHROW_ASSIGN:
|
||
case RID_HAS_NOTHROW_CONSTRUCTOR:
|
||
case RID_HAS_NOTHROW_COPY:
|
||
case RID_HAS_TRIVIAL_ASSIGN:
|
||
case RID_HAS_TRIVIAL_CONSTRUCTOR:
|
||
case RID_HAS_TRIVIAL_COPY:
|
||
case RID_HAS_TRIVIAL_DESTRUCTOR:
|
||
case RID_HAS_VIRTUAL_DESTRUCTOR:
|
||
case RID_IS_ABSTRACT:
|
||
case RID_IS_BASE_OF:
|
||
case RID_IS_CLASS:
|
||
case RID_IS_CONVERTIBLE_TO:
|
||
case RID_IS_EMPTY:
|
||
case RID_IS_ENUM:
|
||
case RID_IS_FINAL:
|
||
case RID_IS_LITERAL_TYPE:
|
||
case RID_IS_POD:
|
||
case RID_IS_POLYMORPHIC:
|
||
case RID_IS_STD_LAYOUT:
|
||
case RID_IS_TRIVIAL:
|
||
case RID_IS_UNION:
|
||
return cp_parser_trait_expr (parser, token->keyword);
|
||
|
||
/* Objective-C++ expressions. */
|
||
case RID_AT_ENCODE:
|
||
case RID_AT_PROTOCOL:
|
||
case RID_AT_SELECTOR:
|
||
return cp_parser_objc_expression (parser);
|
||
|
||
case RID_TEMPLATE:
|
||
if (parser->in_function_body
|
||
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
|
||
== CPP_LESS))
|
||
{
|
||
error_at (token->location,
|
||
"a template declaration cannot appear at block scope");
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
return error_mark_node;
|
||
}
|
||
default:
|
||
cp_parser_error (parser, "expected primary-expression");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* An id-expression can start with either an identifier, a
|
||
`::' as the beginning of a qualified-id, or the "operator"
|
||
keyword. */
|
||
case CPP_NAME:
|
||
case CPP_SCOPE:
|
||
case CPP_TEMPLATE_ID:
|
||
case CPP_NESTED_NAME_SPECIFIER:
|
||
{
|
||
tree id_expression;
|
||
tree decl;
|
||
const char *error_msg;
|
||
bool template_p;
|
||
bool done;
|
||
cp_token *id_expr_token;
|
||
|
||
id_expression:
|
||
/* Parse the id-expression. */
|
||
id_expression
|
||
= cp_parser_id_expression (parser,
|
||
/*template_keyword_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
&template_p,
|
||
/*declarator_p=*/false,
|
||
/*optional_p=*/false);
|
||
if (id_expression == error_mark_node)
|
||
return error_mark_node;
|
||
id_expr_token = token;
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
done = (token->type != CPP_OPEN_SQUARE
|
||
&& token->type != CPP_OPEN_PAREN
|
||
&& token->type != CPP_DOT
|
||
&& token->type != CPP_DEREF
|
||
&& token->type != CPP_PLUS_PLUS
|
||
&& token->type != CPP_MINUS_MINUS);
|
||
/* If we have a template-id, then no further lookup is
|
||
required. If the template-id was for a template-class, we
|
||
will sometimes have a TYPE_DECL at this point. */
|
||
if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR
|
||
|| TREE_CODE (id_expression) == TYPE_DECL)
|
||
decl = id_expression;
|
||
/* Look up the name. */
|
||
else
|
||
{
|
||
tree ambiguous_decls;
|
||
|
||
/* If we already know that this lookup is ambiguous, then
|
||
we've already issued an error message; there's no reason
|
||
to check again. */
|
||
if (id_expr_token->type == CPP_NAME
|
||
&& id_expr_token->error_reported)
|
||
{
|
||
cp_parser_simulate_error (parser);
|
||
return error_mark_node;
|
||
}
|
||
|
||
decl = cp_parser_lookup_name (parser, id_expression,
|
||
none_type,
|
||
template_p,
|
||
/*is_namespace=*/false,
|
||
/*check_dependency=*/true,
|
||
&ambiguous_decls,
|
||
id_expr_token->location);
|
||
/* If the lookup was ambiguous, an error will already have
|
||
been issued. */
|
||
if (ambiguous_decls)
|
||
return error_mark_node;
|
||
|
||
/* In Objective-C++, we may have an Objective-C 2.0
|
||
dot-syntax for classes here. */
|
||
if (c_dialect_objc ()
|
||
&& cp_lexer_peek_token (parser->lexer)->type == CPP_DOT
|
||
&& TREE_CODE (decl) == TYPE_DECL
|
||
&& objc_is_class_name (decl))
|
||
{
|
||
tree component;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
component = cp_parser_identifier (parser);
|
||
if (component == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
return objc_build_class_component_ref (id_expression, component);
|
||
}
|
||
|
||
/* In Objective-C++, an instance variable (ivar) may be preferred
|
||
to whatever cp_parser_lookup_name() found. */
|
||
decl = objc_lookup_ivar (decl, id_expression);
|
||
|
||
/* If name lookup gives us a SCOPE_REF, then the
|
||
qualifying scope was dependent. */
|
||
if (TREE_CODE (decl) == SCOPE_REF)
|
||
{
|
||
/* At this point, we do not know if DECL is a valid
|
||
integral constant expression. We assume that it is
|
||
in fact such an expression, so that code like:
|
||
|
||
template <int N> struct A {
|
||
int a[B<N>::i];
|
||
};
|
||
|
||
is accepted. At template-instantiation time, we
|
||
will check that B<N>::i is actually a constant. */
|
||
return decl;
|
||
}
|
||
/* Check to see if DECL is a local variable in a context
|
||
where that is forbidden. */
|
||
if (parser->local_variables_forbidden_p
|
||
&& local_variable_p (decl))
|
||
{
|
||
/* It might be that we only found DECL because we are
|
||
trying to be generous with pre-ISO scoping rules.
|
||
For example, consider:
|
||
|
||
int i;
|
||
void g() {
|
||
for (int i = 0; i < 10; ++i) {}
|
||
extern void f(int j = i);
|
||
}
|
||
|
||
Here, name look up will originally find the out
|
||
of scope `i'. We need to issue a warning message,
|
||
but then use the global `i'. */
|
||
decl = check_for_out_of_scope_variable (decl);
|
||
if (local_variable_p (decl))
|
||
{
|
||
error_at (id_expr_token->location,
|
||
"local variable %qD may not appear in this context",
|
||
decl);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
}
|
||
|
||
decl = (finish_id_expression
|
||
(id_expression, decl, parser->scope,
|
||
idk,
|
||
parser->integral_constant_expression_p,
|
||
parser->allow_non_integral_constant_expression_p,
|
||
&parser->non_integral_constant_expression_p,
|
||
template_p, done, address_p,
|
||
template_arg_p,
|
||
&error_msg,
|
||
id_expr_token->location));
|
||
if (error_msg)
|
||
cp_parser_error (parser, error_msg);
|
||
return decl;
|
||
}
|
||
|
||
/* Anything else is an error. */
|
||
default:
|
||
cp_parser_error (parser, "expected primary-expression");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
static inline tree
|
||
cp_parser_primary_expression (cp_parser *parser,
|
||
bool address_p,
|
||
bool cast_p,
|
||
bool template_arg_p,
|
||
cp_id_kind *idk)
|
||
{
|
||
return cp_parser_primary_expression (parser, address_p, cast_p, template_arg_p,
|
||
/*decltype*/false, idk);
|
||
}
|
||
|
||
/* Parse an id-expression.
|
||
|
||
id-expression:
|
||
unqualified-id
|
||
qualified-id
|
||
|
||
qualified-id:
|
||
:: [opt] nested-name-specifier template [opt] unqualified-id
|
||
:: identifier
|
||
:: operator-function-id
|
||
:: template-id
|
||
|
||
Return a representation of the unqualified portion of the
|
||
identifier. Sets PARSER->SCOPE to the qualifying scope if there is
|
||
a `::' or nested-name-specifier.
|
||
|
||
Often, if the id-expression was a qualified-id, the caller will
|
||
want to make a SCOPE_REF to represent the qualified-id. This
|
||
function does not do this in order to avoid wastefully creating
|
||
SCOPE_REFs when they are not required.
|
||
|
||
If TEMPLATE_KEYWORD_P is true, then we have just seen the
|
||
`template' keyword.
|
||
|
||
If CHECK_DEPENDENCY_P is false, then names are looked up inside
|
||
uninstantiated templates.
|
||
|
||
If *TEMPLATE_P is non-NULL, it is set to true iff the
|
||
`template' keyword is used to explicitly indicate that the entity
|
||
named is a template.
|
||
|
||
If DECLARATOR_P is true, the id-expression is appearing as part of
|
||
a declarator, rather than as part of an expression. */
|
||
|
||
static tree
|
||
cp_parser_id_expression (cp_parser *parser,
|
||
bool template_keyword_p,
|
||
bool check_dependency_p,
|
||
bool *template_p,
|
||
bool declarator_p,
|
||
bool optional_p)
|
||
{
|
||
bool global_scope_p;
|
||
bool nested_name_specifier_p;
|
||
|
||
/* Assume the `template' keyword was not used. */
|
||
if (template_p)
|
||
*template_p = template_keyword_p;
|
||
|
||
/* Look for the optional `::' operator. */
|
||
global_scope_p
|
||
= (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false)
|
||
!= NULL_TREE);
|
||
/* Look for the optional nested-name-specifier. */
|
||
nested_name_specifier_p
|
||
= (cp_parser_nested_name_specifier_opt (parser,
|
||
/*typename_keyword_p=*/false,
|
||
check_dependency_p,
|
||
/*type_p=*/false,
|
||
declarator_p)
|
||
!= NULL_TREE);
|
||
/* If there is a nested-name-specifier, then we are looking at
|
||
the first qualified-id production. */
|
||
if (nested_name_specifier_p)
|
||
{
|
||
tree saved_scope;
|
||
tree saved_object_scope;
|
||
tree saved_qualifying_scope;
|
||
tree unqualified_id;
|
||
bool is_template;
|
||
|
||
/* See if the next token is the `template' keyword. */
|
||
if (!template_p)
|
||
template_p = &is_template;
|
||
*template_p = cp_parser_optional_template_keyword (parser);
|
||
/* Name lookup we do during the processing of the
|
||
unqualified-id might obliterate SCOPE. */
|
||
saved_scope = parser->scope;
|
||
saved_object_scope = parser->object_scope;
|
||
saved_qualifying_scope = parser->qualifying_scope;
|
||
/* Process the final unqualified-id. */
|
||
unqualified_id = cp_parser_unqualified_id (parser, *template_p,
|
||
check_dependency_p,
|
||
declarator_p,
|
||
/*optional_p=*/false);
|
||
/* Restore the SAVED_SCOPE for our caller. */
|
||
parser->scope = saved_scope;
|
||
parser->object_scope = saved_object_scope;
|
||
parser->qualifying_scope = saved_qualifying_scope;
|
||
|
||
return unqualified_id;
|
||
}
|
||
/* Otherwise, if we are in global scope, then we are looking at one
|
||
of the other qualified-id productions. */
|
||
else if (global_scope_p)
|
||
{
|
||
cp_token *token;
|
||
tree id;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* If it's an identifier, and the next token is not a "<", then
|
||
we can avoid the template-id case. This is an optimization
|
||
for this common case. */
|
||
if (token->type == CPP_NAME
|
||
&& !cp_parser_nth_token_starts_template_argument_list_p
|
||
(parser, 2))
|
||
return cp_parser_identifier (parser);
|
||
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Try a template-id. */
|
||
id = cp_parser_template_id (parser,
|
||
/*template_keyword_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
none_type,
|
||
declarator_p);
|
||
/* If that worked, we're done. */
|
||
if (cp_parser_parse_definitely (parser))
|
||
return id;
|
||
|
||
/* Peek at the next token. (Changes in the token buffer may
|
||
have invalidated the pointer obtained above.) */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
switch (token->type)
|
||
{
|
||
case CPP_NAME:
|
||
return cp_parser_identifier (parser);
|
||
|
||
case CPP_KEYWORD:
|
||
if (token->keyword == RID_OPERATOR)
|
||
return cp_parser_operator_function_id (parser);
|
||
/* Fall through. */
|
||
|
||
default:
|
||
cp_parser_error (parser, "expected id-expression");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
else
|
||
return cp_parser_unqualified_id (parser, template_keyword_p,
|
||
/*check_dependency_p=*/true,
|
||
declarator_p,
|
||
optional_p);
|
||
}
|
||
|
||
/* Parse an unqualified-id.
|
||
|
||
unqualified-id:
|
||
identifier
|
||
operator-function-id
|
||
conversion-function-id
|
||
~ class-name
|
||
template-id
|
||
|
||
If TEMPLATE_KEYWORD_P is TRUE, we have just seen the `template'
|
||
keyword, in a construct like `A::template ...'.
|
||
|
||
Returns a representation of unqualified-id. For the `identifier'
|
||
production, an IDENTIFIER_NODE is returned. For the `~ class-name'
|
||
production a BIT_NOT_EXPR is returned; the operand of the
|
||
BIT_NOT_EXPR is an IDENTIFIER_NODE for the class-name. For the
|
||
other productions, see the documentation accompanying the
|
||
corresponding parsing functions. If CHECK_DEPENDENCY_P is false,
|
||
names are looked up in uninstantiated templates. If DECLARATOR_P
|
||
is true, the unqualified-id is appearing as part of a declarator,
|
||
rather than as part of an expression. */
|
||
|
||
static tree
|
||
cp_parser_unqualified_id (cp_parser* parser,
|
||
bool template_keyword_p,
|
||
bool check_dependency_p,
|
||
bool declarator_p,
|
||
bool optional_p)
|
||
{
|
||
cp_token *token;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
switch (token->type)
|
||
{
|
||
case CPP_NAME:
|
||
{
|
||
tree id;
|
||
|
||
/* We don't know yet whether or not this will be a
|
||
template-id. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Try a template-id. */
|
||
id = cp_parser_template_id (parser, template_keyword_p,
|
||
check_dependency_p,
|
||
none_type,
|
||
declarator_p);
|
||
/* If it worked, we're done. */
|
||
if (cp_parser_parse_definitely (parser))
|
||
return id;
|
||
/* Otherwise, it's an ordinary identifier. */
|
||
return cp_parser_identifier (parser);
|
||
}
|
||
|
||
case CPP_TEMPLATE_ID:
|
||
return cp_parser_template_id (parser, template_keyword_p,
|
||
check_dependency_p,
|
||
none_type,
|
||
declarator_p);
|
||
|
||
case CPP_COMPL:
|
||
{
|
||
tree type_decl;
|
||
tree qualifying_scope;
|
||
tree object_scope;
|
||
tree scope;
|
||
bool done;
|
||
|
||
/* Consume the `~' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the class-name. The standard, as written, seems to
|
||
say that:
|
||
|
||
template <typename T> struct S { ~S (); };
|
||
template <typename T> S<T>::~S() {}
|
||
|
||
is invalid, since `~' must be followed by a class-name, but
|
||
`S<T>' is dependent, and so not known to be a class.
|
||
That's not right; we need to look in uninstantiated
|
||
templates. A further complication arises from:
|
||
|
||
template <typename T> void f(T t) {
|
||
t.T::~T();
|
||
}
|
||
|
||
Here, it is not possible to look up `T' in the scope of `T'
|
||
itself. We must look in both the current scope, and the
|
||
scope of the containing complete expression.
|
||
|
||
Yet another issue is:
|
||
|
||
struct S {
|
||
int S;
|
||
~S();
|
||
};
|
||
|
||
S::~S() {}
|
||
|
||
The standard does not seem to say that the `S' in `~S'
|
||
should refer to the type `S' and not the data member
|
||
`S::S'. */
|
||
|
||
/* DR 244 says that we look up the name after the "~" in the
|
||
same scope as we looked up the qualifying name. That idea
|
||
isn't fully worked out; it's more complicated than that. */
|
||
scope = parser->scope;
|
||
object_scope = parser->object_scope;
|
||
qualifying_scope = parser->qualifying_scope;
|
||
|
||
/* Check for invalid scopes. */
|
||
if (scope == error_mark_node)
|
||
{
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return error_mark_node;
|
||
}
|
||
if (scope && TREE_CODE (scope) == NAMESPACE_DECL)
|
||
{
|
||
if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
|
||
error_at (token->location,
|
||
"scope %qT before %<~%> is not a class-name",
|
||
scope);
|
||
cp_parser_simulate_error (parser);
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return error_mark_node;
|
||
}
|
||
gcc_assert (!scope || TYPE_P (scope));
|
||
|
||
/* If the name is of the form "X::~X" it's OK even if X is a
|
||
typedef. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (scope
|
||
&& token->type == CPP_NAME
|
||
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
|
||
!= CPP_LESS)
|
||
&& (token->u.value == TYPE_IDENTIFIER (scope)
|
||
|| (CLASS_TYPE_P (scope)
|
||
&& constructor_name_p (token->u.value, scope))))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return build_nt (BIT_NOT_EXPR, scope);
|
||
}
|
||
|
||
/* ~auto means the destructor of whatever the object is. */
|
||
if (cp_parser_is_keyword (token, RID_AUTO))
|
||
{
|
||
if (cxx_dialect < cxx1y)
|
||
pedwarn (input_location, 0,
|
||
"%<~auto%> only available with "
|
||
"-std=c++1y or -std=gnu++1y");
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return build_nt (BIT_NOT_EXPR, make_auto ());
|
||
}
|
||
|
||
/* If there was an explicit qualification (S::~T), first look
|
||
in the scope given by the qualification (i.e., S).
|
||
|
||
Note: in the calls to cp_parser_class_name below we pass
|
||
typename_type so that lookup finds the injected-class-name
|
||
rather than the constructor. */
|
||
done = false;
|
||
type_decl = NULL_TREE;
|
||
if (scope)
|
||
{
|
||
cp_parser_parse_tentatively (parser);
|
||
type_decl = cp_parser_class_name (parser,
|
||
/*typename_keyword_p=*/false,
|
||
/*template_keyword_p=*/false,
|
||
typename_type,
|
||
/*check_dependency=*/false,
|
||
/*class_head_p=*/false,
|
||
declarator_p);
|
||
if (cp_parser_parse_definitely (parser))
|
||
done = true;
|
||
}
|
||
/* In "N::S::~S", look in "N" as well. */
|
||
if (!done && scope && qualifying_scope)
|
||
{
|
||
cp_parser_parse_tentatively (parser);
|
||
parser->scope = qualifying_scope;
|
||
parser->object_scope = NULL_TREE;
|
||
parser->qualifying_scope = NULL_TREE;
|
||
type_decl
|
||
= cp_parser_class_name (parser,
|
||
/*typename_keyword_p=*/false,
|
||
/*template_keyword_p=*/false,
|
||
typename_type,
|
||
/*check_dependency=*/false,
|
||
/*class_head_p=*/false,
|
||
declarator_p);
|
||
if (cp_parser_parse_definitely (parser))
|
||
done = true;
|
||
}
|
||
/* In "p->S::~T", look in the scope given by "*p" as well. */
|
||
else if (!done && object_scope)
|
||
{
|
||
cp_parser_parse_tentatively (parser);
|
||
parser->scope = object_scope;
|
||
parser->object_scope = NULL_TREE;
|
||
parser->qualifying_scope = NULL_TREE;
|
||
type_decl
|
||
= cp_parser_class_name (parser,
|
||
/*typename_keyword_p=*/false,
|
||
/*template_keyword_p=*/false,
|
||
typename_type,
|
||
/*check_dependency=*/false,
|
||
/*class_head_p=*/false,
|
||
declarator_p);
|
||
if (cp_parser_parse_definitely (parser))
|
||
done = true;
|
||
}
|
||
/* Look in the surrounding context. */
|
||
if (!done)
|
||
{
|
||
parser->scope = NULL_TREE;
|
||
parser->object_scope = NULL_TREE;
|
||
parser->qualifying_scope = NULL_TREE;
|
||
if (processing_template_decl)
|
||
cp_parser_parse_tentatively (parser);
|
||
type_decl
|
||
= cp_parser_class_name (parser,
|
||
/*typename_keyword_p=*/false,
|
||
/*template_keyword_p=*/false,
|
||
typename_type,
|
||
/*check_dependency=*/false,
|
||
/*class_head_p=*/false,
|
||
declarator_p);
|
||
if (processing_template_decl
|
||
&& ! cp_parser_parse_definitely (parser))
|
||
{
|
||
/* We couldn't find a type with this name, so just accept
|
||
it and check for a match at instantiation time. */
|
||
type_decl = cp_parser_identifier (parser);
|
||
if (type_decl != error_mark_node)
|
||
type_decl = build_nt (BIT_NOT_EXPR, type_decl);
|
||
return type_decl;
|
||
}
|
||
}
|
||
/* If an error occurred, assume that the name of the
|
||
destructor is the same as the name of the qualifying
|
||
class. That allows us to keep parsing after running
|
||
into ill-formed destructor names. */
|
||
if (type_decl == error_mark_node && scope)
|
||
return build_nt (BIT_NOT_EXPR, scope);
|
||
else if (type_decl == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Check that destructor name and scope match. */
|
||
if (declarator_p && scope && !check_dtor_name (scope, type_decl))
|
||
{
|
||
if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
|
||
error_at (token->location,
|
||
"declaration of %<~%T%> as member of %qT",
|
||
type_decl, scope);
|
||
cp_parser_simulate_error (parser);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* [class.dtor]
|
||
|
||
A typedef-name that names a class shall not be used as the
|
||
identifier in the declarator for a destructor declaration. */
|
||
if (declarator_p
|
||
&& !DECL_IMPLICIT_TYPEDEF_P (type_decl)
|
||
&& !DECL_SELF_REFERENCE_P (type_decl)
|
||
&& !cp_parser_uncommitted_to_tentative_parse_p (parser))
|
||
error_at (token->location,
|
||
"typedef-name %qD used as destructor declarator",
|
||
type_decl);
|
||
|
||
return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
|
||
}
|
||
|
||
case CPP_KEYWORD:
|
||
if (token->keyword == RID_OPERATOR)
|
||
{
|
||
tree id;
|
||
|
||
/* This could be a template-id, so we try that first. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Try a template-id. */
|
||
id = cp_parser_template_id (parser, template_keyword_p,
|
||
/*check_dependency_p=*/true,
|
||
none_type,
|
||
declarator_p);
|
||
/* If that worked, we're done. */
|
||
if (cp_parser_parse_definitely (parser))
|
||
return id;
|
||
/* We still don't know whether we're looking at an
|
||
operator-function-id or a conversion-function-id. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Try an operator-function-id. */
|
||
id = cp_parser_operator_function_id (parser);
|
||
/* If that didn't work, try a conversion-function-id. */
|
||
if (!cp_parser_parse_definitely (parser))
|
||
id = cp_parser_conversion_function_id (parser);
|
||
else if (UDLIT_OPER_P (id))
|
||
{
|
||
/* 17.6.3.3.5 */
|
||
const char *name = UDLIT_OP_SUFFIX (id);
|
||
if (name[0] != '_' && !in_system_header_at (input_location)
|
||
&& declarator_p)
|
||
warning (0, "literal operator suffixes not preceded by %<_%>"
|
||
" are reserved for future standardization");
|
||
}
|
||
|
||
return id;
|
||
}
|
||
/* Fall through. */
|
||
|
||
default:
|
||
if (optional_p)
|
||
return NULL_TREE;
|
||
cp_parser_error (parser, "expected unqualified-id");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* Parse an (optional) nested-name-specifier.
|
||
|
||
nested-name-specifier: [C++98]
|
||
class-or-namespace-name :: nested-name-specifier [opt]
|
||
class-or-namespace-name :: template nested-name-specifier [opt]
|
||
|
||
nested-name-specifier: [C++0x]
|
||
type-name ::
|
||
namespace-name ::
|
||
nested-name-specifier identifier ::
|
||
nested-name-specifier template [opt] simple-template-id ::
|
||
|
||
PARSER->SCOPE should be set appropriately before this function is
|
||
called. TYPENAME_KEYWORD_P is TRUE if the `typename' keyword is in
|
||
effect. TYPE_P is TRUE if we non-type bindings should be ignored
|
||
in name lookups.
|
||
|
||
Sets PARSER->SCOPE to the class (TYPE) or namespace
|
||
(NAMESPACE_DECL) specified by the nested-name-specifier, or leaves
|
||
it unchanged if there is no nested-name-specifier. Returns the new
|
||
scope iff there is a nested-name-specifier, or NULL_TREE otherwise.
|
||
|
||
If IS_DECLARATION is TRUE, the nested-name-specifier is known to be
|
||
part of a declaration and/or decl-specifier. */
|
||
|
||
static tree
|
||
cp_parser_nested_name_specifier_opt (cp_parser *parser,
|
||
bool typename_keyword_p,
|
||
bool check_dependency_p,
|
||
bool type_p,
|
||
bool is_declaration)
|
||
{
|
||
bool success = false;
|
||
cp_token_position start = 0;
|
||
cp_token *token;
|
||
|
||
/* Remember where the nested-name-specifier starts. */
|
||
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
|
||
{
|
||
start = cp_lexer_token_position (parser->lexer, false);
|
||
push_deferring_access_checks (dk_deferred);
|
||
}
|
||
|
||
while (true)
|
||
{
|
||
tree new_scope;
|
||
tree old_scope;
|
||
tree saved_qualifying_scope;
|
||
bool template_keyword_p;
|
||
|
||
/* Spot cases that cannot be the beginning of a
|
||
nested-name-specifier. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* If the next token is CPP_NESTED_NAME_SPECIFIER, just process
|
||
the already parsed nested-name-specifier. */
|
||
if (token->type == CPP_NESTED_NAME_SPECIFIER)
|
||
{
|
||
/* Grab the nested-name-specifier and continue the loop. */
|
||
cp_parser_pre_parsed_nested_name_specifier (parser);
|
||
/* If we originally encountered this nested-name-specifier
|
||
with IS_DECLARATION set to false, we will not have
|
||
resolved TYPENAME_TYPEs, so we must do so here. */
|
||
if (is_declaration
|
||
&& TREE_CODE (parser->scope) == TYPENAME_TYPE)
|
||
{
|
||
new_scope = resolve_typename_type (parser->scope,
|
||
/*only_current_p=*/false);
|
||
if (TREE_CODE (new_scope) != TYPENAME_TYPE)
|
||
parser->scope = new_scope;
|
||
}
|
||
success = true;
|
||
continue;
|
||
}
|
||
|
||
/* Spot cases that cannot be the beginning of a
|
||
nested-name-specifier. On the second and subsequent times
|
||
through the loop, we look for the `template' keyword. */
|
||
if (success && token->keyword == RID_TEMPLATE)
|
||
;
|
||
/* A template-id can start a nested-name-specifier. */
|
||
else if (token->type == CPP_TEMPLATE_ID)
|
||
;
|
||
/* DR 743: decltype can be used in a nested-name-specifier. */
|
||
else if (token_is_decltype (token))
|
||
;
|
||
else
|
||
{
|
||
/* If the next token is not an identifier, then it is
|
||
definitely not a type-name or namespace-name. */
|
||
if (token->type != CPP_NAME)
|
||
break;
|
||
/* If the following token is neither a `<' (to begin a
|
||
template-id), nor a `::', then we are not looking at a
|
||
nested-name-specifier. */
|
||
token = cp_lexer_peek_nth_token (parser->lexer, 2);
|
||
|
||
if (token->type == CPP_COLON
|
||
&& parser->colon_corrects_to_scope_p
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_NAME)
|
||
{
|
||
error_at (token->location,
|
||
"found %<:%> in nested-name-specifier, expected %<::%>");
|
||
token->type = CPP_SCOPE;
|
||
}
|
||
|
||
if (token->type != CPP_SCOPE
|
||
&& !cp_parser_nth_token_starts_template_argument_list_p
|
||
(parser, 2))
|
||
break;
|
||
}
|
||
|
||
/* The nested-name-specifier is optional, so we parse
|
||
tentatively. */
|
||
cp_parser_parse_tentatively (parser);
|
||
|
||
/* Look for the optional `template' keyword, if this isn't the
|
||
first time through the loop. */
|
||
if (success)
|
||
template_keyword_p = cp_parser_optional_template_keyword (parser);
|
||
else
|
||
template_keyword_p = false;
|
||
|
||
/* Save the old scope since the name lookup we are about to do
|
||
might destroy it. */
|
||
old_scope = parser->scope;
|
||
saved_qualifying_scope = parser->qualifying_scope;
|
||
/* In a declarator-id like "X<T>::I::Y<T>" we must be able to
|
||
look up names in "X<T>::I" in order to determine that "Y" is
|
||
a template. So, if we have a typename at this point, we make
|
||
an effort to look through it. */
|
||
if (is_declaration
|
||
&& !typename_keyword_p
|
||
&& parser->scope
|
||
&& TREE_CODE (parser->scope) == TYPENAME_TYPE)
|
||
parser->scope = resolve_typename_type (parser->scope,
|
||
/*only_current_p=*/false);
|
||
/* Parse the qualifying entity. */
|
||
new_scope
|
||
= cp_parser_qualifying_entity (parser,
|
||
typename_keyword_p,
|
||
template_keyword_p,
|
||
check_dependency_p,
|
||
type_p,
|
||
is_declaration);
|
||
/* Look for the `::' token. */
|
||
cp_parser_require (parser, CPP_SCOPE, RT_SCOPE);
|
||
|
||
/* If we found what we wanted, we keep going; otherwise, we're
|
||
done. */
|
||
if (!cp_parser_parse_definitely (parser))
|
||
{
|
||
bool error_p = false;
|
||
|
||
/* Restore the OLD_SCOPE since it was valid before the
|
||
failed attempt at finding the last
|
||
class-or-namespace-name. */
|
||
parser->scope = old_scope;
|
||
parser->qualifying_scope = saved_qualifying_scope;
|
||
|
||
/* If the next token is a decltype, and the one after that is a
|
||
`::', then the decltype has failed to resolve to a class or
|
||
enumeration type. Give this error even when parsing
|
||
tentatively since it can't possibly be valid--and we're going
|
||
to replace it with a CPP_NESTED_NAME_SPECIFIER below, so we
|
||
won't get another chance.*/
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_DECLTYPE)
|
||
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
|
||
== CPP_SCOPE))
|
||
{
|
||
token = cp_lexer_consume_token (parser->lexer);
|
||
error_at (token->location, "decltype evaluates to %qT, "
|
||
"which is not a class or enumeration type",
|
||
token->u.value);
|
||
parser->scope = error_mark_node;
|
||
error_p = true;
|
||
/* As below. */
|
||
success = true;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
|
||
break;
|
||
/* If the next token is an identifier, and the one after
|
||
that is a `::', then any valid interpretation would have
|
||
found a class-or-namespace-name. */
|
||
while (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
|
||
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
|
||
== CPP_SCOPE)
|
||
&& (cp_lexer_peek_nth_token (parser->lexer, 3)->type
|
||
!= CPP_COMPL))
|
||
{
|
||
token = cp_lexer_consume_token (parser->lexer);
|
||
if (!error_p)
|
||
{
|
||
if (!token->error_reported)
|
||
{
|
||
tree decl;
|
||
tree ambiguous_decls;
|
||
|
||
decl = cp_parser_lookup_name (parser, token->u.value,
|
||
none_type,
|
||
/*is_template=*/false,
|
||
/*is_namespace=*/false,
|
||
/*check_dependency=*/true,
|
||
&ambiguous_decls,
|
||
token->location);
|
||
if (TREE_CODE (decl) == TEMPLATE_DECL)
|
||
error_at (token->location,
|
||
"%qD used without template parameters",
|
||
decl);
|
||
else if (ambiguous_decls)
|
||
{
|
||
// cp_parser_lookup_name has the same diagnostic,
|
||
// thus make sure to emit it at most once.
|
||
if (cp_parser_uncommitted_to_tentative_parse_p
|
||
(parser))
|
||
{
|
||
error_at (token->location,
|
||
"reference to %qD is ambiguous",
|
||
token->u.value);
|
||
print_candidates (ambiguous_decls);
|
||
}
|
||
decl = error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
if (cxx_dialect != cxx98)
|
||
cp_parser_name_lookup_error
|
||
(parser, token->u.value, decl, NLE_NOT_CXX98,
|
||
token->location);
|
||
else
|
||
cp_parser_name_lookup_error
|
||
(parser, token->u.value, decl, NLE_CXX98,
|
||
token->location);
|
||
}
|
||
}
|
||
parser->scope = error_mark_node;
|
||
error_p = true;
|
||
/* Treat this as a successful nested-name-specifier
|
||
due to:
|
||
|
||
[basic.lookup.qual]
|
||
|
||
If the name found is not a class-name (clause
|
||
_class_) or namespace-name (_namespace.def_), the
|
||
program is ill-formed. */
|
||
success = true;
|
||
}
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
break;
|
||
}
|
||
/* We've found one valid nested-name-specifier. */
|
||
success = true;
|
||
/* Name lookup always gives us a DECL. */
|
||
if (TREE_CODE (new_scope) == TYPE_DECL)
|
||
new_scope = TREE_TYPE (new_scope);
|
||
/* Uses of "template" must be followed by actual templates. */
|
||
if (template_keyword_p
|
||
&& !(CLASS_TYPE_P (new_scope)
|
||
&& ((CLASSTYPE_USE_TEMPLATE (new_scope)
|
||
&& PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (new_scope)))
|
||
|| CLASSTYPE_IS_TEMPLATE (new_scope)))
|
||
&& !(TREE_CODE (new_scope) == TYPENAME_TYPE
|
||
&& (TREE_CODE (TYPENAME_TYPE_FULLNAME (new_scope))
|
||
== TEMPLATE_ID_EXPR)))
|
||
permerror (input_location, TYPE_P (new_scope)
|
||
? G_("%qT is not a template")
|
||
: G_("%qD is not a template"),
|
||
new_scope);
|
||
/* If it is a class scope, try to complete it; we are about to
|
||
be looking up names inside the class. */
|
||
if (TYPE_P (new_scope)
|
||
/* Since checking types for dependency can be expensive,
|
||
avoid doing it if the type is already complete. */
|
||
&& !COMPLETE_TYPE_P (new_scope)
|
||
/* Do not try to complete dependent types. */
|
||
&& !dependent_type_p (new_scope))
|
||
{
|
||
new_scope = complete_type (new_scope);
|
||
/* If it is a typedef to current class, use the current
|
||
class instead, as the typedef won't have any names inside
|
||
it yet. */
|
||
if (!COMPLETE_TYPE_P (new_scope)
|
||
&& currently_open_class (new_scope))
|
||
new_scope = TYPE_MAIN_VARIANT (new_scope);
|
||
}
|
||
/* Make sure we look in the right scope the next time through
|
||
the loop. */
|
||
parser->scope = new_scope;
|
||
}
|
||
|
||
/* If parsing tentatively, replace the sequence of tokens that makes
|
||
up the nested-name-specifier with a CPP_NESTED_NAME_SPECIFIER
|
||
token. That way, should we re-parse the token stream, we will
|
||
not have to repeat the effort required to do the parse, nor will
|
||
we issue duplicate error messages. */
|
||
if (success && start)
|
||
{
|
||
cp_token *token;
|
||
|
||
token = cp_lexer_token_at (parser->lexer, start);
|
||
/* Reset the contents of the START token. */
|
||
token->type = CPP_NESTED_NAME_SPECIFIER;
|
||
/* Retrieve any deferred checks. Do not pop this access checks yet
|
||
so the memory will not be reclaimed during token replacing below. */
|
||
token->u.tree_check_value = ggc_cleared_alloc<struct tree_check> ();
|
||
token->u.tree_check_value->value = parser->scope;
|
||
token->u.tree_check_value->checks = get_deferred_access_checks ();
|
||
token->u.tree_check_value->qualifying_scope =
|
||
parser->qualifying_scope;
|
||
token->keyword = RID_MAX;
|
||
|
||
/* Purge all subsequent tokens. */
|
||
cp_lexer_purge_tokens_after (parser->lexer, start);
|
||
}
|
||
|
||
if (start)
|
||
pop_to_parent_deferring_access_checks ();
|
||
|
||
return success ? parser->scope : NULL_TREE;
|
||
}
|
||
|
||
/* Parse a nested-name-specifier. See
|
||
cp_parser_nested_name_specifier_opt for details. This function
|
||
behaves identically, except that it will an issue an error if no
|
||
nested-name-specifier is present. */
|
||
|
||
static tree
|
||
cp_parser_nested_name_specifier (cp_parser *parser,
|
||
bool typename_keyword_p,
|
||
bool check_dependency_p,
|
||
bool type_p,
|
||
bool is_declaration)
|
||
{
|
||
tree scope;
|
||
|
||
/* Look for the nested-name-specifier. */
|
||
scope = cp_parser_nested_name_specifier_opt (parser,
|
||
typename_keyword_p,
|
||
check_dependency_p,
|
||
type_p,
|
||
is_declaration);
|
||
/* If it was not present, issue an error message. */
|
||
if (!scope)
|
||
{
|
||
cp_parser_error (parser, "expected nested-name-specifier");
|
||
parser->scope = NULL_TREE;
|
||
}
|
||
|
||
return scope;
|
||
}
|
||
|
||
/* Parse the qualifying entity in a nested-name-specifier. For C++98,
|
||
this is either a class-name or a namespace-name (which corresponds
|
||
to the class-or-namespace-name production in the grammar). For
|
||
C++0x, it can also be a type-name that refers to an enumeration
|
||
type or a simple-template-id.
|
||
|
||
TYPENAME_KEYWORD_P is TRUE iff the `typename' keyword is in effect.
|
||
TEMPLATE_KEYWORD_P is TRUE iff the `template' keyword is in effect.
|
||
CHECK_DEPENDENCY_P is FALSE iff dependent names should be looked up.
|
||
TYPE_P is TRUE iff the next name should be taken as a class-name,
|
||
even the same name is declared to be another entity in the same
|
||
scope.
|
||
|
||
Returns the class (TYPE_DECL) or namespace (NAMESPACE_DECL)
|
||
specified by the class-or-namespace-name. If neither is found the
|
||
ERROR_MARK_NODE is returned. */
|
||
|
||
static tree
|
||
cp_parser_qualifying_entity (cp_parser *parser,
|
||
bool typename_keyword_p,
|
||
bool template_keyword_p,
|
||
bool check_dependency_p,
|
||
bool type_p,
|
||
bool is_declaration)
|
||
{
|
||
tree saved_scope;
|
||
tree saved_qualifying_scope;
|
||
tree saved_object_scope;
|
||
tree scope;
|
||
bool only_class_p;
|
||
bool successful_parse_p;
|
||
|
||
/* DR 743: decltype can appear in a nested-name-specifier. */
|
||
if (cp_lexer_next_token_is_decltype (parser->lexer))
|
||
{
|
||
scope = cp_parser_decltype (parser);
|
||
if (TREE_CODE (scope) != ENUMERAL_TYPE
|
||
&& !MAYBE_CLASS_TYPE_P (scope))
|
||
{
|
||
cp_parser_simulate_error (parser);
|
||
return error_mark_node;
|
||
}
|
||
if (TYPE_NAME (scope))
|
||
scope = TYPE_NAME (scope);
|
||
return scope;
|
||
}
|
||
|
||
/* Before we try to parse the class-name, we must save away the
|
||
current PARSER->SCOPE since cp_parser_class_name will destroy
|
||
it. */
|
||
saved_scope = parser->scope;
|
||
saved_qualifying_scope = parser->qualifying_scope;
|
||
saved_object_scope = parser->object_scope;
|
||
/* Try for a class-name first. If the SAVED_SCOPE is a type, then
|
||
there is no need to look for a namespace-name. */
|
||
only_class_p = template_keyword_p
|
||
|| (saved_scope && TYPE_P (saved_scope) && cxx_dialect == cxx98);
|
||
if (!only_class_p)
|
||
cp_parser_parse_tentatively (parser);
|
||
scope = cp_parser_class_name (parser,
|
||
typename_keyword_p,
|
||
template_keyword_p,
|
||
type_p ? class_type : none_type,
|
||
check_dependency_p,
|
||
/*class_head_p=*/false,
|
||
is_declaration);
|
||
successful_parse_p = only_class_p || cp_parser_parse_definitely (parser);
|
||
/* If that didn't work and we're in C++0x mode, try for a type-name. */
|
||
if (!only_class_p
|
||
&& cxx_dialect != cxx98
|
||
&& !successful_parse_p)
|
||
{
|
||
/* Restore the saved scope. */
|
||
parser->scope = saved_scope;
|
||
parser->qualifying_scope = saved_qualifying_scope;
|
||
parser->object_scope = saved_object_scope;
|
||
|
||
/* Parse tentatively. */
|
||
cp_parser_parse_tentatively (parser);
|
||
|
||
/* Parse a type-name */
|
||
scope = cp_parser_type_name (parser);
|
||
|
||
/* "If the name found does not designate a namespace or a class,
|
||
enumeration, or dependent type, the program is ill-formed."
|
||
|
||
We cover classes and dependent types above and namespaces below,
|
||
so this code is only looking for enums. */
|
||
if (!scope || TREE_CODE (scope) != TYPE_DECL
|
||
|| TREE_CODE (TREE_TYPE (scope)) != ENUMERAL_TYPE)
|
||
cp_parser_simulate_error (parser);
|
||
|
||
successful_parse_p = cp_parser_parse_definitely (parser);
|
||
}
|
||
/* If that didn't work, try for a namespace-name. */
|
||
if (!only_class_p && !successful_parse_p)
|
||
{
|
||
/* Restore the saved scope. */
|
||
parser->scope = saved_scope;
|
||
parser->qualifying_scope = saved_qualifying_scope;
|
||
parser->object_scope = saved_object_scope;
|
||
/* If we are not looking at an identifier followed by the scope
|
||
resolution operator, then this is not part of a
|
||
nested-name-specifier. (Note that this function is only used
|
||
to parse the components of a nested-name-specifier.) */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME)
|
||
|| cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE)
|
||
return error_mark_node;
|
||
scope = cp_parser_namespace_name (parser);
|
||
}
|
||
|
||
return scope;
|
||
}
|
||
|
||
/* Return true if we are looking at a compound-literal, false otherwise. */
|
||
|
||
static bool
|
||
cp_parser_compound_literal_p (cp_parser *parser)
|
||
{
|
||
/* Consume the `('. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
cp_lexer_save_tokens (parser->lexer);
|
||
|
||
/* Skip tokens until the next token is a closing parenthesis.
|
||
If we find the closing `)', and the next token is a `{', then
|
||
we are looking at a compound-literal. */
|
||
bool compound_literal_p
|
||
= (cp_parser_skip_to_closing_parenthesis (parser, false, false,
|
||
/*consume_paren=*/true)
|
||
&& cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE));
|
||
|
||
/* Roll back the tokens we skipped. */
|
||
cp_lexer_rollback_tokens (parser->lexer);
|
||
|
||
return compound_literal_p;
|
||
}
|
||
|
||
/* Parse a postfix-expression.
|
||
|
||
postfix-expression:
|
||
primary-expression
|
||
postfix-expression [ expression ]
|
||
postfix-expression ( expression-list [opt] )
|
||
simple-type-specifier ( expression-list [opt] )
|
||
typename :: [opt] nested-name-specifier identifier
|
||
( expression-list [opt] )
|
||
typename :: [opt] nested-name-specifier template [opt] template-id
|
||
( expression-list [opt] )
|
||
postfix-expression . template [opt] id-expression
|
||
postfix-expression -> template [opt] id-expression
|
||
postfix-expression . pseudo-destructor-name
|
||
postfix-expression -> pseudo-destructor-name
|
||
postfix-expression ++
|
||
postfix-expression --
|
||
dynamic_cast < type-id > ( expression )
|
||
static_cast < type-id > ( expression )
|
||
reinterpret_cast < type-id > ( expression )
|
||
const_cast < type-id > ( expression )
|
||
typeid ( expression )
|
||
typeid ( type-id )
|
||
|
||
GNU Extension:
|
||
|
||
postfix-expression:
|
||
( type-id ) { initializer-list , [opt] }
|
||
|
||
This extension is a GNU version of the C99 compound-literal
|
||
construct. (The C99 grammar uses `type-name' instead of `type-id',
|
||
but they are essentially the same concept.)
|
||
|
||
If ADDRESS_P is true, the postfix expression is the operand of the
|
||
`&' operator. CAST_P is true if this expression is the target of a
|
||
cast.
|
||
|
||
If MEMBER_ACCESS_ONLY_P, we only allow postfix expressions that are
|
||
class member access expressions [expr.ref].
|
||
|
||
Returns a representation of the expression. */
|
||
|
||
static tree
|
||
cp_parser_postfix_expression (cp_parser *parser, bool address_p, bool cast_p,
|
||
bool member_access_only_p, bool decltype_p,
|
||
cp_id_kind * pidk_return)
|
||
{
|
||
cp_token *token;
|
||
location_t loc;
|
||
enum rid keyword;
|
||
cp_id_kind idk = CP_ID_KIND_NONE;
|
||
tree postfix_expression = NULL_TREE;
|
||
bool is_member_access = false;
|
||
int saved_in_statement = -1;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
loc = token->location;
|
||
/* Some of the productions are determined by keywords. */
|
||
keyword = token->keyword;
|
||
switch (keyword)
|
||
{
|
||
case RID_DYNCAST:
|
||
case RID_STATCAST:
|
||
case RID_REINTCAST:
|
||
case RID_CONSTCAST:
|
||
{
|
||
tree type;
|
||
tree expression;
|
||
const char *saved_message;
|
||
bool saved_in_type_id_in_expr_p;
|
||
|
||
/* All of these can be handled in the same way from the point
|
||
of view of parsing. Begin by consuming the token
|
||
identifying the cast. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* New types cannot be defined in the cast. */
|
||
saved_message = parser->type_definition_forbidden_message;
|
||
parser->type_definition_forbidden_message
|
||
= G_("types may not be defined in casts");
|
||
|
||
/* Look for the opening `<'. */
|
||
cp_parser_require (parser, CPP_LESS, RT_LESS);
|
||
/* Parse the type to which we are casting. */
|
||
saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
|
||
parser->in_type_id_in_expr_p = true;
|
||
type = cp_parser_type_id (parser);
|
||
parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
|
||
/* Look for the closing `>'. */
|
||
cp_parser_require (parser, CPP_GREATER, RT_GREATER);
|
||
/* Restore the old message. */
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
|
||
bool saved_greater_than_is_operator_p
|
||
= parser->greater_than_is_operator_p;
|
||
parser->greater_than_is_operator_p = true;
|
||
|
||
/* And the expression which is being cast. */
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
expression = cp_parser_expression (parser, /*cast_p=*/true, & idk);
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
|
||
parser->greater_than_is_operator_p
|
||
= saved_greater_than_is_operator_p;
|
||
|
||
/* Only type conversions to integral or enumeration types
|
||
can be used in constant-expressions. */
|
||
if (!cast_valid_in_integral_constant_expression_p (type)
|
||
&& cp_parser_non_integral_constant_expression (parser, NIC_CAST))
|
||
return error_mark_node;
|
||
|
||
switch (keyword)
|
||
{
|
||
case RID_DYNCAST:
|
||
postfix_expression
|
||
= build_dynamic_cast (type, expression, tf_warning_or_error);
|
||
break;
|
||
case RID_STATCAST:
|
||
postfix_expression
|
||
= build_static_cast (type, expression, tf_warning_or_error);
|
||
break;
|
||
case RID_REINTCAST:
|
||
postfix_expression
|
||
= build_reinterpret_cast (type, expression,
|
||
tf_warning_or_error);
|
||
break;
|
||
case RID_CONSTCAST:
|
||
postfix_expression
|
||
= build_const_cast (type, expression, tf_warning_or_error);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
break;
|
||
|
||
case RID_TYPEID:
|
||
{
|
||
tree type;
|
||
const char *saved_message;
|
||
bool saved_in_type_id_in_expr_p;
|
||
|
||
/* Consume the `typeid' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Look for the `(' token. */
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
/* Types cannot be defined in a `typeid' expression. */
|
||
saved_message = parser->type_definition_forbidden_message;
|
||
parser->type_definition_forbidden_message
|
||
= G_("types may not be defined in a %<typeid%> expression");
|
||
/* We can't be sure yet whether we're looking at a type-id or an
|
||
expression. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Try a type-id first. */
|
||
saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
|
||
parser->in_type_id_in_expr_p = true;
|
||
type = cp_parser_type_id (parser);
|
||
parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
|
||
/* Look for the `)' token. Otherwise, we can't be sure that
|
||
we're not looking at an expression: consider `typeid (int
|
||
(3))', for example. */
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
/* If all went well, simply lookup the type-id. */
|
||
if (cp_parser_parse_definitely (parser))
|
||
postfix_expression = get_typeid (type, tf_warning_or_error);
|
||
/* Otherwise, fall back to the expression variant. */
|
||
else
|
||
{
|
||
tree expression;
|
||
|
||
/* Look for an expression. */
|
||
expression = cp_parser_expression (parser, /*cast_p=*/false, & idk);
|
||
/* Compute its typeid. */
|
||
postfix_expression = build_typeid (expression, tf_warning_or_error);
|
||
/* Look for the `)' token. */
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
}
|
||
/* Restore the saved message. */
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
/* `typeid' may not appear in an integral constant expression. */
|
||
if (cp_parser_non_integral_constant_expression (parser, NIC_TYPEID))
|
||
return error_mark_node;
|
||
}
|
||
break;
|
||
|
||
case RID_TYPENAME:
|
||
{
|
||
tree type;
|
||
/* The syntax permitted here is the same permitted for an
|
||
elaborated-type-specifier. */
|
||
type = cp_parser_elaborated_type_specifier (parser,
|
||
/*is_friend=*/false,
|
||
/*is_declaration=*/false);
|
||
postfix_expression = cp_parser_functional_cast (parser, type);
|
||
}
|
||
break;
|
||
|
||
case RID_CILK_SPAWN:
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type == CPP_SEMICOLON)
|
||
{
|
||
error_at (token->location, "%<_Cilk_spawn%> must be followed by "
|
||
"an expression");
|
||
postfix_expression = error_mark_node;
|
||
break;
|
||
}
|
||
else if (!current_function_decl)
|
||
{
|
||
error_at (token->location, "%<_Cilk_spawn%> may only be used "
|
||
"inside a function");
|
||
postfix_expression = error_mark_node;
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
/* Consecutive _Cilk_spawns are not allowed in a statement. */
|
||
saved_in_statement = parser->in_statement;
|
||
parser->in_statement |= IN_CILK_SPAWN;
|
||
}
|
||
cfun->calls_cilk_spawn = 1;
|
||
postfix_expression =
|
||
cp_parser_postfix_expression (parser, false, false,
|
||
false, false, &idk);
|
||
if (!flag_cilkplus)
|
||
{
|
||
error_at (token->location, "-fcilkplus must be enabled to use"
|
||
" %<_Cilk_spawn%>");
|
||
cfun->calls_cilk_spawn = 0;
|
||
}
|
||
else if (saved_in_statement & IN_CILK_SPAWN)
|
||
{
|
||
error_at (token->location, "consecutive %<_Cilk_spawn%> keywords "
|
||
"are not permitted");
|
||
postfix_expression = error_mark_node;
|
||
cfun->calls_cilk_spawn = 0;
|
||
}
|
||
else
|
||
{
|
||
postfix_expression = build_cilk_spawn (token->location,
|
||
postfix_expression);
|
||
if (postfix_expression != error_mark_node)
|
||
SET_EXPR_LOCATION (postfix_expression, input_location);
|
||
parser->in_statement = parser->in_statement & ~IN_CILK_SPAWN;
|
||
}
|
||
break;
|
||
}
|
||
|
||
case RID_BUILTIN_SHUFFLE:
|
||
{
|
||
vec<tree, va_gc> *vec;
|
||
unsigned int i;
|
||
tree p;
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
vec = cp_parser_parenthesized_expression_list (parser, non_attr,
|
||
/*cast_p=*/false, /*allow_expansion_p=*/true,
|
||
/*non_constant_p=*/NULL);
|
||
if (vec == NULL)
|
||
return error_mark_node;
|
||
|
||
FOR_EACH_VEC_ELT (*vec, i, p)
|
||
mark_exp_read (p);
|
||
|
||
if (vec->length () == 2)
|
||
return build_x_vec_perm_expr (loc, (*vec)[0], NULL_TREE, (*vec)[1],
|
||
tf_warning_or_error);
|
||
else if (vec->length () == 3)
|
||
return build_x_vec_perm_expr (loc, (*vec)[0], (*vec)[1], (*vec)[2],
|
||
tf_warning_or_error);
|
||
else
|
||
{
|
||
error_at (loc, "wrong number of arguments to "
|
||
"%<__builtin_shuffle%>");
|
||
return error_mark_node;
|
||
}
|
||
break;
|
||
}
|
||
|
||
default:
|
||
{
|
||
tree type;
|
||
|
||
/* If the next thing is a simple-type-specifier, we may be
|
||
looking at a functional cast. We could also be looking at
|
||
an id-expression. So, we try the functional cast, and if
|
||
that doesn't work we fall back to the primary-expression. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Look for the simple-type-specifier. */
|
||
type = cp_parser_simple_type_specifier (parser,
|
||
/*decl_specs=*/NULL,
|
||
CP_PARSER_FLAGS_NONE);
|
||
/* Parse the cast itself. */
|
||
if (!cp_parser_error_occurred (parser))
|
||
postfix_expression
|
||
= cp_parser_functional_cast (parser, type);
|
||
/* If that worked, we're done. */
|
||
if (cp_parser_parse_definitely (parser))
|
||
break;
|
||
|
||
/* If the functional-cast didn't work out, try a
|
||
compound-literal. */
|
||
if (cp_parser_allow_gnu_extensions_p (parser)
|
||
&& cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
|
||
{
|
||
tree initializer = NULL_TREE;
|
||
|
||
cp_parser_parse_tentatively (parser);
|
||
|
||
/* Avoid calling cp_parser_type_id pointlessly, see comment
|
||
in cp_parser_cast_expression about c++/29234. */
|
||
if (!cp_parser_compound_literal_p (parser))
|
||
cp_parser_simulate_error (parser);
|
||
else
|
||
{
|
||
/* Parse the type. */
|
||
bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
|
||
parser->in_type_id_in_expr_p = true;
|
||
type = cp_parser_type_id (parser);
|
||
parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
|
||
/* Look for the `)'. */
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
}
|
||
|
||
/* If things aren't going well, there's no need to
|
||
keep going. */
|
||
if (!cp_parser_error_occurred (parser))
|
||
{
|
||
bool non_constant_p;
|
||
/* Parse the brace-enclosed initializer list. */
|
||
initializer = cp_parser_braced_list (parser,
|
||
&non_constant_p);
|
||
}
|
||
/* If that worked, we're definitely looking at a
|
||
compound-literal expression. */
|
||
if (cp_parser_parse_definitely (parser))
|
||
{
|
||
/* Warn the user that a compound literal is not
|
||
allowed in standard C++. */
|
||
pedwarn (input_location, OPT_Wpedantic,
|
||
"ISO C++ forbids compound-literals");
|
||
/* For simplicity, we disallow compound literals in
|
||
constant-expressions. We could
|
||
allow compound literals of integer type, whose
|
||
initializer was a constant, in constant
|
||
expressions. Permitting that usage, as a further
|
||
extension, would not change the meaning of any
|
||
currently accepted programs. (Of course, as
|
||
compound literals are not part of ISO C++, the
|
||
standard has nothing to say.) */
|
||
if (cp_parser_non_integral_constant_expression (parser,
|
||
NIC_NCC))
|
||
{
|
||
postfix_expression = error_mark_node;
|
||
break;
|
||
}
|
||
/* Form the representation of the compound-literal. */
|
||
postfix_expression
|
||
= finish_compound_literal (type, initializer,
|
||
tf_warning_or_error);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* It must be a primary-expression. */
|
||
postfix_expression
|
||
= cp_parser_primary_expression (parser, address_p, cast_p,
|
||
/*template_arg_p=*/false,
|
||
decltype_p,
|
||
&idk);
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* Note that we don't need to worry about calling build_cplus_new on a
|
||
class-valued CALL_EXPR in decltype when it isn't the end of the
|
||
postfix-expression; unary_complex_lvalue will take care of that for
|
||
all these cases. */
|
||
|
||
/* Keep looping until the postfix-expression is complete. */
|
||
while (true)
|
||
{
|
||
if (idk == CP_ID_KIND_UNQUALIFIED
|
||
&& identifier_p (postfix_expression)
|
||
&& cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
|
||
/* It is not a Koenig lookup function call. */
|
||
postfix_expression
|
||
= unqualified_name_lookup_error (postfix_expression);
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
switch (token->type)
|
||
{
|
||
case CPP_OPEN_SQUARE:
|
||
if (cp_next_tokens_can_be_std_attribute_p (parser))
|
||
{
|
||
cp_parser_error (parser,
|
||
"two consecutive %<[%> shall "
|
||
"only introduce an attribute");
|
||
return error_mark_node;
|
||
}
|
||
postfix_expression
|
||
= cp_parser_postfix_open_square_expression (parser,
|
||
postfix_expression,
|
||
false,
|
||
decltype_p);
|
||
idk = CP_ID_KIND_NONE;
|
||
is_member_access = false;
|
||
break;
|
||
|
||
case CPP_OPEN_PAREN:
|
||
/* postfix-expression ( expression-list [opt] ) */
|
||
{
|
||
bool koenig_p;
|
||
bool is_builtin_constant_p;
|
||
bool saved_integral_constant_expression_p = false;
|
||
bool saved_non_integral_constant_expression_p = false;
|
||
tsubst_flags_t complain = complain_flags (decltype_p);
|
||
vec<tree, va_gc> *args;
|
||
|
||
is_member_access = false;
|
||
|
||
is_builtin_constant_p
|
||
= DECL_IS_BUILTIN_CONSTANT_P (postfix_expression);
|
||
if (is_builtin_constant_p)
|
||
{
|
||
/* The whole point of __builtin_constant_p is to allow
|
||
non-constant expressions to appear as arguments. */
|
||
saved_integral_constant_expression_p
|
||
= parser->integral_constant_expression_p;
|
||
saved_non_integral_constant_expression_p
|
||
= parser->non_integral_constant_expression_p;
|
||
parser->integral_constant_expression_p = false;
|
||
}
|
||
args = (cp_parser_parenthesized_expression_list
|
||
(parser, non_attr,
|
||
/*cast_p=*/false, /*allow_expansion_p=*/true,
|
||
/*non_constant_p=*/NULL,
|
||
/*want_literal_zero_p=*/warn_memset_transposed_args));
|
||
if (is_builtin_constant_p)
|
||
{
|
||
parser->integral_constant_expression_p
|
||
= saved_integral_constant_expression_p;
|
||
parser->non_integral_constant_expression_p
|
||
= saved_non_integral_constant_expression_p;
|
||
}
|
||
|
||
if (args == NULL)
|
||
{
|
||
postfix_expression = error_mark_node;
|
||
break;
|
||
}
|
||
|
||
/* Function calls are not permitted in
|
||
constant-expressions. */
|
||
if (! builtin_valid_in_constant_expr_p (postfix_expression)
|
||
&& cp_parser_non_integral_constant_expression (parser,
|
||
NIC_FUNC_CALL))
|
||
{
|
||
postfix_expression = error_mark_node;
|
||
release_tree_vector (args);
|
||
break;
|
||
}
|
||
|
||
koenig_p = false;
|
||
if (idk == CP_ID_KIND_UNQUALIFIED
|
||
|| idk == CP_ID_KIND_TEMPLATE_ID)
|
||
{
|
||
if (identifier_p (postfix_expression))
|
||
{
|
||
if (!args->is_empty ())
|
||
{
|
||
koenig_p = true;
|
||
if (!any_type_dependent_arguments_p (args))
|
||
postfix_expression
|
||
= perform_koenig_lookup (postfix_expression, args,
|
||
complain);
|
||
}
|
||
else
|
||
postfix_expression
|
||
= unqualified_fn_lookup_error (postfix_expression);
|
||
}
|
||
/* We do not perform argument-dependent lookup if
|
||
normal lookup finds a non-function, in accordance
|
||
with the expected resolution of DR 218. */
|
||
else if (!args->is_empty ()
|
||
&& is_overloaded_fn (postfix_expression))
|
||
{
|
||
tree fn = get_first_fn (postfix_expression);
|
||
fn = STRIP_TEMPLATE (fn);
|
||
|
||
/* Do not do argument dependent lookup if regular
|
||
lookup finds a member function or a block-scope
|
||
function declaration. [basic.lookup.argdep]/3 */
|
||
if (!DECL_FUNCTION_MEMBER_P (fn)
|
||
&& !DECL_LOCAL_FUNCTION_P (fn))
|
||
{
|
||
koenig_p = true;
|
||
if (!any_type_dependent_arguments_p (args))
|
||
postfix_expression
|
||
= perform_koenig_lookup (postfix_expression, args,
|
||
complain);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (warn_memset_transposed_args)
|
||
{
|
||
if (TREE_CODE (postfix_expression) == FUNCTION_DECL
|
||
&& DECL_BUILT_IN_CLASS (postfix_expression) == BUILT_IN_NORMAL
|
||
&& DECL_FUNCTION_CODE (postfix_expression) == BUILT_IN_MEMSET
|
||
&& vec_safe_length (args) == 3
|
||
&& integer_zerop ((*args)[2])
|
||
&& LITERAL_ZERO_P ((*args)[2])
|
||
&& !(integer_zerop ((*args)[1])
|
||
&& LITERAL_ZERO_P ((*args)[1])))
|
||
warning (OPT_Wmemset_transposed_args,
|
||
"%<memset%> used with constant zero length "
|
||
"parameter; this could be due to transposed "
|
||
"parameters");
|
||
|
||
/* Replace LITERAL_ZERO_P INTEGER_CSTs with normal ones
|
||
to avoid leaking those into folder and middle-end. */
|
||
unsigned int i;
|
||
tree arg;
|
||
FOR_EACH_VEC_SAFE_ELT (args, i, arg)
|
||
if (TREE_CODE (arg) == INTEGER_CST && LITERAL_ZERO_P (arg))
|
||
(*args)[i] = build_int_cst (TREE_TYPE (arg), 0);
|
||
}
|
||
|
||
if (TREE_CODE (postfix_expression) == COMPONENT_REF)
|
||
{
|
||
tree instance = TREE_OPERAND (postfix_expression, 0);
|
||
tree fn = TREE_OPERAND (postfix_expression, 1);
|
||
|
||
if (processing_template_decl
|
||
&& (type_dependent_expression_p (instance)
|
||
|| (!BASELINK_P (fn)
|
||
&& TREE_CODE (fn) != FIELD_DECL)
|
||
|| type_dependent_expression_p (fn)
|
||
|| any_type_dependent_arguments_p (args)))
|
||
{
|
||
postfix_expression
|
||
= build_nt_call_vec (postfix_expression, args);
|
||
release_tree_vector (args);
|
||
break;
|
||
}
|
||
|
||
if (BASELINK_P (fn))
|
||
{
|
||
postfix_expression
|
||
= (build_new_method_call
|
||
(instance, fn, &args, NULL_TREE,
|
||
(idk == CP_ID_KIND_QUALIFIED
|
||
? LOOKUP_NORMAL|LOOKUP_NONVIRTUAL
|
||
: LOOKUP_NORMAL),
|
||
/*fn_p=*/NULL,
|
||
complain));
|
||
}
|
||
else
|
||
postfix_expression
|
||
= finish_call_expr (postfix_expression, &args,
|
||
/*disallow_virtual=*/false,
|
||
/*koenig_p=*/false,
|
||
complain);
|
||
}
|
||
else if (TREE_CODE (postfix_expression) == OFFSET_REF
|
||
|| TREE_CODE (postfix_expression) == MEMBER_REF
|
||
|| TREE_CODE (postfix_expression) == DOTSTAR_EXPR)
|
||
postfix_expression = (build_offset_ref_call_from_tree
|
||
(postfix_expression, &args,
|
||
complain));
|
||
else if (idk == CP_ID_KIND_QUALIFIED)
|
||
/* A call to a static class member, or a namespace-scope
|
||
function. */
|
||
postfix_expression
|
||
= finish_call_expr (postfix_expression, &args,
|
||
/*disallow_virtual=*/true,
|
||
koenig_p,
|
||
complain);
|
||
else
|
||
/* All other function calls. */
|
||
postfix_expression
|
||
= finish_call_expr (postfix_expression, &args,
|
||
/*disallow_virtual=*/false,
|
||
koenig_p,
|
||
complain);
|
||
|
||
/* The POSTFIX_EXPRESSION is certainly no longer an id. */
|
||
idk = CP_ID_KIND_NONE;
|
||
|
||
release_tree_vector (args);
|
||
}
|
||
break;
|
||
|
||
case CPP_DOT:
|
||
case CPP_DEREF:
|
||
/* postfix-expression . template [opt] id-expression
|
||
postfix-expression . pseudo-destructor-name
|
||
postfix-expression -> template [opt] id-expression
|
||
postfix-expression -> pseudo-destructor-name */
|
||
|
||
/* Consume the `.' or `->' operator. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
postfix_expression
|
||
= cp_parser_postfix_dot_deref_expression (parser, token->type,
|
||
postfix_expression,
|
||
false, &idk, loc);
|
||
|
||
is_member_access = true;
|
||
break;
|
||
|
||
case CPP_PLUS_PLUS:
|
||
/* postfix-expression ++ */
|
||
/* Consume the `++' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Generate a representation for the complete expression. */
|
||
postfix_expression
|
||
= finish_increment_expr (postfix_expression,
|
||
POSTINCREMENT_EXPR);
|
||
/* Increments may not appear in constant-expressions. */
|
||
if (cp_parser_non_integral_constant_expression (parser, NIC_INC))
|
||
postfix_expression = error_mark_node;
|
||
idk = CP_ID_KIND_NONE;
|
||
is_member_access = false;
|
||
break;
|
||
|
||
case CPP_MINUS_MINUS:
|
||
/* postfix-expression -- */
|
||
/* Consume the `--' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Generate a representation for the complete expression. */
|
||
postfix_expression
|
||
= finish_increment_expr (postfix_expression,
|
||
POSTDECREMENT_EXPR);
|
||
/* Decrements may not appear in constant-expressions. */
|
||
if (cp_parser_non_integral_constant_expression (parser, NIC_DEC))
|
||
postfix_expression = error_mark_node;
|
||
idk = CP_ID_KIND_NONE;
|
||
is_member_access = false;
|
||
break;
|
||
|
||
default:
|
||
if (pidk_return != NULL)
|
||
* pidk_return = idk;
|
||
if (member_access_only_p)
|
||
return is_member_access? postfix_expression : error_mark_node;
|
||
else
|
||
return postfix_expression;
|
||
}
|
||
}
|
||
|
||
/* We should never get here. */
|
||
gcc_unreachable ();
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* This function parses Cilk Plus array notations. If a normal array expr. is
|
||
parsed then the array index is passed back to the caller through *INIT_INDEX
|
||
and the function returns a NULL_TREE. If array notation expr. is parsed,
|
||
then *INIT_INDEX is ignored by the caller and the function returns
|
||
a tree of type ARRAY_NOTATION_REF. If some error occurred it returns
|
||
error_mark_node. */
|
||
|
||
static tree
|
||
cp_parser_array_notation (location_t loc, cp_parser *parser, tree *init_index,
|
||
tree array_value)
|
||
{
|
||
cp_token *token = NULL;
|
||
tree length_index, stride = NULL_TREE, value_tree, array_type;
|
||
if (!array_value || array_value == error_mark_node)
|
||
{
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
return error_mark_node;
|
||
}
|
||
|
||
array_type = TREE_TYPE (array_value);
|
||
|
||
bool saved_colon_corrects = parser->colon_corrects_to_scope_p;
|
||
parser->colon_corrects_to_scope_p = false;
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
if (!token)
|
||
{
|
||
cp_parser_error (parser, "expected %<:%> or numeral");
|
||
return error_mark_node;
|
||
}
|
||
else if (token->type == CPP_COLON)
|
||
{
|
||
/* Consume the ':'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* If we are here, then we have a case like this A[:]. */
|
||
if (cp_lexer_peek_token (parser->lexer)->type != CPP_CLOSE_SQUARE)
|
||
{
|
||
cp_parser_error (parser, "expected %<]%>");
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
return error_mark_node;
|
||
}
|
||
*init_index = NULL_TREE;
|
||
stride = NULL_TREE;
|
||
length_index = NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
/* If we are here, then there are three valid possibilities:
|
||
1. ARRAY [ EXP ]
|
||
2. ARRAY [ EXP : EXP ]
|
||
3. ARRAY [ EXP : EXP : EXP ] */
|
||
|
||
*init_index = cp_parser_expression (parser, false, NULL);
|
||
if (cp_lexer_peek_token (parser->lexer)->type != CPP_COLON)
|
||
{
|
||
/* This indicates that we have a normal array expression. */
|
||
parser->colon_corrects_to_scope_p = saved_colon_corrects;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Consume the ':'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
length_index = cp_parser_expression (parser, false, NULL);
|
||
if (cp_lexer_peek_token (parser->lexer)->type == CPP_COLON)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
stride = cp_parser_expression (parser, false, NULL);
|
||
}
|
||
}
|
||
parser->colon_corrects_to_scope_p = saved_colon_corrects;
|
||
|
||
if (*init_index == error_mark_node || length_index == error_mark_node
|
||
|| stride == error_mark_node || array_type == error_mark_node)
|
||
{
|
||
if (cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_SQUARE)
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return error_mark_node;
|
||
}
|
||
cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
|
||
|
||
value_tree = build_array_notation_ref (loc, array_value, *init_index,
|
||
length_index, stride, array_type);
|
||
return value_tree;
|
||
}
|
||
|
||
/* A subroutine of cp_parser_postfix_expression that also gets hijacked
|
||
by cp_parser_builtin_offsetof. We're looking for
|
||
|
||
postfix-expression [ expression ]
|
||
postfix-expression [ braced-init-list ] (C++11)
|
||
|
||
FOR_OFFSETOF is set if we're being called in that context, which
|
||
changes how we deal with integer constant expressions. */
|
||
|
||
static tree
|
||
cp_parser_postfix_open_square_expression (cp_parser *parser,
|
||
tree postfix_expression,
|
||
bool for_offsetof,
|
||
bool decltype_p)
|
||
{
|
||
tree index = NULL_TREE;
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
bool saved_greater_than_is_operator_p;
|
||
|
||
/* Consume the `[' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
saved_greater_than_is_operator_p = parser->greater_than_is_operator_p;
|
||
parser->greater_than_is_operator_p = true;
|
||
|
||
/* Parse the index expression. */
|
||
/* ??? For offsetof, there is a question of what to allow here. If
|
||
offsetof is not being used in an integral constant expression context,
|
||
then we *could* get the right answer by computing the value at runtime.
|
||
If we are in an integral constant expression context, then we might
|
||
could accept any constant expression; hard to say without analysis.
|
||
Rather than open the barn door too wide right away, allow only integer
|
||
constant expressions here. */
|
||
if (for_offsetof)
|
||
index = cp_parser_constant_expression (parser, false, NULL);
|
||
else
|
||
{
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
bool expr_nonconst_p;
|
||
cp_lexer_set_source_position (parser->lexer);
|
||
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
|
||
index = cp_parser_braced_list (parser, &expr_nonconst_p);
|
||
if (flag_cilkplus
|
||
&& cp_lexer_peek_token (parser->lexer)->type == CPP_COLON)
|
||
{
|
||
error_at (cp_lexer_peek_token (parser->lexer)->location,
|
||
"braced list index is not allowed with array "
|
||
"notation");
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
else if (flag_cilkplus)
|
||
{
|
||
/* Here are have these two options:
|
||
ARRAY[EXP : EXP] - Array notation expr with default
|
||
stride of 1.
|
||
ARRAY[EXP : EXP : EXP] - Array Notation with user-defined
|
||
stride. */
|
||
tree an_exp = cp_parser_array_notation (loc, parser, &index,
|
||
postfix_expression);
|
||
if (an_exp)
|
||
return an_exp;
|
||
}
|
||
else
|
||
index = cp_parser_expression (parser, /*cast_p=*/false, NULL);
|
||
}
|
||
|
||
parser->greater_than_is_operator_p = saved_greater_than_is_operator_p;
|
||
|
||
/* Look for the closing `]'. */
|
||
cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
|
||
|
||
/* Build the ARRAY_REF. */
|
||
postfix_expression = grok_array_decl (loc, postfix_expression,
|
||
index, decltype_p);
|
||
|
||
/* When not doing offsetof, array references are not permitted in
|
||
constant-expressions. */
|
||
if (!for_offsetof
|
||
&& (cp_parser_non_integral_constant_expression (parser, NIC_ARRAY_REF)))
|
||
postfix_expression = error_mark_node;
|
||
|
||
return postfix_expression;
|
||
}
|
||
|
||
/* A subroutine of cp_parser_postfix_expression that also gets hijacked
|
||
by cp_parser_builtin_offsetof. We're looking for
|
||
|
||
postfix-expression . template [opt] id-expression
|
||
postfix-expression . pseudo-destructor-name
|
||
postfix-expression -> template [opt] id-expression
|
||
postfix-expression -> pseudo-destructor-name
|
||
|
||
FOR_OFFSETOF is set if we're being called in that context. That sorta
|
||
limits what of the above we'll actually accept, but nevermind.
|
||
TOKEN_TYPE is the "." or "->" token, which will already have been
|
||
removed from the stream. */
|
||
|
||
static tree
|
||
cp_parser_postfix_dot_deref_expression (cp_parser *parser,
|
||
enum cpp_ttype token_type,
|
||
tree postfix_expression,
|
||
bool for_offsetof, cp_id_kind *idk,
|
||
location_t location)
|
||
{
|
||
tree name;
|
||
bool dependent_p;
|
||
bool pseudo_destructor_p;
|
||
tree scope = NULL_TREE;
|
||
|
||
/* If this is a `->' operator, dereference the pointer. */
|
||
if (token_type == CPP_DEREF)
|
||
postfix_expression = build_x_arrow (location, postfix_expression,
|
||
tf_warning_or_error);
|
||
/* Check to see whether or not the expression is type-dependent. */
|
||
dependent_p = type_dependent_expression_p (postfix_expression);
|
||
/* The identifier following the `->' or `.' is not qualified. */
|
||
parser->scope = NULL_TREE;
|
||
parser->qualifying_scope = NULL_TREE;
|
||
parser->object_scope = NULL_TREE;
|
||
*idk = CP_ID_KIND_NONE;
|
||
|
||
/* Enter the scope corresponding to the type of the object
|
||
given by the POSTFIX_EXPRESSION. */
|
||
if (!dependent_p && TREE_TYPE (postfix_expression) != NULL_TREE)
|
||
{
|
||
scope = TREE_TYPE (postfix_expression);
|
||
/* According to the standard, no expression should ever have
|
||
reference type. Unfortunately, we do not currently match
|
||
the standard in this respect in that our internal representation
|
||
of an expression may have reference type even when the standard
|
||
says it does not. Therefore, we have to manually obtain the
|
||
underlying type here. */
|
||
scope = non_reference (scope);
|
||
/* The type of the POSTFIX_EXPRESSION must be complete. */
|
||
if (scope == unknown_type_node)
|
||
{
|
||
error_at (location, "%qE does not have class type",
|
||
postfix_expression);
|
||
scope = NULL_TREE;
|
||
}
|
||
/* Unlike the object expression in other contexts, *this is not
|
||
required to be of complete type for purposes of class member
|
||
access (5.2.5) outside the member function body. */
|
||
else if (postfix_expression != current_class_ref
|
||
&& !(processing_template_decl && scope == current_class_type))
|
||
scope = complete_type_or_else (scope, NULL_TREE);
|
||
/* Let the name lookup machinery know that we are processing a
|
||
class member access expression. */
|
||
parser->context->object_type = scope;
|
||
/* If something went wrong, we want to be able to discern that case,
|
||
as opposed to the case where there was no SCOPE due to the type
|
||
of expression being dependent. */
|
||
if (!scope)
|
||
scope = error_mark_node;
|
||
/* If the SCOPE was erroneous, make the various semantic analysis
|
||
functions exit quickly -- and without issuing additional error
|
||
messages. */
|
||
if (scope == error_mark_node)
|
||
postfix_expression = error_mark_node;
|
||
}
|
||
|
||
/* Assume this expression is not a pseudo-destructor access. */
|
||
pseudo_destructor_p = false;
|
||
|
||
/* If the SCOPE is a scalar type, then, if this is a valid program,
|
||
we must be looking at a pseudo-destructor-name. If POSTFIX_EXPRESSION
|
||
is type dependent, it can be pseudo-destructor-name or something else.
|
||
Try to parse it as pseudo-destructor-name first. */
|
||
if ((scope && SCALAR_TYPE_P (scope)) || dependent_p)
|
||
{
|
||
tree s;
|
||
tree type;
|
||
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Parse the pseudo-destructor-name. */
|
||
s = NULL_TREE;
|
||
cp_parser_pseudo_destructor_name (parser, postfix_expression,
|
||
&s, &type);
|
||
if (dependent_p
|
||
&& (cp_parser_error_occurred (parser)
|
||
|| !SCALAR_TYPE_P (type)))
|
||
cp_parser_abort_tentative_parse (parser);
|
||
else if (cp_parser_parse_definitely (parser))
|
||
{
|
||
pseudo_destructor_p = true;
|
||
postfix_expression
|
||
= finish_pseudo_destructor_expr (postfix_expression,
|
||
s, type, location);
|
||
}
|
||
}
|
||
|
||
if (!pseudo_destructor_p)
|
||
{
|
||
/* If the SCOPE is not a scalar type, we are looking at an
|
||
ordinary class member access expression, rather than a
|
||
pseudo-destructor-name. */
|
||
bool template_p;
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
/* Parse the id-expression. */
|
||
name = (cp_parser_id_expression
|
||
(parser,
|
||
cp_parser_optional_template_keyword (parser),
|
||
/*check_dependency_p=*/true,
|
||
&template_p,
|
||
/*declarator_p=*/false,
|
||
/*optional_p=*/false));
|
||
/* In general, build a SCOPE_REF if the member name is qualified.
|
||
However, if the name was not dependent and has already been
|
||
resolved; there is no need to build the SCOPE_REF. For example;
|
||
|
||
struct X { void f(); };
|
||
template <typename T> void f(T* t) { t->X::f(); }
|
||
|
||
Even though "t" is dependent, "X::f" is not and has been resolved
|
||
to a BASELINK; there is no need to include scope information. */
|
||
|
||
/* But we do need to remember that there was an explicit scope for
|
||
virtual function calls. */
|
||
if (parser->scope)
|
||
*idk = CP_ID_KIND_QUALIFIED;
|
||
|
||
/* If the name is a template-id that names a type, we will get a
|
||
TYPE_DECL here. That is invalid code. */
|
||
if (TREE_CODE (name) == TYPE_DECL)
|
||
{
|
||
error_at (token->location, "invalid use of %qD", name);
|
||
postfix_expression = error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
if (name != error_mark_node && !BASELINK_P (name) && parser->scope)
|
||
{
|
||
if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
|
||
{
|
||
error_at (token->location, "%<%D::%D%> is not a class member",
|
||
parser->scope, name);
|
||
postfix_expression = error_mark_node;
|
||
}
|
||
else
|
||
name = build_qualified_name (/*type=*/NULL_TREE,
|
||
parser->scope,
|
||
name,
|
||
template_p);
|
||
parser->scope = NULL_TREE;
|
||
parser->qualifying_scope = NULL_TREE;
|
||
parser->object_scope = NULL_TREE;
|
||
}
|
||
if (parser->scope && name && BASELINK_P (name))
|
||
adjust_result_of_qualified_name_lookup
|
||
(name, parser->scope, scope);
|
||
postfix_expression
|
||
= finish_class_member_access_expr (postfix_expression, name,
|
||
template_p,
|
||
tf_warning_or_error);
|
||
}
|
||
}
|
||
|
||
/* We no longer need to look up names in the scope of the object on
|
||
the left-hand side of the `.' or `->' operator. */
|
||
parser->context->object_type = NULL_TREE;
|
||
|
||
/* Outside of offsetof, these operators may not appear in
|
||
constant-expressions. */
|
||
if (!for_offsetof
|
||
&& (cp_parser_non_integral_constant_expression
|
||
(parser, token_type == CPP_DEREF ? NIC_ARROW : NIC_POINT)))
|
||
postfix_expression = error_mark_node;
|
||
|
||
return postfix_expression;
|
||
}
|
||
|
||
/* Cache of LITERAL_ZERO_P constants. */
|
||
|
||
static GTY(()) tree literal_zeros[itk_none];
|
||
|
||
/* Parse a parenthesized expression-list.
|
||
|
||
expression-list:
|
||
assignment-expression
|
||
expression-list, assignment-expression
|
||
|
||
attribute-list:
|
||
expression-list
|
||
identifier
|
||
identifier, expression-list
|
||
|
||
CAST_P is true if this expression is the target of a cast.
|
||
|
||
ALLOW_EXPANSION_P is true if this expression allows expansion of an
|
||
argument pack.
|
||
|
||
Returns a vector of trees. Each element is a representation of an
|
||
assignment-expression. NULL is returned if the ( and or ) are
|
||
missing. An empty, but allocated, vector is returned on no
|
||
expressions. The parentheses are eaten. IS_ATTRIBUTE_LIST is id_attr
|
||
if we are parsing an attribute list for an attribute that wants a
|
||
plain identifier argument, normal_attr for an attribute that wants
|
||
an expression, or non_attr if we aren't parsing an attribute list. If
|
||
NON_CONSTANT_P is non-NULL, *NON_CONSTANT_P indicates whether or
|
||
not all of the expressions in the list were constant.
|
||
WANT_LITERAL_ZERO_P is true if the caller is interested in
|
||
LITERAL_ZERO_P INTEGER_CSTs. FIXME: once we don't fold everything
|
||
immediately, this can be removed. */
|
||
|
||
static vec<tree, va_gc> *
|
||
cp_parser_parenthesized_expression_list (cp_parser* parser,
|
||
int is_attribute_list,
|
||
bool cast_p,
|
||
bool allow_expansion_p,
|
||
bool *non_constant_p,
|
||
bool want_literal_zero_p)
|
||
{
|
||
vec<tree, va_gc> *expression_list;
|
||
bool fold_expr_p = is_attribute_list != non_attr;
|
||
tree identifier = NULL_TREE;
|
||
bool saved_greater_than_is_operator_p;
|
||
|
||
/* Assume all the expressions will be constant. */
|
||
if (non_constant_p)
|
||
*non_constant_p = false;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return NULL;
|
||
|
||
expression_list = make_tree_vector ();
|
||
|
||
/* Within a parenthesized expression, a `>' token is always
|
||
the greater-than operator. */
|
||
saved_greater_than_is_operator_p
|
||
= parser->greater_than_is_operator_p;
|
||
parser->greater_than_is_operator_p = true;
|
||
|
||
/* Consume expressions until there are no more. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
|
||
while (true)
|
||
{
|
||
tree expr;
|
||
|
||
/* At the beginning of attribute lists, check to see if the
|
||
next token is an identifier. */
|
||
if (is_attribute_list == id_attr
|
||
&& cp_lexer_peek_token (parser->lexer)->type == CPP_NAME)
|
||
{
|
||
cp_token *token;
|
||
|
||
/* Consume the identifier. */
|
||
token = cp_lexer_consume_token (parser->lexer);
|
||
/* Save the identifier. */
|
||
identifier = token->u.value;
|
||
}
|
||
else
|
||
{
|
||
bool expr_non_constant_p;
|
||
|
||
/* Parse the next assignment-expression. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
/* A braced-init-list. */
|
||
cp_lexer_set_source_position (parser->lexer);
|
||
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
|
||
expr = cp_parser_braced_list (parser, &expr_non_constant_p);
|
||
if (non_constant_p && expr_non_constant_p)
|
||
*non_constant_p = true;
|
||
}
|
||
else if (non_constant_p)
|
||
{
|
||
expr = (cp_parser_constant_expression
|
||
(parser, /*allow_non_constant_p=*/true,
|
||
&expr_non_constant_p));
|
||
if (expr_non_constant_p)
|
||
*non_constant_p = true;
|
||
}
|
||
else
|
||
{
|
||
expr = NULL_TREE;
|
||
cp_token *tok = cp_lexer_peek_token (parser->lexer);
|
||
switch (tok->type)
|
||
{
|
||
case CPP_NUMBER:
|
||
case CPP_CHAR:
|
||
case CPP_WCHAR:
|
||
case CPP_CHAR16:
|
||
case CPP_CHAR32:
|
||
/* If a parameter is literal zero alone, remember it
|
||
for -Wmemset-transposed-args warning. */
|
||
if (integer_zerop (tok->u.value)
|
||
&& !TREE_OVERFLOW (tok->u.value)
|
||
&& want_literal_zero_p
|
||
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
|
||
== CPP_COMMA
|
||
|| cp_lexer_peek_nth_token (parser->lexer, 2)->type
|
||
== CPP_CLOSE_PAREN))
|
||
{
|
||
unsigned int i;
|
||
for (i = 0; i < itk_none; ++i)
|
||
if (TREE_TYPE (tok->u.value) == integer_types[i])
|
||
break;
|
||
if (i < itk_none && literal_zeros[i])
|
||
expr = literal_zeros[i];
|
||
else
|
||
{
|
||
expr = copy_node (tok->u.value);
|
||
LITERAL_ZERO_P (expr) = 1;
|
||
if (i < itk_none)
|
||
literal_zeros[i] = expr;
|
||
}
|
||
/* Consume the 0 token (or '\0', 0LL etc.). */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
if (expr == NULL_TREE)
|
||
expr = cp_parser_assignment_expression (parser, cast_p,
|
||
NULL);
|
||
}
|
||
|
||
if (fold_expr_p)
|
||
expr = fold_non_dependent_expr (expr);
|
||
|
||
/* If we have an ellipsis, then this is an expression
|
||
expansion. */
|
||
if (allow_expansion_p
|
||
&& cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
|
||
{
|
||
/* Consume the `...'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* Build the argument pack. */
|
||
expr = make_pack_expansion (expr);
|
||
}
|
||
|
||
/* Add it to the list. We add error_mark_node
|
||
expressions to the list, so that we can still tell if
|
||
the correct form for a parenthesized expression-list
|
||
is found. That gives better errors. */
|
||
vec_safe_push (expression_list, expr);
|
||
|
||
if (expr == error_mark_node)
|
||
goto skip_comma;
|
||
}
|
||
|
||
/* After the first item, attribute lists look the same as
|
||
expression lists. */
|
||
is_attribute_list = non_attr;
|
||
|
||
get_comma:;
|
||
/* If the next token isn't a `,', then we are done. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
|
||
break;
|
||
|
||
/* Otherwise, consume the `,' and keep going. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
{
|
||
int ending;
|
||
|
||
skip_comma:;
|
||
/* We try and resync to an unnested comma, as that will give the
|
||
user better diagnostics. */
|
||
ending = cp_parser_skip_to_closing_parenthesis (parser,
|
||
/*recovering=*/true,
|
||
/*or_comma=*/true,
|
||
/*consume_paren=*/true);
|
||
if (ending < 0)
|
||
goto get_comma;
|
||
if (!ending)
|
||
{
|
||
parser->greater_than_is_operator_p
|
||
= saved_greater_than_is_operator_p;
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
parser->greater_than_is_operator_p
|
||
= saved_greater_than_is_operator_p;
|
||
|
||
if (identifier)
|
||
vec_safe_insert (expression_list, 0, identifier);
|
||
|
||
return expression_list;
|
||
}
|
||
|
||
/* Parse a pseudo-destructor-name.
|
||
|
||
pseudo-destructor-name:
|
||
:: [opt] nested-name-specifier [opt] type-name :: ~ type-name
|
||
:: [opt] nested-name-specifier template template-id :: ~ type-name
|
||
:: [opt] nested-name-specifier [opt] ~ type-name
|
||
|
||
If either of the first two productions is used, sets *SCOPE to the
|
||
TYPE specified before the final `::'. Otherwise, *SCOPE is set to
|
||
NULL_TREE. *TYPE is set to the TYPE_DECL for the final type-name,
|
||
or ERROR_MARK_NODE if the parse fails. */
|
||
|
||
static void
|
||
cp_parser_pseudo_destructor_name (cp_parser* parser,
|
||
tree object,
|
||
tree* scope,
|
||
tree* type)
|
||
{
|
||
bool nested_name_specifier_p;
|
||
|
||
/* Handle ~auto. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COMPL)
|
||
&& cp_lexer_nth_token_is_keyword (parser->lexer, 2, RID_AUTO)
|
||
&& !type_dependent_expression_p (object))
|
||
{
|
||
if (cxx_dialect < cxx1y)
|
||
pedwarn (input_location, 0,
|
||
"%<~auto%> only available with "
|
||
"-std=c++1y or -std=gnu++1y");
|
||
cp_lexer_consume_token (parser->lexer);
|
||
cp_lexer_consume_token (parser->lexer);
|
||
*scope = NULL_TREE;
|
||
*type = TREE_TYPE (object);
|
||
return;
|
||
}
|
||
|
||
/* Assume that things will not work out. */
|
||
*type = error_mark_node;
|
||
|
||
/* Look for the optional `::' operator. */
|
||
cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/true);
|
||
/* Look for the optional nested-name-specifier. */
|
||
nested_name_specifier_p
|
||
= (cp_parser_nested_name_specifier_opt (parser,
|
||
/*typename_keyword_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
/*type_p=*/false,
|
||
/*is_declaration=*/false)
|
||
!= NULL_TREE);
|
||
/* Now, if we saw a nested-name-specifier, we might be doing the
|
||
second production. */
|
||
if (nested_name_specifier_p
|
||
&& cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
|
||
{
|
||
/* Consume the `template' keyword. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the template-id. */
|
||
cp_parser_template_id (parser,
|
||
/*template_keyword_p=*/true,
|
||
/*check_dependency_p=*/false,
|
||
class_type,
|
||
/*is_declaration=*/true);
|
||
/* Look for the `::' token. */
|
||
cp_parser_require (parser, CPP_SCOPE, RT_SCOPE);
|
||
}
|
||
/* If the next token is not a `~', then there might be some
|
||
additional qualification. */
|
||
else if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMPL))
|
||
{
|
||
/* At this point, we're looking for "type-name :: ~". The type-name
|
||
must not be a class-name, since this is a pseudo-destructor. So,
|
||
it must be either an enum-name, or a typedef-name -- both of which
|
||
are just identifiers. So, we peek ahead to check that the "::"
|
||
and "~" tokens are present; if they are not, then we can avoid
|
||
calling type_name. */
|
||
if (cp_lexer_peek_token (parser->lexer)->type != CPP_NAME
|
||
|| cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE
|
||
|| cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_COMPL)
|
||
{
|
||
cp_parser_error (parser, "non-scalar type");
|
||
return;
|
||
}
|
||
|
||
/* Look for the type-name. */
|
||
*scope = TREE_TYPE (cp_parser_nonclass_name (parser));
|
||
if (*scope == error_mark_node)
|
||
return;
|
||
|
||
/* Look for the `::' token. */
|
||
cp_parser_require (parser, CPP_SCOPE, RT_SCOPE);
|
||
}
|
||
else
|
||
*scope = NULL_TREE;
|
||
|
||
/* Look for the `~'. */
|
||
cp_parser_require (parser, CPP_COMPL, RT_COMPL);
|
||
|
||
/* Once we see the ~, this has to be a pseudo-destructor. */
|
||
if (!processing_template_decl && !cp_parser_error_occurred (parser))
|
||
cp_parser_commit_to_topmost_tentative_parse (parser);
|
||
|
||
/* Look for the type-name again. We are not responsible for
|
||
checking that it matches the first type-name. */
|
||
*type = TREE_TYPE (cp_parser_nonclass_name (parser));
|
||
}
|
||
|
||
/* Parse a unary-expression.
|
||
|
||
unary-expression:
|
||
postfix-expression
|
||
++ cast-expression
|
||
-- cast-expression
|
||
unary-operator cast-expression
|
||
sizeof unary-expression
|
||
sizeof ( type-id )
|
||
alignof ( type-id ) [C++0x]
|
||
new-expression
|
||
delete-expression
|
||
|
||
GNU Extensions:
|
||
|
||
unary-expression:
|
||
__extension__ cast-expression
|
||
__alignof__ unary-expression
|
||
__alignof__ ( type-id )
|
||
alignof unary-expression [C++0x]
|
||
__real__ cast-expression
|
||
__imag__ cast-expression
|
||
&& identifier
|
||
sizeof ( type-id ) { initializer-list , [opt] }
|
||
alignof ( type-id ) { initializer-list , [opt] } [C++0x]
|
||
__alignof__ ( type-id ) { initializer-list , [opt] }
|
||
|
||
ADDRESS_P is true iff the unary-expression is appearing as the
|
||
operand of the `&' operator. CAST_P is true if this expression is
|
||
the target of a cast.
|
||
|
||
Returns a representation of the expression. */
|
||
|
||
static tree
|
||
cp_parser_unary_expression (cp_parser *parser, bool address_p, bool cast_p,
|
||
bool decltype_p, cp_id_kind * pidk)
|
||
{
|
||
cp_token *token;
|
||
enum tree_code unary_operator;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* Some keywords give away the kind of expression. */
|
||
if (token->type == CPP_KEYWORD)
|
||
{
|
||
enum rid keyword = token->keyword;
|
||
|
||
switch (keyword)
|
||
{
|
||
case RID_ALIGNOF:
|
||
case RID_SIZEOF:
|
||
{
|
||
tree operand, ret;
|
||
enum tree_code op;
|
||
location_t first_loc;
|
||
|
||
op = keyword == RID_ALIGNOF ? ALIGNOF_EXPR : SIZEOF_EXPR;
|
||
/* Consume the token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
first_loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
/* Parse the operand. */
|
||
operand = cp_parser_sizeof_operand (parser, keyword);
|
||
|
||
if (TYPE_P (operand))
|
||
ret = cxx_sizeof_or_alignof_type (operand, op, true);
|
||
else
|
||
{
|
||
/* ISO C++ defines alignof only with types, not with
|
||
expressions. So pedwarn if alignof is used with a non-
|
||
type expression. However, __alignof__ is ok. */
|
||
if (!strcmp (IDENTIFIER_POINTER (token->u.value), "alignof"))
|
||
pedwarn (token->location, OPT_Wpedantic,
|
||
"ISO C++ does not allow %<alignof%> "
|
||
"with a non-type");
|
||
|
||
ret = cxx_sizeof_or_alignof_expr (operand, op, true);
|
||
}
|
||
/* For SIZEOF_EXPR, just issue diagnostics, but keep
|
||
SIZEOF_EXPR with the original operand. */
|
||
if (op == SIZEOF_EXPR && ret != error_mark_node)
|
||
{
|
||
if (TREE_CODE (ret) != SIZEOF_EXPR || TYPE_P (operand))
|
||
{
|
||
if (!processing_template_decl && TYPE_P (operand))
|
||
{
|
||
ret = build_min (SIZEOF_EXPR, size_type_node,
|
||
build1 (NOP_EXPR, operand,
|
||
error_mark_node));
|
||
SIZEOF_EXPR_TYPE_P (ret) = 1;
|
||
}
|
||
else
|
||
ret = build_min (SIZEOF_EXPR, size_type_node, operand);
|
||
TREE_SIDE_EFFECTS (ret) = 0;
|
||
TREE_READONLY (ret) = 1;
|
||
}
|
||
SET_EXPR_LOCATION (ret, first_loc);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
case RID_NEW:
|
||
return cp_parser_new_expression (parser);
|
||
|
||
case RID_DELETE:
|
||
return cp_parser_delete_expression (parser);
|
||
|
||
case RID_EXTENSION:
|
||
{
|
||
/* The saved value of the PEDANTIC flag. */
|
||
int saved_pedantic;
|
||
tree expr;
|
||
|
||
/* Save away the PEDANTIC flag. */
|
||
cp_parser_extension_opt (parser, &saved_pedantic);
|
||
/* Parse the cast-expression. */
|
||
expr = cp_parser_simple_cast_expression (parser);
|
||
/* Restore the PEDANTIC flag. */
|
||
pedantic = saved_pedantic;
|
||
|
||
return expr;
|
||
}
|
||
|
||
case RID_REALPART:
|
||
case RID_IMAGPART:
|
||
{
|
||
tree expression;
|
||
|
||
/* Consume the `__real__' or `__imag__' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the cast-expression. */
|
||
expression = cp_parser_simple_cast_expression (parser);
|
||
/* Create the complete representation. */
|
||
return build_x_unary_op (token->location,
|
||
(keyword == RID_REALPART
|
||
? REALPART_EXPR : IMAGPART_EXPR),
|
||
expression,
|
||
tf_warning_or_error);
|
||
}
|
||
break;
|
||
|
||
case RID_TRANSACTION_ATOMIC:
|
||
case RID_TRANSACTION_RELAXED:
|
||
return cp_parser_transaction_expression (parser, keyword);
|
||
|
||
case RID_NOEXCEPT:
|
||
{
|
||
tree expr;
|
||
const char *saved_message;
|
||
bool saved_integral_constant_expression_p;
|
||
bool saved_non_integral_constant_expression_p;
|
||
bool saved_greater_than_is_operator_p;
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
|
||
saved_message = parser->type_definition_forbidden_message;
|
||
parser->type_definition_forbidden_message
|
||
= G_("types may not be defined in %<noexcept%> expressions");
|
||
|
||
saved_integral_constant_expression_p
|
||
= parser->integral_constant_expression_p;
|
||
saved_non_integral_constant_expression_p
|
||
= parser->non_integral_constant_expression_p;
|
||
parser->integral_constant_expression_p = false;
|
||
|
||
saved_greater_than_is_operator_p
|
||
= parser->greater_than_is_operator_p;
|
||
parser->greater_than_is_operator_p = true;
|
||
|
||
++cp_unevaluated_operand;
|
||
++c_inhibit_evaluation_warnings;
|
||
expr = cp_parser_expression (parser, false, NULL);
|
||
--c_inhibit_evaluation_warnings;
|
||
--cp_unevaluated_operand;
|
||
|
||
parser->greater_than_is_operator_p
|
||
= saved_greater_than_is_operator_p;
|
||
|
||
parser->integral_constant_expression_p
|
||
= saved_integral_constant_expression_p;
|
||
parser->non_integral_constant_expression_p
|
||
= saved_non_integral_constant_expression_p;
|
||
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
return finish_noexcept_expr (expr, tf_warning_or_error);
|
||
}
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Look for the `:: new' and `:: delete', which also signal the
|
||
beginning of a new-expression, or delete-expression,
|
||
respectively. If the next token is `::', then it might be one of
|
||
these. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
|
||
{
|
||
enum rid keyword;
|
||
|
||
/* See if the token after the `::' is one of the keywords in
|
||
which we're interested. */
|
||
keyword = cp_lexer_peek_nth_token (parser->lexer, 2)->keyword;
|
||
/* If it's `new', we have a new-expression. */
|
||
if (keyword == RID_NEW)
|
||
return cp_parser_new_expression (parser);
|
||
/* Similarly, for `delete'. */
|
||
else if (keyword == RID_DELETE)
|
||
return cp_parser_delete_expression (parser);
|
||
}
|
||
|
||
/* Look for a unary operator. */
|
||
unary_operator = cp_parser_unary_operator (token);
|
||
/* The `++' and `--' operators can be handled similarly, even though
|
||
they are not technically unary-operators in the grammar. */
|
||
if (unary_operator == ERROR_MARK)
|
||
{
|
||
if (token->type == CPP_PLUS_PLUS)
|
||
unary_operator = PREINCREMENT_EXPR;
|
||
else if (token->type == CPP_MINUS_MINUS)
|
||
unary_operator = PREDECREMENT_EXPR;
|
||
/* Handle the GNU address-of-label extension. */
|
||
else if (cp_parser_allow_gnu_extensions_p (parser)
|
||
&& token->type == CPP_AND_AND)
|
||
{
|
||
tree identifier;
|
||
tree expression;
|
||
location_t loc = token->location;
|
||
|
||
/* Consume the '&&' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Look for the identifier. */
|
||
identifier = cp_parser_identifier (parser);
|
||
/* Create an expression representing the address. */
|
||
expression = finish_label_address_expr (identifier, loc);
|
||
if (cp_parser_non_integral_constant_expression (parser,
|
||
NIC_ADDR_LABEL))
|
||
expression = error_mark_node;
|
||
return expression;
|
||
}
|
||
}
|
||
if (unary_operator != ERROR_MARK)
|
||
{
|
||
tree cast_expression;
|
||
tree expression = error_mark_node;
|
||
non_integral_constant non_constant_p = NIC_NONE;
|
||
location_t loc = token->location;
|
||
tsubst_flags_t complain = complain_flags (decltype_p);
|
||
|
||
/* Consume the operator token. */
|
||
token = cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the cast-expression. */
|
||
cast_expression
|
||
= cp_parser_cast_expression (parser,
|
||
unary_operator == ADDR_EXPR,
|
||
/*cast_p=*/false,
|
||
/*decltype*/false,
|
||
pidk);
|
||
/* Now, build an appropriate representation. */
|
||
switch (unary_operator)
|
||
{
|
||
case INDIRECT_REF:
|
||
non_constant_p = NIC_STAR;
|
||
expression = build_x_indirect_ref (loc, cast_expression,
|
||
RO_UNARY_STAR,
|
||
complain);
|
||
break;
|
||
|
||
case ADDR_EXPR:
|
||
non_constant_p = NIC_ADDR;
|
||
/* Fall through. */
|
||
case BIT_NOT_EXPR:
|
||
expression = build_x_unary_op (loc, unary_operator,
|
||
cast_expression,
|
||
complain);
|
||
break;
|
||
|
||
case PREINCREMENT_EXPR:
|
||
case PREDECREMENT_EXPR:
|
||
non_constant_p = unary_operator == PREINCREMENT_EXPR
|
||
? NIC_PREINCREMENT : NIC_PREDECREMENT;
|
||
/* Fall through. */
|
||
case UNARY_PLUS_EXPR:
|
||
case NEGATE_EXPR:
|
||
case TRUTH_NOT_EXPR:
|
||
expression = finish_unary_op_expr (loc, unary_operator,
|
||
cast_expression, complain);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (non_constant_p != NIC_NONE
|
||
&& cp_parser_non_integral_constant_expression (parser,
|
||
non_constant_p))
|
||
expression = error_mark_node;
|
||
|
||
return expression;
|
||
}
|
||
|
||
return cp_parser_postfix_expression (parser, address_p, cast_p,
|
||
/*member_access_only_p=*/false,
|
||
decltype_p,
|
||
pidk);
|
||
}
|
||
|
||
static inline tree
|
||
cp_parser_unary_expression (cp_parser *parser, bool address_p, bool cast_p,
|
||
cp_id_kind * pidk)
|
||
{
|
||
return cp_parser_unary_expression (parser, address_p, cast_p,
|
||
/*decltype*/false, pidk);
|
||
}
|
||
|
||
/* Returns ERROR_MARK if TOKEN is not a unary-operator. If TOKEN is a
|
||
unary-operator, the corresponding tree code is returned. */
|
||
|
||
static enum tree_code
|
||
cp_parser_unary_operator (cp_token* token)
|
||
{
|
||
switch (token->type)
|
||
{
|
||
case CPP_MULT:
|
||
return INDIRECT_REF;
|
||
|
||
case CPP_AND:
|
||
return ADDR_EXPR;
|
||
|
||
case CPP_PLUS:
|
||
return UNARY_PLUS_EXPR;
|
||
|
||
case CPP_MINUS:
|
||
return NEGATE_EXPR;
|
||
|
||
case CPP_NOT:
|
||
return TRUTH_NOT_EXPR;
|
||
|
||
case CPP_COMPL:
|
||
return BIT_NOT_EXPR;
|
||
|
||
default:
|
||
return ERROR_MARK;
|
||
}
|
||
}
|
||
|
||
/* Parse a new-expression.
|
||
|
||
new-expression:
|
||
:: [opt] new new-placement [opt] new-type-id new-initializer [opt]
|
||
:: [opt] new new-placement [opt] ( type-id ) new-initializer [opt]
|
||
|
||
Returns a representation of the expression. */
|
||
|
||
static tree
|
||
cp_parser_new_expression (cp_parser* parser)
|
||
{
|
||
bool global_scope_p;
|
||
vec<tree, va_gc> *placement;
|
||
tree type;
|
||
vec<tree, va_gc> *initializer;
|
||
tree nelts = NULL_TREE;
|
||
tree ret;
|
||
|
||
/* Look for the optional `::' operator. */
|
||
global_scope_p
|
||
= (cp_parser_global_scope_opt (parser,
|
||
/*current_scope_valid_p=*/false)
|
||
!= NULL_TREE);
|
||
/* Look for the `new' operator. */
|
||
cp_parser_require_keyword (parser, RID_NEW, RT_NEW);
|
||
/* There's no easy way to tell a new-placement from the
|
||
`( type-id )' construct. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Look for a new-placement. */
|
||
placement = cp_parser_new_placement (parser);
|
||
/* If that didn't work out, there's no new-placement. */
|
||
if (!cp_parser_parse_definitely (parser))
|
||
{
|
||
if (placement != NULL)
|
||
release_tree_vector (placement);
|
||
placement = NULL;
|
||
}
|
||
|
||
/* If the next token is a `(', then we have a parenthesized
|
||
type-id. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
|
||
{
|
||
cp_token *token;
|
||
const char *saved_message = parser->type_definition_forbidden_message;
|
||
|
||
/* Consume the `('. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* Parse the type-id. */
|
||
parser->type_definition_forbidden_message
|
||
= G_("types may not be defined in a new-expression");
|
||
type = cp_parser_type_id (parser);
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
|
||
/* Look for the closing `)'. */
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* There should not be a direct-new-declarator in this production,
|
||
but GCC used to allowed this, so we check and emit a sensible error
|
||
message for this case. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
|
||
{
|
||
error_at (token->location,
|
||
"array bound forbidden after parenthesized type-id");
|
||
inform (token->location,
|
||
"try removing the parentheses around the type-id");
|
||
cp_parser_direct_new_declarator (parser);
|
||
}
|
||
}
|
||
/* Otherwise, there must be a new-type-id. */
|
||
else
|
||
type = cp_parser_new_type_id (parser, &nelts);
|
||
|
||
/* If the next token is a `(' or '{', then we have a new-initializer. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)
|
||
|| cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
initializer = cp_parser_new_initializer (parser);
|
||
else
|
||
initializer = NULL;
|
||
|
||
/* A new-expression may not appear in an integral constant
|
||
expression. */
|
||
if (cp_parser_non_integral_constant_expression (parser, NIC_NEW))
|
||
ret = error_mark_node;
|
||
else
|
||
{
|
||
/* Create a representation of the new-expression. */
|
||
ret = build_new (&placement, type, nelts, &initializer, global_scope_p,
|
||
tf_warning_or_error);
|
||
}
|
||
|
||
if (placement != NULL)
|
||
release_tree_vector (placement);
|
||
if (initializer != NULL)
|
||
release_tree_vector (initializer);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Parse a new-placement.
|
||
|
||
new-placement:
|
||
( expression-list )
|
||
|
||
Returns the same representation as for an expression-list. */
|
||
|
||
static vec<tree, va_gc> *
|
||
cp_parser_new_placement (cp_parser* parser)
|
||
{
|
||
vec<tree, va_gc> *expression_list;
|
||
|
||
/* Parse the expression-list. */
|
||
expression_list = (cp_parser_parenthesized_expression_list
|
||
(parser, non_attr, /*cast_p=*/false,
|
||
/*allow_expansion_p=*/true,
|
||
/*non_constant_p=*/NULL));
|
||
|
||
return expression_list;
|
||
}
|
||
|
||
/* Parse a new-type-id.
|
||
|
||
new-type-id:
|
||
type-specifier-seq new-declarator [opt]
|
||
|
||
Returns the TYPE allocated. If the new-type-id indicates an array
|
||
type, *NELTS is set to the number of elements in the last array
|
||
bound; the TYPE will not include the last array bound. */
|
||
|
||
static tree
|
||
cp_parser_new_type_id (cp_parser* parser, tree *nelts)
|
||
{
|
||
cp_decl_specifier_seq type_specifier_seq;
|
||
cp_declarator *new_declarator;
|
||
cp_declarator *declarator;
|
||
cp_declarator *outer_declarator;
|
||
const char *saved_message;
|
||
|
||
/* The type-specifier sequence must not contain type definitions.
|
||
(It cannot contain declarations of new types either, but if they
|
||
are not definitions we will catch that because they are not
|
||
complete.) */
|
||
saved_message = parser->type_definition_forbidden_message;
|
||
parser->type_definition_forbidden_message
|
||
= G_("types may not be defined in a new-type-id");
|
||
/* Parse the type-specifier-seq. */
|
||
cp_parser_type_specifier_seq (parser, /*is_declaration=*/false,
|
||
/*is_trailing_return=*/false,
|
||
&type_specifier_seq);
|
||
/* Restore the old message. */
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
|
||
if (type_specifier_seq.type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Parse the new-declarator. */
|
||
new_declarator = cp_parser_new_declarator_opt (parser);
|
||
|
||
/* Determine the number of elements in the last array dimension, if
|
||
any. */
|
||
*nelts = NULL_TREE;
|
||
/* Skip down to the last array dimension. */
|
||
declarator = new_declarator;
|
||
outer_declarator = NULL;
|
||
while (declarator && (declarator->kind == cdk_pointer
|
||
|| declarator->kind == cdk_ptrmem))
|
||
{
|
||
outer_declarator = declarator;
|
||
declarator = declarator->declarator;
|
||
}
|
||
while (declarator
|
||
&& declarator->kind == cdk_array
|
||
&& declarator->declarator
|
||
&& declarator->declarator->kind == cdk_array)
|
||
{
|
||
outer_declarator = declarator;
|
||
declarator = declarator->declarator;
|
||
}
|
||
|
||
if (declarator && declarator->kind == cdk_array)
|
||
{
|
||
*nelts = declarator->u.array.bounds;
|
||
if (*nelts == error_mark_node)
|
||
*nelts = integer_one_node;
|
||
|
||
if (outer_declarator)
|
||
outer_declarator->declarator = declarator->declarator;
|
||
else
|
||
new_declarator = NULL;
|
||
}
|
||
|
||
return groktypename (&type_specifier_seq, new_declarator, false);
|
||
}
|
||
|
||
/* Parse an (optional) new-declarator.
|
||
|
||
new-declarator:
|
||
ptr-operator new-declarator [opt]
|
||
direct-new-declarator
|
||
|
||
Returns the declarator. */
|
||
|
||
static cp_declarator *
|
||
cp_parser_new_declarator_opt (cp_parser* parser)
|
||
{
|
||
enum tree_code code;
|
||
tree type, std_attributes = NULL_TREE;
|
||
cp_cv_quals cv_quals;
|
||
|
||
/* We don't know if there's a ptr-operator next, or not. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Look for a ptr-operator. */
|
||
code = cp_parser_ptr_operator (parser, &type, &cv_quals, &std_attributes);
|
||
/* If that worked, look for more new-declarators. */
|
||
if (cp_parser_parse_definitely (parser))
|
||
{
|
||
cp_declarator *declarator;
|
||
|
||
/* Parse another optional declarator. */
|
||
declarator = cp_parser_new_declarator_opt (parser);
|
||
|
||
declarator = cp_parser_make_indirect_declarator
|
||
(code, type, cv_quals, declarator, std_attributes);
|
||
|
||
return declarator;
|
||
}
|
||
|
||
/* If the next token is a `[', there is a direct-new-declarator. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
|
||
return cp_parser_direct_new_declarator (parser);
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Parse a direct-new-declarator.
|
||
|
||
direct-new-declarator:
|
||
[ expression ]
|
||
direct-new-declarator [constant-expression]
|
||
|
||
*/
|
||
|
||
static cp_declarator *
|
||
cp_parser_direct_new_declarator (cp_parser* parser)
|
||
{
|
||
cp_declarator *declarator = NULL;
|
||
|
||
while (true)
|
||
{
|
||
tree expression;
|
||
cp_token *token;
|
||
|
||
/* Look for the opening `['. */
|
||
cp_parser_require (parser, CPP_OPEN_SQUARE, RT_OPEN_SQUARE);
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
expression = cp_parser_expression (parser, /*cast_p=*/false, NULL);
|
||
/* The standard requires that the expression have integral
|
||
type. DR 74 adds enumeration types. We believe that the
|
||
real intent is that these expressions be handled like the
|
||
expression in a `switch' condition, which also allows
|
||
classes with a single conversion to integral or
|
||
enumeration type. */
|
||
if (!processing_template_decl)
|
||
{
|
||
expression
|
||
= build_expr_type_conversion (WANT_INT | WANT_ENUM,
|
||
expression,
|
||
/*complain=*/true);
|
||
if (!expression)
|
||
{
|
||
error_at (token->location,
|
||
"expression in new-declarator must have integral "
|
||
"or enumeration type");
|
||
expression = error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* Look for the closing `]'. */
|
||
cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
|
||
|
||
/* Add this bound to the declarator. */
|
||
declarator = make_array_declarator (declarator, expression);
|
||
|
||
/* If the next token is not a `[', then there are no more
|
||
bounds. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE))
|
||
break;
|
||
}
|
||
|
||
return declarator;
|
||
}
|
||
|
||
/* Parse a new-initializer.
|
||
|
||
new-initializer:
|
||
( expression-list [opt] )
|
||
braced-init-list
|
||
|
||
Returns a representation of the expression-list. */
|
||
|
||
static vec<tree, va_gc> *
|
||
cp_parser_new_initializer (cp_parser* parser)
|
||
{
|
||
vec<tree, va_gc> *expression_list;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
tree t;
|
||
bool expr_non_constant_p;
|
||
cp_lexer_set_source_position (parser->lexer);
|
||
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
|
||
t = cp_parser_braced_list (parser, &expr_non_constant_p);
|
||
CONSTRUCTOR_IS_DIRECT_INIT (t) = 1;
|
||
expression_list = make_tree_vector_single (t);
|
||
}
|
||
else
|
||
expression_list = (cp_parser_parenthesized_expression_list
|
||
(parser, non_attr, /*cast_p=*/false,
|
||
/*allow_expansion_p=*/true,
|
||
/*non_constant_p=*/NULL));
|
||
|
||
return expression_list;
|
||
}
|
||
|
||
/* Parse a delete-expression.
|
||
|
||
delete-expression:
|
||
:: [opt] delete cast-expression
|
||
:: [opt] delete [ ] cast-expression
|
||
|
||
Returns a representation of the expression. */
|
||
|
||
static tree
|
||
cp_parser_delete_expression (cp_parser* parser)
|
||
{
|
||
bool global_scope_p;
|
||
bool array_p;
|
||
tree expression;
|
||
|
||
/* Look for the optional `::' operator. */
|
||
global_scope_p
|
||
= (cp_parser_global_scope_opt (parser,
|
||
/*current_scope_valid_p=*/false)
|
||
!= NULL_TREE);
|
||
/* Look for the `delete' keyword. */
|
||
cp_parser_require_keyword (parser, RID_DELETE, RT_DELETE);
|
||
/* See if the array syntax is in use. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
|
||
{
|
||
/* Consume the `[' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Look for the `]' token. */
|
||
cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
|
||
/* Remember that this is the `[]' construct. */
|
||
array_p = true;
|
||
}
|
||
else
|
||
array_p = false;
|
||
|
||
/* Parse the cast-expression. */
|
||
expression = cp_parser_simple_cast_expression (parser);
|
||
|
||
/* A delete-expression may not appear in an integral constant
|
||
expression. */
|
||
if (cp_parser_non_integral_constant_expression (parser, NIC_DEL))
|
||
return error_mark_node;
|
||
|
||
return delete_sanity (expression, NULL_TREE, array_p, global_scope_p,
|
||
tf_warning_or_error);
|
||
}
|
||
|
||
/* Returns 1 if TOKEN may start a cast-expression and isn't '++', '--',
|
||
neither '[' in C++11; -1 if TOKEN is '++', '--', or '[' in C++11;
|
||
0 otherwise. */
|
||
|
||
static int
|
||
cp_parser_tokens_start_cast_expression (cp_parser *parser)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
switch (token->type)
|
||
{
|
||
case CPP_COMMA:
|
||
case CPP_SEMICOLON:
|
||
case CPP_QUERY:
|
||
case CPP_COLON:
|
||
case CPP_CLOSE_SQUARE:
|
||
case CPP_CLOSE_PAREN:
|
||
case CPP_CLOSE_BRACE:
|
||
case CPP_OPEN_BRACE:
|
||
case CPP_DOT:
|
||
case CPP_DOT_STAR:
|
||
case CPP_DEREF:
|
||
case CPP_DEREF_STAR:
|
||
case CPP_DIV:
|
||
case CPP_MOD:
|
||
case CPP_LSHIFT:
|
||
case CPP_RSHIFT:
|
||
case CPP_LESS:
|
||
case CPP_GREATER:
|
||
case CPP_LESS_EQ:
|
||
case CPP_GREATER_EQ:
|
||
case CPP_EQ_EQ:
|
||
case CPP_NOT_EQ:
|
||
case CPP_EQ:
|
||
case CPP_MULT_EQ:
|
||
case CPP_DIV_EQ:
|
||
case CPP_MOD_EQ:
|
||
case CPP_PLUS_EQ:
|
||
case CPP_MINUS_EQ:
|
||
case CPP_RSHIFT_EQ:
|
||
case CPP_LSHIFT_EQ:
|
||
case CPP_AND_EQ:
|
||
case CPP_XOR_EQ:
|
||
case CPP_OR_EQ:
|
||
case CPP_XOR:
|
||
case CPP_OR:
|
||
case CPP_OR_OR:
|
||
case CPP_EOF:
|
||
case CPP_ELLIPSIS:
|
||
return 0;
|
||
|
||
case CPP_OPEN_PAREN:
|
||
/* In ((type ()) () the last () isn't a valid cast-expression,
|
||
so the whole must be parsed as postfix-expression. */
|
||
return cp_lexer_peek_nth_token (parser->lexer, 2)->type
|
||
!= CPP_CLOSE_PAREN;
|
||
|
||
case CPP_OPEN_SQUARE:
|
||
/* '[' may start a primary-expression in obj-c++ and in C++11,
|
||
as a lambda-expression, eg, '(void)[]{}'. */
|
||
if (cxx_dialect >= cxx11)
|
||
return -1;
|
||
return c_dialect_objc ();
|
||
|
||
case CPP_PLUS_PLUS:
|
||
case CPP_MINUS_MINUS:
|
||
/* '++' and '--' may or may not start a cast-expression:
|
||
|
||
struct T { void operator++(int); };
|
||
void f() { (T())++; }
|
||
|
||
vs
|
||
|
||
int a;
|
||
(int)++a; */
|
||
return -1;
|
||
|
||
default:
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Parse a cast-expression.
|
||
|
||
cast-expression:
|
||
unary-expression
|
||
( type-id ) cast-expression
|
||
|
||
ADDRESS_P is true iff the unary-expression is appearing as the
|
||
operand of the `&' operator. CAST_P is true if this expression is
|
||
the target of a cast.
|
||
|
||
Returns a representation of the expression. */
|
||
|
||
static tree
|
||
cp_parser_cast_expression (cp_parser *parser, bool address_p, bool cast_p,
|
||
bool decltype_p, cp_id_kind * pidk)
|
||
{
|
||
/* If it's a `(', then we might be looking at a cast. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
|
||
{
|
||
tree type = NULL_TREE;
|
||
tree expr = NULL_TREE;
|
||
int cast_expression = 0;
|
||
const char *saved_message;
|
||
|
||
/* There's no way to know yet whether or not this is a cast.
|
||
For example, `(int (3))' is a unary-expression, while `(int)
|
||
3' is a cast. So, we resort to parsing tentatively. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Types may not be defined in a cast. */
|
||
saved_message = parser->type_definition_forbidden_message;
|
||
parser->type_definition_forbidden_message
|
||
= G_("types may not be defined in casts");
|
||
/* Consume the `('. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* A very tricky bit is that `(struct S) { 3 }' is a
|
||
compound-literal (which we permit in C++ as an extension).
|
||
But, that construct is not a cast-expression -- it is a
|
||
postfix-expression. (The reason is that `(struct S) { 3 }.i'
|
||
is legal; if the compound-literal were a cast-expression,
|
||
you'd need an extra set of parentheses.) But, if we parse
|
||
the type-id, and it happens to be a class-specifier, then we
|
||
will commit to the parse at that point, because we cannot
|
||
undo the action that is done when creating a new class. So,
|
||
then we cannot back up and do a postfix-expression.
|
||
|
||
Another tricky case is the following (c++/29234):
|
||
|
||
struct S { void operator () (); };
|
||
|
||
void foo ()
|
||
{
|
||
( S()() );
|
||
}
|
||
|
||
As a type-id we parse the parenthesized S()() as a function
|
||
returning a function, groktypename complains and we cannot
|
||
back up in this case either.
|
||
|
||
Therefore, we scan ahead to the closing `)', and check to see
|
||
if the tokens after the `)' can start a cast-expression. Otherwise
|
||
we are dealing with an unary-expression, a postfix-expression
|
||
or something else.
|
||
|
||
Yet another tricky case, in C++11, is the following (c++/54891):
|
||
|
||
(void)[]{};
|
||
|
||
The issue is that usually, besides the case of lambda-expressions,
|
||
the parenthesized type-id cannot be followed by '[', and, eg, we
|
||
want to parse '(C ())[2];' in parse/pr26997.C as unary-expression.
|
||
Thus, if cp_parser_tokens_start_cast_expression returns -1, below
|
||
we don't commit, we try a cast-expression, then an unary-expression.
|
||
|
||
Save tokens so that we can put them back. */
|
||
cp_lexer_save_tokens (parser->lexer);
|
||
|
||
/* We may be looking at a cast-expression. */
|
||
if (cp_parser_skip_to_closing_parenthesis (parser, false, false,
|
||
/*consume_paren=*/true))
|
||
cast_expression
|
||
= cp_parser_tokens_start_cast_expression (parser);
|
||
|
||
/* Roll back the tokens we skipped. */
|
||
cp_lexer_rollback_tokens (parser->lexer);
|
||
/* If we aren't looking at a cast-expression, simulate an error so
|
||
that the call to cp_parser_error_occurred below returns true. */
|
||
if (!cast_expression)
|
||
cp_parser_simulate_error (parser);
|
||
else
|
||
{
|
||
bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
|
||
parser->in_type_id_in_expr_p = true;
|
||
/* Look for the type-id. */
|
||
type = cp_parser_type_id (parser);
|
||
/* Look for the closing `)'. */
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
|
||
}
|
||
|
||
/* Restore the saved message. */
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
|
||
/* At this point this can only be either a cast or a
|
||
parenthesized ctor such as `(T ())' that looks like a cast to
|
||
function returning T. */
|
||
if (!cp_parser_error_occurred (parser))
|
||
{
|
||
/* Only commit if the cast-expression doesn't start with
|
||
'++', '--', or '[' in C++11. */
|
||
if (cast_expression > 0)
|
||
cp_parser_commit_to_topmost_tentative_parse (parser);
|
||
|
||
expr = cp_parser_cast_expression (parser,
|
||
/*address_p=*/false,
|
||
/*cast_p=*/true,
|
||
/*decltype_p=*/false,
|
||
pidk);
|
||
|
||
if (cp_parser_parse_definitely (parser))
|
||
{
|
||
/* Warn about old-style casts, if so requested. */
|
||
if (warn_old_style_cast
|
||
&& !in_system_header_at (input_location)
|
||
&& !VOID_TYPE_P (type)
|
||
&& current_lang_name != lang_name_c)
|
||
warning (OPT_Wold_style_cast, "use of old-style cast");
|
||
|
||
/* Only type conversions to integral or enumeration types
|
||
can be used in constant-expressions. */
|
||
if (!cast_valid_in_integral_constant_expression_p (type)
|
||
&& cp_parser_non_integral_constant_expression (parser,
|
||
NIC_CAST))
|
||
return error_mark_node;
|
||
|
||
/* Perform the cast. */
|
||
expr = build_c_cast (input_location, type, expr);
|
||
return expr;
|
||
}
|
||
}
|
||
else
|
||
cp_parser_abort_tentative_parse (parser);
|
||
}
|
||
|
||
/* If we get here, then it's not a cast, so it must be a
|
||
unary-expression. */
|
||
return cp_parser_unary_expression (parser, address_p, cast_p,
|
||
decltype_p, pidk);
|
||
}
|
||
|
||
/* Parse a binary expression of the general form:
|
||
|
||
pm-expression:
|
||
cast-expression
|
||
pm-expression .* cast-expression
|
||
pm-expression ->* cast-expression
|
||
|
||
multiplicative-expression:
|
||
pm-expression
|
||
multiplicative-expression * pm-expression
|
||
multiplicative-expression / pm-expression
|
||
multiplicative-expression % pm-expression
|
||
|
||
additive-expression:
|
||
multiplicative-expression
|
||
additive-expression + multiplicative-expression
|
||
additive-expression - multiplicative-expression
|
||
|
||
shift-expression:
|
||
additive-expression
|
||
shift-expression << additive-expression
|
||
shift-expression >> additive-expression
|
||
|
||
relational-expression:
|
||
shift-expression
|
||
relational-expression < shift-expression
|
||
relational-expression > shift-expression
|
||
relational-expression <= shift-expression
|
||
relational-expression >= shift-expression
|
||
|
||
GNU Extension:
|
||
|
||
relational-expression:
|
||
relational-expression <? shift-expression
|
||
relational-expression >? shift-expression
|
||
|
||
equality-expression:
|
||
relational-expression
|
||
equality-expression == relational-expression
|
||
equality-expression != relational-expression
|
||
|
||
and-expression:
|
||
equality-expression
|
||
and-expression & equality-expression
|
||
|
||
exclusive-or-expression:
|
||
and-expression
|
||
exclusive-or-expression ^ and-expression
|
||
|
||
inclusive-or-expression:
|
||
exclusive-or-expression
|
||
inclusive-or-expression | exclusive-or-expression
|
||
|
||
logical-and-expression:
|
||
inclusive-or-expression
|
||
logical-and-expression && inclusive-or-expression
|
||
|
||
logical-or-expression:
|
||
logical-and-expression
|
||
logical-or-expression || logical-and-expression
|
||
|
||
All these are implemented with a single function like:
|
||
|
||
binary-expression:
|
||
simple-cast-expression
|
||
binary-expression <token> binary-expression
|
||
|
||
CAST_P is true if this expression is the target of a cast.
|
||
|
||
The binops_by_token map is used to get the tree codes for each <token> type.
|
||
binary-expressions are associated according to a precedence table. */
|
||
|
||
#define TOKEN_PRECEDENCE(token) \
|
||
(((token->type == CPP_GREATER \
|
||
|| ((cxx_dialect != cxx98) && token->type == CPP_RSHIFT)) \
|
||
&& !parser->greater_than_is_operator_p) \
|
||
? PREC_NOT_OPERATOR \
|
||
: binops_by_token[token->type].prec)
|
||
|
||
static tree
|
||
cp_parser_binary_expression (cp_parser* parser, bool cast_p,
|
||
bool no_toplevel_fold_p,
|
||
bool decltype_p,
|
||
enum cp_parser_prec prec,
|
||
cp_id_kind * pidk)
|
||
{
|
||
cp_parser_expression_stack stack;
|
||
cp_parser_expression_stack_entry *sp = &stack[0];
|
||
cp_parser_expression_stack_entry current;
|
||
tree rhs;
|
||
cp_token *token;
|
||
enum tree_code rhs_type;
|
||
enum cp_parser_prec new_prec, lookahead_prec;
|
||
tree overload;
|
||
bool parenthesized_not_lhs_warn
|
||
= cp_lexer_next_token_is (parser->lexer, CPP_NOT);
|
||
|
||
/* Parse the first expression. */
|
||
current.lhs = cp_parser_cast_expression (parser, /*address_p=*/false,
|
||
cast_p, decltype_p, pidk);
|
||
current.lhs_type = ERROR_MARK;
|
||
current.prec = prec;
|
||
|
||
if (cp_parser_error_occurred (parser))
|
||
return error_mark_node;
|
||
|
||
for (;;)
|
||
{
|
||
/* Get an operator token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
if (warn_cxx0x_compat
|
||
&& token->type == CPP_RSHIFT
|
||
&& !parser->greater_than_is_operator_p)
|
||
{
|
||
if (warning_at (token->location, OPT_Wc__0x_compat,
|
||
"%<>>%> operator is treated"
|
||
" as two right angle brackets in C++11"))
|
||
inform (token->location,
|
||
"suggest parentheses around %<>>%> expression");
|
||
}
|
||
|
||
new_prec = TOKEN_PRECEDENCE (token);
|
||
|
||
/* Popping an entry off the stack means we completed a subexpression:
|
||
- either we found a token which is not an operator (`>' where it is not
|
||
an operator, or prec == PREC_NOT_OPERATOR), in which case popping
|
||
will happen repeatedly;
|
||
- or, we found an operator which has lower priority. This is the case
|
||
where the recursive descent *ascends*, as in `3 * 4 + 5' after
|
||
parsing `3 * 4'. */
|
||
if (new_prec <= current.prec)
|
||
{
|
||
if (sp == stack)
|
||
break;
|
||
else
|
||
goto pop;
|
||
}
|
||
|
||
get_rhs:
|
||
current.tree_type = binops_by_token[token->type].tree_type;
|
||
current.loc = token->location;
|
||
|
||
/* We used the operator token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* For "false && x" or "true || x", x will never be executed;
|
||
disable warnings while evaluating it. */
|
||
if (current.tree_type == TRUTH_ANDIF_EXPR)
|
||
c_inhibit_evaluation_warnings += current.lhs == truthvalue_false_node;
|
||
else if (current.tree_type == TRUTH_ORIF_EXPR)
|
||
c_inhibit_evaluation_warnings += current.lhs == truthvalue_true_node;
|
||
|
||
/* Extract another operand. It may be the RHS of this expression
|
||
or the LHS of a new, higher priority expression. */
|
||
rhs = cp_parser_simple_cast_expression (parser);
|
||
rhs_type = ERROR_MARK;
|
||
|
||
/* Get another operator token. Look up its precedence to avoid
|
||
building a useless (immediately popped) stack entry for common
|
||
cases such as 3 + 4 + 5 or 3 * 4 + 5. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
lookahead_prec = TOKEN_PRECEDENCE (token);
|
||
if (lookahead_prec > new_prec)
|
||
{
|
||
/* ... and prepare to parse the RHS of the new, higher priority
|
||
expression. Since precedence levels on the stack are
|
||
monotonically increasing, we do not have to care about
|
||
stack overflows. */
|
||
*sp = current;
|
||
++sp;
|
||
current.lhs = rhs;
|
||
current.lhs_type = rhs_type;
|
||
current.prec = new_prec;
|
||
new_prec = lookahead_prec;
|
||
goto get_rhs;
|
||
|
||
pop:
|
||
lookahead_prec = new_prec;
|
||
/* If the stack is not empty, we have parsed into LHS the right side
|
||
(`4' in the example above) of an expression we had suspended.
|
||
We can use the information on the stack to recover the LHS (`3')
|
||
from the stack together with the tree code (`MULT_EXPR'), and
|
||
the precedence of the higher level subexpression
|
||
(`PREC_ADDITIVE_EXPRESSION'). TOKEN is the CPP_PLUS token,
|
||
which will be used to actually build the additive expression. */
|
||
rhs = current.lhs;
|
||
rhs_type = current.lhs_type;
|
||
--sp;
|
||
current = *sp;
|
||
}
|
||
|
||
/* Undo the disabling of warnings done above. */
|
||
if (current.tree_type == TRUTH_ANDIF_EXPR)
|
||
c_inhibit_evaluation_warnings -= current.lhs == truthvalue_false_node;
|
||
else if (current.tree_type == TRUTH_ORIF_EXPR)
|
||
c_inhibit_evaluation_warnings -= current.lhs == truthvalue_true_node;
|
||
|
||
if (warn_logical_not_paren
|
||
&& parenthesized_not_lhs_warn)
|
||
warn_logical_not_parentheses (current.loc, current.tree_type,
|
||
TREE_OPERAND (current.lhs, 0), rhs);
|
||
|
||
overload = NULL;
|
||
/* ??? Currently we pass lhs_type == ERROR_MARK and rhs_type ==
|
||
ERROR_MARK for everything that is not a binary expression.
|
||
This makes warn_about_parentheses miss some warnings that
|
||
involve unary operators. For unary expressions we should
|
||
pass the correct tree_code unless the unary expression was
|
||
surrounded by parentheses.
|
||
*/
|
||
if (no_toplevel_fold_p
|
||
&& lookahead_prec <= current.prec
|
||
&& sp == stack)
|
||
current.lhs = build2 (current.tree_type,
|
||
TREE_CODE_CLASS (current.tree_type)
|
||
== tcc_comparison
|
||
? boolean_type_node : TREE_TYPE (current.lhs),
|
||
current.lhs, rhs);
|
||
else
|
||
current.lhs = build_x_binary_op (current.loc, current.tree_type,
|
||
current.lhs, current.lhs_type,
|
||
rhs, rhs_type, &overload,
|
||
complain_flags (decltype_p));
|
||
current.lhs_type = current.tree_type;
|
||
if (EXPR_P (current.lhs))
|
||
SET_EXPR_LOCATION (current.lhs, current.loc);
|
||
|
||
/* If the binary operator required the use of an overloaded operator,
|
||
then this expression cannot be an integral constant-expression.
|
||
An overloaded operator can be used even if both operands are
|
||
otherwise permissible in an integral constant-expression if at
|
||
least one of the operands is of enumeration type. */
|
||
|
||
if (overload
|
||
&& cp_parser_non_integral_constant_expression (parser,
|
||
NIC_OVERLOADED))
|
||
return error_mark_node;
|
||
}
|
||
|
||
return current.lhs;
|
||
}
|
||
|
||
static tree
|
||
cp_parser_binary_expression (cp_parser* parser, bool cast_p,
|
||
bool no_toplevel_fold_p,
|
||
enum cp_parser_prec prec,
|
||
cp_id_kind * pidk)
|
||
{
|
||
return cp_parser_binary_expression (parser, cast_p, no_toplevel_fold_p,
|
||
/*decltype*/false, prec, pidk);
|
||
}
|
||
|
||
/* Parse the `? expression : assignment-expression' part of a
|
||
conditional-expression. The LOGICAL_OR_EXPR is the
|
||
logical-or-expression that started the conditional-expression.
|
||
Returns a representation of the entire conditional-expression.
|
||
|
||
This routine is used by cp_parser_assignment_expression.
|
||
|
||
? expression : assignment-expression
|
||
|
||
GNU Extensions:
|
||
|
||
? : assignment-expression */
|
||
|
||
static tree
|
||
cp_parser_question_colon_clause (cp_parser* parser, tree logical_or_expr)
|
||
{
|
||
tree expr;
|
||
tree assignment_expr;
|
||
struct cp_token *token;
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
/* Consume the `?' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (cp_parser_allow_gnu_extensions_p (parser)
|
||
&& token->type == CPP_COLON)
|
||
{
|
||
pedwarn (token->location, OPT_Wpedantic,
|
||
"ISO C++ does not allow ?: with omitted middle operand");
|
||
/* Implicit true clause. */
|
||
expr = NULL_TREE;
|
||
c_inhibit_evaluation_warnings += logical_or_expr == truthvalue_true_node;
|
||
warn_for_omitted_condop (token->location, logical_or_expr);
|
||
}
|
||
else
|
||
{
|
||
bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p;
|
||
parser->colon_corrects_to_scope_p = false;
|
||
/* Parse the expression. */
|
||
c_inhibit_evaluation_warnings += logical_or_expr == truthvalue_false_node;
|
||
expr = cp_parser_expression (parser, /*cast_p=*/false, NULL);
|
||
c_inhibit_evaluation_warnings +=
|
||
((logical_or_expr == truthvalue_true_node)
|
||
- (logical_or_expr == truthvalue_false_node));
|
||
parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p;
|
||
}
|
||
|
||
/* The next token should be a `:'. */
|
||
cp_parser_require (parser, CPP_COLON, RT_COLON);
|
||
/* Parse the assignment-expression. */
|
||
assignment_expr = cp_parser_assignment_expression (parser, /*cast_p=*/false, NULL);
|
||
c_inhibit_evaluation_warnings -= logical_or_expr == truthvalue_true_node;
|
||
|
||
/* Build the conditional-expression. */
|
||
return build_x_conditional_expr (loc, logical_or_expr,
|
||
expr,
|
||
assignment_expr,
|
||
tf_warning_or_error);
|
||
}
|
||
|
||
/* Parse an assignment-expression.
|
||
|
||
assignment-expression:
|
||
conditional-expression
|
||
logical-or-expression assignment-operator assignment_expression
|
||
throw-expression
|
||
|
||
CAST_P is true if this expression is the target of a cast.
|
||
DECLTYPE_P is true if this expression is the operand of decltype.
|
||
|
||
Returns a representation for the expression. */
|
||
|
||
static tree
|
||
cp_parser_assignment_expression (cp_parser* parser, bool cast_p,
|
||
bool decltype_p, cp_id_kind * pidk)
|
||
{
|
||
tree expr;
|
||
|
||
/* If the next token is the `throw' keyword, then we're looking at
|
||
a throw-expression. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THROW))
|
||
expr = cp_parser_throw_expression (parser);
|
||
/* Otherwise, it must be that we are looking at a
|
||
logical-or-expression. */
|
||
else
|
||
{
|
||
/* Parse the binary expressions (logical-or-expression). */
|
||
expr = cp_parser_binary_expression (parser, cast_p, false,
|
||
decltype_p,
|
||
PREC_NOT_OPERATOR, pidk);
|
||
/* If the next token is a `?' then we're actually looking at a
|
||
conditional-expression. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY))
|
||
return cp_parser_question_colon_clause (parser, expr);
|
||
else
|
||
{
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
/* If it's an assignment-operator, we're using the second
|
||
production. */
|
||
enum tree_code assignment_operator
|
||
= cp_parser_assignment_operator_opt (parser);
|
||
if (assignment_operator != ERROR_MARK)
|
||
{
|
||
bool non_constant_p;
|
||
location_t saved_input_location;
|
||
|
||
/* Parse the right-hand side of the assignment. */
|
||
tree rhs = cp_parser_initializer_clause (parser, &non_constant_p);
|
||
|
||
if (BRACE_ENCLOSED_INITIALIZER_P (rhs))
|
||
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
|
||
|
||
/* An assignment may not appear in a
|
||
constant-expression. */
|
||
if (cp_parser_non_integral_constant_expression (parser,
|
||
NIC_ASSIGNMENT))
|
||
return error_mark_node;
|
||
/* Build the assignment expression. Its default
|
||
location is the location of the '=' token. */
|
||
saved_input_location = input_location;
|
||
input_location = loc;
|
||
expr = build_x_modify_expr (loc, expr,
|
||
assignment_operator,
|
||
rhs,
|
||
complain_flags (decltype_p));
|
||
input_location = saved_input_location;
|
||
}
|
||
}
|
||
}
|
||
|
||
return expr;
|
||
}
|
||
|
||
static tree
|
||
cp_parser_assignment_expression (cp_parser* parser, bool cast_p,
|
||
cp_id_kind * pidk)
|
||
{
|
||
return cp_parser_assignment_expression (parser, cast_p,
|
||
/*decltype*/false, pidk);
|
||
}
|
||
|
||
/* Parse an (optional) assignment-operator.
|
||
|
||
assignment-operator: one of
|
||
= *= /= %= += -= >>= <<= &= ^= |=
|
||
|
||
GNU Extension:
|
||
|
||
assignment-operator: one of
|
||
<?= >?=
|
||
|
||
If the next token is an assignment operator, the corresponding tree
|
||
code is returned, and the token is consumed. For example, for
|
||
`+=', PLUS_EXPR is returned. For `=' itself, the code returned is
|
||
NOP_EXPR. For `/', TRUNC_DIV_EXPR is returned; for `%',
|
||
TRUNC_MOD_EXPR is returned. If TOKEN is not an assignment
|
||
operator, ERROR_MARK is returned. */
|
||
|
||
static enum tree_code
|
||
cp_parser_assignment_operator_opt (cp_parser* parser)
|
||
{
|
||
enum tree_code op;
|
||
cp_token *token;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
switch (token->type)
|
||
{
|
||
case CPP_EQ:
|
||
op = NOP_EXPR;
|
||
break;
|
||
|
||
case CPP_MULT_EQ:
|
||
op = MULT_EXPR;
|
||
break;
|
||
|
||
case CPP_DIV_EQ:
|
||
op = TRUNC_DIV_EXPR;
|
||
break;
|
||
|
||
case CPP_MOD_EQ:
|
||
op = TRUNC_MOD_EXPR;
|
||
break;
|
||
|
||
case CPP_PLUS_EQ:
|
||
op = PLUS_EXPR;
|
||
break;
|
||
|
||
case CPP_MINUS_EQ:
|
||
op = MINUS_EXPR;
|
||
break;
|
||
|
||
case CPP_RSHIFT_EQ:
|
||
op = RSHIFT_EXPR;
|
||
break;
|
||
|
||
case CPP_LSHIFT_EQ:
|
||
op = LSHIFT_EXPR;
|
||
break;
|
||
|
||
case CPP_AND_EQ:
|
||
op = BIT_AND_EXPR;
|
||
break;
|
||
|
||
case CPP_XOR_EQ:
|
||
op = BIT_XOR_EXPR;
|
||
break;
|
||
|
||
case CPP_OR_EQ:
|
||
op = BIT_IOR_EXPR;
|
||
break;
|
||
|
||
default:
|
||
/* Nothing else is an assignment operator. */
|
||
op = ERROR_MARK;
|
||
}
|
||
|
||
/* If it was an assignment operator, consume it. */
|
||
if (op != ERROR_MARK)
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
return op;
|
||
}
|
||
|
||
/* Parse an expression.
|
||
|
||
expression:
|
||
assignment-expression
|
||
expression , assignment-expression
|
||
|
||
CAST_P is true if this expression is the target of a cast.
|
||
DECLTYPE_P is true if this expression is the immediate operand of decltype,
|
||
except possibly parenthesized or on the RHS of a comma (N3276).
|
||
|
||
Returns a representation of the expression. */
|
||
|
||
static tree
|
||
cp_parser_expression (cp_parser* parser, bool cast_p, bool decltype_p,
|
||
cp_id_kind * pidk)
|
||
{
|
||
tree expression = NULL_TREE;
|
||
location_t loc = UNKNOWN_LOCATION;
|
||
|
||
while (true)
|
||
{
|
||
tree assignment_expression;
|
||
|
||
/* Parse the next assignment-expression. */
|
||
assignment_expression
|
||
= cp_parser_assignment_expression (parser, cast_p, decltype_p, pidk);
|
||
|
||
/* We don't create a temporary for a call that is the immediate operand
|
||
of decltype or on the RHS of a comma. But when we see a comma, we
|
||
need to create a temporary for a call on the LHS. */
|
||
if (decltype_p && !processing_template_decl
|
||
&& TREE_CODE (assignment_expression) == CALL_EXPR
|
||
&& CLASS_TYPE_P (TREE_TYPE (assignment_expression))
|
||
&& cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
|
||
assignment_expression
|
||
= build_cplus_new (TREE_TYPE (assignment_expression),
|
||
assignment_expression, tf_warning_or_error);
|
||
|
||
/* If this is the first assignment-expression, we can just
|
||
save it away. */
|
||
if (!expression)
|
||
expression = assignment_expression;
|
||
else
|
||
expression = build_x_compound_expr (loc, expression,
|
||
assignment_expression,
|
||
complain_flags (decltype_p));
|
||
/* If the next token is not a comma, then we are done with the
|
||
expression. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
|
||
break;
|
||
/* Consume the `,'. */
|
||
loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* A comma operator cannot appear in a constant-expression. */
|
||
if (cp_parser_non_integral_constant_expression (parser, NIC_COMMA))
|
||
expression = error_mark_node;
|
||
}
|
||
|
||
return expression;
|
||
}
|
||
|
||
static inline tree
|
||
cp_parser_expression (cp_parser* parser, bool cast_p, cp_id_kind * pidk)
|
||
{
|
||
return cp_parser_expression (parser, cast_p, /*decltype*/false, pidk);
|
||
}
|
||
|
||
/* Parse a constant-expression.
|
||
|
||
constant-expression:
|
||
conditional-expression
|
||
|
||
If ALLOW_NON_CONSTANT_P a non-constant expression is silently
|
||
accepted. If ALLOW_NON_CONSTANT_P is true and the expression is not
|
||
constant, *NON_CONSTANT_P is set to TRUE. If ALLOW_NON_CONSTANT_P
|
||
is false, NON_CONSTANT_P should be NULL. */
|
||
|
||
static tree
|
||
cp_parser_constant_expression (cp_parser* parser,
|
||
bool allow_non_constant_p,
|
||
bool *non_constant_p)
|
||
{
|
||
bool saved_integral_constant_expression_p;
|
||
bool saved_allow_non_integral_constant_expression_p;
|
||
bool saved_non_integral_constant_expression_p;
|
||
tree expression;
|
||
|
||
/* It might seem that we could simply parse the
|
||
conditional-expression, and then check to see if it were
|
||
TREE_CONSTANT. However, an expression that is TREE_CONSTANT is
|
||
one that the compiler can figure out is constant, possibly after
|
||
doing some simplifications or optimizations. The standard has a
|
||
precise definition of constant-expression, and we must honor
|
||
that, even though it is somewhat more restrictive.
|
||
|
||
For example:
|
||
|
||
int i[(2, 3)];
|
||
|
||
is not a legal declaration, because `(2, 3)' is not a
|
||
constant-expression. The `,' operator is forbidden in a
|
||
constant-expression. However, GCC's constant-folding machinery
|
||
will fold this operation to an INTEGER_CST for `3'. */
|
||
|
||
/* Save the old settings. */
|
||
saved_integral_constant_expression_p = parser->integral_constant_expression_p;
|
||
saved_allow_non_integral_constant_expression_p
|
||
= parser->allow_non_integral_constant_expression_p;
|
||
saved_non_integral_constant_expression_p = parser->non_integral_constant_expression_p;
|
||
/* We are now parsing a constant-expression. */
|
||
parser->integral_constant_expression_p = true;
|
||
parser->allow_non_integral_constant_expression_p
|
||
= (allow_non_constant_p || cxx_dialect >= cxx11);
|
||
parser->non_integral_constant_expression_p = false;
|
||
/* Although the grammar says "conditional-expression", we parse an
|
||
"assignment-expression", which also permits "throw-expression"
|
||
and the use of assignment operators. In the case that
|
||
ALLOW_NON_CONSTANT_P is false, we get better errors than we would
|
||
otherwise. In the case that ALLOW_NON_CONSTANT_P is true, it is
|
||
actually essential that we look for an assignment-expression.
|
||
For example, cp_parser_initializer_clauses uses this function to
|
||
determine whether a particular assignment-expression is in fact
|
||
constant. */
|
||
expression = cp_parser_assignment_expression (parser, /*cast_p=*/false, NULL);
|
||
/* Restore the old settings. */
|
||
parser->integral_constant_expression_p
|
||
= saved_integral_constant_expression_p;
|
||
parser->allow_non_integral_constant_expression_p
|
||
= saved_allow_non_integral_constant_expression_p;
|
||
if (cxx_dialect >= cxx11)
|
||
{
|
||
/* Require an rvalue constant expression here; that's what our
|
||
callers expect. Reference constant expressions are handled
|
||
separately in e.g. cp_parser_template_argument. */
|
||
bool is_const = potential_rvalue_constant_expression (expression);
|
||
parser->non_integral_constant_expression_p = !is_const;
|
||
if (!is_const && !allow_non_constant_p)
|
||
require_potential_rvalue_constant_expression (expression);
|
||
}
|
||
if (allow_non_constant_p)
|
||
*non_constant_p = parser->non_integral_constant_expression_p;
|
||
parser->non_integral_constant_expression_p
|
||
= saved_non_integral_constant_expression_p;
|
||
|
||
return expression;
|
||
}
|
||
|
||
/* Parse __builtin_offsetof.
|
||
|
||
offsetof-expression:
|
||
"__builtin_offsetof" "(" type-id "," offsetof-member-designator ")"
|
||
|
||
offsetof-member-designator:
|
||
id-expression
|
||
| offsetof-member-designator "." id-expression
|
||
| offsetof-member-designator "[" expression "]"
|
||
| offsetof-member-designator "->" id-expression */
|
||
|
||
static tree
|
||
cp_parser_builtin_offsetof (cp_parser *parser)
|
||
{
|
||
int save_ice_p, save_non_ice_p;
|
||
tree type, expr;
|
||
cp_id_kind dummy;
|
||
cp_token *token;
|
||
|
||
/* We're about to accept non-integral-constant things, but will
|
||
definitely yield an integral constant expression. Save and
|
||
restore these values around our local parsing. */
|
||
save_ice_p = parser->integral_constant_expression_p;
|
||
save_non_ice_p = parser->non_integral_constant_expression_p;
|
||
|
||
/* Consume the "__builtin_offsetof" token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Consume the opening `('. */
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
/* Parse the type-id. */
|
||
type = cp_parser_type_id (parser);
|
||
/* Look for the `,'. */
|
||
cp_parser_require (parser, CPP_COMMA, RT_COMMA);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* Build the (type *)null that begins the traditional offsetof macro. */
|
||
expr = build_static_cast (build_pointer_type (type), null_pointer_node,
|
||
tf_warning_or_error);
|
||
|
||
/* Parse the offsetof-member-designator. We begin as if we saw "expr->". */
|
||
expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DEREF, expr,
|
||
true, &dummy, token->location);
|
||
while (true)
|
||
{
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
switch (token->type)
|
||
{
|
||
case CPP_OPEN_SQUARE:
|
||
/* offsetof-member-designator "[" expression "]" */
|
||
expr = cp_parser_postfix_open_square_expression (parser, expr,
|
||
true, false);
|
||
break;
|
||
|
||
case CPP_DEREF:
|
||
/* offsetof-member-designator "->" identifier */
|
||
expr = grok_array_decl (token->location, expr,
|
||
integer_zero_node, false);
|
||
/* FALLTHRU */
|
||
|
||
case CPP_DOT:
|
||
/* offsetof-member-designator "." identifier */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DOT,
|
||
expr, true, &dummy,
|
||
token->location);
|
||
break;
|
||
|
||
case CPP_CLOSE_PAREN:
|
||
/* Consume the ")" token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
goto success;
|
||
|
||
default:
|
||
/* Error. We know the following require will fail, but
|
||
that gives the proper error message. */
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
cp_parser_skip_to_closing_parenthesis (parser, true, false, true);
|
||
expr = error_mark_node;
|
||
goto failure;
|
||
}
|
||
}
|
||
|
||
success:
|
||
/* If we're processing a template, we can't finish the semantics yet.
|
||
Otherwise we can fold the entire expression now. */
|
||
if (processing_template_decl)
|
||
expr = build1 (OFFSETOF_EXPR, size_type_node, expr);
|
||
else
|
||
expr = finish_offsetof (expr);
|
||
|
||
failure:
|
||
parser->integral_constant_expression_p = save_ice_p;
|
||
parser->non_integral_constant_expression_p = save_non_ice_p;
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Parse a trait expression.
|
||
|
||
Returns a representation of the expression, the underlying type
|
||
of the type at issue when KEYWORD is RID_UNDERLYING_TYPE. */
|
||
|
||
static tree
|
||
cp_parser_trait_expr (cp_parser* parser, enum rid keyword)
|
||
{
|
||
cp_trait_kind kind;
|
||
tree type1, type2 = NULL_TREE;
|
||
bool binary = false;
|
||
cp_decl_specifier_seq decl_specs;
|
||
|
||
switch (keyword)
|
||
{
|
||
case RID_HAS_NOTHROW_ASSIGN:
|
||
kind = CPTK_HAS_NOTHROW_ASSIGN;
|
||
break;
|
||
case RID_HAS_NOTHROW_CONSTRUCTOR:
|
||
kind = CPTK_HAS_NOTHROW_CONSTRUCTOR;
|
||
break;
|
||
case RID_HAS_NOTHROW_COPY:
|
||
kind = CPTK_HAS_NOTHROW_COPY;
|
||
break;
|
||
case RID_HAS_TRIVIAL_ASSIGN:
|
||
kind = CPTK_HAS_TRIVIAL_ASSIGN;
|
||
break;
|
||
case RID_HAS_TRIVIAL_CONSTRUCTOR:
|
||
kind = CPTK_HAS_TRIVIAL_CONSTRUCTOR;
|
||
break;
|
||
case RID_HAS_TRIVIAL_COPY:
|
||
kind = CPTK_HAS_TRIVIAL_COPY;
|
||
break;
|
||
case RID_HAS_TRIVIAL_DESTRUCTOR:
|
||
kind = CPTK_HAS_TRIVIAL_DESTRUCTOR;
|
||
break;
|
||
case RID_HAS_VIRTUAL_DESTRUCTOR:
|
||
kind = CPTK_HAS_VIRTUAL_DESTRUCTOR;
|
||
break;
|
||
case RID_IS_ABSTRACT:
|
||
kind = CPTK_IS_ABSTRACT;
|
||
break;
|
||
case RID_IS_BASE_OF:
|
||
kind = CPTK_IS_BASE_OF;
|
||
binary = true;
|
||
break;
|
||
case RID_IS_CLASS:
|
||
kind = CPTK_IS_CLASS;
|
||
break;
|
||
case RID_IS_CONVERTIBLE_TO:
|
||
kind = CPTK_IS_CONVERTIBLE_TO;
|
||
binary = true;
|
||
break;
|
||
case RID_IS_EMPTY:
|
||
kind = CPTK_IS_EMPTY;
|
||
break;
|
||
case RID_IS_ENUM:
|
||
kind = CPTK_IS_ENUM;
|
||
break;
|
||
case RID_IS_FINAL:
|
||
kind = CPTK_IS_FINAL;
|
||
break;
|
||
case RID_IS_LITERAL_TYPE:
|
||
kind = CPTK_IS_LITERAL_TYPE;
|
||
break;
|
||
case RID_IS_POD:
|
||
kind = CPTK_IS_POD;
|
||
break;
|
||
case RID_IS_POLYMORPHIC:
|
||
kind = CPTK_IS_POLYMORPHIC;
|
||
break;
|
||
case RID_IS_STD_LAYOUT:
|
||
kind = CPTK_IS_STD_LAYOUT;
|
||
break;
|
||
case RID_IS_TRIVIAL:
|
||
kind = CPTK_IS_TRIVIAL;
|
||
break;
|
||
case RID_IS_UNION:
|
||
kind = CPTK_IS_UNION;
|
||
break;
|
||
case RID_UNDERLYING_TYPE:
|
||
kind = CPTK_UNDERLYING_TYPE;
|
||
break;
|
||
case RID_BASES:
|
||
kind = CPTK_BASES;
|
||
break;
|
||
case RID_DIRECT_BASES:
|
||
kind = CPTK_DIRECT_BASES;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Consume the token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
|
||
type1 = cp_parser_type_id (parser);
|
||
|
||
if (type1 == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Build a trivial decl-specifier-seq. */
|
||
clear_decl_specs (&decl_specs);
|
||
decl_specs.type = type1;
|
||
|
||
/* Call grokdeclarator to figure out what type this is. */
|
||
type1 = grokdeclarator (NULL, &decl_specs, TYPENAME,
|
||
/*initialized=*/0, /*attrlist=*/NULL);
|
||
|
||
if (binary)
|
||
{
|
||
cp_parser_require (parser, CPP_COMMA, RT_COMMA);
|
||
|
||
type2 = cp_parser_type_id (parser);
|
||
|
||
if (type2 == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Build a trivial decl-specifier-seq. */
|
||
clear_decl_specs (&decl_specs);
|
||
decl_specs.type = type2;
|
||
|
||
/* Call grokdeclarator to figure out what type this is. */
|
||
type2 = grokdeclarator (NULL, &decl_specs, TYPENAME,
|
||
/*initialized=*/0, /*attrlist=*/NULL);
|
||
}
|
||
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
|
||
/* Complete the trait expression, which may mean either processing
|
||
the trait expr now or saving it for template instantiation. */
|
||
switch(kind)
|
||
{
|
||
case CPTK_UNDERLYING_TYPE:
|
||
return finish_underlying_type (type1);
|
||
case CPTK_BASES:
|
||
return finish_bases (type1, false);
|
||
case CPTK_DIRECT_BASES:
|
||
return finish_bases (type1, true);
|
||
default:
|
||
return finish_trait_expr (kind, type1, type2);
|
||
}
|
||
}
|
||
|
||
/* Lambdas that appear in variable initializer or default argument scope
|
||
get that in their mangling, so we need to record it. We might as well
|
||
use the count for function and namespace scopes as well. */
|
||
static GTY(()) tree lambda_scope;
|
||
static GTY(()) int lambda_count;
|
||
typedef struct GTY(()) tree_int
|
||
{
|
||
tree t;
|
||
int i;
|
||
} tree_int;
|
||
static GTY(()) vec<tree_int, va_gc> *lambda_scope_stack;
|
||
|
||
static void
|
||
start_lambda_scope (tree decl)
|
||
{
|
||
tree_int ti;
|
||
gcc_assert (decl);
|
||
/* Once we're inside a function, we ignore other scopes and just push
|
||
the function again so that popping works properly. */
|
||
if (current_function_decl && TREE_CODE (decl) != FUNCTION_DECL)
|
||
decl = current_function_decl;
|
||
ti.t = lambda_scope;
|
||
ti.i = lambda_count;
|
||
vec_safe_push (lambda_scope_stack, ti);
|
||
if (lambda_scope != decl)
|
||
{
|
||
/* Don't reset the count if we're still in the same function. */
|
||
lambda_scope = decl;
|
||
lambda_count = 0;
|
||
}
|
||
}
|
||
|
||
static void
|
||
record_lambda_scope (tree lambda)
|
||
{
|
||
LAMBDA_EXPR_EXTRA_SCOPE (lambda) = lambda_scope;
|
||
LAMBDA_EXPR_DISCRIMINATOR (lambda) = lambda_count++;
|
||
}
|
||
|
||
static void
|
||
finish_lambda_scope (void)
|
||
{
|
||
tree_int *p = &lambda_scope_stack->last ();
|
||
if (lambda_scope != p->t)
|
||
{
|
||
lambda_scope = p->t;
|
||
lambda_count = p->i;
|
||
}
|
||
lambda_scope_stack->pop ();
|
||
}
|
||
|
||
/* Parse a lambda expression.
|
||
|
||
lambda-expression:
|
||
lambda-introducer lambda-declarator [opt] compound-statement
|
||
|
||
Returns a representation of the expression. */
|
||
|
||
static tree
|
||
cp_parser_lambda_expression (cp_parser* parser)
|
||
{
|
||
tree lambda_expr = build_lambda_expr ();
|
||
tree type;
|
||
bool ok = true;
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
LAMBDA_EXPR_LOCATION (lambda_expr) = token->location;
|
||
|
||
if (cp_unevaluated_operand)
|
||
{
|
||
if (!token->error_reported)
|
||
{
|
||
error_at (LAMBDA_EXPR_LOCATION (lambda_expr),
|
||
"lambda-expression in unevaluated context");
|
||
token->error_reported = true;
|
||
}
|
||
ok = false;
|
||
}
|
||
|
||
/* We may be in the middle of deferred access check. Disable
|
||
it now. */
|
||
push_deferring_access_checks (dk_no_deferred);
|
||
|
||
cp_parser_lambda_introducer (parser, lambda_expr);
|
||
|
||
type = begin_lambda_type (lambda_expr);
|
||
if (type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
record_lambda_scope (lambda_expr);
|
||
|
||
/* Do this again now that LAMBDA_EXPR_EXTRA_SCOPE is set. */
|
||
determine_visibility (TYPE_NAME (type));
|
||
|
||
/* Now that we've started the type, add the capture fields for any
|
||
explicit captures. */
|
||
register_capture_members (LAMBDA_EXPR_CAPTURE_LIST (lambda_expr));
|
||
|
||
{
|
||
/* Inside the class, surrounding template-parameter-lists do not apply. */
|
||
unsigned int saved_num_template_parameter_lists
|
||
= parser->num_template_parameter_lists;
|
||
unsigned char in_statement = parser->in_statement;
|
||
bool in_switch_statement_p = parser->in_switch_statement_p;
|
||
bool fully_implicit_function_template_p
|
||
= parser->fully_implicit_function_template_p;
|
||
tree implicit_template_parms = parser->implicit_template_parms;
|
||
cp_binding_level* implicit_template_scope = parser->implicit_template_scope;
|
||
bool auto_is_implicit_function_template_parm_p
|
||
= parser->auto_is_implicit_function_template_parm_p;
|
||
|
||
parser->num_template_parameter_lists = 0;
|
||
parser->in_statement = 0;
|
||
parser->in_switch_statement_p = false;
|
||
parser->fully_implicit_function_template_p = false;
|
||
parser->implicit_template_parms = 0;
|
||
parser->implicit_template_scope = 0;
|
||
parser->auto_is_implicit_function_template_parm_p = false;
|
||
|
||
/* By virtue of defining a local class, a lambda expression has access to
|
||
the private variables of enclosing classes. */
|
||
|
||
ok &= cp_parser_lambda_declarator_opt (parser, lambda_expr);
|
||
|
||
if (ok)
|
||
cp_parser_lambda_body (parser, lambda_expr);
|
||
else if (cp_parser_require (parser, CPP_OPEN_BRACE, RT_OPEN_BRACE))
|
||
{
|
||
if (cp_parser_skip_to_closing_brace (parser))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
/* The capture list was built up in reverse order; fix that now. */
|
||
LAMBDA_EXPR_CAPTURE_LIST (lambda_expr)
|
||
= nreverse (LAMBDA_EXPR_CAPTURE_LIST (lambda_expr));
|
||
|
||
if (ok)
|
||
maybe_add_lambda_conv_op (type);
|
||
|
||
type = finish_struct (type, /*attributes=*/NULL_TREE);
|
||
|
||
parser->num_template_parameter_lists = saved_num_template_parameter_lists;
|
||
parser->in_statement = in_statement;
|
||
parser->in_switch_statement_p = in_switch_statement_p;
|
||
parser->fully_implicit_function_template_p
|
||
= fully_implicit_function_template_p;
|
||
parser->implicit_template_parms = implicit_template_parms;
|
||
parser->implicit_template_scope = implicit_template_scope;
|
||
parser->auto_is_implicit_function_template_parm_p
|
||
= auto_is_implicit_function_template_parm_p;
|
||
}
|
||
|
||
pop_deferring_access_checks ();
|
||
|
||
/* This field is only used during parsing of the lambda. */
|
||
LAMBDA_EXPR_THIS_CAPTURE (lambda_expr) = NULL_TREE;
|
||
|
||
/* This lambda shouldn't have any proxies left at this point. */
|
||
gcc_assert (LAMBDA_EXPR_PENDING_PROXIES (lambda_expr) == NULL);
|
||
/* And now that we're done, push proxies for an enclosing lambda. */
|
||
insert_pending_capture_proxies ();
|
||
|
||
if (ok)
|
||
return build_lambda_object (lambda_expr);
|
||
else
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Parse the beginning of a lambda expression.
|
||
|
||
lambda-introducer:
|
||
[ lambda-capture [opt] ]
|
||
|
||
LAMBDA_EXPR is the current representation of the lambda expression. */
|
||
|
||
static void
|
||
cp_parser_lambda_introducer (cp_parser* parser, tree lambda_expr)
|
||
{
|
||
/* Need commas after the first capture. */
|
||
bool first = true;
|
||
|
||
/* Eat the leading `['. */
|
||
cp_parser_require (parser, CPP_OPEN_SQUARE, RT_OPEN_SQUARE);
|
||
|
||
/* Record default capture mode. "[&" "[=" "[&," "[=," */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_AND)
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_NAME)
|
||
LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) = CPLD_REFERENCE;
|
||
else if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
|
||
LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) = CPLD_COPY;
|
||
|
||
if (LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) != CPLD_NONE)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
first = false;
|
||
}
|
||
|
||
while (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_SQUARE))
|
||
{
|
||
cp_token* capture_token;
|
||
tree capture_id;
|
||
tree capture_init_expr;
|
||
cp_id_kind idk = CP_ID_KIND_NONE;
|
||
bool explicit_init_p = false;
|
||
|
||
enum capture_kind_type
|
||
{
|
||
BY_COPY,
|
||
BY_REFERENCE
|
||
};
|
||
enum capture_kind_type capture_kind = BY_COPY;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
|
||
{
|
||
error ("expected end of capture-list");
|
||
return;
|
||
}
|
||
|
||
if (first)
|
||
first = false;
|
||
else
|
||
cp_parser_require (parser, CPP_COMMA, RT_COMMA);
|
||
|
||
/* Possibly capture `this'. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THIS))
|
||
{
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
if (LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) == CPLD_COPY)
|
||
pedwarn (loc, 0, "explicit by-copy capture of %<this%> redundant "
|
||
"with by-copy capture default");
|
||
cp_lexer_consume_token (parser->lexer);
|
||
add_capture (lambda_expr,
|
||
/*id=*/this_identifier,
|
||
/*initializer=*/finish_this_expr(),
|
||
/*by_reference_p=*/false,
|
||
explicit_init_p);
|
||
continue;
|
||
}
|
||
|
||
/* Remember whether we want to capture as a reference or not. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_AND))
|
||
{
|
||
capture_kind = BY_REFERENCE;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
/* Get the identifier. */
|
||
capture_token = cp_lexer_peek_token (parser->lexer);
|
||
capture_id = cp_parser_identifier (parser);
|
||
|
||
if (capture_id == error_mark_node)
|
||
/* Would be nice to have a cp_parser_skip_to_closing_x for general
|
||
delimiters, but I modified this to stop on unnested ']' as well. It
|
||
was already changed to stop on unnested '}', so the
|
||
"closing_parenthesis" name is no more misleading with my change. */
|
||
{
|
||
cp_parser_skip_to_closing_parenthesis (parser,
|
||
/*recovering=*/true,
|
||
/*or_comma=*/true,
|
||
/*consume_paren=*/true);
|
||
break;
|
||
}
|
||
|
||
/* Find the initializer for this capture. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ)
|
||
|| cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)
|
||
|| cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
bool direct, non_constant;
|
||
/* An explicit initializer exists. */
|
||
if (cxx_dialect < cxx1y)
|
||
pedwarn (input_location, 0,
|
||
"lambda capture initializers "
|
||
"only available with -std=c++1y or -std=gnu++1y");
|
||
capture_init_expr = cp_parser_initializer (parser, &direct,
|
||
&non_constant);
|
||
explicit_init_p = true;
|
||
if (capture_init_expr == NULL_TREE)
|
||
{
|
||
error ("empty initializer for lambda init-capture");
|
||
capture_init_expr = error_mark_node;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
const char* error_msg;
|
||
|
||
/* Turn the identifier into an id-expression. */
|
||
capture_init_expr
|
||
= cp_parser_lookup_name_simple (parser, capture_id,
|
||
capture_token->location);
|
||
|
||
if (capture_init_expr == error_mark_node)
|
||
{
|
||
unqualified_name_lookup_error (capture_id);
|
||
continue;
|
||
}
|
||
else if (DECL_P (capture_init_expr)
|
||
&& (!VAR_P (capture_init_expr)
|
||
&& TREE_CODE (capture_init_expr) != PARM_DECL))
|
||
{
|
||
error_at (capture_token->location,
|
||
"capture of non-variable %qD ",
|
||
capture_init_expr);
|
||
inform (0, "%q+#D declared here", capture_init_expr);
|
||
continue;
|
||
}
|
||
if (VAR_P (capture_init_expr)
|
||
&& decl_storage_duration (capture_init_expr) != dk_auto)
|
||
{
|
||
if (pedwarn (capture_token->location, 0, "capture of variable "
|
||
"%qD with non-automatic storage duration",
|
||
capture_init_expr))
|
||
inform (0, "%q+#D declared here", capture_init_expr);
|
||
continue;
|
||
}
|
||
|
||
capture_init_expr
|
||
= finish_id_expression
|
||
(capture_id,
|
||
capture_init_expr,
|
||
parser->scope,
|
||
&idk,
|
||
/*integral_constant_expression_p=*/false,
|
||
/*allow_non_integral_constant_expression_p=*/false,
|
||
/*non_integral_constant_expression_p=*/NULL,
|
||
/*template_p=*/false,
|
||
/*done=*/true,
|
||
/*address_p=*/false,
|
||
/*template_arg_p=*/false,
|
||
&error_msg,
|
||
capture_token->location);
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
capture_init_expr = make_pack_expansion (capture_init_expr);
|
||
}
|
||
else
|
||
check_for_bare_parameter_packs (capture_init_expr);
|
||
}
|
||
|
||
if (LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) != CPLD_NONE
|
||
&& !explicit_init_p)
|
||
{
|
||
if (LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) == CPLD_COPY
|
||
&& capture_kind == BY_COPY)
|
||
pedwarn (capture_token->location, 0, "explicit by-copy capture "
|
||
"of %qD redundant with by-copy capture default",
|
||
capture_id);
|
||
if (LAMBDA_EXPR_DEFAULT_CAPTURE_MODE (lambda_expr) == CPLD_REFERENCE
|
||
&& capture_kind == BY_REFERENCE)
|
||
pedwarn (capture_token->location, 0, "explicit by-reference "
|
||
"capture of %qD redundant with by-reference capture "
|
||
"default", capture_id);
|
||
}
|
||
|
||
add_capture (lambda_expr,
|
||
capture_id,
|
||
capture_init_expr,
|
||
/*by_reference_p=*/capture_kind == BY_REFERENCE,
|
||
explicit_init_p);
|
||
}
|
||
|
||
cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
|
||
}
|
||
|
||
/* Parse the (optional) middle of a lambda expression.
|
||
|
||
lambda-declarator:
|
||
< template-parameter-list [opt] >
|
||
( parameter-declaration-clause [opt] )
|
||
attribute-specifier [opt]
|
||
mutable [opt]
|
||
exception-specification [opt]
|
||
lambda-return-type-clause [opt]
|
||
|
||
LAMBDA_EXPR is the current representation of the lambda expression. */
|
||
|
||
static bool
|
||
cp_parser_lambda_declarator_opt (cp_parser* parser, tree lambda_expr)
|
||
{
|
||
/* 5.1.1.4 of the standard says:
|
||
If a lambda-expression does not include a lambda-declarator, it is as if
|
||
the lambda-declarator were ().
|
||
This means an empty parameter list, no attributes, and no exception
|
||
specification. */
|
||
tree param_list = void_list_node;
|
||
tree attributes = NULL_TREE;
|
||
tree exception_spec = NULL_TREE;
|
||
tree template_param_list = NULL_TREE;
|
||
|
||
/* The template-parameter-list is optional, but must begin with
|
||
an opening angle if present. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
|
||
{
|
||
if (cxx_dialect < cxx1y)
|
||
pedwarn (parser->lexer->next_token->location, 0,
|
||
"lambda templates are only available with "
|
||
"-std=c++1y or -std=gnu++1y");
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
template_param_list = cp_parser_template_parameter_list (parser);
|
||
|
||
cp_parser_skip_to_end_of_template_parameter_list (parser);
|
||
|
||
/* We just processed one more parameter list. */
|
||
++parser->num_template_parameter_lists;
|
||
}
|
||
|
||
/* The parameter-declaration-clause is optional (unless
|
||
template-parameter-list was given), but must begin with an
|
||
opening parenthesis if present. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
begin_scope (sk_function_parms, /*entity=*/NULL_TREE);
|
||
|
||
/* Parse parameters. */
|
||
param_list = cp_parser_parameter_declaration_clause (parser);
|
||
|
||
/* Default arguments shall not be specified in the
|
||
parameter-declaration-clause of a lambda-declarator. */
|
||
for (tree t = param_list; t; t = TREE_CHAIN (t))
|
||
if (TREE_PURPOSE (t))
|
||
pedwarn (DECL_SOURCE_LOCATION (TREE_VALUE (t)), OPT_Wpedantic,
|
||
"default argument specified for lambda parameter");
|
||
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
|
||
attributes = cp_parser_attributes_opt (parser);
|
||
|
||
/* Parse optional `mutable' keyword. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_MUTABLE))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
LAMBDA_EXPR_MUTABLE_P (lambda_expr) = 1;
|
||
}
|
||
|
||
/* Parse optional exception specification. */
|
||
exception_spec = cp_parser_exception_specification_opt (parser);
|
||
|
||
/* Parse optional trailing return type. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_DEREF))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
LAMBDA_EXPR_RETURN_TYPE (lambda_expr)
|
||
= cp_parser_trailing_type_id (parser);
|
||
}
|
||
|
||
/* The function parameters must be in scope all the way until after the
|
||
trailing-return-type in case of decltype. */
|
||
pop_bindings_and_leave_scope ();
|
||
}
|
||
else if (template_param_list != NULL_TREE) // generate diagnostic
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
|
||
/* Create the function call operator.
|
||
|
||
Messing with declarators like this is no uglier than building up the
|
||
FUNCTION_DECL by hand, and this is less likely to get out of sync with
|
||
other code. */
|
||
{
|
||
cp_decl_specifier_seq return_type_specs;
|
||
cp_declarator* declarator;
|
||
tree fco;
|
||
int quals;
|
||
void *p;
|
||
|
||
clear_decl_specs (&return_type_specs);
|
||
if (LAMBDA_EXPR_RETURN_TYPE (lambda_expr))
|
||
return_type_specs.type = LAMBDA_EXPR_RETURN_TYPE (lambda_expr);
|
||
else
|
||
/* Maybe we will deduce the return type later. */
|
||
return_type_specs.type = make_auto ();
|
||
|
||
p = obstack_alloc (&declarator_obstack, 0);
|
||
|
||
declarator = make_id_declarator (NULL_TREE, ansi_opname (CALL_EXPR),
|
||
sfk_none);
|
||
|
||
quals = (LAMBDA_EXPR_MUTABLE_P (lambda_expr)
|
||
? TYPE_UNQUALIFIED : TYPE_QUAL_CONST);
|
||
declarator = make_call_declarator (declarator, param_list, quals,
|
||
VIRT_SPEC_UNSPECIFIED,
|
||
REF_QUAL_NONE,
|
||
exception_spec,
|
||
/*late_return_type=*/NULL_TREE);
|
||
declarator->id_loc = LAMBDA_EXPR_LOCATION (lambda_expr);
|
||
|
||
fco = grokmethod (&return_type_specs,
|
||
declarator,
|
||
attributes);
|
||
if (fco != error_mark_node)
|
||
{
|
||
DECL_INITIALIZED_IN_CLASS_P (fco) = 1;
|
||
DECL_ARTIFICIAL (fco) = 1;
|
||
/* Give the object parameter a different name. */
|
||
DECL_NAME (DECL_ARGUMENTS (fco)) = get_identifier ("__closure");
|
||
if (LAMBDA_EXPR_RETURN_TYPE (lambda_expr))
|
||
TYPE_HAS_LATE_RETURN_TYPE (TREE_TYPE (fco)) = 1;
|
||
}
|
||
if (template_param_list)
|
||
{
|
||
fco = finish_member_template_decl (fco);
|
||
finish_template_decl (template_param_list);
|
||
--parser->num_template_parameter_lists;
|
||
}
|
||
else if (parser->fully_implicit_function_template_p)
|
||
fco = finish_fully_implicit_template (parser, fco);
|
||
|
||
finish_member_declaration (fco);
|
||
|
||
obstack_free (&declarator_obstack, p);
|
||
|
||
return (fco != error_mark_node);
|
||
}
|
||
}
|
||
|
||
/* Parse the body of a lambda expression, which is simply
|
||
|
||
compound-statement
|
||
|
||
but which requires special handling.
|
||
LAMBDA_EXPR is the current representation of the lambda expression. */
|
||
|
||
static void
|
||
cp_parser_lambda_body (cp_parser* parser, tree lambda_expr)
|
||
{
|
||
bool nested = (current_function_decl != NULL_TREE);
|
||
bool local_variables_forbidden_p = parser->local_variables_forbidden_p;
|
||
if (nested)
|
||
push_function_context ();
|
||
else
|
||
/* Still increment function_depth so that we don't GC in the
|
||
middle of an expression. */
|
||
++function_depth;
|
||
/* Clear this in case we're in the middle of a default argument. */
|
||
parser->local_variables_forbidden_p = false;
|
||
|
||
/* Finish the function call operator
|
||
- class_specifier
|
||
+ late_parsing_for_member
|
||
+ function_definition_after_declarator
|
||
+ ctor_initializer_opt_and_function_body */
|
||
{
|
||
tree fco = lambda_function (lambda_expr);
|
||
tree body;
|
||
bool done = false;
|
||
tree compound_stmt;
|
||
tree cap;
|
||
|
||
/* Let the front end know that we are going to be defining this
|
||
function. */
|
||
start_preparsed_function (fco,
|
||
NULL_TREE,
|
||
SF_PRE_PARSED | SF_INCLASS_INLINE);
|
||
|
||
start_lambda_scope (fco);
|
||
body = begin_function_body ();
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_BRACE, RT_OPEN_BRACE))
|
||
goto out;
|
||
|
||
/* Push the proxies for any explicit captures. */
|
||
for (cap = LAMBDA_EXPR_CAPTURE_LIST (lambda_expr); cap;
|
||
cap = TREE_CHAIN (cap))
|
||
build_capture_proxy (TREE_PURPOSE (cap));
|
||
|
||
compound_stmt = begin_compound_stmt (0);
|
||
|
||
/* 5.1.1.4 of the standard says:
|
||
If a lambda-expression does not include a trailing-return-type, it
|
||
is as if the trailing-return-type denotes the following type:
|
||
* if the compound-statement is of the form
|
||
{ return attribute-specifier [opt] expression ; }
|
||
the type of the returned expression after lvalue-to-rvalue
|
||
conversion (_conv.lval_ 4.1), array-to-pointer conversion
|
||
(_conv.array_ 4.2), and function-to-pointer conversion
|
||
(_conv.func_ 4.3);
|
||
* otherwise, void. */
|
||
|
||
/* In a lambda that has neither a lambda-return-type-clause
|
||
nor a deducible form, errors should be reported for return statements
|
||
in the body. Since we used void as the placeholder return type, parsing
|
||
the body as usual will give such desired behavior. */
|
||
if (!LAMBDA_EXPR_RETURN_TYPE (lambda_expr)
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 1)->keyword == RID_RETURN
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SEMICOLON)
|
||
{
|
||
tree expr = NULL_TREE;
|
||
cp_id_kind idk = CP_ID_KIND_NONE;
|
||
|
||
/* Parse tentatively in case there's more after the initial return
|
||
statement. */
|
||
cp_parser_parse_tentatively (parser);
|
||
|
||
cp_parser_require_keyword (parser, RID_RETURN, RT_RETURN);
|
||
|
||
expr = cp_parser_expression (parser, /*cast_p=*/false, &idk);
|
||
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE);
|
||
|
||
if (cp_parser_parse_definitely (parser))
|
||
{
|
||
if (!processing_template_decl)
|
||
apply_deduced_return_type (fco, lambda_return_type (expr));
|
||
|
||
/* Will get error here if type not deduced yet. */
|
||
finish_return_stmt (expr);
|
||
|
||
done = true;
|
||
}
|
||
}
|
||
|
||
if (!done)
|
||
{
|
||
while (cp_lexer_next_token_is_keyword (parser->lexer, RID_LABEL))
|
||
cp_parser_label_declaration (parser);
|
||
cp_parser_statement_seq_opt (parser, NULL_TREE);
|
||
cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE);
|
||
}
|
||
|
||
finish_compound_stmt (compound_stmt);
|
||
|
||
out:
|
||
finish_function_body (body);
|
||
finish_lambda_scope ();
|
||
|
||
/* Finish the function and generate code for it if necessary. */
|
||
tree fn = finish_function (/*inline*/2);
|
||
|
||
/* Only expand if the call op is not a template. */
|
||
if (!DECL_TEMPLATE_INFO (fco))
|
||
expand_or_defer_fn (fn);
|
||
}
|
||
|
||
parser->local_variables_forbidden_p = local_variables_forbidden_p;
|
||
if (nested)
|
||
pop_function_context();
|
||
else
|
||
--function_depth;
|
||
}
|
||
|
||
/* Statements [gram.stmt.stmt] */
|
||
|
||
/* Parse a statement.
|
||
|
||
statement:
|
||
labeled-statement
|
||
expression-statement
|
||
compound-statement
|
||
selection-statement
|
||
iteration-statement
|
||
jump-statement
|
||
declaration-statement
|
||
try-block
|
||
|
||
C++11:
|
||
|
||
statement:
|
||
labeled-statement
|
||
attribute-specifier-seq (opt) expression-statement
|
||
attribute-specifier-seq (opt) compound-statement
|
||
attribute-specifier-seq (opt) selection-statement
|
||
attribute-specifier-seq (opt) iteration-statement
|
||
attribute-specifier-seq (opt) jump-statement
|
||
declaration-statement
|
||
attribute-specifier-seq (opt) try-block
|
||
|
||
TM Extension:
|
||
|
||
statement:
|
||
atomic-statement
|
||
|
||
IN_COMPOUND is true when the statement is nested inside a
|
||
cp_parser_compound_statement; this matters for certain pragmas.
|
||
|
||
If IF_P is not NULL, *IF_P is set to indicate whether the statement
|
||
is a (possibly labeled) if statement which is not enclosed in braces
|
||
and has an else clause. This is used to implement -Wparentheses. */
|
||
|
||
static void
|
||
cp_parser_statement (cp_parser* parser, tree in_statement_expr,
|
||
bool in_compound, bool *if_p)
|
||
{
|
||
tree statement, std_attrs = NULL_TREE;
|
||
cp_token *token;
|
||
location_t statement_location, attrs_location;
|
||
|
||
restart:
|
||
if (if_p != NULL)
|
||
*if_p = false;
|
||
/* There is no statement yet. */
|
||
statement = NULL_TREE;
|
||
|
||
cp_lexer_save_tokens (parser->lexer);
|
||
attrs_location = cp_lexer_peek_token (parser->lexer)->location;
|
||
if (c_dialect_objc ())
|
||
/* In obj-c++, seeing '[[' might be the either the beginning of
|
||
c++11 attributes, or a nested objc-message-expression. So
|
||
let's parse the c++11 attributes tentatively. */
|
||
cp_parser_parse_tentatively (parser);
|
||
std_attrs = cp_parser_std_attribute_spec_seq (parser);
|
||
if (c_dialect_objc ())
|
||
{
|
||
if (!cp_parser_parse_definitely (parser))
|
||
std_attrs = NULL_TREE;
|
||
}
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* Remember the location of the first token in the statement. */
|
||
statement_location = token->location;
|
||
/* If this is a keyword, then that will often determine what kind of
|
||
statement we have. */
|
||
if (token->type == CPP_KEYWORD)
|
||
{
|
||
enum rid keyword = token->keyword;
|
||
|
||
switch (keyword)
|
||
{
|
||
case RID_CASE:
|
||
case RID_DEFAULT:
|
||
/* Looks like a labeled-statement with a case label.
|
||
Parse the label, and then use tail recursion to parse
|
||
the statement. */
|
||
cp_parser_label_for_labeled_statement (parser, std_attrs);
|
||
goto restart;
|
||
|
||
case RID_IF:
|
||
case RID_SWITCH:
|
||
statement = cp_parser_selection_statement (parser, if_p);
|
||
break;
|
||
|
||
case RID_WHILE:
|
||
case RID_DO:
|
||
case RID_FOR:
|
||
statement = cp_parser_iteration_statement (parser, false);
|
||
break;
|
||
|
||
case RID_BREAK:
|
||
case RID_CONTINUE:
|
||
case RID_RETURN:
|
||
case RID_GOTO:
|
||
statement = cp_parser_jump_statement (parser);
|
||
break;
|
||
|
||
case RID_CILK_SYNC:
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (flag_cilkplus)
|
||
{
|
||
tree sync_expr = build_cilk_sync ();
|
||
SET_EXPR_LOCATION (sync_expr,
|
||
token->location);
|
||
statement = finish_expr_stmt (sync_expr);
|
||
}
|
||
else
|
||
{
|
||
error_at (token->location, "-fcilkplus must be enabled to use"
|
||
" %<_Cilk_sync%>");
|
||
statement = error_mark_node;
|
||
}
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
break;
|
||
|
||
/* Objective-C++ exception-handling constructs. */
|
||
case RID_AT_TRY:
|
||
case RID_AT_CATCH:
|
||
case RID_AT_FINALLY:
|
||
case RID_AT_SYNCHRONIZED:
|
||
case RID_AT_THROW:
|
||
statement = cp_parser_objc_statement (parser);
|
||
break;
|
||
|
||
case RID_TRY:
|
||
statement = cp_parser_try_block (parser);
|
||
break;
|
||
|
||
case RID_NAMESPACE:
|
||
/* This must be a namespace alias definition. */
|
||
cp_parser_declaration_statement (parser);
|
||
return;
|
||
|
||
case RID_TRANSACTION_ATOMIC:
|
||
case RID_TRANSACTION_RELAXED:
|
||
statement = cp_parser_transaction (parser, keyword);
|
||
break;
|
||
case RID_TRANSACTION_CANCEL:
|
||
statement = cp_parser_transaction_cancel (parser);
|
||
break;
|
||
|
||
default:
|
||
/* It might be a keyword like `int' that can start a
|
||
declaration-statement. */
|
||
break;
|
||
}
|
||
}
|
||
else if (token->type == CPP_NAME)
|
||
{
|
||
/* If the next token is a `:', then we are looking at a
|
||
labeled-statement. */
|
||
token = cp_lexer_peek_nth_token (parser->lexer, 2);
|
||
if (token->type == CPP_COLON)
|
||
{
|
||
/* Looks like a labeled-statement with an ordinary label.
|
||
Parse the label, and then use tail recursion to parse
|
||
the statement. */
|
||
|
||
cp_parser_label_for_labeled_statement (parser, std_attrs);
|
||
goto restart;
|
||
}
|
||
}
|
||
/* Anything that starts with a `{' must be a compound-statement. */
|
||
else if (token->type == CPP_OPEN_BRACE)
|
||
statement = cp_parser_compound_statement (parser, NULL, false, false);
|
||
/* CPP_PRAGMA is a #pragma inside a function body, which constitutes
|
||
a statement all its own. */
|
||
else if (token->type == CPP_PRAGMA)
|
||
{
|
||
/* Only certain OpenMP pragmas are attached to statements, and thus
|
||
are considered statements themselves. All others are not. In
|
||
the context of a compound, accept the pragma as a "statement" and
|
||
return so that we can check for a close brace. Otherwise we
|
||
require a real statement and must go back and read one. */
|
||
if (in_compound)
|
||
cp_parser_pragma (parser, pragma_compound);
|
||
else if (!cp_parser_pragma (parser, pragma_stmt))
|
||
goto restart;
|
||
return;
|
||
}
|
||
else if (token->type == CPP_EOF)
|
||
{
|
||
cp_parser_error (parser, "expected statement");
|
||
return;
|
||
}
|
||
|
||
/* Everything else must be a declaration-statement or an
|
||
expression-statement. Try for the declaration-statement
|
||
first, unless we are looking at a `;', in which case we know that
|
||
we have an expression-statement. */
|
||
if (!statement)
|
||
{
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
|
||
{
|
||
if (std_attrs != NULL_TREE)
|
||
{
|
||
/* Attributes should be parsed as part of the the
|
||
declaration, so let's un-parse them. */
|
||
cp_lexer_rollback_tokens (parser->lexer);
|
||
std_attrs = NULL_TREE;
|
||
}
|
||
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Try to parse the declaration-statement. */
|
||
cp_parser_declaration_statement (parser);
|
||
/* If that worked, we're done. */
|
||
if (cp_parser_parse_definitely (parser))
|
||
return;
|
||
}
|
||
/* Look for an expression-statement instead. */
|
||
statement = cp_parser_expression_statement (parser, in_statement_expr);
|
||
}
|
||
|
||
/* Set the line number for the statement. */
|
||
if (statement && STATEMENT_CODE_P (TREE_CODE (statement)))
|
||
SET_EXPR_LOCATION (statement, statement_location);
|
||
|
||
/* Note that for now, we don't do anything with c++11 statements
|
||
parsed at this level. */
|
||
if (std_attrs != NULL_TREE)
|
||
warning_at (attrs_location,
|
||
OPT_Wattributes,
|
||
"attributes at the beginning of statement are ignored");
|
||
}
|
||
|
||
/* Parse the label for a labeled-statement, i.e.
|
||
|
||
identifier :
|
||
case constant-expression :
|
||
default :
|
||
|
||
GNU Extension:
|
||
case constant-expression ... constant-expression : statement
|
||
|
||
When a label is parsed without errors, the label is added to the
|
||
parse tree by the finish_* functions, so this function doesn't
|
||
have to return the label. */
|
||
|
||
static void
|
||
cp_parser_label_for_labeled_statement (cp_parser* parser, tree attributes)
|
||
{
|
||
cp_token *token;
|
||
tree label = NULL_TREE;
|
||
bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p;
|
||
|
||
/* The next token should be an identifier. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type != CPP_NAME
|
||
&& token->type != CPP_KEYWORD)
|
||
{
|
||
cp_parser_error (parser, "expected labeled-statement");
|
||
return;
|
||
}
|
||
|
||
parser->colon_corrects_to_scope_p = false;
|
||
switch (token->keyword)
|
||
{
|
||
case RID_CASE:
|
||
{
|
||
tree expr, expr_hi;
|
||
cp_token *ellipsis;
|
||
|
||
/* Consume the `case' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the constant-expression. */
|
||
expr = cp_parser_constant_expression (parser,
|
||
/*allow_non_constant_p=*/false,
|
||
NULL);
|
||
|
||
ellipsis = cp_lexer_peek_token (parser->lexer);
|
||
if (ellipsis->type == CPP_ELLIPSIS)
|
||
{
|
||
/* Consume the `...' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
expr_hi =
|
||
cp_parser_constant_expression (parser,
|
||
/*allow_non_constant_p=*/false,
|
||
NULL);
|
||
/* We don't need to emit warnings here, as the common code
|
||
will do this for us. */
|
||
}
|
||
else
|
||
expr_hi = NULL_TREE;
|
||
|
||
if (parser->in_switch_statement_p)
|
||
finish_case_label (token->location, expr, expr_hi);
|
||
else
|
||
error_at (token->location,
|
||
"case label %qE not within a switch statement",
|
||
expr);
|
||
}
|
||
break;
|
||
|
||
case RID_DEFAULT:
|
||
/* Consume the `default' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
if (parser->in_switch_statement_p)
|
||
finish_case_label (token->location, NULL_TREE, NULL_TREE);
|
||
else
|
||
error_at (token->location, "case label not within a switch statement");
|
||
break;
|
||
|
||
default:
|
||
/* Anything else must be an ordinary label. */
|
||
label = finish_label_stmt (cp_parser_identifier (parser));
|
||
break;
|
||
}
|
||
|
||
/* Require the `:' token. */
|
||
cp_parser_require (parser, CPP_COLON, RT_COLON);
|
||
|
||
/* An ordinary label may optionally be followed by attributes.
|
||
However, this is only permitted if the attributes are then
|
||
followed by a semicolon. This is because, for backward
|
||
compatibility, when parsing
|
||
lab: __attribute__ ((unused)) int i;
|
||
we want the attribute to attach to "i", not "lab". */
|
||
if (label != NULL_TREE
|
||
&& cp_next_tokens_can_be_gnu_attribute_p (parser))
|
||
{
|
||
tree attrs;
|
||
cp_parser_parse_tentatively (parser);
|
||
attrs = cp_parser_gnu_attributes_opt (parser);
|
||
if (attrs == NULL_TREE
|
||
|| cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
|
||
cp_parser_abort_tentative_parse (parser);
|
||
else if (!cp_parser_parse_definitely (parser))
|
||
;
|
||
else
|
||
attributes = chainon (attributes, attrs);
|
||
}
|
||
|
||
if (attributes != NULL_TREE)
|
||
cplus_decl_attributes (&label, attributes, 0);
|
||
|
||
parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p;
|
||
}
|
||
|
||
/* Parse an expression-statement.
|
||
|
||
expression-statement:
|
||
expression [opt] ;
|
||
|
||
Returns the new EXPR_STMT -- or NULL_TREE if the expression
|
||
statement consists of nothing more than an `;'. IN_STATEMENT_EXPR_P
|
||
indicates whether this expression-statement is part of an
|
||
expression statement. */
|
||
|
||
static tree
|
||
cp_parser_expression_statement (cp_parser* parser, tree in_statement_expr)
|
||
{
|
||
tree statement = NULL_TREE;
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* If the next token is a ';', then there is no expression
|
||
statement. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
|
||
{
|
||
statement = cp_parser_expression (parser, /*cast_p=*/false, NULL);
|
||
if (statement == error_mark_node
|
||
&& !cp_parser_uncommitted_to_tentative_parse_p (parser))
|
||
{
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* Give a helpful message for "A<T>::type t;" and the like. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)
|
||
&& !cp_parser_uncommitted_to_tentative_parse_p (parser))
|
||
{
|
||
if (TREE_CODE (statement) == SCOPE_REF)
|
||
error_at (token->location, "need %<typename%> before %qE because "
|
||
"%qT is a dependent scope",
|
||
statement, TREE_OPERAND (statement, 0));
|
||
else if (is_overloaded_fn (statement)
|
||
&& DECL_CONSTRUCTOR_P (get_first_fn (statement)))
|
||
{
|
||
/* A::A a; */
|
||
tree fn = get_first_fn (statement);
|
||
error_at (token->location,
|
||
"%<%T::%D%> names the constructor, not the type",
|
||
DECL_CONTEXT (fn), DECL_NAME (fn));
|
||
}
|
||
}
|
||
|
||
/* Consume the final `;'. */
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
|
||
if (in_statement_expr
|
||
&& cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
|
||
/* This is the final expression statement of a statement
|
||
expression. */
|
||
statement = finish_stmt_expr_expr (statement, in_statement_expr);
|
||
else if (statement)
|
||
statement = finish_expr_stmt (statement);
|
||
|
||
return statement;
|
||
}
|
||
|
||
/* Parse a compound-statement.
|
||
|
||
compound-statement:
|
||
{ statement-seq [opt] }
|
||
|
||
GNU extension:
|
||
|
||
compound-statement:
|
||
{ label-declaration-seq [opt] statement-seq [opt] }
|
||
|
||
label-declaration-seq:
|
||
label-declaration
|
||
label-declaration-seq label-declaration
|
||
|
||
Returns a tree representing the statement. */
|
||
|
||
static tree
|
||
cp_parser_compound_statement (cp_parser *parser, tree in_statement_expr,
|
||
bool in_try, bool function_body)
|
||
{
|
||
tree compound_stmt;
|
||
|
||
/* Consume the `{'. */
|
||
if (!cp_parser_require (parser, CPP_OPEN_BRACE, RT_OPEN_BRACE))
|
||
return error_mark_node;
|
||
if (DECL_DECLARED_CONSTEXPR_P (current_function_decl)
|
||
&& !function_body)
|
||
pedwarn (input_location, OPT_Wpedantic,
|
||
"compound-statement in constexpr function");
|
||
/* Begin the compound-statement. */
|
||
compound_stmt = begin_compound_stmt (in_try ? BCS_TRY_BLOCK : 0);
|
||
/* If the next keyword is `__label__' we have a label declaration. */
|
||
while (cp_lexer_next_token_is_keyword (parser->lexer, RID_LABEL))
|
||
cp_parser_label_declaration (parser);
|
||
/* Parse an (optional) statement-seq. */
|
||
cp_parser_statement_seq_opt (parser, in_statement_expr);
|
||
/* Finish the compound-statement. */
|
||
finish_compound_stmt (compound_stmt);
|
||
/* Consume the `}'. */
|
||
cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE);
|
||
|
||
return compound_stmt;
|
||
}
|
||
|
||
/* Parse an (optional) statement-seq.
|
||
|
||
statement-seq:
|
||
statement
|
||
statement-seq [opt] statement */
|
||
|
||
static void
|
||
cp_parser_statement_seq_opt (cp_parser* parser, tree in_statement_expr)
|
||
{
|
||
/* Scan statements until there aren't any more. */
|
||
while (true)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* If we are looking at a `}', then we have run out of
|
||
statements; the same is true if we have reached the end
|
||
of file, or have stumbled upon a stray '@end'. */
|
||
if (token->type == CPP_CLOSE_BRACE
|
||
|| token->type == CPP_EOF
|
||
|| token->type == CPP_PRAGMA_EOL
|
||
|| (token->type == CPP_KEYWORD && token->keyword == RID_AT_END))
|
||
break;
|
||
|
||
/* If we are in a compound statement and find 'else' then
|
||
something went wrong. */
|
||
else if (token->type == CPP_KEYWORD && token->keyword == RID_ELSE)
|
||
{
|
||
if (parser->in_statement & IN_IF_STMT)
|
||
break;
|
||
else
|
||
{
|
||
token = cp_lexer_consume_token (parser->lexer);
|
||
error_at (token->location, "%<else%> without a previous %<if%>");
|
||
}
|
||
}
|
||
|
||
/* Parse the statement. */
|
||
cp_parser_statement (parser, in_statement_expr, true, NULL);
|
||
}
|
||
}
|
||
|
||
/* Parse a selection-statement.
|
||
|
||
selection-statement:
|
||
if ( condition ) statement
|
||
if ( condition ) statement else statement
|
||
switch ( condition ) statement
|
||
|
||
Returns the new IF_STMT or SWITCH_STMT.
|
||
|
||
If IF_P is not NULL, *IF_P is set to indicate whether the statement
|
||
is a (possibly labeled) if statement which is not enclosed in
|
||
braces and has an else clause. This is used to implement
|
||
-Wparentheses. */
|
||
|
||
static tree
|
||
cp_parser_selection_statement (cp_parser* parser, bool *if_p)
|
||
{
|
||
cp_token *token;
|
||
enum rid keyword;
|
||
|
||
if (if_p != NULL)
|
||
*if_p = false;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_parser_require (parser, CPP_KEYWORD, RT_SELECT);
|
||
|
||
/* See what kind of keyword it is. */
|
||
keyword = token->keyword;
|
||
switch (keyword)
|
||
{
|
||
case RID_IF:
|
||
case RID_SWITCH:
|
||
{
|
||
tree statement;
|
||
tree condition;
|
||
|
||
/* Look for the `('. */
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
{
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Begin the selection-statement. */
|
||
if (keyword == RID_IF)
|
||
statement = begin_if_stmt ();
|
||
else
|
||
statement = begin_switch_stmt ();
|
||
|
||
/* Parse the condition. */
|
||
condition = cp_parser_condition (parser);
|
||
/* Look for the `)'. */
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser, true, false,
|
||
/*consume_paren=*/true);
|
||
|
||
if (keyword == RID_IF)
|
||
{
|
||
bool nested_if;
|
||
unsigned char in_statement;
|
||
|
||
/* Add the condition. */
|
||
finish_if_stmt_cond (condition, statement);
|
||
|
||
/* Parse the then-clause. */
|
||
in_statement = parser->in_statement;
|
||
parser->in_statement |= IN_IF_STMT;
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
|
||
{
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
add_stmt (build_empty_stmt (loc));
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (!cp_lexer_next_token_is_keyword (parser->lexer, RID_ELSE))
|
||
warning_at (loc, OPT_Wempty_body, "suggest braces around "
|
||
"empty body in an %<if%> statement");
|
||
nested_if = false;
|
||
}
|
||
else
|
||
cp_parser_implicitly_scoped_statement (parser, &nested_if);
|
||
parser->in_statement = in_statement;
|
||
|
||
finish_then_clause (statement);
|
||
|
||
/* If the next token is `else', parse the else-clause. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer,
|
||
RID_ELSE))
|
||
{
|
||
/* Consume the `else' keyword. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
begin_else_clause (statement);
|
||
/* Parse the else-clause. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
|
||
{
|
||
location_t loc;
|
||
loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
warning_at (loc,
|
||
OPT_Wempty_body, "suggest braces around "
|
||
"empty body in an %<else%> statement");
|
||
add_stmt (build_empty_stmt (loc));
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
else
|
||
cp_parser_implicitly_scoped_statement (parser, NULL);
|
||
|
||
finish_else_clause (statement);
|
||
|
||
/* If we are currently parsing a then-clause, then
|
||
IF_P will not be NULL. We set it to true to
|
||
indicate that this if statement has an else clause.
|
||
This may trigger the Wparentheses warning below
|
||
when we get back up to the parent if statement. */
|
||
if (if_p != NULL)
|
||
*if_p = true;
|
||
}
|
||
else
|
||
{
|
||
/* This if statement does not have an else clause. If
|
||
NESTED_IF is true, then the then-clause is an if
|
||
statement which does have an else clause. We warn
|
||
about the potential ambiguity. */
|
||
if (nested_if)
|
||
warning_at (EXPR_LOCATION (statement), OPT_Wparentheses,
|
||
"suggest explicit braces to avoid ambiguous"
|
||
" %<else%>");
|
||
}
|
||
|
||
/* Now we're all done with the if-statement. */
|
||
finish_if_stmt (statement);
|
||
}
|
||
else
|
||
{
|
||
bool in_switch_statement_p;
|
||
unsigned char in_statement;
|
||
|
||
/* Add the condition. */
|
||
finish_switch_cond (condition, statement);
|
||
|
||
/* Parse the body of the switch-statement. */
|
||
in_switch_statement_p = parser->in_switch_statement_p;
|
||
in_statement = parser->in_statement;
|
||
parser->in_switch_statement_p = true;
|
||
parser->in_statement |= IN_SWITCH_STMT;
|
||
cp_parser_implicitly_scoped_statement (parser, NULL);
|
||
parser->in_switch_statement_p = in_switch_statement_p;
|
||
parser->in_statement = in_statement;
|
||
|
||
/* Now we're all done with the switch-statement. */
|
||
finish_switch_stmt (statement);
|
||
}
|
||
|
||
return statement;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
cp_parser_error (parser, "expected selection-statement");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* Parse a condition.
|
||
|
||
condition:
|
||
expression
|
||
type-specifier-seq declarator = initializer-clause
|
||
type-specifier-seq declarator braced-init-list
|
||
|
||
GNU Extension:
|
||
|
||
condition:
|
||
type-specifier-seq declarator asm-specification [opt]
|
||
attributes [opt] = assignment-expression
|
||
|
||
Returns the expression that should be tested. */
|
||
|
||
static tree
|
||
cp_parser_condition (cp_parser* parser)
|
||
{
|
||
cp_decl_specifier_seq type_specifiers;
|
||
const char *saved_message;
|
||
int declares_class_or_enum;
|
||
|
||
/* Try the declaration first. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* New types are not allowed in the type-specifier-seq for a
|
||
condition. */
|
||
saved_message = parser->type_definition_forbidden_message;
|
||
parser->type_definition_forbidden_message
|
||
= G_("types may not be defined in conditions");
|
||
/* Parse the type-specifier-seq. */
|
||
cp_parser_decl_specifier_seq (parser,
|
||
CP_PARSER_FLAGS_ONLY_TYPE_OR_CONSTEXPR,
|
||
&type_specifiers,
|
||
&declares_class_or_enum);
|
||
/* Restore the saved message. */
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
/* If all is well, we might be looking at a declaration. */
|
||
if (!cp_parser_error_occurred (parser))
|
||
{
|
||
tree decl;
|
||
tree asm_specification;
|
||
tree attributes;
|
||
cp_declarator *declarator;
|
||
tree initializer = NULL_TREE;
|
||
|
||
/* Parse the declarator. */
|
||
declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
|
||
/*ctor_dtor_or_conv_p=*/NULL,
|
||
/*parenthesized_p=*/NULL,
|
||
/*member_p=*/false,
|
||
/*friend_p=*/false);
|
||
/* Parse the attributes. */
|
||
attributes = cp_parser_attributes_opt (parser);
|
||
/* Parse the asm-specification. */
|
||
asm_specification = cp_parser_asm_specification_opt (parser);
|
||
/* If the next token is not an `=' or '{', then we might still be
|
||
looking at an expression. For example:
|
||
|
||
if (A(a).x)
|
||
|
||
looks like a decl-specifier-seq and a declarator -- but then
|
||
there is no `=', so this is an expression. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
|
||
&& cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
|
||
cp_parser_simulate_error (parser);
|
||
|
||
/* If we did see an `=' or '{', then we are looking at a declaration
|
||
for sure. */
|
||
if (cp_parser_parse_definitely (parser))
|
||
{
|
||
tree pushed_scope;
|
||
bool non_constant_p;
|
||
bool flags = LOOKUP_ONLYCONVERTING;
|
||
|
||
/* Create the declaration. */
|
||
decl = start_decl (declarator, &type_specifiers,
|
||
/*initialized_p=*/true,
|
||
attributes, /*prefix_attributes=*/NULL_TREE,
|
||
&pushed_scope);
|
||
|
||
/* Parse the initializer. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
initializer = cp_parser_braced_list (parser, &non_constant_p);
|
||
CONSTRUCTOR_IS_DIRECT_INIT (initializer) = 1;
|
||
flags = 0;
|
||
}
|
||
else
|
||
{
|
||
/* Consume the `='. */
|
||
cp_parser_require (parser, CPP_EQ, RT_EQ);
|
||
initializer = cp_parser_initializer_clause (parser, &non_constant_p);
|
||
}
|
||
if (BRACE_ENCLOSED_INITIALIZER_P (initializer))
|
||
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
|
||
|
||
/* Process the initializer. */
|
||
cp_finish_decl (decl,
|
||
initializer, !non_constant_p,
|
||
asm_specification,
|
||
flags);
|
||
|
||
if (pushed_scope)
|
||
pop_scope (pushed_scope);
|
||
|
||
return convert_from_reference (decl);
|
||
}
|
||
}
|
||
/* If we didn't even get past the declarator successfully, we are
|
||
definitely not looking at a declaration. */
|
||
else
|
||
cp_parser_abort_tentative_parse (parser);
|
||
|
||
/* Otherwise, we are looking at an expression. */
|
||
return cp_parser_expression (parser, /*cast_p=*/false, NULL);
|
||
}
|
||
|
||
/* Parses a for-statement or range-for-statement until the closing ')',
|
||
not included. */
|
||
|
||
static tree
|
||
cp_parser_for (cp_parser *parser, bool ivdep)
|
||
{
|
||
tree init, scope, decl;
|
||
bool is_range_for;
|
||
|
||
/* Begin the for-statement. */
|
||
scope = begin_for_scope (&init);
|
||
|
||
/* Parse the initialization. */
|
||
is_range_for = cp_parser_for_init_statement (parser, &decl);
|
||
|
||
if (is_range_for)
|
||
return cp_parser_range_for (parser, scope, init, decl, ivdep);
|
||
else
|
||
return cp_parser_c_for (parser, scope, init, ivdep);
|
||
}
|
||
|
||
static tree
|
||
cp_parser_c_for (cp_parser *parser, tree scope, tree init, bool ivdep)
|
||
{
|
||
/* Normal for loop */
|
||
tree condition = NULL_TREE;
|
||
tree expression = NULL_TREE;
|
||
tree stmt;
|
||
|
||
stmt = begin_for_stmt (scope, init);
|
||
/* The for-init-statement has already been parsed in
|
||
cp_parser_for_init_statement, so no work is needed here. */
|
||
finish_for_init_stmt (stmt);
|
||
|
||
/* If there's a condition, process it. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
|
||
condition = cp_parser_condition (parser);
|
||
else if (ivdep)
|
||
{
|
||
cp_parser_error (parser, "missing loop condition in loop with "
|
||
"%<GCC ivdep%> pragma");
|
||
condition = error_mark_node;
|
||
}
|
||
finish_for_cond (condition, stmt, ivdep);
|
||
/* Look for the `;'. */
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
|
||
/* If there's an expression, process it. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
|
||
expression = cp_parser_expression (parser, /*cast_p=*/false, NULL);
|
||
finish_for_expr (expression, stmt);
|
||
|
||
return stmt;
|
||
}
|
||
|
||
/* Tries to parse a range-based for-statement:
|
||
|
||
range-based-for:
|
||
decl-specifier-seq declarator : expression
|
||
|
||
The decl-specifier-seq declarator and the `:' are already parsed by
|
||
cp_parser_for_init_statement. If processing_template_decl it returns a
|
||
newly created RANGE_FOR_STMT; if not, it is converted to a
|
||
regular FOR_STMT. */
|
||
|
||
static tree
|
||
cp_parser_range_for (cp_parser *parser, tree scope, tree init, tree range_decl,
|
||
bool ivdep)
|
||
{
|
||
tree stmt, range_expr;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
bool expr_non_constant_p;
|
||
range_expr = cp_parser_braced_list (parser, &expr_non_constant_p);
|
||
}
|
||
else
|
||
range_expr = cp_parser_expression (parser, /*cast_p=*/false, NULL);
|
||
|
||
/* If in template, STMT is converted to a normal for-statement
|
||
at instantiation. If not, it is done just ahead. */
|
||
if (processing_template_decl)
|
||
{
|
||
if (check_for_bare_parameter_packs (range_expr))
|
||
range_expr = error_mark_node;
|
||
stmt = begin_range_for_stmt (scope, init);
|
||
if (ivdep)
|
||
RANGE_FOR_IVDEP (stmt) = 1;
|
||
finish_range_for_decl (stmt, range_decl, range_expr);
|
||
if (!type_dependent_expression_p (range_expr)
|
||
/* do_auto_deduction doesn't mess with template init-lists. */
|
||
&& !BRACE_ENCLOSED_INITIALIZER_P (range_expr))
|
||
do_range_for_auto_deduction (range_decl, range_expr);
|
||
}
|
||
else
|
||
{
|
||
stmt = begin_for_stmt (scope, init);
|
||
stmt = cp_convert_range_for (stmt, range_decl, range_expr, ivdep);
|
||
}
|
||
return stmt;
|
||
}
|
||
|
||
/* Subroutine of cp_convert_range_for: given the initializer expression,
|
||
builds up the range temporary. */
|
||
|
||
static tree
|
||
build_range_temp (tree range_expr)
|
||
{
|
||
tree range_type, range_temp;
|
||
|
||
/* Find out the type deduced by the declaration
|
||
`auto &&__range = range_expr'. */
|
||
range_type = cp_build_reference_type (make_auto (), true);
|
||
range_type = do_auto_deduction (range_type, range_expr,
|
||
type_uses_auto (range_type));
|
||
|
||
/* Create the __range variable. */
|
||
range_temp = build_decl (input_location, VAR_DECL,
|
||
get_identifier ("__for_range"), range_type);
|
||
TREE_USED (range_temp) = 1;
|
||
DECL_ARTIFICIAL (range_temp) = 1;
|
||
|
||
return range_temp;
|
||
}
|
||
|
||
/* Used by cp_parser_range_for in template context: we aren't going to
|
||
do a full conversion yet, but we still need to resolve auto in the
|
||
type of the for-range-declaration if present. This is basically
|
||
a shortcut version of cp_convert_range_for. */
|
||
|
||
static void
|
||
do_range_for_auto_deduction (tree decl, tree range_expr)
|
||
{
|
||
tree auto_node = type_uses_auto (TREE_TYPE (decl));
|
||
if (auto_node)
|
||
{
|
||
tree begin_dummy, end_dummy, range_temp, iter_type, iter_decl;
|
||
range_temp = convert_from_reference (build_range_temp (range_expr));
|
||
iter_type = (cp_parser_perform_range_for_lookup
|
||
(range_temp, &begin_dummy, &end_dummy));
|
||
if (iter_type)
|
||
{
|
||
iter_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
|
||
iter_type);
|
||
iter_decl = build_x_indirect_ref (input_location, iter_decl, RO_NULL,
|
||
tf_warning_or_error);
|
||
TREE_TYPE (decl) = do_auto_deduction (TREE_TYPE (decl),
|
||
iter_decl, auto_node);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Converts a range-based for-statement into a normal
|
||
for-statement, as per the definition.
|
||
|
||
for (RANGE_DECL : RANGE_EXPR)
|
||
BLOCK
|
||
|
||
should be equivalent to:
|
||
|
||
{
|
||
auto &&__range = RANGE_EXPR;
|
||
for (auto __begin = BEGIN_EXPR, end = END_EXPR;
|
||
__begin != __end;
|
||
++__begin)
|
||
{
|
||
RANGE_DECL = *__begin;
|
||
BLOCK
|
||
}
|
||
}
|
||
|
||
If RANGE_EXPR is an array:
|
||
BEGIN_EXPR = __range
|
||
END_EXPR = __range + ARRAY_SIZE(__range)
|
||
Else if RANGE_EXPR has a member 'begin' or 'end':
|
||
BEGIN_EXPR = __range.begin()
|
||
END_EXPR = __range.end()
|
||
Else:
|
||
BEGIN_EXPR = begin(__range)
|
||
END_EXPR = end(__range);
|
||
|
||
If __range has a member 'begin' but not 'end', or vice versa, we must
|
||
still use the second alternative (it will surely fail, however).
|
||
When calling begin()/end() in the third alternative we must use
|
||
argument dependent lookup, but always considering 'std' as an associated
|
||
namespace. */
|
||
|
||
tree
|
||
cp_convert_range_for (tree statement, tree range_decl, tree range_expr,
|
||
bool ivdep)
|
||
{
|
||
tree begin, end;
|
||
tree iter_type, begin_expr, end_expr;
|
||
tree condition, expression;
|
||
|
||
if (range_decl == error_mark_node || range_expr == error_mark_node)
|
||
/* If an error happened previously do nothing or else a lot of
|
||
unhelpful errors would be issued. */
|
||
begin_expr = end_expr = iter_type = error_mark_node;
|
||
else
|
||
{
|
||
tree range_temp;
|
||
|
||
if (TREE_CODE (range_expr) == VAR_DECL
|
||
&& array_of_runtime_bound_p (TREE_TYPE (range_expr)))
|
||
/* Can't bind a reference to an array of runtime bound. */
|
||
range_temp = range_expr;
|
||
else
|
||
{
|
||
range_temp = build_range_temp (range_expr);
|
||
pushdecl (range_temp);
|
||
cp_finish_decl (range_temp, range_expr,
|
||
/*is_constant_init*/false, NULL_TREE,
|
||
LOOKUP_ONLYCONVERTING);
|
||
range_temp = convert_from_reference (range_temp);
|
||
}
|
||
iter_type = cp_parser_perform_range_for_lookup (range_temp,
|
||
&begin_expr, &end_expr);
|
||
}
|
||
|
||
/* The new for initialization statement. */
|
||
begin = build_decl (input_location, VAR_DECL,
|
||
get_identifier ("__for_begin"), iter_type);
|
||
TREE_USED (begin) = 1;
|
||
DECL_ARTIFICIAL (begin) = 1;
|
||
pushdecl (begin);
|
||
cp_finish_decl (begin, begin_expr,
|
||
/*is_constant_init*/false, NULL_TREE,
|
||
LOOKUP_ONLYCONVERTING);
|
||
|
||
end = build_decl (input_location, VAR_DECL,
|
||
get_identifier ("__for_end"), iter_type);
|
||
TREE_USED (end) = 1;
|
||
DECL_ARTIFICIAL (end) = 1;
|
||
pushdecl (end);
|
||
cp_finish_decl (end, end_expr,
|
||
/*is_constant_init*/false, NULL_TREE,
|
||
LOOKUP_ONLYCONVERTING);
|
||
|
||
finish_for_init_stmt (statement);
|
||
|
||
/* The new for condition. */
|
||
condition = build_x_binary_op (input_location, NE_EXPR,
|
||
begin, ERROR_MARK,
|
||
end, ERROR_MARK,
|
||
NULL, tf_warning_or_error);
|
||
finish_for_cond (condition, statement, ivdep);
|
||
|
||
/* The new increment expression. */
|
||
expression = finish_unary_op_expr (input_location,
|
||
PREINCREMENT_EXPR, begin,
|
||
tf_warning_or_error);
|
||
finish_for_expr (expression, statement);
|
||
|
||
/* The declaration is initialized with *__begin inside the loop body. */
|
||
cp_finish_decl (range_decl,
|
||
build_x_indirect_ref (input_location, begin, RO_NULL,
|
||
tf_warning_or_error),
|
||
/*is_constant_init*/false, NULL_TREE,
|
||
LOOKUP_ONLYCONVERTING);
|
||
|
||
return statement;
|
||
}
|
||
|
||
/* Solves BEGIN_EXPR and END_EXPR as described in cp_convert_range_for.
|
||
We need to solve both at the same time because the method used
|
||
depends on the existence of members begin or end.
|
||
Returns the type deduced for the iterator expression. */
|
||
|
||
static tree
|
||
cp_parser_perform_range_for_lookup (tree range, tree *begin, tree *end)
|
||
{
|
||
if (error_operand_p (range))
|
||
{
|
||
*begin = *end = error_mark_node;
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (!COMPLETE_TYPE_P (complete_type (TREE_TYPE (range))))
|
||
{
|
||
error ("range-based %<for%> expression of type %qT "
|
||
"has incomplete type", TREE_TYPE (range));
|
||
*begin = *end = error_mark_node;
|
||
return error_mark_node;
|
||
}
|
||
if (TREE_CODE (TREE_TYPE (range)) == ARRAY_TYPE)
|
||
{
|
||
/* If RANGE is an array, we will use pointer arithmetic. */
|
||
*begin = range;
|
||
*end = build_binary_op (input_location, PLUS_EXPR,
|
||
range,
|
||
array_type_nelts_top (TREE_TYPE (range)),
|
||
0);
|
||
return build_pointer_type (TREE_TYPE (TREE_TYPE (range)));
|
||
}
|
||
else
|
||
{
|
||
/* If it is not an array, we must do a bit of magic. */
|
||
tree id_begin, id_end;
|
||
tree member_begin, member_end;
|
||
|
||
*begin = *end = error_mark_node;
|
||
|
||
id_begin = get_identifier ("begin");
|
||
id_end = get_identifier ("end");
|
||
member_begin = lookup_member (TREE_TYPE (range), id_begin,
|
||
/*protect=*/2, /*want_type=*/false,
|
||
tf_warning_or_error);
|
||
member_end = lookup_member (TREE_TYPE (range), id_end,
|
||
/*protect=*/2, /*want_type=*/false,
|
||
tf_warning_or_error);
|
||
|
||
if (member_begin != NULL_TREE || member_end != NULL_TREE)
|
||
{
|
||
/* Use the member functions. */
|
||
if (member_begin != NULL_TREE)
|
||
*begin = cp_parser_range_for_member_function (range, id_begin);
|
||
else
|
||
error ("range-based %<for%> expression of type %qT has an "
|
||
"%<end%> member but not a %<begin%>", TREE_TYPE (range));
|
||
|
||
if (member_end != NULL_TREE)
|
||
*end = cp_parser_range_for_member_function (range, id_end);
|
||
else
|
||
error ("range-based %<for%> expression of type %qT has a "
|
||
"%<begin%> member but not an %<end%>", TREE_TYPE (range));
|
||
}
|
||
else
|
||
{
|
||
/* Use global functions with ADL. */
|
||
vec<tree, va_gc> *vec;
|
||
vec = make_tree_vector ();
|
||
|
||
vec_safe_push (vec, range);
|
||
|
||
member_begin = perform_koenig_lookup (id_begin, vec,
|
||
tf_warning_or_error);
|
||
*begin = finish_call_expr (member_begin, &vec, false, true,
|
||
tf_warning_or_error);
|
||
member_end = perform_koenig_lookup (id_end, vec,
|
||
tf_warning_or_error);
|
||
*end = finish_call_expr (member_end, &vec, false, true,
|
||
tf_warning_or_error);
|
||
|
||
release_tree_vector (vec);
|
||
}
|
||
|
||
/* Last common checks. */
|
||
if (*begin == error_mark_node || *end == error_mark_node)
|
||
{
|
||
/* If one of the expressions is an error do no more checks. */
|
||
*begin = *end = error_mark_node;
|
||
return error_mark_node;
|
||
}
|
||
else if (type_dependent_expression_p (*begin)
|
||
|| type_dependent_expression_p (*end))
|
||
/* Can happen, when, eg, in a template context, Koenig lookup
|
||
can't resolve begin/end (c++/58503). */
|
||
return NULL_TREE;
|
||
else
|
||
{
|
||
tree iter_type = cv_unqualified (TREE_TYPE (*begin));
|
||
/* The unqualified type of the __begin and __end temporaries should
|
||
be the same, as required by the multiple auto declaration. */
|
||
if (!same_type_p (iter_type, cv_unqualified (TREE_TYPE (*end))))
|
||
error ("inconsistent begin/end types in range-based %<for%> "
|
||
"statement: %qT and %qT",
|
||
TREE_TYPE (*begin), TREE_TYPE (*end));
|
||
return iter_type;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Helper function for cp_parser_perform_range_for_lookup.
|
||
Builds a tree for RANGE.IDENTIFIER(). */
|
||
|
||
static tree
|
||
cp_parser_range_for_member_function (tree range, tree identifier)
|
||
{
|
||
tree member, res;
|
||
vec<tree, va_gc> *vec;
|
||
|
||
member = finish_class_member_access_expr (range, identifier,
|
||
false, tf_warning_or_error);
|
||
if (member == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
vec = make_tree_vector ();
|
||
res = finish_call_expr (member, &vec,
|
||
/*disallow_virtual=*/false,
|
||
/*koenig_p=*/false,
|
||
tf_warning_or_error);
|
||
release_tree_vector (vec);
|
||
return res;
|
||
}
|
||
|
||
/* Parse an iteration-statement.
|
||
|
||
iteration-statement:
|
||
while ( condition ) statement
|
||
do statement while ( expression ) ;
|
||
for ( for-init-statement condition [opt] ; expression [opt] )
|
||
statement
|
||
|
||
Returns the new WHILE_STMT, DO_STMT, FOR_STMT or RANGE_FOR_STMT. */
|
||
|
||
static tree
|
||
cp_parser_iteration_statement (cp_parser* parser, bool ivdep)
|
||
{
|
||
cp_token *token;
|
||
enum rid keyword;
|
||
tree statement;
|
||
unsigned char in_statement;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_parser_require (parser, CPP_KEYWORD, RT_INTERATION);
|
||
if (!token)
|
||
return error_mark_node;
|
||
|
||
/* Remember whether or not we are already within an iteration
|
||
statement. */
|
||
in_statement = parser->in_statement;
|
||
|
||
/* See what kind of keyword it is. */
|
||
keyword = token->keyword;
|
||
switch (keyword)
|
||
{
|
||
case RID_WHILE:
|
||
{
|
||
tree condition;
|
||
|
||
/* Begin the while-statement. */
|
||
statement = begin_while_stmt ();
|
||
/* Look for the `('. */
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
/* Parse the condition. */
|
||
condition = cp_parser_condition (parser);
|
||
finish_while_stmt_cond (condition, statement, ivdep);
|
||
/* Look for the `)'. */
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
/* Parse the dependent statement. */
|
||
parser->in_statement = IN_ITERATION_STMT;
|
||
cp_parser_already_scoped_statement (parser);
|
||
parser->in_statement = in_statement;
|
||
/* We're done with the while-statement. */
|
||
finish_while_stmt (statement);
|
||
}
|
||
break;
|
||
|
||
case RID_DO:
|
||
{
|
||
tree expression;
|
||
|
||
/* Begin the do-statement. */
|
||
statement = begin_do_stmt ();
|
||
/* Parse the body of the do-statement. */
|
||
parser->in_statement = IN_ITERATION_STMT;
|
||
cp_parser_implicitly_scoped_statement (parser, NULL);
|
||
parser->in_statement = in_statement;
|
||
finish_do_body (statement);
|
||
/* Look for the `while' keyword. */
|
||
cp_parser_require_keyword (parser, RID_WHILE, RT_WHILE);
|
||
/* Look for the `('. */
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
/* Parse the expression. */
|
||
expression = cp_parser_expression (parser, /*cast_p=*/false, NULL);
|
||
/* We're done with the do-statement. */
|
||
finish_do_stmt (expression, statement, ivdep);
|
||
/* Look for the `)'. */
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
/* Look for the `;'. */
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
}
|
||
break;
|
||
|
||
case RID_FOR:
|
||
{
|
||
/* Look for the `('. */
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
|
||
statement = cp_parser_for (parser, ivdep);
|
||
|
||
/* Look for the `)'. */
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
|
||
/* Parse the body of the for-statement. */
|
||
parser->in_statement = IN_ITERATION_STMT;
|
||
cp_parser_already_scoped_statement (parser);
|
||
parser->in_statement = in_statement;
|
||
|
||
/* We're done with the for-statement. */
|
||
finish_for_stmt (statement);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
cp_parser_error (parser, "expected iteration-statement");
|
||
statement = error_mark_node;
|
||
break;
|
||
}
|
||
|
||
return statement;
|
||
}
|
||
|
||
/* Parse a for-init-statement or the declarator of a range-based-for.
|
||
Returns true if a range-based-for declaration is seen.
|
||
|
||
for-init-statement:
|
||
expression-statement
|
||
simple-declaration */
|
||
|
||
static bool
|
||
cp_parser_for_init_statement (cp_parser* parser, tree *decl)
|
||
{
|
||
/* If the next token is a `;', then we have an empty
|
||
expression-statement. Grammatically, this is also a
|
||
simple-declaration, but an invalid one, because it does not
|
||
declare anything. Therefore, if we did not handle this case
|
||
specially, we would issue an error message about an invalid
|
||
declaration. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
|
||
{
|
||
bool is_range_for = false;
|
||
bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
|
||
&& cp_lexer_nth_token_is (parser->lexer, 2, CPP_COLON))
|
||
{
|
||
/* N3994 -- for (id : init) ... */
|
||
if (cxx_dialect < cxx1z)
|
||
pedwarn (input_location, 0, "range-based for loop without a "
|
||
"type-specifier only available with "
|
||
"-std=c++1z or -std=gnu++1z");
|
||
tree name = cp_parser_identifier (parser);
|
||
tree type = cp_build_reference_type (make_auto (), /*rval*/true);
|
||
*decl = build_decl (input_location, VAR_DECL, name, type);
|
||
pushdecl (*decl);
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return true;
|
||
}
|
||
|
||
/* A colon is used in range-based for. */
|
||
parser->colon_corrects_to_scope_p = false;
|
||
|
||
/* We're going to speculatively look for a declaration, falling back
|
||
to an expression, if necessary. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Parse the declaration. */
|
||
cp_parser_simple_declaration (parser,
|
||
/*function_definition_allowed_p=*/false,
|
||
decl);
|
||
parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p;
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
|
||
{
|
||
/* It is a range-for, consume the ':' */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
is_range_for = true;
|
||
if (cxx_dialect < cxx11)
|
||
{
|
||
pedwarn (cp_lexer_peek_token (parser->lexer)->location, 0,
|
||
"range-based %<for%> loops only available with "
|
||
"-std=c++11 or -std=gnu++11");
|
||
*decl = error_mark_node;
|
||
}
|
||
}
|
||
else
|
||
/* The ';' is not consumed yet because we told
|
||
cp_parser_simple_declaration not to. */
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
|
||
if (cp_parser_parse_definitely (parser))
|
||
return is_range_for;
|
||
/* If the tentative parse failed, then we shall need to look for an
|
||
expression-statement. */
|
||
}
|
||
/* If we are here, it is an expression-statement. */
|
||
cp_parser_expression_statement (parser, NULL_TREE);
|
||
return false;
|
||
}
|
||
|
||
/* Parse a jump-statement.
|
||
|
||
jump-statement:
|
||
break ;
|
||
continue ;
|
||
return expression [opt] ;
|
||
return braced-init-list ;
|
||
goto identifier ;
|
||
|
||
GNU extension:
|
||
|
||
jump-statement:
|
||
goto * expression ;
|
||
|
||
Returns the new BREAK_STMT, CONTINUE_STMT, RETURN_EXPR, or GOTO_EXPR. */
|
||
|
||
static tree
|
||
cp_parser_jump_statement (cp_parser* parser)
|
||
{
|
||
tree statement = error_mark_node;
|
||
cp_token *token;
|
||
enum rid keyword;
|
||
unsigned char in_statement;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_parser_require (parser, CPP_KEYWORD, RT_JUMP);
|
||
if (!token)
|
||
return error_mark_node;
|
||
|
||
/* See what kind of keyword it is. */
|
||
keyword = token->keyword;
|
||
switch (keyword)
|
||
{
|
||
case RID_BREAK:
|
||
in_statement = parser->in_statement & ~IN_IF_STMT;
|
||
switch (in_statement)
|
||
{
|
||
case 0:
|
||
error_at (token->location, "break statement not within loop or switch");
|
||
break;
|
||
default:
|
||
gcc_assert ((in_statement & IN_SWITCH_STMT)
|
||
|| in_statement == IN_ITERATION_STMT);
|
||
statement = finish_break_stmt ();
|
||
if (in_statement == IN_ITERATION_STMT)
|
||
break_maybe_infinite_loop ();
|
||
break;
|
||
case IN_OMP_BLOCK:
|
||
error_at (token->location, "invalid exit from OpenMP structured block");
|
||
break;
|
||
case IN_OMP_FOR:
|
||
error_at (token->location, "break statement used with OpenMP for loop");
|
||
break;
|
||
case IN_CILK_SIMD_FOR:
|
||
error_at (token->location, "break statement used with Cilk Plus for loop");
|
||
break;
|
||
}
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
break;
|
||
|
||
case RID_CONTINUE:
|
||
switch (parser->in_statement & ~(IN_SWITCH_STMT | IN_IF_STMT))
|
||
{
|
||
case 0:
|
||
error_at (token->location, "continue statement not within a loop");
|
||
break;
|
||
case IN_CILK_SIMD_FOR:
|
||
error_at (token->location,
|
||
"continue statement within %<#pragma simd%> loop body");
|
||
/* Fall through. */
|
||
case IN_ITERATION_STMT:
|
||
case IN_OMP_FOR:
|
||
statement = finish_continue_stmt ();
|
||
break;
|
||
case IN_OMP_BLOCK:
|
||
error_at (token->location, "invalid exit from OpenMP structured block");
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
break;
|
||
|
||
case RID_RETURN:
|
||
{
|
||
tree expr;
|
||
bool expr_non_constant_p;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
cp_lexer_set_source_position (parser->lexer);
|
||
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
|
||
expr = cp_parser_braced_list (parser, &expr_non_constant_p);
|
||
}
|
||
else if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
|
||
expr = cp_parser_expression (parser, /*cast_p=*/false, NULL);
|
||
else
|
||
/* If the next token is a `;', then there is no
|
||
expression. */
|
||
expr = NULL_TREE;
|
||
/* Build the return-statement. */
|
||
statement = finish_return_stmt (expr);
|
||
/* Look for the final `;'. */
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
}
|
||
break;
|
||
|
||
case RID_GOTO:
|
||
/* Create the goto-statement. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_MULT))
|
||
{
|
||
/* Issue a warning about this use of a GNU extension. */
|
||
pedwarn (token->location, OPT_Wpedantic, "ISO C++ forbids computed gotos");
|
||
/* Consume the '*' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the dependent expression. */
|
||
finish_goto_stmt (cp_parser_expression (parser, /*cast_p=*/false, NULL));
|
||
}
|
||
else
|
||
finish_goto_stmt (cp_parser_identifier (parser));
|
||
/* Look for the final `;'. */
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
break;
|
||
|
||
default:
|
||
cp_parser_error (parser, "expected jump-statement");
|
||
break;
|
||
}
|
||
|
||
return statement;
|
||
}
|
||
|
||
/* Parse a declaration-statement.
|
||
|
||
declaration-statement:
|
||
block-declaration */
|
||
|
||
static void
|
||
cp_parser_declaration_statement (cp_parser* parser)
|
||
{
|
||
void *p;
|
||
|
||
/* Get the high-water mark for the DECLARATOR_OBSTACK. */
|
||
p = obstack_alloc (&declarator_obstack, 0);
|
||
|
||
/* Parse the block-declaration. */
|
||
cp_parser_block_declaration (parser, /*statement_p=*/true);
|
||
|
||
/* Free any declarators allocated. */
|
||
obstack_free (&declarator_obstack, p);
|
||
}
|
||
|
||
/* Some dependent statements (like `if (cond) statement'), are
|
||
implicitly in their own scope. In other words, if the statement is
|
||
a single statement (as opposed to a compound-statement), it is
|
||
none-the-less treated as if it were enclosed in braces. Any
|
||
declarations appearing in the dependent statement are out of scope
|
||
after control passes that point. This function parses a statement,
|
||
but ensures that is in its own scope, even if it is not a
|
||
compound-statement.
|
||
|
||
If IF_P is not NULL, *IF_P is set to indicate whether the statement
|
||
is a (possibly labeled) if statement which is not enclosed in
|
||
braces and has an else clause. This is used to implement
|
||
-Wparentheses.
|
||
|
||
Returns the new statement. */
|
||
|
||
static tree
|
||
cp_parser_implicitly_scoped_statement (cp_parser* parser, bool *if_p)
|
||
{
|
||
tree statement;
|
||
|
||
if (if_p != NULL)
|
||
*if_p = false;
|
||
|
||
/* Mark if () ; with a special NOP_EXPR. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
|
||
{
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
statement = add_stmt (build_empty_stmt (loc));
|
||
}
|
||
/* if a compound is opened, we simply parse the statement directly. */
|
||
else if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
statement = cp_parser_compound_statement (parser, NULL, false, false);
|
||
/* If the token is not a `{', then we must take special action. */
|
||
else
|
||
{
|
||
/* Create a compound-statement. */
|
||
statement = begin_compound_stmt (0);
|
||
/* Parse the dependent-statement. */
|
||
cp_parser_statement (parser, NULL_TREE, false, if_p);
|
||
/* Finish the dummy compound-statement. */
|
||
finish_compound_stmt (statement);
|
||
}
|
||
|
||
/* Return the statement. */
|
||
return statement;
|
||
}
|
||
|
||
/* For some dependent statements (like `while (cond) statement'), we
|
||
have already created a scope. Therefore, even if the dependent
|
||
statement is a compound-statement, we do not want to create another
|
||
scope. */
|
||
|
||
static void
|
||
cp_parser_already_scoped_statement (cp_parser* parser)
|
||
{
|
||
/* If the token is a `{', then we must take special action. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
|
||
cp_parser_statement (parser, NULL_TREE, false, NULL);
|
||
else
|
||
{
|
||
/* Avoid calling cp_parser_compound_statement, so that we
|
||
don't create a new scope. Do everything else by hand. */
|
||
cp_parser_require (parser, CPP_OPEN_BRACE, RT_OPEN_BRACE);
|
||
/* If the next keyword is `__label__' we have a label declaration. */
|
||
while (cp_lexer_next_token_is_keyword (parser->lexer, RID_LABEL))
|
||
cp_parser_label_declaration (parser);
|
||
/* Parse an (optional) statement-seq. */
|
||
cp_parser_statement_seq_opt (parser, NULL_TREE);
|
||
cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE);
|
||
}
|
||
}
|
||
|
||
/* Declarations [gram.dcl.dcl] */
|
||
|
||
/* Parse an optional declaration-sequence.
|
||
|
||
declaration-seq:
|
||
declaration
|
||
declaration-seq declaration */
|
||
|
||
static void
|
||
cp_parser_declaration_seq_opt (cp_parser* parser)
|
||
{
|
||
while (true)
|
||
{
|
||
cp_token *token;
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
if (token->type == CPP_CLOSE_BRACE
|
||
|| token->type == CPP_EOF
|
||
|| token->type == CPP_PRAGMA_EOL)
|
||
break;
|
||
|
||
if (token->type == CPP_SEMICOLON)
|
||
{
|
||
/* A declaration consisting of a single semicolon is
|
||
invalid. Allow it unless we're being pedantic. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (!in_system_header_at (input_location))
|
||
pedwarn (input_location, OPT_Wpedantic, "extra %<;%>");
|
||
continue;
|
||
}
|
||
|
||
/* If we're entering or exiting a region that's implicitly
|
||
extern "C", modify the lang context appropriately. */
|
||
if (!parser->implicit_extern_c && token->implicit_extern_c)
|
||
{
|
||
push_lang_context (lang_name_c);
|
||
parser->implicit_extern_c = true;
|
||
}
|
||
else if (parser->implicit_extern_c && !token->implicit_extern_c)
|
||
{
|
||
pop_lang_context ();
|
||
parser->implicit_extern_c = false;
|
||
}
|
||
|
||
if (token->type == CPP_PRAGMA)
|
||
{
|
||
/* A top-level declaration can consist solely of a #pragma.
|
||
A nested declaration cannot, so this is done here and not
|
||
in cp_parser_declaration. (A #pragma at block scope is
|
||
handled in cp_parser_statement.) */
|
||
cp_parser_pragma (parser, pragma_external);
|
||
continue;
|
||
}
|
||
|
||
/* Parse the declaration itself. */
|
||
cp_parser_declaration (parser);
|
||
}
|
||
}
|
||
|
||
/* Parse a declaration.
|
||
|
||
declaration:
|
||
block-declaration
|
||
function-definition
|
||
template-declaration
|
||
explicit-instantiation
|
||
explicit-specialization
|
||
linkage-specification
|
||
namespace-definition
|
||
|
||
GNU extension:
|
||
|
||
declaration:
|
||
__extension__ declaration */
|
||
|
||
static void
|
||
cp_parser_declaration (cp_parser* parser)
|
||
{
|
||
cp_token token1;
|
||
cp_token token2;
|
||
int saved_pedantic;
|
||
void *p;
|
||
tree attributes = NULL_TREE;
|
||
|
||
/* Check for the `__extension__' keyword. */
|
||
if (cp_parser_extension_opt (parser, &saved_pedantic))
|
||
{
|
||
/* Parse the qualified declaration. */
|
||
cp_parser_declaration (parser);
|
||
/* Restore the PEDANTIC flag. */
|
||
pedantic = saved_pedantic;
|
||
|
||
return;
|
||
}
|
||
|
||
/* Try to figure out what kind of declaration is present. */
|
||
token1 = *cp_lexer_peek_token (parser->lexer);
|
||
|
||
if (token1.type != CPP_EOF)
|
||
token2 = *cp_lexer_peek_nth_token (parser->lexer, 2);
|
||
else
|
||
{
|
||
token2.type = CPP_EOF;
|
||
token2.keyword = RID_MAX;
|
||
}
|
||
|
||
/* Get the high-water mark for the DECLARATOR_OBSTACK. */
|
||
p = obstack_alloc (&declarator_obstack, 0);
|
||
|
||
/* If the next token is `extern' and the following token is a string
|
||
literal, then we have a linkage specification. */
|
||
if (token1.keyword == RID_EXTERN
|
||
&& cp_parser_is_pure_string_literal (&token2))
|
||
cp_parser_linkage_specification (parser);
|
||
/* If the next token is `template', then we have either a template
|
||
declaration, an explicit instantiation, or an explicit
|
||
specialization. */
|
||
else if (token1.keyword == RID_TEMPLATE)
|
||
{
|
||
/* `template <>' indicates a template specialization. */
|
||
if (token2.type == CPP_LESS
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
|
||
cp_parser_explicit_specialization (parser);
|
||
/* `template <' indicates a template declaration. */
|
||
else if (token2.type == CPP_LESS)
|
||
cp_parser_template_declaration (parser, /*member_p=*/false);
|
||
/* Anything else must be an explicit instantiation. */
|
||
else
|
||
cp_parser_explicit_instantiation (parser);
|
||
}
|
||
/* If the next token is `export', then we have a template
|
||
declaration. */
|
||
else if (token1.keyword == RID_EXPORT)
|
||
cp_parser_template_declaration (parser, /*member_p=*/false);
|
||
/* If the next token is `extern', 'static' or 'inline' and the one
|
||
after that is `template', we have a GNU extended explicit
|
||
instantiation directive. */
|
||
else if (cp_parser_allow_gnu_extensions_p (parser)
|
||
&& (token1.keyword == RID_EXTERN
|
||
|| token1.keyword == RID_STATIC
|
||
|| token1.keyword == RID_INLINE)
|
||
&& token2.keyword == RID_TEMPLATE)
|
||
cp_parser_explicit_instantiation (parser);
|
||
/* If the next token is `namespace', check for a named or unnamed
|
||
namespace definition. */
|
||
else if (token1.keyword == RID_NAMESPACE
|
||
&& (/* A named namespace definition. */
|
||
(token2.type == CPP_NAME
|
||
&& (cp_lexer_peek_nth_token (parser->lexer, 3)->type
|
||
!= CPP_EQ))
|
||
/* An unnamed namespace definition. */
|
||
|| token2.type == CPP_OPEN_BRACE
|
||
|| token2.keyword == RID_ATTRIBUTE))
|
||
cp_parser_namespace_definition (parser);
|
||
/* An inline (associated) namespace definition. */
|
||
else if (token1.keyword == RID_INLINE
|
||
&& token2.keyword == RID_NAMESPACE)
|
||
cp_parser_namespace_definition (parser);
|
||
/* Objective-C++ declaration/definition. */
|
||
else if (c_dialect_objc () && OBJC_IS_AT_KEYWORD (token1.keyword))
|
||
cp_parser_objc_declaration (parser, NULL_TREE);
|
||
else if (c_dialect_objc ()
|
||
&& token1.keyword == RID_ATTRIBUTE
|
||
&& cp_parser_objc_valid_prefix_attributes (parser, &attributes))
|
||
cp_parser_objc_declaration (parser, attributes);
|
||
/* We must have either a block declaration or a function
|
||
definition. */
|
||
else
|
||
/* Try to parse a block-declaration, or a function-definition. */
|
||
cp_parser_block_declaration (parser, /*statement_p=*/false);
|
||
|
||
/* Free any declarators allocated. */
|
||
obstack_free (&declarator_obstack, p);
|
||
}
|
||
|
||
/* Parse a block-declaration.
|
||
|
||
block-declaration:
|
||
simple-declaration
|
||
asm-definition
|
||
namespace-alias-definition
|
||
using-declaration
|
||
using-directive
|
||
|
||
GNU Extension:
|
||
|
||
block-declaration:
|
||
__extension__ block-declaration
|
||
|
||
C++0x Extension:
|
||
|
||
block-declaration:
|
||
static_assert-declaration
|
||
|
||
If STATEMENT_P is TRUE, then this block-declaration is occurring as
|
||
part of a declaration-statement. */
|
||
|
||
static void
|
||
cp_parser_block_declaration (cp_parser *parser,
|
||
bool statement_p)
|
||
{
|
||
cp_token *token1;
|
||
int saved_pedantic;
|
||
|
||
/* Check for the `__extension__' keyword. */
|
||
if (cp_parser_extension_opt (parser, &saved_pedantic))
|
||
{
|
||
/* Parse the qualified declaration. */
|
||
cp_parser_block_declaration (parser, statement_p);
|
||
/* Restore the PEDANTIC flag. */
|
||
pedantic = saved_pedantic;
|
||
|
||
return;
|
||
}
|
||
|
||
/* Peek at the next token to figure out which kind of declaration is
|
||
present. */
|
||
token1 = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* If the next keyword is `asm', we have an asm-definition. */
|
||
if (token1->keyword == RID_ASM)
|
||
{
|
||
if (statement_p)
|
||
cp_parser_commit_to_tentative_parse (parser);
|
||
cp_parser_asm_definition (parser);
|
||
}
|
||
/* If the next keyword is `namespace', we have a
|
||
namespace-alias-definition. */
|
||
else if (token1->keyword == RID_NAMESPACE)
|
||
cp_parser_namespace_alias_definition (parser);
|
||
/* If the next keyword is `using', we have a
|
||
using-declaration, a using-directive, or an alias-declaration. */
|
||
else if (token1->keyword == RID_USING)
|
||
{
|
||
cp_token *token2;
|
||
|
||
if (statement_p)
|
||
cp_parser_commit_to_tentative_parse (parser);
|
||
/* If the token after `using' is `namespace', then we have a
|
||
using-directive. */
|
||
token2 = cp_lexer_peek_nth_token (parser->lexer, 2);
|
||
if (token2->keyword == RID_NAMESPACE)
|
||
cp_parser_using_directive (parser);
|
||
/* If the second token after 'using' is '=', then we have an
|
||
alias-declaration. */
|
||
else if (cxx_dialect >= cxx11
|
||
&& token2->type == CPP_NAME
|
||
&& ((cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_EQ)
|
||
|| (cp_nth_tokens_can_be_attribute_p (parser, 3))))
|
||
cp_parser_alias_declaration (parser);
|
||
/* Otherwise, it's a using-declaration. */
|
||
else
|
||
cp_parser_using_declaration (parser,
|
||
/*access_declaration_p=*/false);
|
||
}
|
||
/* If the next keyword is `__label__' we have a misplaced label
|
||
declaration. */
|
||
else if (token1->keyword == RID_LABEL)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
error_at (token1->location, "%<__label__%> not at the beginning of a block");
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
/* If the next token is now a `;', consume it. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
/* If the next token is `static_assert' we have a static assertion. */
|
||
else if (token1->keyword == RID_STATIC_ASSERT)
|
||
cp_parser_static_assert (parser, /*member_p=*/false);
|
||
/* Anything else must be a simple-declaration. */
|
||
else
|
||
cp_parser_simple_declaration (parser, !statement_p,
|
||
/*maybe_range_for_decl*/NULL);
|
||
}
|
||
|
||
/* Parse a simple-declaration.
|
||
|
||
simple-declaration:
|
||
decl-specifier-seq [opt] init-declarator-list [opt] ;
|
||
|
||
init-declarator-list:
|
||
init-declarator
|
||
init-declarator-list , init-declarator
|
||
|
||
If FUNCTION_DEFINITION_ALLOWED_P is TRUE, then we also recognize a
|
||
function-definition as a simple-declaration.
|
||
|
||
If MAYBE_RANGE_FOR_DECL is not NULL, the pointed tree will be set to the
|
||
parsed declaration if it is an uninitialized single declarator not followed
|
||
by a `;', or to error_mark_node otherwise. Either way, the trailing `;',
|
||
if present, will not be consumed. */
|
||
|
||
static void
|
||
cp_parser_simple_declaration (cp_parser* parser,
|
||
bool function_definition_allowed_p,
|
||
tree *maybe_range_for_decl)
|
||
{
|
||
cp_decl_specifier_seq decl_specifiers;
|
||
int declares_class_or_enum;
|
||
bool saw_declarator;
|
||
|
||
if (maybe_range_for_decl)
|
||
*maybe_range_for_decl = NULL_TREE;
|
||
|
||
/* Defer access checks until we know what is being declared; the
|
||
checks for names appearing in the decl-specifier-seq should be
|
||
done as if we were in the scope of the thing being declared. */
|
||
push_deferring_access_checks (dk_deferred);
|
||
|
||
/* Parse the decl-specifier-seq. We have to keep track of whether
|
||
or not the decl-specifier-seq declares a named class or
|
||
enumeration type, since that is the only case in which the
|
||
init-declarator-list is allowed to be empty.
|
||
|
||
[dcl.dcl]
|
||
|
||
In a simple-declaration, the optional init-declarator-list can be
|
||
omitted only when declaring a class or enumeration, that is when
|
||
the decl-specifier-seq contains either a class-specifier, an
|
||
elaborated-type-specifier, or an enum-specifier. */
|
||
cp_parser_decl_specifier_seq (parser,
|
||
CP_PARSER_FLAGS_OPTIONAL,
|
||
&decl_specifiers,
|
||
&declares_class_or_enum);
|
||
/* We no longer need to defer access checks. */
|
||
stop_deferring_access_checks ();
|
||
|
||
/* In a block scope, a valid declaration must always have a
|
||
decl-specifier-seq. By not trying to parse declarators, we can
|
||
resolve the declaration/expression ambiguity more quickly. */
|
||
if (!function_definition_allowed_p
|
||
&& !decl_specifiers.any_specifiers_p)
|
||
{
|
||
cp_parser_error (parser, "expected declaration");
|
||
goto done;
|
||
}
|
||
|
||
/* If the next two tokens are both identifiers, the code is
|
||
erroneous. The usual cause of this situation is code like:
|
||
|
||
T t;
|
||
|
||
where "T" should name a type -- but does not. */
|
||
if (!decl_specifiers.any_type_specifiers_p
|
||
&& cp_parser_parse_and_diagnose_invalid_type_name (parser))
|
||
{
|
||
/* If parsing tentatively, we should commit; we really are
|
||
looking at a declaration. */
|
||
cp_parser_commit_to_tentative_parse (parser);
|
||
/* Give up. */
|
||
goto done;
|
||
}
|
||
|
||
/* If we have seen at least one decl-specifier, and the next token
|
||
is not a parenthesis, then we must be looking at a declaration.
|
||
(After "int (" we might be looking at a functional cast.) */
|
||
if (decl_specifiers.any_specifiers_p
|
||
&& cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN)
|
||
&& cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE)
|
||
&& !cp_parser_error_occurred (parser))
|
||
cp_parser_commit_to_tentative_parse (parser);
|
||
|
||
/* Keep going until we hit the `;' at the end of the simple
|
||
declaration. */
|
||
saw_declarator = false;
|
||
while (cp_lexer_next_token_is_not (parser->lexer,
|
||
CPP_SEMICOLON))
|
||
{
|
||
cp_token *token;
|
||
bool function_definition_p;
|
||
tree decl;
|
||
|
||
if (saw_declarator)
|
||
{
|
||
/* If we are processing next declarator, coma is expected */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
gcc_assert (token->type == CPP_COMMA);
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (maybe_range_for_decl)
|
||
*maybe_range_for_decl = error_mark_node;
|
||
}
|
||
else
|
||
saw_declarator = true;
|
||
|
||
/* Parse the init-declarator. */
|
||
decl = cp_parser_init_declarator (parser, &decl_specifiers,
|
||
/*checks=*/NULL,
|
||
function_definition_allowed_p,
|
||
/*member_p=*/false,
|
||
declares_class_or_enum,
|
||
&function_definition_p,
|
||
maybe_range_for_decl);
|
||
/* If an error occurred while parsing tentatively, exit quickly.
|
||
(That usually happens when in the body of a function; each
|
||
statement is treated as a declaration-statement until proven
|
||
otherwise.) */
|
||
if (cp_parser_error_occurred (parser))
|
||
goto done;
|
||
/* Handle function definitions specially. */
|
||
if (function_definition_p)
|
||
{
|
||
/* If the next token is a `,', then we are probably
|
||
processing something like:
|
||
|
||
void f() {}, *p;
|
||
|
||
which is erroneous. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
error_at (token->location,
|
||
"mixing"
|
||
" declarations and function-definitions is forbidden");
|
||
}
|
||
/* Otherwise, we're done with the list of declarators. */
|
||
else
|
||
{
|
||
pop_deferring_access_checks ();
|
||
return;
|
||
}
|
||
}
|
||
if (maybe_range_for_decl && *maybe_range_for_decl == NULL_TREE)
|
||
*maybe_range_for_decl = decl;
|
||
/* The next token should be either a `,' or a `;'. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If it's a `,', there are more declarators to come. */
|
||
if (token->type == CPP_COMMA)
|
||
/* will be consumed next time around */;
|
||
/* If it's a `;', we are done. */
|
||
else if (token->type == CPP_SEMICOLON || maybe_range_for_decl)
|
||
break;
|
||
/* Anything else is an error. */
|
||
else
|
||
{
|
||
/* If we have already issued an error message we don't need
|
||
to issue another one. */
|
||
if (decl != error_mark_node
|
||
|| cp_parser_uncommitted_to_tentative_parse_p (parser))
|
||
cp_parser_error (parser, "expected %<,%> or %<;%>");
|
||
/* Skip tokens until we reach the end of the statement. */
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
/* If the next token is now a `;', consume it. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
goto done;
|
||
}
|
||
/* After the first time around, a function-definition is not
|
||
allowed -- even if it was OK at first. For example:
|
||
|
||
int i, f() {}
|
||
|
||
is not valid. */
|
||
function_definition_allowed_p = false;
|
||
}
|
||
|
||
/* Issue an error message if no declarators are present, and the
|
||
decl-specifier-seq does not itself declare a class or
|
||
enumeration: [dcl.dcl]/3. */
|
||
if (!saw_declarator)
|
||
{
|
||
if (cp_parser_declares_only_class_p (parser))
|
||
{
|
||
if (!declares_class_or_enum
|
||
&& decl_specifiers.type
|
||
&& OVERLOAD_TYPE_P (decl_specifiers.type))
|
||
/* Ensure an error is issued anyway when finish_decltype_type,
|
||
called via cp_parser_decl_specifier_seq, returns a class or
|
||
an enumeration (c++/51786). */
|
||
decl_specifiers.type = NULL_TREE;
|
||
shadow_tag (&decl_specifiers);
|
||
}
|
||
/* Perform any deferred access checks. */
|
||
perform_deferred_access_checks (tf_warning_or_error);
|
||
}
|
||
|
||
/* Consume the `;'. */
|
||
if (!maybe_range_for_decl)
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
|
||
done:
|
||
pop_deferring_access_checks ();
|
||
}
|
||
|
||
/* Parse a decl-specifier-seq.
|
||
|
||
decl-specifier-seq:
|
||
decl-specifier-seq [opt] decl-specifier
|
||
decl-specifier attribute-specifier-seq [opt] (C++11)
|
||
|
||
decl-specifier:
|
||
storage-class-specifier
|
||
type-specifier
|
||
function-specifier
|
||
friend
|
||
typedef
|
||
|
||
GNU Extension:
|
||
|
||
decl-specifier:
|
||
attributes
|
||
|
||
Set *DECL_SPECS to a representation of the decl-specifier-seq.
|
||
|
||
The parser flags FLAGS is used to control type-specifier parsing.
|
||
|
||
*DECLARES_CLASS_OR_ENUM is set to the bitwise or of the following
|
||
flags:
|
||
|
||
1: one of the decl-specifiers is an elaborated-type-specifier
|
||
(i.e., a type declaration)
|
||
2: one of the decl-specifiers is an enum-specifier or a
|
||
class-specifier (i.e., a type definition)
|
||
|
||
*/
|
||
|
||
static void
|
||
cp_parser_decl_specifier_seq (cp_parser* parser,
|
||
cp_parser_flags flags,
|
||
cp_decl_specifier_seq *decl_specs,
|
||
int* declares_class_or_enum)
|
||
{
|
||
bool constructor_possible_p = !parser->in_declarator_p;
|
||
bool found_decl_spec = false;
|
||
cp_token *start_token = NULL;
|
||
cp_decl_spec ds;
|
||
|
||
/* Clear DECL_SPECS. */
|
||
clear_decl_specs (decl_specs);
|
||
|
||
/* Assume no class or enumeration type is declared. */
|
||
*declares_class_or_enum = 0;
|
||
|
||
/* Keep reading specifiers until there are no more to read. */
|
||
while (true)
|
||
{
|
||
bool constructor_p;
|
||
cp_token *token;
|
||
ds = ds_last;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* Save the first token of the decl spec list for error
|
||
reporting. */
|
||
if (!start_token)
|
||
start_token = token;
|
||
/* Handle attributes. */
|
||
if (cp_next_tokens_can_be_attribute_p (parser))
|
||
{
|
||
/* Parse the attributes. */
|
||
tree attrs = cp_parser_attributes_opt (parser);
|
||
|
||
/* In a sequence of declaration specifiers, c++11 attributes
|
||
appertain to the type that precede them. In that case
|
||
[dcl.spec]/1 says:
|
||
|
||
The attribute-specifier-seq affects the type only for
|
||
the declaration it appears in, not other declarations
|
||
involving the same type.
|
||
|
||
But for now let's force the user to position the
|
||
attribute either at the beginning of the declaration or
|
||
after the declarator-id, which would clearly mean that it
|
||
applies to the declarator. */
|
||
if (cxx11_attribute_p (attrs))
|
||
{
|
||
if (!found_decl_spec)
|
||
/* The c++11 attribute is at the beginning of the
|
||
declaration. It appertains to the entity being
|
||
declared. */;
|
||
else
|
||
{
|
||
if (decl_specs->type && CLASS_TYPE_P (decl_specs->type))
|
||
{
|
||
/* This is an attribute following a
|
||
class-specifier. */
|
||
if (decl_specs->type_definition_p)
|
||
warn_misplaced_attr_for_class_type (token->location,
|
||
decl_specs->type);
|
||
attrs = NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
decl_specs->std_attributes
|
||
= chainon (decl_specs->std_attributes,
|
||
attrs);
|
||
if (decl_specs->locations[ds_std_attribute] == 0)
|
||
decl_specs->locations[ds_std_attribute] = token->location;
|
||
}
|
||
continue;
|
||
}
|
||
}
|
||
|
||
decl_specs->attributes
|
||
= chainon (decl_specs->attributes,
|
||
attrs);
|
||
if (decl_specs->locations[ds_attribute] == 0)
|
||
decl_specs->locations[ds_attribute] = token->location;
|
||
continue;
|
||
}
|
||
/* Assume we will find a decl-specifier keyword. */
|
||
found_decl_spec = true;
|
||
/* If the next token is an appropriate keyword, we can simply
|
||
add it to the list. */
|
||
switch (token->keyword)
|
||
{
|
||
/* decl-specifier:
|
||
friend
|
||
constexpr */
|
||
case RID_FRIEND:
|
||
if (!at_class_scope_p ())
|
||
{
|
||
error_at (token->location, "%<friend%> used outside of class");
|
||
cp_lexer_purge_token (parser->lexer);
|
||
}
|
||
else
|
||
{
|
||
ds = ds_friend;
|
||
/* Consume the token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
break;
|
||
|
||
case RID_CONSTEXPR:
|
||
ds = ds_constexpr;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
break;
|
||
|
||
/* function-specifier:
|
||
inline
|
||
virtual
|
||
explicit */
|
||
case RID_INLINE:
|
||
case RID_VIRTUAL:
|
||
case RID_EXPLICIT:
|
||
cp_parser_function_specifier_opt (parser, decl_specs);
|
||
break;
|
||
|
||
/* decl-specifier:
|
||
typedef */
|
||
case RID_TYPEDEF:
|
||
ds = ds_typedef;
|
||
/* Consume the token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* A constructor declarator cannot appear in a typedef. */
|
||
constructor_possible_p = false;
|
||
/* The "typedef" keyword can only occur in a declaration; we
|
||
may as well commit at this point. */
|
||
cp_parser_commit_to_tentative_parse (parser);
|
||
|
||
if (decl_specs->storage_class != sc_none)
|
||
decl_specs->conflicting_specifiers_p = true;
|
||
break;
|
||
|
||
/* storage-class-specifier:
|
||
auto
|
||
register
|
||
static
|
||
extern
|
||
mutable
|
||
|
||
GNU Extension:
|
||
thread */
|
||
case RID_AUTO:
|
||
if (cxx_dialect == cxx98)
|
||
{
|
||
/* Consume the token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* Complain about `auto' as a storage specifier, if
|
||
we're complaining about C++0x compatibility. */
|
||
warning_at (token->location, OPT_Wc__0x_compat, "%<auto%>"
|
||
" changes meaning in C++11; please remove it");
|
||
|
||
/* Set the storage class anyway. */
|
||
cp_parser_set_storage_class (parser, decl_specs, RID_AUTO,
|
||
token);
|
||
}
|
||
else
|
||
/* C++0x auto type-specifier. */
|
||
found_decl_spec = false;
|
||
break;
|
||
|
||
case RID_REGISTER:
|
||
case RID_STATIC:
|
||
case RID_EXTERN:
|
||
case RID_MUTABLE:
|
||
/* Consume the token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
cp_parser_set_storage_class (parser, decl_specs, token->keyword,
|
||
token);
|
||
break;
|
||
case RID_THREAD:
|
||
/* Consume the token. */
|
||
ds = ds_thread;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
break;
|
||
|
||
default:
|
||
/* We did not yet find a decl-specifier yet. */
|
||
found_decl_spec = false;
|
||
break;
|
||
}
|
||
|
||
if (found_decl_spec
|
||
&& (flags & CP_PARSER_FLAGS_ONLY_TYPE_OR_CONSTEXPR)
|
||
&& token->keyword != RID_CONSTEXPR)
|
||
error ("decl-specifier invalid in condition");
|
||
|
||
if (ds != ds_last)
|
||
set_and_check_decl_spec_loc (decl_specs, ds, token);
|
||
|
||
/* Constructors are a special case. The `S' in `S()' is not a
|
||
decl-specifier; it is the beginning of the declarator. */
|
||
constructor_p
|
||
= (!found_decl_spec
|
||
&& constructor_possible_p
|
||
&& (cp_parser_constructor_declarator_p
|
||
(parser, decl_spec_seq_has_spec_p (decl_specs, ds_friend))));
|
||
|
||
/* If we don't have a DECL_SPEC yet, then we must be looking at
|
||
a type-specifier. */
|
||
if (!found_decl_spec && !constructor_p)
|
||
{
|
||
int decl_spec_declares_class_or_enum;
|
||
bool is_cv_qualifier;
|
||
tree type_spec;
|
||
|
||
type_spec
|
||
= cp_parser_type_specifier (parser, flags,
|
||
decl_specs,
|
||
/*is_declaration=*/true,
|
||
&decl_spec_declares_class_or_enum,
|
||
&is_cv_qualifier);
|
||
*declares_class_or_enum |= decl_spec_declares_class_or_enum;
|
||
|
||
/* If this type-specifier referenced a user-defined type
|
||
(a typedef, class-name, etc.), then we can't allow any
|
||
more such type-specifiers henceforth.
|
||
|
||
[dcl.spec]
|
||
|
||
The longest sequence of decl-specifiers that could
|
||
possibly be a type name is taken as the
|
||
decl-specifier-seq of a declaration. The sequence shall
|
||
be self-consistent as described below.
|
||
|
||
[dcl.type]
|
||
|
||
As a general rule, at most one type-specifier is allowed
|
||
in the complete decl-specifier-seq of a declaration. The
|
||
only exceptions are the following:
|
||
|
||
-- const or volatile can be combined with any other
|
||
type-specifier.
|
||
|
||
-- signed or unsigned can be combined with char, long,
|
||
short, or int.
|
||
|
||
-- ..
|
||
|
||
Example:
|
||
|
||
typedef char* Pc;
|
||
void g (const int Pc);
|
||
|
||
Here, Pc is *not* part of the decl-specifier seq; it's
|
||
the declarator. Therefore, once we see a type-specifier
|
||
(other than a cv-qualifier), we forbid any additional
|
||
user-defined types. We *do* still allow things like `int
|
||
int' to be considered a decl-specifier-seq, and issue the
|
||
error message later. */
|
||
if (type_spec && !is_cv_qualifier)
|
||
flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
|
||
/* A constructor declarator cannot follow a type-specifier. */
|
||
if (type_spec)
|
||
{
|
||
constructor_possible_p = false;
|
||
found_decl_spec = true;
|
||
if (!is_cv_qualifier)
|
||
decl_specs->any_type_specifiers_p = true;
|
||
}
|
||
}
|
||
|
||
/* If we still do not have a DECL_SPEC, then there are no more
|
||
decl-specifiers. */
|
||
if (!found_decl_spec)
|
||
break;
|
||
|
||
decl_specs->any_specifiers_p = true;
|
||
/* After we see one decl-specifier, further decl-specifiers are
|
||
always optional. */
|
||
flags |= CP_PARSER_FLAGS_OPTIONAL;
|
||
}
|
||
|
||
/* Don't allow a friend specifier with a class definition. */
|
||
if (decl_spec_seq_has_spec_p (decl_specs, ds_friend)
|
||
&& (*declares_class_or_enum & 2))
|
||
error_at (decl_specs->locations[ds_friend],
|
||
"class definition may not be declared a friend");
|
||
}
|
||
|
||
/* Parse an (optional) storage-class-specifier.
|
||
|
||
storage-class-specifier:
|
||
auto
|
||
register
|
||
static
|
||
extern
|
||
mutable
|
||
|
||
GNU Extension:
|
||
|
||
storage-class-specifier:
|
||
thread
|
||
|
||
Returns an IDENTIFIER_NODE corresponding to the keyword used. */
|
||
|
||
static tree
|
||
cp_parser_storage_class_specifier_opt (cp_parser* parser)
|
||
{
|
||
switch (cp_lexer_peek_token (parser->lexer)->keyword)
|
||
{
|
||
case RID_AUTO:
|
||
if (cxx_dialect != cxx98)
|
||
return NULL_TREE;
|
||
/* Fall through for C++98. */
|
||
|
||
case RID_REGISTER:
|
||
case RID_STATIC:
|
||
case RID_EXTERN:
|
||
case RID_MUTABLE:
|
||
case RID_THREAD:
|
||
/* Consume the token. */
|
||
return cp_lexer_consume_token (parser->lexer)->u.value;
|
||
|
||
default:
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
/* Parse an (optional) function-specifier.
|
||
|
||
function-specifier:
|
||
inline
|
||
virtual
|
||
explicit
|
||
|
||
Returns an IDENTIFIER_NODE corresponding to the keyword used.
|
||
Updates DECL_SPECS, if it is non-NULL. */
|
||
|
||
static tree
|
||
cp_parser_function_specifier_opt (cp_parser* parser,
|
||
cp_decl_specifier_seq *decl_specs)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
switch (token->keyword)
|
||
{
|
||
case RID_INLINE:
|
||
set_and_check_decl_spec_loc (decl_specs, ds_inline, token);
|
||
break;
|
||
|
||
case RID_VIRTUAL:
|
||
/* 14.5.2.3 [temp.mem]
|
||
|
||
A member function template shall not be virtual. */
|
||
if (PROCESSING_REAL_TEMPLATE_DECL_P ())
|
||
error_at (token->location, "templates may not be %<virtual%>");
|
||
else
|
||
set_and_check_decl_spec_loc (decl_specs, ds_virtual, token);
|
||
break;
|
||
|
||
case RID_EXPLICIT:
|
||
set_and_check_decl_spec_loc (decl_specs, ds_explicit, token);
|
||
break;
|
||
|
||
default:
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Consume the token. */
|
||
return cp_lexer_consume_token (parser->lexer)->u.value;
|
||
}
|
||
|
||
/* Parse a linkage-specification.
|
||
|
||
linkage-specification:
|
||
extern string-literal { declaration-seq [opt] }
|
||
extern string-literal declaration */
|
||
|
||
static void
|
||
cp_parser_linkage_specification (cp_parser* parser)
|
||
{
|
||
tree linkage;
|
||
|
||
/* Look for the `extern' keyword. */
|
||
cp_parser_require_keyword (parser, RID_EXTERN, RT_EXTERN);
|
||
|
||
/* Look for the string-literal. */
|
||
linkage = cp_parser_string_literal (parser, false, false);
|
||
|
||
/* Transform the literal into an identifier. If the literal is a
|
||
wide-character string, or contains embedded NULs, then we can't
|
||
handle it as the user wants. */
|
||
if (strlen (TREE_STRING_POINTER (linkage))
|
||
!= (size_t) (TREE_STRING_LENGTH (linkage) - 1))
|
||
{
|
||
cp_parser_error (parser, "invalid linkage-specification");
|
||
/* Assume C++ linkage. */
|
||
linkage = lang_name_cplusplus;
|
||
}
|
||
else
|
||
linkage = get_identifier (TREE_STRING_POINTER (linkage));
|
||
|
||
/* We're now using the new linkage. */
|
||
push_lang_context (linkage);
|
||
|
||
/* If the next token is a `{', then we're using the first
|
||
production. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
cp_ensure_no_omp_declare_simd (parser);
|
||
|
||
/* Consume the `{' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the declarations. */
|
||
cp_parser_declaration_seq_opt (parser);
|
||
/* Look for the closing `}'. */
|
||
cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE);
|
||
}
|
||
/* Otherwise, there's just one declaration. */
|
||
else
|
||
{
|
||
bool saved_in_unbraced_linkage_specification_p;
|
||
|
||
saved_in_unbraced_linkage_specification_p
|
||
= parser->in_unbraced_linkage_specification_p;
|
||
parser->in_unbraced_linkage_specification_p = true;
|
||
cp_parser_declaration (parser);
|
||
parser->in_unbraced_linkage_specification_p
|
||
= saved_in_unbraced_linkage_specification_p;
|
||
}
|
||
|
||
/* We're done with the linkage-specification. */
|
||
pop_lang_context ();
|
||
}
|
||
|
||
/* Parse a static_assert-declaration.
|
||
|
||
static_assert-declaration:
|
||
static_assert ( constant-expression , string-literal ) ;
|
||
|
||
If MEMBER_P, this static_assert is a class member. */
|
||
|
||
static void
|
||
cp_parser_static_assert(cp_parser *parser, bool member_p)
|
||
{
|
||
tree condition;
|
||
tree message;
|
||
cp_token *token;
|
||
location_t saved_loc;
|
||
bool dummy;
|
||
|
||
/* Peek at the `static_assert' token so we can keep track of exactly
|
||
where the static assertion started. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
saved_loc = token->location;
|
||
|
||
/* Look for the `static_assert' keyword. */
|
||
if (!cp_parser_require_keyword (parser, RID_STATIC_ASSERT,
|
||
RT_STATIC_ASSERT))
|
||
return;
|
||
|
||
/* We know we are in a static assertion; commit to any tentative
|
||
parse. */
|
||
if (cp_parser_parsing_tentatively (parser))
|
||
cp_parser_commit_to_tentative_parse (parser);
|
||
|
||
/* Parse the `(' starting the static assertion condition. */
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
|
||
/* Parse the constant-expression. Allow a non-constant expression
|
||
here in order to give better diagnostics in finish_static_assert. */
|
||
condition =
|
||
cp_parser_constant_expression (parser,
|
||
/*allow_non_constant_p=*/true,
|
||
/*non_constant_p=*/&dummy);
|
||
|
||
/* Parse the separating `,'. */
|
||
cp_parser_require (parser, CPP_COMMA, RT_COMMA);
|
||
|
||
/* Parse the string-literal message. */
|
||
message = cp_parser_string_literal (parser,
|
||
/*translate=*/false,
|
||
/*wide_ok=*/true);
|
||
|
||
/* A `)' completes the static assertion. */
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser,
|
||
/*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
|
||
/* A semicolon terminates the declaration. */
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
|
||
/* Complete the static assertion, which may mean either processing
|
||
the static assert now or saving it for template instantiation. */
|
||
finish_static_assert (condition, message, saved_loc, member_p);
|
||
}
|
||
|
||
/* Parse the expression in decltype ( expression ). */
|
||
|
||
static tree
|
||
cp_parser_decltype_expr (cp_parser *parser,
|
||
bool &id_expression_or_member_access_p)
|
||
{
|
||
cp_token *id_expr_start_token;
|
||
tree expr;
|
||
|
||
/* First, try parsing an id-expression. */
|
||
id_expr_start_token = cp_lexer_peek_token (parser->lexer);
|
||
cp_parser_parse_tentatively (parser);
|
||
expr = cp_parser_id_expression (parser,
|
||
/*template_keyword_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
/*template_p=*/NULL,
|
||
/*declarator_p=*/false,
|
||
/*optional_p=*/false);
|
||
|
||
if (!cp_parser_error_occurred (parser) && expr != error_mark_node)
|
||
{
|
||
bool non_integral_constant_expression_p = false;
|
||
tree id_expression = expr;
|
||
cp_id_kind idk;
|
||
const char *error_msg;
|
||
|
||
if (identifier_p (expr))
|
||
/* Lookup the name we got back from the id-expression. */
|
||
expr = cp_parser_lookup_name_simple (parser, expr,
|
||
id_expr_start_token->location);
|
||
|
||
if (expr
|
||
&& expr != error_mark_node
|
||
&& TREE_CODE (expr) != TEMPLATE_ID_EXPR
|
||
&& TREE_CODE (expr) != TYPE_DECL
|
||
&& (TREE_CODE (expr) != BIT_NOT_EXPR
|
||
|| !TYPE_P (TREE_OPERAND (expr, 0)))
|
||
&& cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN)
|
||
{
|
||
/* Complete lookup of the id-expression. */
|
||
expr = (finish_id_expression
|
||
(id_expression, expr, parser->scope, &idk,
|
||
/*integral_constant_expression_p=*/false,
|
||
/*allow_non_integral_constant_expression_p=*/true,
|
||
&non_integral_constant_expression_p,
|
||
/*template_p=*/false,
|
||
/*done=*/true,
|
||
/*address_p=*/false,
|
||
/*template_arg_p=*/false,
|
||
&error_msg,
|
||
id_expr_start_token->location));
|
||
|
||
if (expr == error_mark_node)
|
||
/* We found an id-expression, but it was something that we
|
||
should not have found. This is an error, not something
|
||
we can recover from, so note that we found an
|
||
id-expression and we'll recover as gracefully as
|
||
possible. */
|
||
id_expression_or_member_access_p = true;
|
||
}
|
||
|
||
if (expr
|
||
&& expr != error_mark_node
|
||
&& cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN)
|
||
/* We have an id-expression. */
|
||
id_expression_or_member_access_p = true;
|
||
}
|
||
|
||
if (!id_expression_or_member_access_p)
|
||
{
|
||
/* Abort the id-expression parse. */
|
||
cp_parser_abort_tentative_parse (parser);
|
||
|
||
/* Parsing tentatively, again. */
|
||
cp_parser_parse_tentatively (parser);
|
||
|
||
/* Parse a class member access. */
|
||
expr = cp_parser_postfix_expression (parser, /*address_p=*/false,
|
||
/*cast_p=*/false, /*decltype*/true,
|
||
/*member_access_only_p=*/true, NULL);
|
||
|
||
if (expr
|
||
&& expr != error_mark_node
|
||
&& cp_lexer_peek_token (parser->lexer)->type == CPP_CLOSE_PAREN)
|
||
/* We have an id-expression. */
|
||
id_expression_or_member_access_p = true;
|
||
}
|
||
|
||
if (id_expression_or_member_access_p)
|
||
/* We have parsed the complete id-expression or member access. */
|
||
cp_parser_parse_definitely (parser);
|
||
else
|
||
{
|
||
/* Abort our attempt to parse an id-expression or member access
|
||
expression. */
|
||
cp_parser_abort_tentative_parse (parser);
|
||
|
||
/* Parse a full expression. */
|
||
expr = cp_parser_expression (parser, /*cast_p=*/false,
|
||
/*decltype*/true, NULL);
|
||
}
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Parse a `decltype' type. Returns the type.
|
||
|
||
simple-type-specifier:
|
||
decltype ( expression )
|
||
C++14 proposal:
|
||
decltype ( auto ) */
|
||
|
||
static tree
|
||
cp_parser_decltype (cp_parser *parser)
|
||
{
|
||
tree expr;
|
||
bool id_expression_or_member_access_p = false;
|
||
const char *saved_message;
|
||
bool saved_integral_constant_expression_p;
|
||
bool saved_non_integral_constant_expression_p;
|
||
bool saved_greater_than_is_operator_p;
|
||
cp_token *start_token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
if (start_token->type == CPP_DECLTYPE)
|
||
{
|
||
/* Already parsed. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return start_token->u.value;
|
||
}
|
||
|
||
/* Look for the `decltype' token. */
|
||
if (!cp_parser_require_keyword (parser, RID_DECLTYPE, RT_DECLTYPE))
|
||
return error_mark_node;
|
||
|
||
/* Parse the opening `('. */
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return error_mark_node;
|
||
|
||
/* decltype (auto) */
|
||
if (cxx_dialect >= cxx1y
|
||
&& cp_lexer_next_token_is_keyword (parser->lexer, RID_AUTO))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
return error_mark_node;
|
||
expr = make_decltype_auto ();
|
||
AUTO_IS_DECLTYPE (expr) = true;
|
||
goto rewrite;
|
||
}
|
||
|
||
/* Types cannot be defined in a `decltype' expression. Save away the
|
||
old message. */
|
||
saved_message = parser->type_definition_forbidden_message;
|
||
|
||
/* And create the new one. */
|
||
parser->type_definition_forbidden_message
|
||
= G_("types may not be defined in %<decltype%> expressions");
|
||
|
||
/* The restrictions on constant-expressions do not apply inside
|
||
decltype expressions. */
|
||
saved_integral_constant_expression_p
|
||
= parser->integral_constant_expression_p;
|
||
saved_non_integral_constant_expression_p
|
||
= parser->non_integral_constant_expression_p;
|
||
parser->integral_constant_expression_p = false;
|
||
|
||
/* Within a parenthesized expression, a `>' token is always
|
||
the greater-than operator. */
|
||
saved_greater_than_is_operator_p
|
||
= parser->greater_than_is_operator_p;
|
||
parser->greater_than_is_operator_p = true;
|
||
|
||
/* Do not actually evaluate the expression. */
|
||
++cp_unevaluated_operand;
|
||
|
||
/* Do not warn about problems with the expression. */
|
||
++c_inhibit_evaluation_warnings;
|
||
|
||
expr = cp_parser_decltype_expr (parser, id_expression_or_member_access_p);
|
||
|
||
/* Go back to evaluating expressions. */
|
||
--cp_unevaluated_operand;
|
||
--c_inhibit_evaluation_warnings;
|
||
|
||
/* The `>' token might be the end of a template-id or
|
||
template-parameter-list now. */
|
||
parser->greater_than_is_operator_p
|
||
= saved_greater_than_is_operator_p;
|
||
|
||
/* Restore the old message and the integral constant expression
|
||
flags. */
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
parser->integral_constant_expression_p
|
||
= saved_integral_constant_expression_p;
|
||
parser->non_integral_constant_expression_p
|
||
= saved_non_integral_constant_expression_p;
|
||
|
||
/* Parse to the closing `)'. */
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
{
|
||
cp_parser_skip_to_closing_parenthesis (parser, true, false,
|
||
/*consume_paren=*/true);
|
||
return error_mark_node;
|
||
}
|
||
|
||
expr = finish_decltype_type (expr, id_expression_or_member_access_p,
|
||
tf_warning_or_error);
|
||
|
||
rewrite:
|
||
/* Replace the decltype with a CPP_DECLTYPE so we don't need to parse
|
||
it again. */
|
||
start_token->type = CPP_DECLTYPE;
|
||
start_token->u.value = expr;
|
||
start_token->keyword = RID_MAX;
|
||
cp_lexer_purge_tokens_after (parser->lexer, start_token);
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Special member functions [gram.special] */
|
||
|
||
/* Parse a conversion-function-id.
|
||
|
||
conversion-function-id:
|
||
operator conversion-type-id
|
||
|
||
Returns an IDENTIFIER_NODE representing the operator. */
|
||
|
||
static tree
|
||
cp_parser_conversion_function_id (cp_parser* parser)
|
||
{
|
||
tree type;
|
||
tree saved_scope;
|
||
tree saved_qualifying_scope;
|
||
tree saved_object_scope;
|
||
tree pushed_scope = NULL_TREE;
|
||
|
||
/* Look for the `operator' token. */
|
||
if (!cp_parser_require_keyword (parser, RID_OPERATOR, RT_OPERATOR))
|
||
return error_mark_node;
|
||
/* When we parse the conversion-type-id, the current scope will be
|
||
reset. However, we need that information in able to look up the
|
||
conversion function later, so we save it here. */
|
||
saved_scope = parser->scope;
|
||
saved_qualifying_scope = parser->qualifying_scope;
|
||
saved_object_scope = parser->object_scope;
|
||
/* We must enter the scope of the class so that the names of
|
||
entities declared within the class are available in the
|
||
conversion-type-id. For example, consider:
|
||
|
||
struct S {
|
||
typedef int I;
|
||
operator I();
|
||
};
|
||
|
||
S::operator I() { ... }
|
||
|
||
In order to see that `I' is a type-name in the definition, we
|
||
must be in the scope of `S'. */
|
||
if (saved_scope)
|
||
pushed_scope = push_scope (saved_scope);
|
||
/* Parse the conversion-type-id. */
|
||
type = cp_parser_conversion_type_id (parser);
|
||
/* Leave the scope of the class, if any. */
|
||
if (pushed_scope)
|
||
pop_scope (pushed_scope);
|
||
/* Restore the saved scope. */
|
||
parser->scope = saved_scope;
|
||
parser->qualifying_scope = saved_qualifying_scope;
|
||
parser->object_scope = saved_object_scope;
|
||
/* If the TYPE is invalid, indicate failure. */
|
||
if (type == error_mark_node)
|
||
return error_mark_node;
|
||
return mangle_conv_op_name_for_type (type);
|
||
}
|
||
|
||
/* Parse a conversion-type-id:
|
||
|
||
conversion-type-id:
|
||
type-specifier-seq conversion-declarator [opt]
|
||
|
||
Returns the TYPE specified. */
|
||
|
||
static tree
|
||
cp_parser_conversion_type_id (cp_parser* parser)
|
||
{
|
||
tree attributes;
|
||
cp_decl_specifier_seq type_specifiers;
|
||
cp_declarator *declarator;
|
||
tree type_specified;
|
||
const char *saved_message;
|
||
|
||
/* Parse the attributes. */
|
||
attributes = cp_parser_attributes_opt (parser);
|
||
|
||
saved_message = parser->type_definition_forbidden_message;
|
||
parser->type_definition_forbidden_message
|
||
= G_("types may not be defined in a conversion-type-id");
|
||
|
||
/* Parse the type-specifiers. */
|
||
cp_parser_type_specifier_seq (parser, /*is_declaration=*/false,
|
||
/*is_trailing_return=*/false,
|
||
&type_specifiers);
|
||
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
|
||
/* If that didn't work, stop. */
|
||
if (type_specifiers.type == error_mark_node)
|
||
return error_mark_node;
|
||
/* Parse the conversion-declarator. */
|
||
declarator = cp_parser_conversion_declarator_opt (parser);
|
||
|
||
type_specified = grokdeclarator (declarator, &type_specifiers, TYPENAME,
|
||
/*initialized=*/0, &attributes);
|
||
if (attributes)
|
||
cplus_decl_attributes (&type_specified, attributes, /*flags=*/0);
|
||
|
||
/* Don't give this error when parsing tentatively. This happens to
|
||
work because we always parse this definitively once. */
|
||
if (! cp_parser_uncommitted_to_tentative_parse_p (parser)
|
||
&& type_uses_auto (type_specified))
|
||
{
|
||
if (cxx_dialect < cxx1y)
|
||
{
|
||
error ("invalid use of %<auto%> in conversion operator");
|
||
return error_mark_node;
|
||
}
|
||
else if (template_parm_scope_p ())
|
||
warning (0, "use of %<auto%> in member template "
|
||
"conversion operator can never be deduced");
|
||
}
|
||
|
||
return type_specified;
|
||
}
|
||
|
||
/* Parse an (optional) conversion-declarator.
|
||
|
||
conversion-declarator:
|
||
ptr-operator conversion-declarator [opt]
|
||
|
||
*/
|
||
|
||
static cp_declarator *
|
||
cp_parser_conversion_declarator_opt (cp_parser* parser)
|
||
{
|
||
enum tree_code code;
|
||
tree class_type, std_attributes = NULL_TREE;
|
||
cp_cv_quals cv_quals;
|
||
|
||
/* We don't know if there's a ptr-operator next, or not. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Try the ptr-operator. */
|
||
code = cp_parser_ptr_operator (parser, &class_type, &cv_quals,
|
||
&std_attributes);
|
||
/* If it worked, look for more conversion-declarators. */
|
||
if (cp_parser_parse_definitely (parser))
|
||
{
|
||
cp_declarator *declarator;
|
||
|
||
/* Parse another optional declarator. */
|
||
declarator = cp_parser_conversion_declarator_opt (parser);
|
||
|
||
declarator = cp_parser_make_indirect_declarator
|
||
(code, class_type, cv_quals, declarator, std_attributes);
|
||
|
||
return declarator;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Parse an (optional) ctor-initializer.
|
||
|
||
ctor-initializer:
|
||
: mem-initializer-list
|
||
|
||
Returns TRUE iff the ctor-initializer was actually present. */
|
||
|
||
static bool
|
||
cp_parser_ctor_initializer_opt (cp_parser* parser)
|
||
{
|
||
/* If the next token is not a `:', then there is no
|
||
ctor-initializer. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
|
||
{
|
||
/* Do default initialization of any bases and members. */
|
||
if (DECL_CONSTRUCTOR_P (current_function_decl))
|
||
finish_mem_initializers (NULL_TREE);
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Consume the `:' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* And the mem-initializer-list. */
|
||
cp_parser_mem_initializer_list (parser);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Parse a mem-initializer-list.
|
||
|
||
mem-initializer-list:
|
||
mem-initializer ... [opt]
|
||
mem-initializer ... [opt] , mem-initializer-list */
|
||
|
||
static void
|
||
cp_parser_mem_initializer_list (cp_parser* parser)
|
||
{
|
||
tree mem_initializer_list = NULL_TREE;
|
||
tree target_ctor = error_mark_node;
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* Let the semantic analysis code know that we are starting the
|
||
mem-initializer-list. */
|
||
if (!DECL_CONSTRUCTOR_P (current_function_decl))
|
||
error_at (token->location,
|
||
"only constructors take member initializers");
|
||
|
||
/* Loop through the list. */
|
||
while (true)
|
||
{
|
||
tree mem_initializer;
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* Parse the mem-initializer. */
|
||
mem_initializer = cp_parser_mem_initializer (parser);
|
||
/* If the next token is a `...', we're expanding member initializers. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
|
||
{
|
||
/* Consume the `...'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* The TREE_PURPOSE must be a _TYPE, because base-specifiers
|
||
can be expanded but members cannot. */
|
||
if (mem_initializer != error_mark_node
|
||
&& !TYPE_P (TREE_PURPOSE (mem_initializer)))
|
||
{
|
||
error_at (token->location,
|
||
"cannot expand initializer for member %<%D%>",
|
||
TREE_PURPOSE (mem_initializer));
|
||
mem_initializer = error_mark_node;
|
||
}
|
||
|
||
/* Construct the pack expansion type. */
|
||
if (mem_initializer != error_mark_node)
|
||
mem_initializer = make_pack_expansion (mem_initializer);
|
||
}
|
||
if (target_ctor != error_mark_node
|
||
&& mem_initializer != error_mark_node)
|
||
{
|
||
error ("mem-initializer for %qD follows constructor delegation",
|
||
TREE_PURPOSE (mem_initializer));
|
||
mem_initializer = error_mark_node;
|
||
}
|
||
/* Look for a target constructor. */
|
||
if (mem_initializer != error_mark_node
|
||
&& CLASS_TYPE_P (TREE_PURPOSE (mem_initializer))
|
||
&& same_type_p (TREE_PURPOSE (mem_initializer), current_class_type))
|
||
{
|
||
maybe_warn_cpp0x (CPP0X_DELEGATING_CTORS);
|
||
if (mem_initializer_list)
|
||
{
|
||
error ("constructor delegation follows mem-initializer for %qD",
|
||
TREE_PURPOSE (mem_initializer_list));
|
||
mem_initializer = error_mark_node;
|
||
}
|
||
target_ctor = mem_initializer;
|
||
}
|
||
/* Add it to the list, unless it was erroneous. */
|
||
if (mem_initializer != error_mark_node)
|
||
{
|
||
TREE_CHAIN (mem_initializer) = mem_initializer_list;
|
||
mem_initializer_list = mem_initializer;
|
||
}
|
||
/* If the next token is not a `,', we're done. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
|
||
break;
|
||
/* Consume the `,' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
/* Perform semantic analysis. */
|
||
if (DECL_CONSTRUCTOR_P (current_function_decl))
|
||
finish_mem_initializers (mem_initializer_list);
|
||
}
|
||
|
||
/* Parse a mem-initializer.
|
||
|
||
mem-initializer:
|
||
mem-initializer-id ( expression-list [opt] )
|
||
mem-initializer-id braced-init-list
|
||
|
||
GNU extension:
|
||
|
||
mem-initializer:
|
||
( expression-list [opt] )
|
||
|
||
Returns a TREE_LIST. The TREE_PURPOSE is the TYPE (for a base
|
||
class) or FIELD_DECL (for a non-static data member) to initialize;
|
||
the TREE_VALUE is the expression-list. An empty initialization
|
||
list is represented by void_list_node. */
|
||
|
||
static tree
|
||
cp_parser_mem_initializer (cp_parser* parser)
|
||
{
|
||
tree mem_initializer_id;
|
||
tree expression_list;
|
||
tree member;
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* Find out what is being initialized. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
|
||
{
|
||
permerror (token->location,
|
||
"anachronistic old-style base class initializer");
|
||
mem_initializer_id = NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
mem_initializer_id = cp_parser_mem_initializer_id (parser);
|
||
if (mem_initializer_id == error_mark_node)
|
||
return mem_initializer_id;
|
||
}
|
||
member = expand_member_init (mem_initializer_id);
|
||
if (member && !DECL_P (member))
|
||
in_base_initializer = 1;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
bool expr_non_constant_p;
|
||
cp_lexer_set_source_position (parser->lexer);
|
||
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
|
||
expression_list = cp_parser_braced_list (parser, &expr_non_constant_p);
|
||
CONSTRUCTOR_IS_DIRECT_INIT (expression_list) = 1;
|
||
expression_list = build_tree_list (NULL_TREE, expression_list);
|
||
}
|
||
else
|
||
{
|
||
vec<tree, va_gc> *vec;
|
||
vec = cp_parser_parenthesized_expression_list (parser, non_attr,
|
||
/*cast_p=*/false,
|
||
/*allow_expansion_p=*/true,
|
||
/*non_constant_p=*/NULL);
|
||
if (vec == NULL)
|
||
return error_mark_node;
|
||
expression_list = build_tree_list_vec (vec);
|
||
release_tree_vector (vec);
|
||
}
|
||
|
||
if (expression_list == error_mark_node)
|
||
return error_mark_node;
|
||
if (!expression_list)
|
||
expression_list = void_type_node;
|
||
|
||
in_base_initializer = 0;
|
||
|
||
return member ? build_tree_list (member, expression_list) : error_mark_node;
|
||
}
|
||
|
||
/* Parse a mem-initializer-id.
|
||
|
||
mem-initializer-id:
|
||
:: [opt] nested-name-specifier [opt] class-name
|
||
identifier
|
||
|
||
Returns a TYPE indicating the class to be initializer for the first
|
||
production. Returns an IDENTIFIER_NODE indicating the data member
|
||
to be initialized for the second production. */
|
||
|
||
static tree
|
||
cp_parser_mem_initializer_id (cp_parser* parser)
|
||
{
|
||
bool global_scope_p;
|
||
bool nested_name_specifier_p;
|
||
bool template_p = false;
|
||
tree id;
|
||
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* `typename' is not allowed in this context ([temp.res]). */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
|
||
{
|
||
error_at (token->location,
|
||
"keyword %<typename%> not allowed in this context (a qualified "
|
||
"member initializer is implicitly a type)");
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
/* Look for the optional `::' operator. */
|
||
global_scope_p
|
||
= (cp_parser_global_scope_opt (parser,
|
||
/*current_scope_valid_p=*/false)
|
||
!= NULL_TREE);
|
||
/* Look for the optional nested-name-specifier. The simplest way to
|
||
implement:
|
||
|
||
[temp.res]
|
||
|
||
The keyword `typename' is not permitted in a base-specifier or
|
||
mem-initializer; in these contexts a qualified name that
|
||
depends on a template-parameter is implicitly assumed to be a
|
||
type name.
|
||
|
||
is to assume that we have seen the `typename' keyword at this
|
||
point. */
|
||
nested_name_specifier_p
|
||
= (cp_parser_nested_name_specifier_opt (parser,
|
||
/*typename_keyword_p=*/true,
|
||
/*check_dependency_p=*/true,
|
||
/*type_p=*/true,
|
||
/*is_declaration=*/true)
|
||
!= NULL_TREE);
|
||
if (nested_name_specifier_p)
|
||
template_p = cp_parser_optional_template_keyword (parser);
|
||
/* If there is a `::' operator or a nested-name-specifier, then we
|
||
are definitely looking for a class-name. */
|
||
if (global_scope_p || nested_name_specifier_p)
|
||
return cp_parser_class_name (parser,
|
||
/*typename_keyword_p=*/true,
|
||
/*template_keyword_p=*/template_p,
|
||
typename_type,
|
||
/*check_dependency_p=*/true,
|
||
/*class_head_p=*/false,
|
||
/*is_declaration=*/true);
|
||
/* Otherwise, we could also be looking for an ordinary identifier. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Try a class-name. */
|
||
id = cp_parser_class_name (parser,
|
||
/*typename_keyword_p=*/true,
|
||
/*template_keyword_p=*/false,
|
||
none_type,
|
||
/*check_dependency_p=*/true,
|
||
/*class_head_p=*/false,
|
||
/*is_declaration=*/true);
|
||
/* If we found one, we're done. */
|
||
if (cp_parser_parse_definitely (parser))
|
||
return id;
|
||
/* Otherwise, look for an ordinary identifier. */
|
||
return cp_parser_identifier (parser);
|
||
}
|
||
|
||
/* Overloading [gram.over] */
|
||
|
||
/* Parse an operator-function-id.
|
||
|
||
operator-function-id:
|
||
operator operator
|
||
|
||
Returns an IDENTIFIER_NODE for the operator which is a
|
||
human-readable spelling of the identifier, e.g., `operator +'. */
|
||
|
||
static tree
|
||
cp_parser_operator_function_id (cp_parser* parser)
|
||
{
|
||
/* Look for the `operator' keyword. */
|
||
if (!cp_parser_require_keyword (parser, RID_OPERATOR, RT_OPERATOR))
|
||
return error_mark_node;
|
||
/* And then the name of the operator itself. */
|
||
return cp_parser_operator (parser);
|
||
}
|
||
|
||
/* Return an identifier node for a user-defined literal operator.
|
||
The suffix identifier is chained to the operator name identifier. */
|
||
|
||
static tree
|
||
cp_literal_operator_id (const char* name)
|
||
{
|
||
tree identifier;
|
||
char *buffer = XNEWVEC (char, strlen (UDLIT_OP_ANSI_PREFIX)
|
||
+ strlen (name) + 10);
|
||
sprintf (buffer, UDLIT_OP_ANSI_FORMAT, name);
|
||
identifier = get_identifier (buffer);
|
||
|
||
return identifier;
|
||
}
|
||
|
||
/* Parse an operator.
|
||
|
||
operator:
|
||
new delete new[] delete[] + - * / % ^ & | ~ ! = < >
|
||
+= -= *= /= %= ^= &= |= << >> >>= <<= == != <= >= &&
|
||
|| ++ -- , ->* -> () []
|
||
|
||
GNU Extensions:
|
||
|
||
operator:
|
||
<? >? <?= >?=
|
||
|
||
Returns an IDENTIFIER_NODE for the operator which is a
|
||
human-readable spelling of the identifier, e.g., `operator +'. */
|
||
|
||
static tree
|
||
cp_parser_operator (cp_parser* parser)
|
||
{
|
||
tree id = NULL_TREE;
|
||
cp_token *token;
|
||
bool utf8 = false;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* Figure out which operator we have. */
|
||
switch (token->type)
|
||
{
|
||
case CPP_KEYWORD:
|
||
{
|
||
enum tree_code op;
|
||
|
||
/* The keyword should be either `new' or `delete'. */
|
||
if (token->keyword == RID_NEW)
|
||
op = NEW_EXPR;
|
||
else if (token->keyword == RID_DELETE)
|
||
op = DELETE_EXPR;
|
||
else
|
||
break;
|
||
|
||
/* Consume the `new' or `delete' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If it's a `[' token then this is the array variant of the
|
||
operator. */
|
||
if (token->type == CPP_OPEN_SQUARE)
|
||
{
|
||
/* Consume the `[' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Look for the `]' token. */
|
||
cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
|
||
id = ansi_opname (op == NEW_EXPR
|
||
? VEC_NEW_EXPR : VEC_DELETE_EXPR);
|
||
}
|
||
/* Otherwise, we have the non-array variant. */
|
||
else
|
||
id = ansi_opname (op);
|
||
|
||
return id;
|
||
}
|
||
|
||
case CPP_PLUS:
|
||
id = ansi_opname (PLUS_EXPR);
|
||
break;
|
||
|
||
case CPP_MINUS:
|
||
id = ansi_opname (MINUS_EXPR);
|
||
break;
|
||
|
||
case CPP_MULT:
|
||
id = ansi_opname (MULT_EXPR);
|
||
break;
|
||
|
||
case CPP_DIV:
|
||
id = ansi_opname (TRUNC_DIV_EXPR);
|
||
break;
|
||
|
||
case CPP_MOD:
|
||
id = ansi_opname (TRUNC_MOD_EXPR);
|
||
break;
|
||
|
||
case CPP_XOR:
|
||
id = ansi_opname (BIT_XOR_EXPR);
|
||
break;
|
||
|
||
case CPP_AND:
|
||
id = ansi_opname (BIT_AND_EXPR);
|
||
break;
|
||
|
||
case CPP_OR:
|
||
id = ansi_opname (BIT_IOR_EXPR);
|
||
break;
|
||
|
||
case CPP_COMPL:
|
||
id = ansi_opname (BIT_NOT_EXPR);
|
||
break;
|
||
|
||
case CPP_NOT:
|
||
id = ansi_opname (TRUTH_NOT_EXPR);
|
||
break;
|
||
|
||
case CPP_EQ:
|
||
id = ansi_assopname (NOP_EXPR);
|
||
break;
|
||
|
||
case CPP_LESS:
|
||
id = ansi_opname (LT_EXPR);
|
||
break;
|
||
|
||
case CPP_GREATER:
|
||
id = ansi_opname (GT_EXPR);
|
||
break;
|
||
|
||
case CPP_PLUS_EQ:
|
||
id = ansi_assopname (PLUS_EXPR);
|
||
break;
|
||
|
||
case CPP_MINUS_EQ:
|
||
id = ansi_assopname (MINUS_EXPR);
|
||
break;
|
||
|
||
case CPP_MULT_EQ:
|
||
id = ansi_assopname (MULT_EXPR);
|
||
break;
|
||
|
||
case CPP_DIV_EQ:
|
||
id = ansi_assopname (TRUNC_DIV_EXPR);
|
||
break;
|
||
|
||
case CPP_MOD_EQ:
|
||
id = ansi_assopname (TRUNC_MOD_EXPR);
|
||
break;
|
||
|
||
case CPP_XOR_EQ:
|
||
id = ansi_assopname (BIT_XOR_EXPR);
|
||
break;
|
||
|
||
case CPP_AND_EQ:
|
||
id = ansi_assopname (BIT_AND_EXPR);
|
||
break;
|
||
|
||
case CPP_OR_EQ:
|
||
id = ansi_assopname (BIT_IOR_EXPR);
|
||
break;
|
||
|
||
case CPP_LSHIFT:
|
||
id = ansi_opname (LSHIFT_EXPR);
|
||
break;
|
||
|
||
case CPP_RSHIFT:
|
||
id = ansi_opname (RSHIFT_EXPR);
|
||
break;
|
||
|
||
case CPP_LSHIFT_EQ:
|
||
id = ansi_assopname (LSHIFT_EXPR);
|
||
break;
|
||
|
||
case CPP_RSHIFT_EQ:
|
||
id = ansi_assopname (RSHIFT_EXPR);
|
||
break;
|
||
|
||
case CPP_EQ_EQ:
|
||
id = ansi_opname (EQ_EXPR);
|
||
break;
|
||
|
||
case CPP_NOT_EQ:
|
||
id = ansi_opname (NE_EXPR);
|
||
break;
|
||
|
||
case CPP_LESS_EQ:
|
||
id = ansi_opname (LE_EXPR);
|
||
break;
|
||
|
||
case CPP_GREATER_EQ:
|
||
id = ansi_opname (GE_EXPR);
|
||
break;
|
||
|
||
case CPP_AND_AND:
|
||
id = ansi_opname (TRUTH_ANDIF_EXPR);
|
||
break;
|
||
|
||
case CPP_OR_OR:
|
||
id = ansi_opname (TRUTH_ORIF_EXPR);
|
||
break;
|
||
|
||
case CPP_PLUS_PLUS:
|
||
id = ansi_opname (POSTINCREMENT_EXPR);
|
||
break;
|
||
|
||
case CPP_MINUS_MINUS:
|
||
id = ansi_opname (PREDECREMENT_EXPR);
|
||
break;
|
||
|
||
case CPP_COMMA:
|
||
id = ansi_opname (COMPOUND_EXPR);
|
||
break;
|
||
|
||
case CPP_DEREF_STAR:
|
||
id = ansi_opname (MEMBER_REF);
|
||
break;
|
||
|
||
case CPP_DEREF:
|
||
id = ansi_opname (COMPONENT_REF);
|
||
break;
|
||
|
||
case CPP_OPEN_PAREN:
|
||
/* Consume the `('. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Look for the matching `)'. */
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
return ansi_opname (CALL_EXPR);
|
||
|
||
case CPP_OPEN_SQUARE:
|
||
/* Consume the `['. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Look for the matching `]'. */
|
||
cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
|
||
return ansi_opname (ARRAY_REF);
|
||
|
||
case CPP_UTF8STRING:
|
||
case CPP_UTF8STRING_USERDEF:
|
||
utf8 = true;
|
||
case CPP_STRING:
|
||
case CPP_WSTRING:
|
||
case CPP_STRING16:
|
||
case CPP_STRING32:
|
||
case CPP_STRING_USERDEF:
|
||
case CPP_WSTRING_USERDEF:
|
||
case CPP_STRING16_USERDEF:
|
||
case CPP_STRING32_USERDEF:
|
||
{
|
||
tree str, string_tree;
|
||
int sz, len;
|
||
|
||
if (cxx_dialect == cxx98)
|
||
maybe_warn_cpp0x (CPP0X_USER_DEFINED_LITERALS);
|
||
|
||
/* Consume the string. */
|
||
str = cp_parser_string_literal (parser, /*translate=*/true,
|
||
/*wide_ok=*/true, /*lookup_udlit=*/false);
|
||
if (str == error_mark_node)
|
||
return error_mark_node;
|
||
else if (TREE_CODE (str) == USERDEF_LITERAL)
|
||
{
|
||
string_tree = USERDEF_LITERAL_VALUE (str);
|
||
id = USERDEF_LITERAL_SUFFIX_ID (str);
|
||
}
|
||
else
|
||
{
|
||
string_tree = str;
|
||
/* Look for the suffix identifier. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type == CPP_NAME)
|
||
id = cp_parser_identifier (parser);
|
||
else if (token->type == CPP_KEYWORD)
|
||
{
|
||
error ("unexpected keyword;"
|
||
" remove space between quotes and suffix identifier");
|
||
return error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
error ("expected suffix identifier");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
sz = TREE_INT_CST_LOW (TYPE_SIZE_UNIT
|
||
(TREE_TYPE (TREE_TYPE (string_tree))));
|
||
len = TREE_STRING_LENGTH (string_tree) / sz - 1;
|
||
if (len != 0)
|
||
{
|
||
error ("expected empty string after %<operator%> keyword");
|
||
return error_mark_node;
|
||
}
|
||
if (utf8 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (string_tree)))
|
||
!= char_type_node)
|
||
{
|
||
error ("invalid encoding prefix in literal operator");
|
||
return error_mark_node;
|
||
}
|
||
if (id != error_mark_node)
|
||
{
|
||
const char *name = IDENTIFIER_POINTER (id);
|
||
id = cp_literal_operator_id (name);
|
||
}
|
||
return id;
|
||
}
|
||
|
||
default:
|
||
/* Anything else is an error. */
|
||
break;
|
||
}
|
||
|
||
/* If we have selected an identifier, we need to consume the
|
||
operator token. */
|
||
if (id)
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Otherwise, no valid operator name was present. */
|
||
else
|
||
{
|
||
cp_parser_error (parser, "expected operator");
|
||
id = error_mark_node;
|
||
}
|
||
|
||
return id;
|
||
}
|
||
|
||
/* Parse a template-declaration.
|
||
|
||
template-declaration:
|
||
export [opt] template < template-parameter-list > declaration
|
||
|
||
If MEMBER_P is TRUE, this template-declaration occurs within a
|
||
class-specifier.
|
||
|
||
The grammar rule given by the standard isn't correct. What
|
||
is really meant is:
|
||
|
||
template-declaration:
|
||
export [opt] template-parameter-list-seq
|
||
decl-specifier-seq [opt] init-declarator [opt] ;
|
||
export [opt] template-parameter-list-seq
|
||
function-definition
|
||
|
||
template-parameter-list-seq:
|
||
template-parameter-list-seq [opt]
|
||
template < template-parameter-list > */
|
||
|
||
static void
|
||
cp_parser_template_declaration (cp_parser* parser, bool member_p)
|
||
{
|
||
/* Check for `export'. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT))
|
||
{
|
||
/* Consume the `export' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Warn that we do not support `export'. */
|
||
warning (0, "keyword %<export%> not implemented, and will be ignored");
|
||
}
|
||
|
||
cp_parser_template_declaration_after_export (parser, member_p);
|
||
}
|
||
|
||
/* Parse a template-parameter-list.
|
||
|
||
template-parameter-list:
|
||
template-parameter
|
||
template-parameter-list , template-parameter
|
||
|
||
Returns a TREE_LIST. Each node represents a template parameter.
|
||
The nodes are connected via their TREE_CHAINs. */
|
||
|
||
static tree
|
||
cp_parser_template_parameter_list (cp_parser* parser)
|
||
{
|
||
tree parameter_list = NULL_TREE;
|
||
|
||
begin_template_parm_list ();
|
||
|
||
/* The loop below parses the template parms. We first need to know
|
||
the total number of template parms to be able to compute proper
|
||
canonical types of each dependent type. So after the loop, when
|
||
we know the total number of template parms,
|
||
end_template_parm_list computes the proper canonical types and
|
||
fixes up the dependent types accordingly. */
|
||
while (true)
|
||
{
|
||
tree parameter;
|
||
bool is_non_type;
|
||
bool is_parameter_pack;
|
||
location_t parm_loc;
|
||
|
||
/* Parse the template-parameter. */
|
||
parm_loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
parameter = cp_parser_template_parameter (parser,
|
||
&is_non_type,
|
||
&is_parameter_pack);
|
||
/* Add it to the list. */
|
||
if (parameter != error_mark_node)
|
||
parameter_list = process_template_parm (parameter_list,
|
||
parm_loc,
|
||
parameter,
|
||
is_non_type,
|
||
is_parameter_pack);
|
||
else
|
||
{
|
||
tree err_parm = build_tree_list (parameter, parameter);
|
||
parameter_list = chainon (parameter_list, err_parm);
|
||
}
|
||
|
||
/* If the next token is not a `,', we're done. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
|
||
break;
|
||
/* Otherwise, consume the `,' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
return end_template_parm_list (parameter_list);
|
||
}
|
||
|
||
/* Parse a template-parameter.
|
||
|
||
template-parameter:
|
||
type-parameter
|
||
parameter-declaration
|
||
|
||
If all goes well, returns a TREE_LIST. The TREE_VALUE represents
|
||
the parameter. The TREE_PURPOSE is the default value, if any.
|
||
Returns ERROR_MARK_NODE on failure. *IS_NON_TYPE is set to true
|
||
iff this parameter is a non-type parameter. *IS_PARAMETER_PACK is
|
||
set to true iff this parameter is a parameter pack. */
|
||
|
||
static tree
|
||
cp_parser_template_parameter (cp_parser* parser, bool *is_non_type,
|
||
bool *is_parameter_pack)
|
||
{
|
||
cp_token *token;
|
||
cp_parameter_declarator *parameter_declarator;
|
||
cp_declarator *id_declarator;
|
||
tree parm;
|
||
|
||
/* Assume it is a type parameter or a template parameter. */
|
||
*is_non_type = false;
|
||
/* Assume it not a parameter pack. */
|
||
*is_parameter_pack = false;
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If it is `class' or `template', we have a type-parameter. */
|
||
if (token->keyword == RID_TEMPLATE)
|
||
return cp_parser_type_parameter (parser, is_parameter_pack);
|
||
/* If it is `class' or `typename' we do not know yet whether it is a
|
||
type parameter or a non-type parameter. Consider:
|
||
|
||
template <typename T, typename T::X X> ...
|
||
|
||
or:
|
||
|
||
template <class C, class D*> ...
|
||
|
||
Here, the first parameter is a type parameter, and the second is
|
||
a non-type parameter. We can tell by looking at the token after
|
||
the identifier -- if it is a `,', `=', or `>' then we have a type
|
||
parameter. */
|
||
if (token->keyword == RID_TYPENAME || token->keyword == RID_CLASS)
|
||
{
|
||
/* Peek at the token after `class' or `typename'. */
|
||
token = cp_lexer_peek_nth_token (parser->lexer, 2);
|
||
/* If it's an ellipsis, we have a template type parameter
|
||
pack. */
|
||
if (token->type == CPP_ELLIPSIS)
|
||
return cp_parser_type_parameter (parser, is_parameter_pack);
|
||
/* If it's an identifier, skip it. */
|
||
if (token->type == CPP_NAME)
|
||
token = cp_lexer_peek_nth_token (parser->lexer, 3);
|
||
/* Now, see if the token looks like the end of a template
|
||
parameter. */
|
||
if (token->type == CPP_COMMA
|
||
|| token->type == CPP_EQ
|
||
|| token->type == CPP_GREATER)
|
||
return cp_parser_type_parameter (parser, is_parameter_pack);
|
||
}
|
||
|
||
/* Otherwise, it is a non-type parameter.
|
||
|
||
[temp.param]
|
||
|
||
When parsing a default template-argument for a non-type
|
||
template-parameter, the first non-nested `>' is taken as the end
|
||
of the template parameter-list rather than a greater-than
|
||
operator. */
|
||
*is_non_type = true;
|
||
parameter_declarator
|
||
= cp_parser_parameter_declaration (parser, /*template_parm_p=*/true,
|
||
/*parenthesized_p=*/NULL);
|
||
|
||
if (!parameter_declarator)
|
||
return error_mark_node;
|
||
|
||
/* If the parameter declaration is marked as a parameter pack, set
|
||
*IS_PARAMETER_PACK to notify the caller. Also, unmark the
|
||
declarator's PACK_EXPANSION_P, otherwise we'll get errors from
|
||
grokdeclarator. */
|
||
if (parameter_declarator->declarator
|
||
&& parameter_declarator->declarator->parameter_pack_p)
|
||
{
|
||
*is_parameter_pack = true;
|
||
parameter_declarator->declarator->parameter_pack_p = false;
|
||
}
|
||
|
||
if (parameter_declarator->default_argument)
|
||
{
|
||
/* Can happen in some cases of erroneous input (c++/34892). */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
|
||
/* Consume the `...' for better error recovery. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
/* If the next token is an ellipsis, and we don't already have it
|
||
marked as a parameter pack, then we have a parameter pack (that
|
||
has no declarator). */
|
||
else if (!*is_parameter_pack
|
||
&& cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)
|
||
&& (declarator_can_be_parameter_pack
|
||
(parameter_declarator->declarator)))
|
||
{
|
||
/* Consume the `...'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
maybe_warn_variadic_templates ();
|
||
|
||
*is_parameter_pack = true;
|
||
}
|
||
/* We might end up with a pack expansion as the type of the non-type
|
||
template parameter, in which case this is a non-type template
|
||
parameter pack. */
|
||
else if (parameter_declarator->decl_specifiers.type
|
||
&& PACK_EXPANSION_P (parameter_declarator->decl_specifiers.type))
|
||
{
|
||
*is_parameter_pack = true;
|
||
parameter_declarator->decl_specifiers.type =
|
||
PACK_EXPANSION_PATTERN (parameter_declarator->decl_specifiers.type);
|
||
}
|
||
|
||
if (*is_parameter_pack && cp_lexer_next_token_is (parser->lexer, CPP_EQ))
|
||
{
|
||
/* Parameter packs cannot have default arguments. However, a
|
||
user may try to do so, so we'll parse them and give an
|
||
appropriate diagnostic here. */
|
||
|
||
cp_token *start_token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* Find the name of the parameter pack. */
|
||
id_declarator = parameter_declarator->declarator;
|
||
while (id_declarator && id_declarator->kind != cdk_id)
|
||
id_declarator = id_declarator->declarator;
|
||
|
||
if (id_declarator && id_declarator->kind == cdk_id)
|
||
error_at (start_token->location,
|
||
"template parameter pack %qD cannot have a default argument",
|
||
id_declarator->u.id.unqualified_name);
|
||
else
|
||
error_at (start_token->location,
|
||
"template parameter pack cannot have a default argument");
|
||
|
||
/* Parse the default argument, but throw away the result. */
|
||
cp_parser_default_argument (parser, /*template_parm_p=*/true);
|
||
}
|
||
|
||
parm = grokdeclarator (parameter_declarator->declarator,
|
||
¶meter_declarator->decl_specifiers,
|
||
TPARM, /*initialized=*/0,
|
||
/*attrlist=*/NULL);
|
||
if (parm == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
return build_tree_list (parameter_declarator->default_argument, parm);
|
||
}
|
||
|
||
/* Parse a type-parameter.
|
||
|
||
type-parameter:
|
||
class identifier [opt]
|
||
class identifier [opt] = type-id
|
||
typename identifier [opt]
|
||
typename identifier [opt] = type-id
|
||
template < template-parameter-list > class identifier [opt]
|
||
template < template-parameter-list > class identifier [opt]
|
||
= id-expression
|
||
|
||
GNU Extension (variadic templates):
|
||
|
||
type-parameter:
|
||
class ... identifier [opt]
|
||
typename ... identifier [opt]
|
||
|
||
Returns a TREE_LIST. The TREE_VALUE is itself a TREE_LIST. The
|
||
TREE_PURPOSE is the default-argument, if any. The TREE_VALUE is
|
||
the declaration of the parameter.
|
||
|
||
Sets *IS_PARAMETER_PACK if this is a template parameter pack. */
|
||
|
||
static tree
|
||
cp_parser_type_parameter (cp_parser* parser, bool *is_parameter_pack)
|
||
{
|
||
cp_token *token;
|
||
tree parameter;
|
||
|
||
/* Look for a keyword to tell us what kind of parameter this is. */
|
||
token = cp_parser_require (parser, CPP_KEYWORD, RT_CLASS_TYPENAME_TEMPLATE);
|
||
if (!token)
|
||
return error_mark_node;
|
||
|
||
switch (token->keyword)
|
||
{
|
||
case RID_CLASS:
|
||
case RID_TYPENAME:
|
||
{
|
||
tree identifier;
|
||
tree default_argument;
|
||
|
||
/* If the next token is an ellipsis, we have a template
|
||
argument pack. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
|
||
{
|
||
/* Consume the `...' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
maybe_warn_variadic_templates ();
|
||
|
||
*is_parameter_pack = true;
|
||
}
|
||
|
||
/* If the next token is an identifier, then it names the
|
||
parameter. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
identifier = cp_parser_identifier (parser);
|
||
else
|
||
identifier = NULL_TREE;
|
||
|
||
/* Create the parameter. */
|
||
parameter = finish_template_type_parm (class_type_node, identifier);
|
||
|
||
/* If the next token is an `=', we have a default argument. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
|
||
{
|
||
/* Consume the `=' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the default-argument. */
|
||
push_deferring_access_checks (dk_no_deferred);
|
||
default_argument = cp_parser_type_id (parser);
|
||
|
||
/* Template parameter packs cannot have default
|
||
arguments. */
|
||
if (*is_parameter_pack)
|
||
{
|
||
if (identifier)
|
||
error_at (token->location,
|
||
"template parameter pack %qD cannot have a "
|
||
"default argument", identifier);
|
||
else
|
||
error_at (token->location,
|
||
"template parameter packs cannot have "
|
||
"default arguments");
|
||
default_argument = NULL_TREE;
|
||
}
|
||
pop_deferring_access_checks ();
|
||
}
|
||
else
|
||
default_argument = NULL_TREE;
|
||
|
||
/* Create the combined representation of the parameter and the
|
||
default argument. */
|
||
parameter = build_tree_list (default_argument, parameter);
|
||
}
|
||
break;
|
||
|
||
case RID_TEMPLATE:
|
||
{
|
||
tree identifier;
|
||
tree default_argument;
|
||
|
||
/* Look for the `<'. */
|
||
cp_parser_require (parser, CPP_LESS, RT_LESS);
|
||
/* Parse the template-parameter-list. */
|
||
cp_parser_template_parameter_list (parser);
|
||
/* Look for the `>'. */
|
||
cp_parser_require (parser, CPP_GREATER, RT_GREATER);
|
||
/* Look for the `class' or 'typename' keywords. */
|
||
cp_parser_type_parameter_key (parser);
|
||
/* If the next token is an ellipsis, we have a template
|
||
argument pack. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
|
||
{
|
||
/* Consume the `...' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
maybe_warn_variadic_templates ();
|
||
|
||
*is_parameter_pack = true;
|
||
}
|
||
/* If the next token is an `=', then there is a
|
||
default-argument. If the next token is a `>', we are at
|
||
the end of the parameter-list. If the next token is a `,',
|
||
then we are at the end of this parameter. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
|
||
&& cp_lexer_next_token_is_not (parser->lexer, CPP_GREATER)
|
||
&& cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
|
||
{
|
||
identifier = cp_parser_identifier (parser);
|
||
/* Treat invalid names as if the parameter were nameless. */
|
||
if (identifier == error_mark_node)
|
||
identifier = NULL_TREE;
|
||
}
|
||
else
|
||
identifier = NULL_TREE;
|
||
|
||
/* Create the template parameter. */
|
||
parameter = finish_template_template_parm (class_type_node,
|
||
identifier);
|
||
|
||
/* If the next token is an `=', then there is a
|
||
default-argument. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
|
||
{
|
||
bool is_template;
|
||
|
||
/* Consume the `='. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the id-expression. */
|
||
push_deferring_access_checks (dk_no_deferred);
|
||
/* save token before parsing the id-expression, for error
|
||
reporting */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
default_argument
|
||
= cp_parser_id_expression (parser,
|
||
/*template_keyword_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
/*template_p=*/&is_template,
|
||
/*declarator_p=*/false,
|
||
/*optional_p=*/false);
|
||
if (TREE_CODE (default_argument) == TYPE_DECL)
|
||
/* If the id-expression was a template-id that refers to
|
||
a template-class, we already have the declaration here,
|
||
so no further lookup is needed. */
|
||
;
|
||
else
|
||
/* Look up the name. */
|
||
default_argument
|
||
= cp_parser_lookup_name (parser, default_argument,
|
||
none_type,
|
||
/*is_template=*/is_template,
|
||
/*is_namespace=*/false,
|
||
/*check_dependency=*/true,
|
||
/*ambiguous_decls=*/NULL,
|
||
token->location);
|
||
/* See if the default argument is valid. */
|
||
default_argument
|
||
= check_template_template_default_arg (default_argument);
|
||
|
||
/* Template parameter packs cannot have default
|
||
arguments. */
|
||
if (*is_parameter_pack)
|
||
{
|
||
if (identifier)
|
||
error_at (token->location,
|
||
"template parameter pack %qD cannot "
|
||
"have a default argument",
|
||
identifier);
|
||
else
|
||
error_at (token->location, "template parameter packs cannot "
|
||
"have default arguments");
|
||
default_argument = NULL_TREE;
|
||
}
|
||
pop_deferring_access_checks ();
|
||
}
|
||
else
|
||
default_argument = NULL_TREE;
|
||
|
||
/* Create the combined representation of the parameter and the
|
||
default argument. */
|
||
parameter = build_tree_list (default_argument, parameter);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
break;
|
||
}
|
||
|
||
return parameter;
|
||
}
|
||
|
||
/* Parse a template-id.
|
||
|
||
template-id:
|
||
template-name < template-argument-list [opt] >
|
||
|
||
If TEMPLATE_KEYWORD_P is TRUE, then we have just seen the
|
||
`template' keyword. In this case, a TEMPLATE_ID_EXPR will be
|
||
returned. Otherwise, if the template-name names a function, or set
|
||
of functions, returns a TEMPLATE_ID_EXPR. If the template-name
|
||
names a class, returns a TYPE_DECL for the specialization.
|
||
|
||
If CHECK_DEPENDENCY_P is FALSE, names are looked up in
|
||
uninstantiated templates. */
|
||
|
||
static tree
|
||
cp_parser_template_id (cp_parser *parser,
|
||
bool template_keyword_p,
|
||
bool check_dependency_p,
|
||
enum tag_types tag_type,
|
||
bool is_declaration)
|
||
{
|
||
int i;
|
||
tree templ;
|
||
tree arguments;
|
||
tree template_id;
|
||
cp_token_position start_of_id = 0;
|
||
deferred_access_check *chk;
|
||
vec<deferred_access_check, va_gc> *access_check;
|
||
cp_token *next_token = NULL, *next_token_2 = NULL;
|
||
bool is_identifier;
|
||
|
||
/* If the next token corresponds to a template-id, there is no need
|
||
to reparse it. */
|
||
next_token = cp_lexer_peek_token (parser->lexer);
|
||
if (next_token->type == CPP_TEMPLATE_ID)
|
||
{
|
||
struct tree_check *check_value;
|
||
|
||
/* Get the stored value. */
|
||
check_value = cp_lexer_consume_token (parser->lexer)->u.tree_check_value;
|
||
/* Perform any access checks that were deferred. */
|
||
access_check = check_value->checks;
|
||
if (access_check)
|
||
{
|
||
FOR_EACH_VEC_ELT (*access_check, i, chk)
|
||
perform_or_defer_access_check (chk->binfo,
|
||
chk->decl,
|
||
chk->diag_decl,
|
||
tf_warning_or_error);
|
||
}
|
||
/* Return the stored value. */
|
||
return check_value->value;
|
||
}
|
||
|
||
/* Avoid performing name lookup if there is no possibility of
|
||
finding a template-id. */
|
||
if ((next_token->type != CPP_NAME && next_token->keyword != RID_OPERATOR)
|
||
|| (next_token->type == CPP_NAME
|
||
&& !cp_parser_nth_token_starts_template_argument_list_p
|
||
(parser, 2)))
|
||
{
|
||
cp_parser_error (parser, "expected template-id");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Remember where the template-id starts. */
|
||
if (cp_parser_uncommitted_to_tentative_parse_p (parser))
|
||
start_of_id = cp_lexer_token_position (parser->lexer, false);
|
||
|
||
push_deferring_access_checks (dk_deferred);
|
||
|
||
/* Parse the template-name. */
|
||
is_identifier = false;
|
||
templ = cp_parser_template_name (parser, template_keyword_p,
|
||
check_dependency_p,
|
||
is_declaration,
|
||
tag_type,
|
||
&is_identifier);
|
||
if (templ == error_mark_node || is_identifier)
|
||
{
|
||
pop_deferring_access_checks ();
|
||
return templ;
|
||
}
|
||
|
||
/* If we find the sequence `[:' after a template-name, it's probably
|
||
a digraph-typo for `< ::'. Substitute the tokens and check if we can
|
||
parse correctly the argument list. */
|
||
next_token = cp_lexer_peek_token (parser->lexer);
|
||
next_token_2 = cp_lexer_peek_nth_token (parser->lexer, 2);
|
||
if (next_token->type == CPP_OPEN_SQUARE
|
||
&& next_token->flags & DIGRAPH
|
||
&& next_token_2->type == CPP_COLON
|
||
&& !(next_token_2->flags & PREV_WHITE))
|
||
{
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Change `:' into `::'. */
|
||
next_token_2->type = CPP_SCOPE;
|
||
/* Consume the first token (CPP_OPEN_SQUARE - which we pretend it is
|
||
CPP_LESS. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* Parse the arguments. */
|
||
arguments = cp_parser_enclosed_template_argument_list (parser);
|
||
if (!cp_parser_parse_definitely (parser))
|
||
{
|
||
/* If we couldn't parse an argument list, then we revert our changes
|
||
and return simply an error. Maybe this is not a template-id
|
||
after all. */
|
||
next_token_2->type = CPP_COLON;
|
||
cp_parser_error (parser, "expected %<<%>");
|
||
pop_deferring_access_checks ();
|
||
return error_mark_node;
|
||
}
|
||
/* Otherwise, emit an error about the invalid digraph, but continue
|
||
parsing because we got our argument list. */
|
||
if (permerror (next_token->location,
|
||
"%<<::%> cannot begin a template-argument list"))
|
||
{
|
||
static bool hint = false;
|
||
inform (next_token->location,
|
||
"%<<:%> is an alternate spelling for %<[%>."
|
||
" Insert whitespace between %<<%> and %<::%>");
|
||
if (!hint && !flag_permissive)
|
||
{
|
||
inform (next_token->location, "(if you use %<-fpermissive%> "
|
||
"or %<-std=c++11%>, or %<-std=gnu++11%> G++ will "
|
||
"accept your code)");
|
||
hint = true;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Look for the `<' that starts the template-argument-list. */
|
||
if (!cp_parser_require (parser, CPP_LESS, RT_LESS))
|
||
{
|
||
pop_deferring_access_checks ();
|
||
return error_mark_node;
|
||
}
|
||
/* Parse the arguments. */
|
||
arguments = cp_parser_enclosed_template_argument_list (parser);
|
||
}
|
||
|
||
/* Build a representation of the specialization. */
|
||
if (identifier_p (templ))
|
||
template_id = build_min_nt_loc (next_token->location,
|
||
TEMPLATE_ID_EXPR,
|
||
templ, arguments);
|
||
else if (DECL_TYPE_TEMPLATE_P (templ)
|
||
|| DECL_TEMPLATE_TEMPLATE_PARM_P (templ))
|
||
{
|
||
bool entering_scope;
|
||
/* In "template <typename T> ... A<T>::", A<T> is the abstract A
|
||
template (rather than some instantiation thereof) only if
|
||
is not nested within some other construct. For example, in
|
||
"template <typename T> void f(T) { A<T>::", A<T> is just an
|
||
instantiation of A. */
|
||
entering_scope = (template_parm_scope_p ()
|
||
&& cp_lexer_next_token_is (parser->lexer,
|
||
CPP_SCOPE));
|
||
template_id
|
||
= finish_template_type (templ, arguments, entering_scope);
|
||
}
|
||
else
|
||
{
|
||
/* If it's not a class-template or a template-template, it should be
|
||
a function-template. */
|
||
gcc_assert ((DECL_FUNCTION_TEMPLATE_P (templ)
|
||
|| TREE_CODE (templ) == OVERLOAD
|
||
|| BASELINK_P (templ)));
|
||
|
||
template_id = lookup_template_function (templ, arguments);
|
||
}
|
||
|
||
/* If parsing tentatively, replace the sequence of tokens that makes
|
||
up the template-id with a CPP_TEMPLATE_ID token. That way,
|
||
should we re-parse the token stream, we will not have to repeat
|
||
the effort required to do the parse, nor will we issue duplicate
|
||
error messages about problems during instantiation of the
|
||
template. */
|
||
if (start_of_id
|
||
/* Don't do this if we had a parse error in a declarator; re-parsing
|
||
might succeed if a name changes meaning (60361). */
|
||
&& !(cp_parser_error_occurred (parser)
|
||
&& cp_parser_parsing_tentatively (parser)
|
||
&& parser->in_declarator_p))
|
||
{
|
||
cp_token *token = cp_lexer_token_at (parser->lexer, start_of_id);
|
||
|
||
/* Reset the contents of the START_OF_ID token. */
|
||
token->type = CPP_TEMPLATE_ID;
|
||
/* Retrieve any deferred checks. Do not pop this access checks yet
|
||
so the memory will not be reclaimed during token replacing below. */
|
||
token->u.tree_check_value = ggc_cleared_alloc<struct tree_check> ();
|
||
token->u.tree_check_value->value = template_id;
|
||
token->u.tree_check_value->checks = get_deferred_access_checks ();
|
||
token->keyword = RID_MAX;
|
||
|
||
/* Purge all subsequent tokens. */
|
||
cp_lexer_purge_tokens_after (parser->lexer, start_of_id);
|
||
|
||
/* ??? Can we actually assume that, if template_id ==
|
||
error_mark_node, we will have issued a diagnostic to the
|
||
user, as opposed to simply marking the tentative parse as
|
||
failed? */
|
||
if (cp_parser_error_occurred (parser) && template_id != error_mark_node)
|
||
error_at (token->location, "parse error in template argument list");
|
||
}
|
||
|
||
pop_to_parent_deferring_access_checks ();
|
||
return template_id;
|
||
}
|
||
|
||
/* Parse a template-name.
|
||
|
||
template-name:
|
||
identifier
|
||
|
||
The standard should actually say:
|
||
|
||
template-name:
|
||
identifier
|
||
operator-function-id
|
||
|
||
A defect report has been filed about this issue.
|
||
|
||
A conversion-function-id cannot be a template name because they cannot
|
||
be part of a template-id. In fact, looking at this code:
|
||
|
||
a.operator K<int>()
|
||
|
||
the conversion-function-id is "operator K<int>", and K<int> is a type-id.
|
||
It is impossible to call a templated conversion-function-id with an
|
||
explicit argument list, since the only allowed template parameter is
|
||
the type to which it is converting.
|
||
|
||
If TEMPLATE_KEYWORD_P is true, then we have just seen the
|
||
`template' keyword, in a construction like:
|
||
|
||
T::template f<3>()
|
||
|
||
In that case `f' is taken to be a template-name, even though there
|
||
is no way of knowing for sure.
|
||
|
||
Returns the TEMPLATE_DECL for the template, or an OVERLOAD if the
|
||
name refers to a set of overloaded functions, at least one of which
|
||
is a template, or an IDENTIFIER_NODE with the name of the template,
|
||
if TEMPLATE_KEYWORD_P is true. If CHECK_DEPENDENCY_P is FALSE,
|
||
names are looked up inside uninstantiated templates. */
|
||
|
||
static tree
|
||
cp_parser_template_name (cp_parser* parser,
|
||
bool template_keyword_p,
|
||
bool check_dependency_p,
|
||
bool is_declaration,
|
||
enum tag_types tag_type,
|
||
bool *is_identifier)
|
||
{
|
||
tree identifier;
|
||
tree decl;
|
||
tree fns;
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* If the next token is `operator', then we have either an
|
||
operator-function-id or a conversion-function-id. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_OPERATOR))
|
||
{
|
||
/* We don't know whether we're looking at an
|
||
operator-function-id or a conversion-function-id. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Try an operator-function-id. */
|
||
identifier = cp_parser_operator_function_id (parser);
|
||
/* If that didn't work, try a conversion-function-id. */
|
||
if (!cp_parser_parse_definitely (parser))
|
||
{
|
||
cp_parser_error (parser, "expected template-name");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
/* Look for the identifier. */
|
||
else
|
||
identifier = cp_parser_identifier (parser);
|
||
|
||
/* If we didn't find an identifier, we don't have a template-id. */
|
||
if (identifier == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* If the name immediately followed the `template' keyword, then it
|
||
is a template-name. However, if the next token is not `<', then
|
||
we do not treat it as a template-name, since it is not being used
|
||
as part of a template-id. This enables us to handle constructs
|
||
like:
|
||
|
||
template <typename T> struct S { S(); };
|
||
template <typename T> S<T>::S();
|
||
|
||
correctly. We would treat `S' as a template -- if it were `S<T>'
|
||
-- but we do not if there is no `<'. */
|
||
|
||
if (processing_template_decl
|
||
&& cp_parser_nth_token_starts_template_argument_list_p (parser, 1))
|
||
{
|
||
/* In a declaration, in a dependent context, we pretend that the
|
||
"template" keyword was present in order to improve error
|
||
recovery. For example, given:
|
||
|
||
template <typename T> void f(T::X<int>);
|
||
|
||
we want to treat "X<int>" as a template-id. */
|
||
if (is_declaration
|
||
&& !template_keyword_p
|
||
&& parser->scope && TYPE_P (parser->scope)
|
||
&& check_dependency_p
|
||
&& dependent_scope_p (parser->scope)
|
||
/* Do not do this for dtors (or ctors), since they never
|
||
need the template keyword before their name. */
|
||
&& !constructor_name_p (identifier, parser->scope))
|
||
{
|
||
cp_token_position start = 0;
|
||
|
||
/* Explain what went wrong. */
|
||
error_at (token->location, "non-template %qD used as template",
|
||
identifier);
|
||
inform (token->location, "use %<%T::template %D%> to indicate that it is a template",
|
||
parser->scope, identifier);
|
||
/* If parsing tentatively, find the location of the "<" token. */
|
||
if (cp_parser_simulate_error (parser))
|
||
start = cp_lexer_token_position (parser->lexer, true);
|
||
/* Parse the template arguments so that we can issue error
|
||
messages about them. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
cp_parser_enclosed_template_argument_list (parser);
|
||
/* Skip tokens until we find a good place from which to
|
||
continue parsing. */
|
||
cp_parser_skip_to_closing_parenthesis (parser,
|
||
/*recovering=*/true,
|
||
/*or_comma=*/true,
|
||
/*consume_paren=*/false);
|
||
/* If parsing tentatively, permanently remove the
|
||
template argument list. That will prevent duplicate
|
||
error messages from being issued about the missing
|
||
"template" keyword. */
|
||
if (start)
|
||
cp_lexer_purge_tokens_after (parser->lexer, start);
|
||
if (is_identifier)
|
||
*is_identifier = true;
|
||
return identifier;
|
||
}
|
||
|
||
/* If the "template" keyword is present, then there is generally
|
||
no point in doing name-lookup, so we just return IDENTIFIER.
|
||
But, if the qualifying scope is non-dependent then we can
|
||
(and must) do name-lookup normally. */
|
||
if (template_keyword_p
|
||
&& (!parser->scope
|
||
|| (TYPE_P (parser->scope)
|
||
&& dependent_type_p (parser->scope))))
|
||
return identifier;
|
||
}
|
||
|
||
/* Look up the name. */
|
||
decl = cp_parser_lookup_name (parser, identifier,
|
||
tag_type,
|
||
/*is_template=*/true,
|
||
/*is_namespace=*/false,
|
||
check_dependency_p,
|
||
/*ambiguous_decls=*/NULL,
|
||
token->location);
|
||
|
||
/* If DECL is a template, then the name was a template-name. */
|
||
if (TREE_CODE (decl) == TEMPLATE_DECL)
|
||
;
|
||
else
|
||
{
|
||
tree fn = NULL_TREE;
|
||
|
||
/* The standard does not explicitly indicate whether a name that
|
||
names a set of overloaded declarations, some of which are
|
||
templates, is a template-name. However, such a name should
|
||
be a template-name; otherwise, there is no way to form a
|
||
template-id for the overloaded templates. */
|
||
fns = BASELINK_P (decl) ? BASELINK_FUNCTIONS (decl) : decl;
|
||
if (TREE_CODE (fns) == OVERLOAD)
|
||
for (fn = fns; fn; fn = OVL_NEXT (fn))
|
||
if (TREE_CODE (OVL_CURRENT (fn)) == TEMPLATE_DECL)
|
||
break;
|
||
|
||
if (!fn)
|
||
{
|
||
/* The name does not name a template. */
|
||
cp_parser_error (parser, "expected template-name");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* If DECL is dependent, and refers to a function, then just return
|
||
its name; we will look it up again during template instantiation. */
|
||
if (DECL_FUNCTION_TEMPLATE_P (decl) || !DECL_P (decl))
|
||
{
|
||
tree scope = ovl_scope (decl);
|
||
if (TYPE_P (scope) && dependent_type_p (scope))
|
||
return identifier;
|
||
}
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Parse a template-argument-list.
|
||
|
||
template-argument-list:
|
||
template-argument ... [opt]
|
||
template-argument-list , template-argument ... [opt]
|
||
|
||
Returns a TREE_VEC containing the arguments. */
|
||
|
||
static tree
|
||
cp_parser_template_argument_list (cp_parser* parser)
|
||
{
|
||
tree fixed_args[10];
|
||
unsigned n_args = 0;
|
||
unsigned alloced = 10;
|
||
tree *arg_ary = fixed_args;
|
||
tree vec;
|
||
bool saved_in_template_argument_list_p;
|
||
bool saved_ice_p;
|
||
bool saved_non_ice_p;
|
||
|
||
saved_in_template_argument_list_p = parser->in_template_argument_list_p;
|
||
parser->in_template_argument_list_p = true;
|
||
/* Even if the template-id appears in an integral
|
||
constant-expression, the contents of the argument list do
|
||
not. */
|
||
saved_ice_p = parser->integral_constant_expression_p;
|
||
parser->integral_constant_expression_p = false;
|
||
saved_non_ice_p = parser->non_integral_constant_expression_p;
|
||
parser->non_integral_constant_expression_p = false;
|
||
|
||
/* Parse the arguments. */
|
||
do
|
||
{
|
||
tree argument;
|
||
|
||
if (n_args)
|
||
/* Consume the comma. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* Parse the template-argument. */
|
||
argument = cp_parser_template_argument (parser);
|
||
|
||
/* If the next token is an ellipsis, we're expanding a template
|
||
argument pack. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
|
||
{
|
||
if (argument == error_mark_node)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
error_at (token->location,
|
||
"expected parameter pack before %<...%>");
|
||
}
|
||
/* Consume the `...' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* Make the argument into a TYPE_PACK_EXPANSION or
|
||
EXPR_PACK_EXPANSION. */
|
||
argument = make_pack_expansion (argument);
|
||
}
|
||
|
||
if (n_args == alloced)
|
||
{
|
||
alloced *= 2;
|
||
|
||
if (arg_ary == fixed_args)
|
||
{
|
||
arg_ary = XNEWVEC (tree, alloced);
|
||
memcpy (arg_ary, fixed_args, sizeof (tree) * n_args);
|
||
}
|
||
else
|
||
arg_ary = XRESIZEVEC (tree, arg_ary, alloced);
|
||
}
|
||
arg_ary[n_args++] = argument;
|
||
}
|
||
while (cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
|
||
|
||
vec = make_tree_vec (n_args);
|
||
|
||
while (n_args--)
|
||
TREE_VEC_ELT (vec, n_args) = arg_ary[n_args];
|
||
|
||
if (arg_ary != fixed_args)
|
||
free (arg_ary);
|
||
parser->non_integral_constant_expression_p = saved_non_ice_p;
|
||
parser->integral_constant_expression_p = saved_ice_p;
|
||
parser->in_template_argument_list_p = saved_in_template_argument_list_p;
|
||
#ifdef ENABLE_CHECKING
|
||
SET_NON_DEFAULT_TEMPLATE_ARGS_COUNT (vec, TREE_VEC_LENGTH (vec));
|
||
#endif
|
||
return vec;
|
||
}
|
||
|
||
/* Parse a template-argument.
|
||
|
||
template-argument:
|
||
assignment-expression
|
||
type-id
|
||
id-expression
|
||
|
||
The representation is that of an assignment-expression, type-id, or
|
||
id-expression -- except that the qualified id-expression is
|
||
evaluated, so that the value returned is either a DECL or an
|
||
OVERLOAD.
|
||
|
||
Although the standard says "assignment-expression", it forbids
|
||
throw-expressions or assignments in the template argument.
|
||
Therefore, we use "conditional-expression" instead. */
|
||
|
||
static tree
|
||
cp_parser_template_argument (cp_parser* parser)
|
||
{
|
||
tree argument;
|
||
bool template_p;
|
||
bool address_p;
|
||
bool maybe_type_id = false;
|
||
cp_token *token = NULL, *argument_start_token = NULL;
|
||
location_t loc = 0;
|
||
cp_id_kind idk;
|
||
|
||
/* There's really no way to know what we're looking at, so we just
|
||
try each alternative in order.
|
||
|
||
[temp.arg]
|
||
|
||
In a template-argument, an ambiguity between a type-id and an
|
||
expression is resolved to a type-id, regardless of the form of
|
||
the corresponding template-parameter.
|
||
|
||
Therefore, we try a type-id first. */
|
||
cp_parser_parse_tentatively (parser);
|
||
argument = cp_parser_template_type_arg (parser);
|
||
/* If there was no error parsing the type-id but the next token is a
|
||
'>>', our behavior depends on which dialect of C++ we're
|
||
parsing. In C++98, we probably found a typo for '> >'. But there
|
||
are type-id which are also valid expressions. For instance:
|
||
|
||
struct X { int operator >> (int); };
|
||
template <int V> struct Foo {};
|
||
Foo<X () >> 5> r;
|
||
|
||
Here 'X()' is a valid type-id of a function type, but the user just
|
||
wanted to write the expression "X() >> 5". Thus, we remember that we
|
||
found a valid type-id, but we still try to parse the argument as an
|
||
expression to see what happens.
|
||
|
||
In C++0x, the '>>' will be considered two separate '>'
|
||
tokens. */
|
||
if (!cp_parser_error_occurred (parser)
|
||
&& cxx_dialect == cxx98
|
||
&& cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
|
||
{
|
||
maybe_type_id = true;
|
||
cp_parser_abort_tentative_parse (parser);
|
||
}
|
||
else
|
||
{
|
||
/* If the next token isn't a `,' or a `>', then this argument wasn't
|
||
really finished. This means that the argument is not a valid
|
||
type-id. */
|
||
if (!cp_parser_next_token_ends_template_argument_p (parser))
|
||
cp_parser_error (parser, "expected template-argument");
|
||
/* If that worked, we're done. */
|
||
if (cp_parser_parse_definitely (parser))
|
||
return argument;
|
||
}
|
||
/* We're still not sure what the argument will be. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Try a template. */
|
||
argument_start_token = cp_lexer_peek_token (parser->lexer);
|
||
argument = cp_parser_id_expression (parser,
|
||
/*template_keyword_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
&template_p,
|
||
/*declarator_p=*/false,
|
||
/*optional_p=*/false);
|
||
/* If the next token isn't a `,' or a `>', then this argument wasn't
|
||
really finished. */
|
||
if (!cp_parser_next_token_ends_template_argument_p (parser))
|
||
cp_parser_error (parser, "expected template-argument");
|
||
if (!cp_parser_error_occurred (parser))
|
||
{
|
||
/* Figure out what is being referred to. If the id-expression
|
||
was for a class template specialization, then we will have a
|
||
TYPE_DECL at this point. There is no need to do name lookup
|
||
at this point in that case. */
|
||
if (TREE_CODE (argument) != TYPE_DECL)
|
||
argument = cp_parser_lookup_name (parser, argument,
|
||
none_type,
|
||
/*is_template=*/template_p,
|
||
/*is_namespace=*/false,
|
||
/*check_dependency=*/true,
|
||
/*ambiguous_decls=*/NULL,
|
||
argument_start_token->location);
|
||
if (TREE_CODE (argument) != TEMPLATE_DECL
|
||
&& TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
|
||
cp_parser_error (parser, "expected template-name");
|
||
}
|
||
if (cp_parser_parse_definitely (parser))
|
||
return argument;
|
||
/* It must be a non-type argument. There permitted cases are given
|
||
in [temp.arg.nontype]:
|
||
|
||
-- an integral constant-expression of integral or enumeration
|
||
type; or
|
||
|
||
-- the name of a non-type template-parameter; or
|
||
|
||
-- the name of an object or function with external linkage...
|
||
|
||
-- the address of an object or function with external linkage...
|
||
|
||
-- a pointer to member... */
|
||
/* Look for a non-type template parameter. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
cp_parser_parse_tentatively (parser);
|
||
argument = cp_parser_primary_expression (parser,
|
||
/*address_p=*/false,
|
||
/*cast_p=*/false,
|
||
/*template_arg_p=*/true,
|
||
&idk);
|
||
if (TREE_CODE (argument) != TEMPLATE_PARM_INDEX
|
||
|| !cp_parser_next_token_ends_template_argument_p (parser))
|
||
cp_parser_simulate_error (parser);
|
||
if (cp_parser_parse_definitely (parser))
|
||
return argument;
|
||
}
|
||
|
||
/* If the next token is "&", the argument must be the address of an
|
||
object or function with external linkage. */
|
||
address_p = cp_lexer_next_token_is (parser->lexer, CPP_AND);
|
||
if (address_p)
|
||
{
|
||
loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
/* See if we might have an id-expression. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type == CPP_NAME
|
||
|| token->keyword == RID_OPERATOR
|
||
|| token->type == CPP_SCOPE
|
||
|| token->type == CPP_TEMPLATE_ID
|
||
|| token->type == CPP_NESTED_NAME_SPECIFIER)
|
||
{
|
||
cp_parser_parse_tentatively (parser);
|
||
argument = cp_parser_primary_expression (parser,
|
||
address_p,
|
||
/*cast_p=*/false,
|
||
/*template_arg_p=*/true,
|
||
&idk);
|
||
if (cp_parser_error_occurred (parser)
|
||
|| !cp_parser_next_token_ends_template_argument_p (parser))
|
||
cp_parser_abort_tentative_parse (parser);
|
||
else
|
||
{
|
||
tree probe;
|
||
|
||
if (INDIRECT_REF_P (argument))
|
||
{
|
||
/* Strip the dereference temporarily. */
|
||
gcc_assert (REFERENCE_REF_P (argument));
|
||
argument = TREE_OPERAND (argument, 0);
|
||
}
|
||
|
||
/* If we're in a template, we represent a qualified-id referring
|
||
to a static data member as a SCOPE_REF even if the scope isn't
|
||
dependent so that we can check access control later. */
|
||
probe = argument;
|
||
if (TREE_CODE (probe) == SCOPE_REF)
|
||
probe = TREE_OPERAND (probe, 1);
|
||
if (VAR_P (probe))
|
||
{
|
||
/* A variable without external linkage might still be a
|
||
valid constant-expression, so no error is issued here
|
||
if the external-linkage check fails. */
|
||
if (!address_p && !DECL_EXTERNAL_LINKAGE_P (probe))
|
||
cp_parser_simulate_error (parser);
|
||
}
|
||
else if (is_overloaded_fn (argument))
|
||
/* All overloaded functions are allowed; if the external
|
||
linkage test does not pass, an error will be issued
|
||
later. */
|
||
;
|
||
else if (address_p
|
||
&& (TREE_CODE (argument) == OFFSET_REF
|
||
|| TREE_CODE (argument) == SCOPE_REF))
|
||
/* A pointer-to-member. */
|
||
;
|
||
else if (TREE_CODE (argument) == TEMPLATE_PARM_INDEX)
|
||
;
|
||
else
|
||
cp_parser_simulate_error (parser);
|
||
|
||
if (cp_parser_parse_definitely (parser))
|
||
{
|
||
if (address_p)
|
||
argument = build_x_unary_op (loc, ADDR_EXPR, argument,
|
||
tf_warning_or_error);
|
||
else
|
||
argument = convert_from_reference (argument);
|
||
return argument;
|
||
}
|
||
}
|
||
}
|
||
/* If the argument started with "&", there are no other valid
|
||
alternatives at this point. */
|
||
if (address_p)
|
||
{
|
||
cp_parser_error (parser, "invalid non-type template argument");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* If the argument wasn't successfully parsed as a type-id followed
|
||
by '>>', the argument can only be a constant expression now.
|
||
Otherwise, we try parsing the constant-expression tentatively,
|
||
because the argument could really be a type-id. */
|
||
if (maybe_type_id)
|
||
cp_parser_parse_tentatively (parser);
|
||
argument = cp_parser_constant_expression (parser,
|
||
/*allow_non_constant_p=*/false,
|
||
/*non_constant_p=*/NULL);
|
||
if (!maybe_type_id)
|
||
return argument;
|
||
if (!cp_parser_next_token_ends_template_argument_p (parser))
|
||
cp_parser_error (parser, "expected template-argument");
|
||
if (cp_parser_parse_definitely (parser))
|
||
return argument;
|
||
/* We did our best to parse the argument as a non type-id, but that
|
||
was the only alternative that matched (albeit with a '>' after
|
||
it). We can assume it's just a typo from the user, and a
|
||
diagnostic will then be issued. */
|
||
return cp_parser_template_type_arg (parser);
|
||
}
|
||
|
||
/* Parse an explicit-instantiation.
|
||
|
||
explicit-instantiation:
|
||
template declaration
|
||
|
||
Although the standard says `declaration', what it really means is:
|
||
|
||
explicit-instantiation:
|
||
template decl-specifier-seq [opt] declarator [opt] ;
|
||
|
||
Things like `template int S<int>::i = 5, int S<double>::j;' are not
|
||
supposed to be allowed. A defect report has been filed about this
|
||
issue.
|
||
|
||
GNU Extension:
|
||
|
||
explicit-instantiation:
|
||
storage-class-specifier template
|
||
decl-specifier-seq [opt] declarator [opt] ;
|
||
function-specifier template
|
||
decl-specifier-seq [opt] declarator [opt] ; */
|
||
|
||
static void
|
||
cp_parser_explicit_instantiation (cp_parser* parser)
|
||
{
|
||
int declares_class_or_enum;
|
||
cp_decl_specifier_seq decl_specifiers;
|
||
tree extension_specifier = NULL_TREE;
|
||
|
||
timevar_push (TV_TEMPLATE_INST);
|
||
|
||
/* Look for an (optional) storage-class-specifier or
|
||
function-specifier. */
|
||
if (cp_parser_allow_gnu_extensions_p (parser))
|
||
{
|
||
extension_specifier
|
||
= cp_parser_storage_class_specifier_opt (parser);
|
||
if (!extension_specifier)
|
||
extension_specifier
|
||
= cp_parser_function_specifier_opt (parser,
|
||
/*decl_specs=*/NULL);
|
||
}
|
||
|
||
/* Look for the `template' keyword. */
|
||
cp_parser_require_keyword (parser, RID_TEMPLATE, RT_TEMPLATE);
|
||
/* Let the front end know that we are processing an explicit
|
||
instantiation. */
|
||
begin_explicit_instantiation ();
|
||
/* [temp.explicit] says that we are supposed to ignore access
|
||
control while processing explicit instantiation directives. */
|
||
push_deferring_access_checks (dk_no_check);
|
||
/* Parse a decl-specifier-seq. */
|
||
cp_parser_decl_specifier_seq (parser,
|
||
CP_PARSER_FLAGS_OPTIONAL,
|
||
&decl_specifiers,
|
||
&declares_class_or_enum);
|
||
/* If there was exactly one decl-specifier, and it declared a class,
|
||
and there's no declarator, then we have an explicit type
|
||
instantiation. */
|
||
if (declares_class_or_enum && cp_parser_declares_only_class_p (parser))
|
||
{
|
||
tree type;
|
||
|
||
type = check_tag_decl (&decl_specifiers,
|
||
/*explicit_type_instantiation_p=*/true);
|
||
/* Turn access control back on for names used during
|
||
template instantiation. */
|
||
pop_deferring_access_checks ();
|
||
if (type)
|
||
do_type_instantiation (type, extension_specifier,
|
||
/*complain=*/tf_error);
|
||
}
|
||
else
|
||
{
|
||
cp_declarator *declarator;
|
||
tree decl;
|
||
|
||
/* Parse the declarator. */
|
||
declarator
|
||
= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
|
||
/*ctor_dtor_or_conv_p=*/NULL,
|
||
/*parenthesized_p=*/NULL,
|
||
/*member_p=*/false,
|
||
/*friend_p=*/false);
|
||
if (declares_class_or_enum & 2)
|
||
cp_parser_check_for_definition_in_return_type (declarator,
|
||
decl_specifiers.type,
|
||
decl_specifiers.locations[ds_type_spec]);
|
||
if (declarator != cp_error_declarator)
|
||
{
|
||
if (decl_spec_seq_has_spec_p (&decl_specifiers, ds_inline))
|
||
permerror (decl_specifiers.locations[ds_inline],
|
||
"explicit instantiation shall not use"
|
||
" %<inline%> specifier");
|
||
if (decl_spec_seq_has_spec_p (&decl_specifiers, ds_constexpr))
|
||
permerror (decl_specifiers.locations[ds_constexpr],
|
||
"explicit instantiation shall not use"
|
||
" %<constexpr%> specifier");
|
||
|
||
decl = grokdeclarator (declarator, &decl_specifiers,
|
||
NORMAL, 0, &decl_specifiers.attributes);
|
||
/* Turn access control back on for names used during
|
||
template instantiation. */
|
||
pop_deferring_access_checks ();
|
||
/* Do the explicit instantiation. */
|
||
do_decl_instantiation (decl, extension_specifier);
|
||
}
|
||
else
|
||
{
|
||
pop_deferring_access_checks ();
|
||
/* Skip the body of the explicit instantiation. */
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
}
|
||
}
|
||
/* We're done with the instantiation. */
|
||
end_explicit_instantiation ();
|
||
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
|
||
timevar_pop (TV_TEMPLATE_INST);
|
||
}
|
||
|
||
/* Parse an explicit-specialization.
|
||
|
||
explicit-specialization:
|
||
template < > declaration
|
||
|
||
Although the standard says `declaration', what it really means is:
|
||
|
||
explicit-specialization:
|
||
template <> decl-specifier [opt] init-declarator [opt] ;
|
||
template <> function-definition
|
||
template <> explicit-specialization
|
||
template <> template-declaration */
|
||
|
||
static void
|
||
cp_parser_explicit_specialization (cp_parser* parser)
|
||
{
|
||
bool need_lang_pop;
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* Look for the `template' keyword. */
|
||
cp_parser_require_keyword (parser, RID_TEMPLATE, RT_TEMPLATE);
|
||
/* Look for the `<'. */
|
||
cp_parser_require (parser, CPP_LESS, RT_LESS);
|
||
/* Look for the `>'. */
|
||
cp_parser_require (parser, CPP_GREATER, RT_GREATER);
|
||
/* We have processed another parameter list. */
|
||
++parser->num_template_parameter_lists;
|
||
/* [temp]
|
||
|
||
A template ... explicit specialization ... shall not have C
|
||
linkage. */
|
||
if (current_lang_name == lang_name_c)
|
||
{
|
||
error_at (token->location, "template specialization with C linkage");
|
||
/* Give it C++ linkage to avoid confusing other parts of the
|
||
front end. */
|
||
push_lang_context (lang_name_cplusplus);
|
||
need_lang_pop = true;
|
||
}
|
||
else
|
||
need_lang_pop = false;
|
||
/* Let the front end know that we are beginning a specialization. */
|
||
if (!begin_specialization ())
|
||
{
|
||
end_specialization ();
|
||
return;
|
||
}
|
||
|
||
/* If the next keyword is `template', we need to figure out whether
|
||
or not we're looking a template-declaration. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
|
||
{
|
||
if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_GREATER)
|
||
cp_parser_template_declaration_after_export (parser,
|
||
/*member_p=*/false);
|
||
else
|
||
cp_parser_explicit_specialization (parser);
|
||
}
|
||
else
|
||
/* Parse the dependent declaration. */
|
||
cp_parser_single_declaration (parser,
|
||
/*checks=*/NULL,
|
||
/*member_p=*/false,
|
||
/*explicit_specialization_p=*/true,
|
||
/*friend_p=*/NULL);
|
||
/* We're done with the specialization. */
|
||
end_specialization ();
|
||
/* For the erroneous case of a template with C linkage, we pushed an
|
||
implicit C++ linkage scope; exit that scope now. */
|
||
if (need_lang_pop)
|
||
pop_lang_context ();
|
||
/* We're done with this parameter list. */
|
||
--parser->num_template_parameter_lists;
|
||
}
|
||
|
||
/* Parse a type-specifier.
|
||
|
||
type-specifier:
|
||
simple-type-specifier
|
||
class-specifier
|
||
enum-specifier
|
||
elaborated-type-specifier
|
||
cv-qualifier
|
||
|
||
GNU Extension:
|
||
|
||
type-specifier:
|
||
__complex__
|
||
|
||
Returns a representation of the type-specifier. For a
|
||
class-specifier, enum-specifier, or elaborated-type-specifier, a
|
||
TREE_TYPE is returned; otherwise, a TYPE_DECL is returned.
|
||
|
||
The parser flags FLAGS is used to control type-specifier parsing.
|
||
|
||
If IS_DECLARATION is TRUE, then this type-specifier is appearing
|
||
in a decl-specifier-seq.
|
||
|
||
If DECLARES_CLASS_OR_ENUM is non-NULL, and the type-specifier is a
|
||
class-specifier, enum-specifier, or elaborated-type-specifier, then
|
||
*DECLARES_CLASS_OR_ENUM is set to a nonzero value. The value is 1
|
||
if a type is declared; 2 if it is defined. Otherwise, it is set to
|
||
zero.
|
||
|
||
If IS_CV_QUALIFIER is non-NULL, and the type-specifier is a
|
||
cv-qualifier, then IS_CV_QUALIFIER is set to TRUE. Otherwise, it
|
||
is set to FALSE. */
|
||
|
||
static tree
|
||
cp_parser_type_specifier (cp_parser* parser,
|
||
cp_parser_flags flags,
|
||
cp_decl_specifier_seq *decl_specs,
|
||
bool is_declaration,
|
||
int* declares_class_or_enum,
|
||
bool* is_cv_qualifier)
|
||
{
|
||
tree type_spec = NULL_TREE;
|
||
cp_token *token;
|
||
enum rid keyword;
|
||
cp_decl_spec ds = ds_last;
|
||
|
||
/* Assume this type-specifier does not declare a new type. */
|
||
if (declares_class_or_enum)
|
||
*declares_class_or_enum = 0;
|
||
/* And that it does not specify a cv-qualifier. */
|
||
if (is_cv_qualifier)
|
||
*is_cv_qualifier = false;
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* If we're looking at a keyword, we can use that to guide the
|
||
production we choose. */
|
||
keyword = token->keyword;
|
||
switch (keyword)
|
||
{
|
||
case RID_ENUM:
|
||
if ((flags & CP_PARSER_FLAGS_NO_TYPE_DEFINITIONS))
|
||
goto elaborated_type_specifier;
|
||
|
||
/* Look for the enum-specifier. */
|
||
type_spec = cp_parser_enum_specifier (parser);
|
||
/* If that worked, we're done. */
|
||
if (type_spec)
|
||
{
|
||
if (declares_class_or_enum)
|
||
*declares_class_or_enum = 2;
|
||
if (decl_specs)
|
||
cp_parser_set_decl_spec_type (decl_specs,
|
||
type_spec,
|
||
token,
|
||
/*type_definition_p=*/true);
|
||
return type_spec;
|
||
}
|
||
else
|
||
goto elaborated_type_specifier;
|
||
|
||
/* Any of these indicate either a class-specifier, or an
|
||
elaborated-type-specifier. */
|
||
case RID_CLASS:
|
||
case RID_STRUCT:
|
||
case RID_UNION:
|
||
if ((flags & CP_PARSER_FLAGS_NO_TYPE_DEFINITIONS))
|
||
goto elaborated_type_specifier;
|
||
|
||
/* Parse tentatively so that we can back up if we don't find a
|
||
class-specifier. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Look for the class-specifier. */
|
||
type_spec = cp_parser_class_specifier (parser);
|
||
invoke_plugin_callbacks (PLUGIN_FINISH_TYPE, type_spec);
|
||
/* If that worked, we're done. */
|
||
if (cp_parser_parse_definitely (parser))
|
||
{
|
||
if (declares_class_or_enum)
|
||
*declares_class_or_enum = 2;
|
||
if (decl_specs)
|
||
cp_parser_set_decl_spec_type (decl_specs,
|
||
type_spec,
|
||
token,
|
||
/*type_definition_p=*/true);
|
||
return type_spec;
|
||
}
|
||
|
||
/* Fall through. */
|
||
elaborated_type_specifier:
|
||
/* We're declaring (not defining) a class or enum. */
|
||
if (declares_class_or_enum)
|
||
*declares_class_or_enum = 1;
|
||
|
||
/* Fall through. */
|
||
case RID_TYPENAME:
|
||
/* Look for an elaborated-type-specifier. */
|
||
type_spec
|
||
= (cp_parser_elaborated_type_specifier
|
||
(parser,
|
||
decl_spec_seq_has_spec_p (decl_specs, ds_friend),
|
||
is_declaration));
|
||
if (decl_specs)
|
||
cp_parser_set_decl_spec_type (decl_specs,
|
||
type_spec,
|
||
token,
|
||
/*type_definition_p=*/false);
|
||
return type_spec;
|
||
|
||
case RID_CONST:
|
||
ds = ds_const;
|
||
if (is_cv_qualifier)
|
||
*is_cv_qualifier = true;
|
||
break;
|
||
|
||
case RID_VOLATILE:
|
||
ds = ds_volatile;
|
||
if (is_cv_qualifier)
|
||
*is_cv_qualifier = true;
|
||
break;
|
||
|
||
case RID_RESTRICT:
|
||
ds = ds_restrict;
|
||
if (is_cv_qualifier)
|
||
*is_cv_qualifier = true;
|
||
break;
|
||
|
||
case RID_COMPLEX:
|
||
/* The `__complex__' keyword is a GNU extension. */
|
||
ds = ds_complex;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Handle simple keywords. */
|
||
if (ds != ds_last)
|
||
{
|
||
if (decl_specs)
|
||
{
|
||
set_and_check_decl_spec_loc (decl_specs, ds, token);
|
||
decl_specs->any_specifiers_p = true;
|
||
}
|
||
return cp_lexer_consume_token (parser->lexer)->u.value;
|
||
}
|
||
|
||
/* If we do not already have a type-specifier, assume we are looking
|
||
at a simple-type-specifier. */
|
||
type_spec = cp_parser_simple_type_specifier (parser,
|
||
decl_specs,
|
||
flags);
|
||
|
||
/* If we didn't find a type-specifier, and a type-specifier was not
|
||
optional in this context, issue an error message. */
|
||
if (!type_spec && !(flags & CP_PARSER_FLAGS_OPTIONAL))
|
||
{
|
||
cp_parser_error (parser, "expected type specifier");
|
||
return error_mark_node;
|
||
}
|
||
|
||
return type_spec;
|
||
}
|
||
|
||
/* Parse a simple-type-specifier.
|
||
|
||
simple-type-specifier:
|
||
:: [opt] nested-name-specifier [opt] type-name
|
||
:: [opt] nested-name-specifier template template-id
|
||
char
|
||
wchar_t
|
||
bool
|
||
short
|
||
int
|
||
long
|
||
signed
|
||
unsigned
|
||
float
|
||
double
|
||
void
|
||
|
||
C++0x Extension:
|
||
|
||
simple-type-specifier:
|
||
auto
|
||
decltype ( expression )
|
||
char16_t
|
||
char32_t
|
||
__underlying_type ( type-id )
|
||
|
||
GNU Extension:
|
||
|
||
simple-type-specifier:
|
||
__int128
|
||
__typeof__ unary-expression
|
||
__typeof__ ( type-id )
|
||
__typeof__ ( type-id ) { initializer-list , [opt] }
|
||
|
||
Returns the indicated TYPE_DECL. If DECL_SPECS is not NULL, it is
|
||
appropriately updated. */
|
||
|
||
static tree
|
||
cp_parser_simple_type_specifier (cp_parser* parser,
|
||
cp_decl_specifier_seq *decl_specs,
|
||
cp_parser_flags flags)
|
||
{
|
||
tree type = NULL_TREE;
|
||
cp_token *token;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* If we're looking at a keyword, things are easy. */
|
||
switch (token->keyword)
|
||
{
|
||
case RID_CHAR:
|
||
if (decl_specs)
|
||
decl_specs->explicit_char_p = true;
|
||
type = char_type_node;
|
||
break;
|
||
case RID_CHAR16:
|
||
type = char16_type_node;
|
||
break;
|
||
case RID_CHAR32:
|
||
type = char32_type_node;
|
||
break;
|
||
case RID_WCHAR:
|
||
type = wchar_type_node;
|
||
break;
|
||
case RID_BOOL:
|
||
type = boolean_type_node;
|
||
break;
|
||
case RID_SHORT:
|
||
set_and_check_decl_spec_loc (decl_specs, ds_short, token);
|
||
type = short_integer_type_node;
|
||
break;
|
||
case RID_INT:
|
||
if (decl_specs)
|
||
decl_specs->explicit_int_p = true;
|
||
type = integer_type_node;
|
||
break;
|
||
case RID_INT128:
|
||
if (!int128_integer_type_node)
|
||
break;
|
||
if (decl_specs)
|
||
decl_specs->explicit_int128_p = true;
|
||
type = int128_integer_type_node;
|
||
break;
|
||
case RID_LONG:
|
||
if (decl_specs)
|
||
set_and_check_decl_spec_loc (decl_specs, ds_long, token);
|
||
type = long_integer_type_node;
|
||
break;
|
||
case RID_SIGNED:
|
||
set_and_check_decl_spec_loc (decl_specs, ds_signed, token);
|
||
type = integer_type_node;
|
||
break;
|
||
case RID_UNSIGNED:
|
||
set_and_check_decl_spec_loc (decl_specs, ds_unsigned, token);
|
||
type = unsigned_type_node;
|
||
break;
|
||
case RID_FLOAT:
|
||
type = float_type_node;
|
||
break;
|
||
case RID_DOUBLE:
|
||
type = double_type_node;
|
||
break;
|
||
case RID_VOID:
|
||
type = void_type_node;
|
||
break;
|
||
|
||
case RID_AUTO:
|
||
maybe_warn_cpp0x (CPP0X_AUTO);
|
||
if (parser->auto_is_implicit_function_template_parm_p)
|
||
{
|
||
type = synthesize_implicit_template_parm (parser);
|
||
|
||
if (current_class_type && LAMBDA_TYPE_P (current_class_type))
|
||
{
|
||
if (cxx_dialect < cxx1y)
|
||
pedwarn (location_of (type), 0,
|
||
"use of %<auto%> in lambda parameter declaration "
|
||
"only available with "
|
||
"-std=c++1y or -std=gnu++1y");
|
||
}
|
||
else if (cxx_dialect < cxx1y)
|
||
pedwarn (location_of (type), 0,
|
||
"use of %<auto%> in parameter declaration "
|
||
"only available with "
|
||
"-std=c++1y or -std=gnu++1y");
|
||
else
|
||
pedwarn (location_of (type), OPT_Wpedantic,
|
||
"ISO C++ forbids use of %<auto%> in parameter "
|
||
"declaration");
|
||
}
|
||
else
|
||
type = make_auto ();
|
||
break;
|
||
|
||
case RID_DECLTYPE:
|
||
/* Since DR 743, decltype can either be a simple-type-specifier by
|
||
itself or begin a nested-name-specifier. Parsing it will replace
|
||
it with a CPP_DECLTYPE, so just rewind and let the CPP_DECLTYPE
|
||
handling below decide what to do. */
|
||
cp_parser_decltype (parser);
|
||
cp_lexer_set_token_position (parser->lexer, token);
|
||
break;
|
||
|
||
case RID_TYPEOF:
|
||
/* Consume the `typeof' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the operand to `typeof'. */
|
||
type = cp_parser_sizeof_operand (parser, RID_TYPEOF);
|
||
/* If it is not already a TYPE, take its type. */
|
||
if (!TYPE_P (type))
|
||
type = finish_typeof (type);
|
||
|
||
if (decl_specs)
|
||
cp_parser_set_decl_spec_type (decl_specs, type,
|
||
token,
|
||
/*type_definition_p=*/false);
|
||
|
||
return type;
|
||
|
||
case RID_UNDERLYING_TYPE:
|
||
type = cp_parser_trait_expr (parser, RID_UNDERLYING_TYPE);
|
||
if (decl_specs)
|
||
cp_parser_set_decl_spec_type (decl_specs, type,
|
||
token,
|
||
/*type_definition_p=*/false);
|
||
|
||
return type;
|
||
|
||
case RID_BASES:
|
||
case RID_DIRECT_BASES:
|
||
type = cp_parser_trait_expr (parser, token->keyword);
|
||
if (decl_specs)
|
||
cp_parser_set_decl_spec_type (decl_specs, type,
|
||
token,
|
||
/*type_definition_p=*/false);
|
||
return type;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If token is an already-parsed decltype not followed by ::,
|
||
it's a simple-type-specifier. */
|
||
if (token->type == CPP_DECLTYPE
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE)
|
||
{
|
||
type = token->u.value;
|
||
if (decl_specs)
|
||
cp_parser_set_decl_spec_type (decl_specs, type,
|
||
token,
|
||
/*type_definition_p=*/false);
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return type;
|
||
}
|
||
|
||
/* If the type-specifier was for a built-in type, we're done. */
|
||
if (type)
|
||
{
|
||
/* Record the type. */
|
||
if (decl_specs
|
||
&& (token->keyword != RID_SIGNED
|
||
&& token->keyword != RID_UNSIGNED
|
||
&& token->keyword != RID_SHORT
|
||
&& token->keyword != RID_LONG))
|
||
cp_parser_set_decl_spec_type (decl_specs,
|
||
type,
|
||
token,
|
||
/*type_definition_p=*/false);
|
||
if (decl_specs)
|
||
decl_specs->any_specifiers_p = true;
|
||
|
||
/* Consume the token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* There is no valid C++ program where a non-template type is
|
||
followed by a "<". That usually indicates that the user thought
|
||
that the type was a template. */
|
||
cp_parser_check_for_invalid_template_id (parser, type, none_type,
|
||
token->location);
|
||
|
||
return TYPE_NAME (type);
|
||
}
|
||
|
||
/* The type-specifier must be a user-defined type. */
|
||
if (!(flags & CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES))
|
||
{
|
||
bool qualified_p;
|
||
bool global_p;
|
||
|
||
/* Don't gobble tokens or issue error messages if this is an
|
||
optional type-specifier. */
|
||
if (flags & CP_PARSER_FLAGS_OPTIONAL)
|
||
cp_parser_parse_tentatively (parser);
|
||
|
||
/* Look for the optional `::' operator. */
|
||
global_p
|
||
= (cp_parser_global_scope_opt (parser,
|
||
/*current_scope_valid_p=*/false)
|
||
!= NULL_TREE);
|
||
/* Look for the nested-name specifier. */
|
||
qualified_p
|
||
= (cp_parser_nested_name_specifier_opt (parser,
|
||
/*typename_keyword_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
/*type_p=*/false,
|
||
/*is_declaration=*/false)
|
||
!= NULL_TREE);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If we have seen a nested-name-specifier, and the next token
|
||
is `template', then we are using the template-id production. */
|
||
if (parser->scope
|
||
&& cp_parser_optional_template_keyword (parser))
|
||
{
|
||
/* Look for the template-id. */
|
||
type = cp_parser_template_id (parser,
|
||
/*template_keyword_p=*/true,
|
||
/*check_dependency_p=*/true,
|
||
none_type,
|
||
/*is_declaration=*/false);
|
||
/* If the template-id did not name a type, we are out of
|
||
luck. */
|
||
if (TREE_CODE (type) != TYPE_DECL)
|
||
{
|
||
cp_parser_error (parser, "expected template-id for type");
|
||
type = NULL_TREE;
|
||
}
|
||
}
|
||
/* Otherwise, look for a type-name. */
|
||
else
|
||
type = cp_parser_type_name (parser);
|
||
/* Keep track of all name-lookups performed in class scopes. */
|
||
if (type
|
||
&& !global_p
|
||
&& !qualified_p
|
||
&& TREE_CODE (type) == TYPE_DECL
|
||
&& identifier_p (DECL_NAME (type)))
|
||
maybe_note_name_used_in_class (DECL_NAME (type), type);
|
||
/* If it didn't work out, we don't have a TYPE. */
|
||
if ((flags & CP_PARSER_FLAGS_OPTIONAL)
|
||
&& !cp_parser_parse_definitely (parser))
|
||
type = NULL_TREE;
|
||
if (type && decl_specs)
|
||
cp_parser_set_decl_spec_type (decl_specs, type,
|
||
token,
|
||
/*type_definition_p=*/false);
|
||
}
|
||
|
||
/* If we didn't get a type-name, issue an error message. */
|
||
if (!type && !(flags & CP_PARSER_FLAGS_OPTIONAL))
|
||
{
|
||
cp_parser_error (parser, "expected type-name");
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (type && type != error_mark_node)
|
||
{
|
||
/* See if TYPE is an Objective-C type, and if so, parse and
|
||
accept any protocol references following it. Do this before
|
||
the cp_parser_check_for_invalid_template_id() call, because
|
||
Objective-C types can be followed by '<...>' which would
|
||
enclose protocol names rather than template arguments, and so
|
||
everything is fine. */
|
||
if (c_dialect_objc () && !parser->scope
|
||
&& (objc_is_id (type) || objc_is_class_name (type)))
|
||
{
|
||
tree protos = cp_parser_objc_protocol_refs_opt (parser);
|
||
tree qual_type = objc_get_protocol_qualified_type (type, protos);
|
||
|
||
/* Clobber the "unqualified" type previously entered into
|
||
DECL_SPECS with the new, improved protocol-qualified version. */
|
||
if (decl_specs)
|
||
decl_specs->type = qual_type;
|
||
|
||
return qual_type;
|
||
}
|
||
|
||
/* There is no valid C++ program where a non-template type is
|
||
followed by a "<". That usually indicates that the user
|
||
thought that the type was a template. */
|
||
cp_parser_check_for_invalid_template_id (parser, TREE_TYPE (type),
|
||
none_type,
|
||
token->location);
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Parse a type-name.
|
||
|
||
type-name:
|
||
class-name
|
||
enum-name
|
||
typedef-name
|
||
simple-template-id [in c++0x]
|
||
|
||
enum-name:
|
||
identifier
|
||
|
||
typedef-name:
|
||
identifier
|
||
|
||
Returns a TYPE_DECL for the type. */
|
||
|
||
static tree
|
||
cp_parser_type_name (cp_parser* parser)
|
||
{
|
||
tree type_decl;
|
||
|
||
/* We can't know yet whether it is a class-name or not. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Try a class-name. */
|
||
type_decl = cp_parser_class_name (parser,
|
||
/*typename_keyword_p=*/false,
|
||
/*template_keyword_p=*/false,
|
||
none_type,
|
||
/*check_dependency_p=*/true,
|
||
/*class_head_p=*/false,
|
||
/*is_declaration=*/false);
|
||
/* If it's not a class-name, keep looking. */
|
||
if (!cp_parser_parse_definitely (parser))
|
||
{
|
||
if (cxx_dialect < cxx11)
|
||
/* It must be a typedef-name or an enum-name. */
|
||
return cp_parser_nonclass_name (parser);
|
||
|
||
cp_parser_parse_tentatively (parser);
|
||
/* It is either a simple-template-id representing an
|
||
instantiation of an alias template... */
|
||
type_decl = cp_parser_template_id (parser,
|
||
/*template_keyword_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
none_type,
|
||
/*is_declaration=*/false);
|
||
/* Note that this must be an instantiation of an alias template
|
||
because [temp.names]/6 says:
|
||
|
||
A template-id that names an alias template specialization
|
||
is a type-name.
|
||
|
||
Whereas [temp.names]/7 says:
|
||
|
||
A simple-template-id that names a class template
|
||
specialization is a class-name. */
|
||
if (type_decl != NULL_TREE
|
||
&& TREE_CODE (type_decl) == TYPE_DECL
|
||
&& TYPE_DECL_ALIAS_P (type_decl))
|
||
gcc_assert (DECL_TEMPLATE_INSTANTIATION (type_decl));
|
||
else
|
||
cp_parser_simulate_error (parser);
|
||
|
||
if (!cp_parser_parse_definitely (parser))
|
||
/* ... Or a typedef-name or an enum-name. */
|
||
return cp_parser_nonclass_name (parser);
|
||
}
|
||
|
||
return type_decl;
|
||
}
|
||
|
||
/* Parse a non-class type-name, that is, either an enum-name or a typedef-name.
|
||
|
||
enum-name:
|
||
identifier
|
||
|
||
typedef-name:
|
||
identifier
|
||
|
||
Returns a TYPE_DECL for the type. */
|
||
|
||
static tree
|
||
cp_parser_nonclass_name (cp_parser* parser)
|
||
{
|
||
tree type_decl;
|
||
tree identifier;
|
||
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
identifier = cp_parser_identifier (parser);
|
||
if (identifier == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Look up the type-name. */
|
||
type_decl = cp_parser_lookup_name_simple (parser, identifier, token->location);
|
||
|
||
type_decl = strip_using_decl (type_decl);
|
||
|
||
if (TREE_CODE (type_decl) != TYPE_DECL
|
||
&& (objc_is_id (identifier) || objc_is_class_name (identifier)))
|
||
{
|
||
/* See if this is an Objective-C type. */
|
||
tree protos = cp_parser_objc_protocol_refs_opt (parser);
|
||
tree type = objc_get_protocol_qualified_type (identifier, protos);
|
||
if (type)
|
||
type_decl = TYPE_NAME (type);
|
||
}
|
||
|
||
/* Issue an error if we did not find a type-name. */
|
||
if (TREE_CODE (type_decl) != TYPE_DECL
|
||
/* In Objective-C, we have the complication that class names are
|
||
normally type names and start declarations (eg, the
|
||
"NSObject" in "NSObject *object;"), but can be used in an
|
||
Objective-C 2.0 dot-syntax (as in "NSObject.version") which
|
||
is an expression. So, a classname followed by a dot is not a
|
||
valid type-name. */
|
||
|| (objc_is_class_name (TREE_TYPE (type_decl))
|
||
&& cp_lexer_peek_token (parser->lexer)->type == CPP_DOT))
|
||
{
|
||
if (!cp_parser_simulate_error (parser))
|
||
cp_parser_name_lookup_error (parser, identifier, type_decl,
|
||
NLE_TYPE, token->location);
|
||
return error_mark_node;
|
||
}
|
||
/* Remember that the name was used in the definition of the
|
||
current class so that we can check later to see if the
|
||
meaning would have been different after the class was
|
||
entirely defined. */
|
||
else if (type_decl != error_mark_node
|
||
&& !parser->scope)
|
||
maybe_note_name_used_in_class (identifier, type_decl);
|
||
|
||
return type_decl;
|
||
}
|
||
|
||
/* Parse an elaborated-type-specifier. Note that the grammar given
|
||
here incorporates the resolution to DR68.
|
||
|
||
elaborated-type-specifier:
|
||
class-key :: [opt] nested-name-specifier [opt] identifier
|
||
class-key :: [opt] nested-name-specifier [opt] template [opt] template-id
|
||
enum-key :: [opt] nested-name-specifier [opt] identifier
|
||
typename :: [opt] nested-name-specifier identifier
|
||
typename :: [opt] nested-name-specifier template [opt]
|
||
template-id
|
||
|
||
GNU extension:
|
||
|
||
elaborated-type-specifier:
|
||
class-key attributes :: [opt] nested-name-specifier [opt] identifier
|
||
class-key attributes :: [opt] nested-name-specifier [opt]
|
||
template [opt] template-id
|
||
enum attributes :: [opt] nested-name-specifier [opt] identifier
|
||
|
||
If IS_FRIEND is TRUE, then this elaborated-type-specifier is being
|
||
declared `friend'. If IS_DECLARATION is TRUE, then this
|
||
elaborated-type-specifier appears in a decl-specifiers-seq, i.e.,
|
||
something is being declared.
|
||
|
||
Returns the TYPE specified. */
|
||
|
||
static tree
|
||
cp_parser_elaborated_type_specifier (cp_parser* parser,
|
||
bool is_friend,
|
||
bool is_declaration)
|
||
{
|
||
enum tag_types tag_type;
|
||
tree identifier;
|
||
tree type = NULL_TREE;
|
||
tree attributes = NULL_TREE;
|
||
tree globalscope;
|
||
cp_token *token = NULL;
|
||
|
||
/* See if we're looking at the `enum' keyword. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ENUM))
|
||
{
|
||
/* Consume the `enum' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Remember that it's an enumeration type. */
|
||
tag_type = enum_type;
|
||
/* Issue a warning if the `struct' or `class' key (for C++0x scoped
|
||
enums) is used here. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_CLASS)
|
||
|| cp_lexer_next_token_is_keyword (parser->lexer, RID_STRUCT))
|
||
{
|
||
pedwarn (input_location, 0, "elaborated-type-specifier "
|
||
"for a scoped enum must not use the %<%D%> keyword",
|
||
cp_lexer_peek_token (parser->lexer)->u.value);
|
||
/* Consume the `struct' or `class' and parse it anyway. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
/* Parse the attributes. */
|
||
attributes = cp_parser_attributes_opt (parser);
|
||
}
|
||
/* Or, it might be `typename'. */
|
||
else if (cp_lexer_next_token_is_keyword (parser->lexer,
|
||
RID_TYPENAME))
|
||
{
|
||
/* Consume the `typename' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Remember that it's a `typename' type. */
|
||
tag_type = typename_type;
|
||
}
|
||
/* Otherwise it must be a class-key. */
|
||
else
|
||
{
|
||
tag_type = cp_parser_class_key (parser);
|
||
if (tag_type == none_type)
|
||
return error_mark_node;
|
||
/* Parse the attributes. */
|
||
attributes = cp_parser_attributes_opt (parser);
|
||
}
|
||
|
||
/* Look for the `::' operator. */
|
||
globalscope = cp_parser_global_scope_opt (parser,
|
||
/*current_scope_valid_p=*/false);
|
||
/* Look for the nested-name-specifier. */
|
||
if (tag_type == typename_type && !globalscope)
|
||
{
|
||
if (!cp_parser_nested_name_specifier (parser,
|
||
/*typename_keyword_p=*/true,
|
||
/*check_dependency_p=*/true,
|
||
/*type_p=*/true,
|
||
is_declaration))
|
||
return error_mark_node;
|
||
}
|
||
else
|
||
/* Even though `typename' is not present, the proposed resolution
|
||
to Core Issue 180 says that in `class A<T>::B', `B' should be
|
||
considered a type-name, even if `A<T>' is dependent. */
|
||
cp_parser_nested_name_specifier_opt (parser,
|
||
/*typename_keyword_p=*/true,
|
||
/*check_dependency_p=*/true,
|
||
/*type_p=*/true,
|
||
is_declaration);
|
||
/* For everything but enumeration types, consider a template-id.
|
||
For an enumeration type, consider only a plain identifier. */
|
||
if (tag_type != enum_type)
|
||
{
|
||
bool template_p = false;
|
||
tree decl;
|
||
|
||
/* Allow the `template' keyword. */
|
||
template_p = cp_parser_optional_template_keyword (parser);
|
||
/* If we didn't see `template', we don't know if there's a
|
||
template-id or not. */
|
||
if (!template_p)
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Parse the template-id. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
decl = cp_parser_template_id (parser, template_p,
|
||
/*check_dependency_p=*/true,
|
||
tag_type,
|
||
is_declaration);
|
||
/* If we didn't find a template-id, look for an ordinary
|
||
identifier. */
|
||
if (!template_p && !cp_parser_parse_definitely (parser))
|
||
;
|
||
/* If DECL is a TEMPLATE_ID_EXPR, and the `typename' keyword is
|
||
in effect, then we must assume that, upon instantiation, the
|
||
template will correspond to a class. */
|
||
else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
|
||
&& tag_type == typename_type)
|
||
type = make_typename_type (parser->scope, decl,
|
||
typename_type,
|
||
/*complain=*/tf_error);
|
||
/* If the `typename' keyword is in effect and DECL is not a type
|
||
decl, then type is non existent. */
|
||
else if (tag_type == typename_type && TREE_CODE (decl) != TYPE_DECL)
|
||
;
|
||
else if (TREE_CODE (decl) == TYPE_DECL)
|
||
type = check_elaborated_type_specifier (tag_type, decl,
|
||
/*allow_template_p=*/true);
|
||
else if (decl == error_mark_node)
|
||
type = error_mark_node;
|
||
}
|
||
|
||
if (!type)
|
||
{
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
identifier = cp_parser_identifier (parser);
|
||
|
||
if (identifier == error_mark_node)
|
||
{
|
||
parser->scope = NULL_TREE;
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* For a `typename', we needn't call xref_tag. */
|
||
if (tag_type == typename_type
|
||
&& TREE_CODE (parser->scope) != NAMESPACE_DECL)
|
||
return cp_parser_make_typename_type (parser, parser->scope,
|
||
identifier,
|
||
token->location);
|
||
|
||
/* Template parameter lists apply only if we are not within a
|
||
function parameter list. */
|
||
bool template_parm_lists_apply
|
||
= parser->num_template_parameter_lists;
|
||
if (template_parm_lists_apply)
|
||
for (cp_binding_level *s = current_binding_level;
|
||
s && s->kind != sk_template_parms;
|
||
s = s->level_chain)
|
||
if (s->kind == sk_function_parms)
|
||
template_parm_lists_apply = false;
|
||
|
||
/* Look up a qualified name in the usual way. */
|
||
if (parser->scope)
|
||
{
|
||
tree decl;
|
||
tree ambiguous_decls;
|
||
|
||
decl = cp_parser_lookup_name (parser, identifier,
|
||
tag_type,
|
||
/*is_template=*/false,
|
||
/*is_namespace=*/false,
|
||
/*check_dependency=*/true,
|
||
&ambiguous_decls,
|
||
token->location);
|
||
|
||
/* If the lookup was ambiguous, an error will already have been
|
||
issued. */
|
||
if (ambiguous_decls)
|
||
return error_mark_node;
|
||
|
||
/* If we are parsing friend declaration, DECL may be a
|
||
TEMPLATE_DECL tree node here. However, we need to check
|
||
whether this TEMPLATE_DECL results in valid code. Consider
|
||
the following example:
|
||
|
||
namespace N {
|
||
template <class T> class C {};
|
||
}
|
||
class X {
|
||
template <class T> friend class N::C; // #1, valid code
|
||
};
|
||
template <class T> class Y {
|
||
friend class N::C; // #2, invalid code
|
||
};
|
||
|
||
For both case #1 and #2, we arrive at a TEMPLATE_DECL after
|
||
name lookup of `N::C'. We see that friend declaration must
|
||
be template for the code to be valid. Note that
|
||
processing_template_decl does not work here since it is
|
||
always 1 for the above two cases. */
|
||
|
||
decl = (cp_parser_maybe_treat_template_as_class
|
||
(decl, /*tag_name_p=*/is_friend
|
||
&& template_parm_lists_apply));
|
||
|
||
if (TREE_CODE (decl) != TYPE_DECL)
|
||
{
|
||
cp_parser_diagnose_invalid_type_name (parser,
|
||
parser->scope,
|
||
identifier,
|
||
token->location);
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (TREE_CODE (TREE_TYPE (decl)) != TYPENAME_TYPE)
|
||
{
|
||
bool allow_template = (template_parm_lists_apply
|
||
|| DECL_SELF_REFERENCE_P (decl));
|
||
type = check_elaborated_type_specifier (tag_type, decl,
|
||
allow_template);
|
||
|
||
if (type == error_mark_node)
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Forward declarations of nested types, such as
|
||
|
||
class C1::C2;
|
||
class C1::C2::C3;
|
||
|
||
are invalid unless all components preceding the final '::'
|
||
are complete. If all enclosing types are complete, these
|
||
declarations become merely pointless.
|
||
|
||
Invalid forward declarations of nested types are errors
|
||
caught elsewhere in parsing. Those that are pointless arrive
|
||
here. */
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
|
||
&& !is_friend && !processing_explicit_instantiation)
|
||
warning (0, "declaration %qD does not declare anything", decl);
|
||
|
||
type = TREE_TYPE (decl);
|
||
}
|
||
else
|
||
{
|
||
/* An elaborated-type-specifier sometimes introduces a new type and
|
||
sometimes names an existing type. Normally, the rule is that it
|
||
introduces a new type only if there is not an existing type of
|
||
the same name already in scope. For example, given:
|
||
|
||
struct S {};
|
||
void f() { struct S s; }
|
||
|
||
the `struct S' in the body of `f' is the same `struct S' as in
|
||
the global scope; the existing definition is used. However, if
|
||
there were no global declaration, this would introduce a new
|
||
local class named `S'.
|
||
|
||
An exception to this rule applies to the following code:
|
||
|
||
namespace N { struct S; }
|
||
|
||
Here, the elaborated-type-specifier names a new type
|
||
unconditionally; even if there is already an `S' in the
|
||
containing scope this declaration names a new type.
|
||
This exception only applies if the elaborated-type-specifier
|
||
forms the complete declaration:
|
||
|
||
[class.name]
|
||
|
||
A declaration consisting solely of `class-key identifier ;' is
|
||
either a redeclaration of the name in the current scope or a
|
||
forward declaration of the identifier as a class name. It
|
||
introduces the name into the current scope.
|
||
|
||
We are in this situation precisely when the next token is a `;'.
|
||
|
||
An exception to the exception is that a `friend' declaration does
|
||
*not* name a new type; i.e., given:
|
||
|
||
struct S { friend struct T; };
|
||
|
||
`T' is not a new type in the scope of `S'.
|
||
|
||
Also, `new struct S' or `sizeof (struct S)' never results in the
|
||
definition of a new type; a new type can only be declared in a
|
||
declaration context. */
|
||
|
||
tag_scope ts;
|
||
bool template_p;
|
||
|
||
if (is_friend)
|
||
/* Friends have special name lookup rules. */
|
||
ts = ts_within_enclosing_non_class;
|
||
else if (is_declaration
|
||
&& cp_lexer_next_token_is (parser->lexer,
|
||
CPP_SEMICOLON))
|
||
/* This is a `class-key identifier ;' */
|
||
ts = ts_current;
|
||
else
|
||
ts = ts_global;
|
||
|
||
template_p =
|
||
(template_parm_lists_apply
|
||
&& (cp_parser_next_token_starts_class_definition_p (parser)
|
||
|| cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)));
|
||
/* An unqualified name was used to reference this type, so
|
||
there were no qualifying templates. */
|
||
if (template_parm_lists_apply
|
||
&& !cp_parser_check_template_parameters (parser,
|
||
/*num_templates=*/0,
|
||
token->location,
|
||
/*declarator=*/NULL))
|
||
return error_mark_node;
|
||
type = xref_tag (tag_type, identifier, ts, template_p);
|
||
}
|
||
}
|
||
|
||
if (type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Allow attributes on forward declarations of classes. */
|
||
if (attributes)
|
||
{
|
||
if (TREE_CODE (type) == TYPENAME_TYPE)
|
||
warning (OPT_Wattributes,
|
||
"attributes ignored on uninstantiated type");
|
||
else if (tag_type != enum_type && CLASSTYPE_TEMPLATE_INSTANTIATION (type)
|
||
&& ! processing_explicit_instantiation)
|
||
warning (OPT_Wattributes,
|
||
"attributes ignored on template instantiation");
|
||
else if (is_declaration && cp_parser_declares_only_class_p (parser))
|
||
cplus_decl_attributes (&type, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
|
||
else
|
||
warning (OPT_Wattributes,
|
||
"attributes ignored on elaborated-type-specifier that is not a forward declaration");
|
||
}
|
||
|
||
if (tag_type != enum_type)
|
||
{
|
||
/* Indicate whether this class was declared as a `class' or as a
|
||
`struct'. */
|
||
if (TREE_CODE (type) == RECORD_TYPE)
|
||
CLASSTYPE_DECLARED_CLASS (type) = (tag_type == class_type);
|
||
cp_parser_check_class_key (tag_type, type);
|
||
}
|
||
|
||
/* A "<" cannot follow an elaborated type specifier. If that
|
||
happens, the user was probably trying to form a template-id. */
|
||
cp_parser_check_for_invalid_template_id (parser, type, tag_type,
|
||
token->location);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Parse an enum-specifier.
|
||
|
||
enum-specifier:
|
||
enum-head { enumerator-list [opt] }
|
||
enum-head { enumerator-list , } [C++0x]
|
||
|
||
enum-head:
|
||
enum-key identifier [opt] enum-base [opt]
|
||
enum-key nested-name-specifier identifier enum-base [opt]
|
||
|
||
enum-key:
|
||
enum
|
||
enum class [C++0x]
|
||
enum struct [C++0x]
|
||
|
||
enum-base: [C++0x]
|
||
: type-specifier-seq
|
||
|
||
opaque-enum-specifier:
|
||
enum-key identifier enum-base [opt] ;
|
||
|
||
GNU Extensions:
|
||
enum-key attributes[opt] identifier [opt] enum-base [opt]
|
||
{ enumerator-list [opt] }attributes[opt]
|
||
enum-key attributes[opt] identifier [opt] enum-base [opt]
|
||
{ enumerator-list, }attributes[opt] [C++0x]
|
||
|
||
Returns an ENUM_TYPE representing the enumeration, or NULL_TREE
|
||
if the token stream isn't an enum-specifier after all. */
|
||
|
||
static tree
|
||
cp_parser_enum_specifier (cp_parser* parser)
|
||
{
|
||
tree identifier;
|
||
tree type = NULL_TREE;
|
||
tree prev_scope;
|
||
tree nested_name_specifier = NULL_TREE;
|
||
tree attributes;
|
||
bool scoped_enum_p = false;
|
||
bool has_underlying_type = false;
|
||
bool nested_being_defined = false;
|
||
bool new_value_list = false;
|
||
bool is_new_type = false;
|
||
bool is_anonymous = false;
|
||
tree underlying_type = NULL_TREE;
|
||
cp_token *type_start_token = NULL;
|
||
bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p;
|
||
|
||
parser->colon_corrects_to_scope_p = false;
|
||
|
||
/* Parse tentatively so that we can back up if we don't find a
|
||
enum-specifier. */
|
||
cp_parser_parse_tentatively (parser);
|
||
|
||
/* Caller guarantees that the current token is 'enum', an identifier
|
||
possibly follows, and the token after that is an opening brace.
|
||
If we don't have an identifier, fabricate an anonymous name for
|
||
the enumeration being defined. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* Parse the "class" or "struct", which indicates a scoped
|
||
enumeration type in C++0x. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_CLASS)
|
||
|| cp_lexer_next_token_is_keyword (parser->lexer, RID_STRUCT))
|
||
{
|
||
if (cxx_dialect < cxx11)
|
||
maybe_warn_cpp0x (CPP0X_SCOPED_ENUMS);
|
||
|
||
/* Consume the `struct' or `class' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
scoped_enum_p = true;
|
||
}
|
||
|
||
attributes = cp_parser_attributes_opt (parser);
|
||
|
||
/* Clear the qualification. */
|
||
parser->scope = NULL_TREE;
|
||
parser->qualifying_scope = NULL_TREE;
|
||
parser->object_scope = NULL_TREE;
|
||
|
||
/* Figure out in what scope the declaration is being placed. */
|
||
prev_scope = current_scope ();
|
||
|
||
type_start_token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
push_deferring_access_checks (dk_no_check);
|
||
nested_name_specifier
|
||
= cp_parser_nested_name_specifier_opt (parser,
|
||
/*typename_keyword_p=*/true,
|
||
/*check_dependency_p=*/false,
|
||
/*type_p=*/false,
|
||
/*is_declaration=*/false);
|
||
|
||
if (nested_name_specifier)
|
||
{
|
||
tree name;
|
||
|
||
identifier = cp_parser_identifier (parser);
|
||
name = cp_parser_lookup_name (parser, identifier,
|
||
enum_type,
|
||
/*is_template=*/false,
|
||
/*is_namespace=*/false,
|
||
/*check_dependency=*/true,
|
||
/*ambiguous_decls=*/NULL,
|
||
input_location);
|
||
if (name && name != error_mark_node)
|
||
{
|
||
type = TREE_TYPE (name);
|
||
if (TREE_CODE (type) == TYPENAME_TYPE)
|
||
{
|
||
/* Are template enums allowed in ISO? */
|
||
if (template_parm_scope_p ())
|
||
pedwarn (type_start_token->location, OPT_Wpedantic,
|
||
"%qD is an enumeration template", name);
|
||
/* ignore a typename reference, for it will be solved by name
|
||
in start_enum. */
|
||
type = NULL_TREE;
|
||
}
|
||
}
|
||
else if (nested_name_specifier == error_mark_node)
|
||
/* We already issued an error. */;
|
||
else
|
||
error_at (type_start_token->location,
|
||
"%qD is not an enumerator-name", identifier);
|
||
}
|
||
else
|
||
{
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
identifier = cp_parser_identifier (parser);
|
||
else
|
||
{
|
||
identifier = make_anon_name ();
|
||
is_anonymous = true;
|
||
if (scoped_enum_p)
|
||
error_at (type_start_token->location,
|
||
"anonymous scoped enum is not allowed");
|
||
}
|
||
}
|
||
pop_deferring_access_checks ();
|
||
|
||
/* Check for the `:' that denotes a specified underlying type in C++0x.
|
||
Note that a ':' could also indicate a bitfield width, however. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
|
||
{
|
||
cp_decl_specifier_seq type_specifiers;
|
||
|
||
/* Consume the `:'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* Parse the type-specifier-seq. */
|
||
cp_parser_type_specifier_seq (parser, /*is_declaration=*/false,
|
||
/*is_trailing_return=*/false,
|
||
&type_specifiers);
|
||
|
||
/* At this point this is surely not elaborated type specifier. */
|
||
if (!cp_parser_parse_definitely (parser))
|
||
return NULL_TREE;
|
||
|
||
if (cxx_dialect < cxx11)
|
||
maybe_warn_cpp0x (CPP0X_SCOPED_ENUMS);
|
||
|
||
has_underlying_type = true;
|
||
|
||
/* If that didn't work, stop. */
|
||
if (type_specifiers.type != error_mark_node)
|
||
{
|
||
underlying_type = grokdeclarator (NULL, &type_specifiers, TYPENAME,
|
||
/*initialized=*/0, NULL);
|
||
if (underlying_type == error_mark_node
|
||
|| check_for_bare_parameter_packs (underlying_type))
|
||
underlying_type = NULL_TREE;
|
||
}
|
||
}
|
||
|
||
/* Look for the `{' but don't consume it yet. */
|
||
if (!cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
if (cxx_dialect < cxx11 || (!scoped_enum_p && !underlying_type))
|
||
{
|
||
cp_parser_error (parser, "expected %<{%>");
|
||
if (has_underlying_type)
|
||
{
|
||
type = NULL_TREE;
|
||
goto out;
|
||
}
|
||
}
|
||
/* An opaque-enum-specifier must have a ';' here. */
|
||
if ((scoped_enum_p || underlying_type)
|
||
&& cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
|
||
{
|
||
cp_parser_error (parser, "expected %<;%> or %<{%>");
|
||
if (has_underlying_type)
|
||
{
|
||
type = NULL_TREE;
|
||
goto out;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!has_underlying_type && !cp_parser_parse_definitely (parser))
|
||
return NULL_TREE;
|
||
|
||
if (nested_name_specifier)
|
||
{
|
||
if (CLASS_TYPE_P (nested_name_specifier))
|
||
{
|
||
nested_being_defined = TYPE_BEING_DEFINED (nested_name_specifier);
|
||
TYPE_BEING_DEFINED (nested_name_specifier) = 1;
|
||
push_scope (nested_name_specifier);
|
||
}
|
||
else if (TREE_CODE (nested_name_specifier) == NAMESPACE_DECL)
|
||
{
|
||
push_nested_namespace (nested_name_specifier);
|
||
}
|
||
}
|
||
|
||
/* Issue an error message if type-definitions are forbidden here. */
|
||
if (!cp_parser_check_type_definition (parser))
|
||
type = error_mark_node;
|
||
else
|
||
/* Create the new type. We do this before consuming the opening
|
||
brace so the enum will be recorded as being on the line of its
|
||
tag (or the 'enum' keyword, if there is no tag). */
|
||
type = start_enum (identifier, type, underlying_type,
|
||
scoped_enum_p, &is_new_type);
|
||
|
||
/* If the next token is not '{' it is an opaque-enum-specifier or an
|
||
elaborated-type-specifier. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
timevar_push (TV_PARSE_ENUM);
|
||
if (nested_name_specifier
|
||
&& nested_name_specifier != error_mark_node)
|
||
{
|
||
/* The following catches invalid code such as:
|
||
enum class S<int>::E { A, B, C }; */
|
||
if (!processing_specialization
|
||
&& CLASS_TYPE_P (nested_name_specifier)
|
||
&& CLASSTYPE_USE_TEMPLATE (nested_name_specifier))
|
||
error_at (type_start_token->location, "cannot add an enumerator "
|
||
"list to a template instantiation");
|
||
|
||
if (TREE_CODE (nested_name_specifier) == TYPENAME_TYPE)
|
||
{
|
||
error_at (type_start_token->location,
|
||
"%<%T::%E%> has not been declared",
|
||
TYPE_CONTEXT (nested_name_specifier),
|
||
nested_name_specifier);
|
||
type = error_mark_node;
|
||
}
|
||
/* If that scope does not contain the scope in which the
|
||
class was originally declared, the program is invalid. */
|
||
else if (prev_scope && !is_ancestor (prev_scope,
|
||
nested_name_specifier))
|
||
{
|
||
if (at_namespace_scope_p ())
|
||
error_at (type_start_token->location,
|
||
"declaration of %qD in namespace %qD which does not "
|
||
"enclose %qD",
|
||
type, prev_scope, nested_name_specifier);
|
||
else
|
||
error_at (type_start_token->location,
|
||
"declaration of %qD in %qD which does not "
|
||
"enclose %qD",
|
||
type, prev_scope, nested_name_specifier);
|
||
type = error_mark_node;
|
||
}
|
||
}
|
||
|
||
if (scoped_enum_p)
|
||
begin_scope (sk_scoped_enum, type);
|
||
|
||
/* Consume the opening brace. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
if (type == error_mark_node)
|
||
; /* Nothing to add */
|
||
else if (OPAQUE_ENUM_P (type)
|
||
|| (cxx_dialect > cxx98 && processing_specialization))
|
||
{
|
||
new_value_list = true;
|
||
SET_OPAQUE_ENUM_P (type, false);
|
||
DECL_SOURCE_LOCATION (TYPE_NAME (type)) = type_start_token->location;
|
||
}
|
||
else
|
||
{
|
||
error_at (type_start_token->location,
|
||
"multiple definition of %q#T", type);
|
||
inform (DECL_SOURCE_LOCATION (TYPE_MAIN_DECL (type)),
|
||
"previous definition here");
|
||
type = error_mark_node;
|
||
}
|
||
|
||
if (type == error_mark_node)
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
/* If the next token is not '}', then there are some enumerators. */
|
||
else if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
|
||
{
|
||
if (is_anonymous && !scoped_enum_p)
|
||
pedwarn (type_start_token->location, OPT_Wpedantic,
|
||
"ISO C++ forbids empty anonymous enum");
|
||
}
|
||
else
|
||
cp_parser_enumerator_list (parser, type);
|
||
|
||
/* Consume the final '}'. */
|
||
cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE);
|
||
|
||
if (scoped_enum_p)
|
||
finish_scope ();
|
||
timevar_pop (TV_PARSE_ENUM);
|
||
}
|
||
else
|
||
{
|
||
/* If a ';' follows, then it is an opaque-enum-specifier
|
||
and additional restrictions apply. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
|
||
{
|
||
if (is_anonymous)
|
||
error_at (type_start_token->location,
|
||
"opaque-enum-specifier without name");
|
||
else if (nested_name_specifier)
|
||
error_at (type_start_token->location,
|
||
"opaque-enum-specifier must use a simple identifier");
|
||
}
|
||
}
|
||
|
||
/* Look for trailing attributes to apply to this enumeration, and
|
||
apply them if appropriate. */
|
||
if (cp_parser_allow_gnu_extensions_p (parser))
|
||
{
|
||
tree trailing_attr = cp_parser_gnu_attributes_opt (parser);
|
||
trailing_attr = chainon (trailing_attr, attributes);
|
||
cplus_decl_attributes (&type,
|
||
trailing_attr,
|
||
(int) ATTR_FLAG_TYPE_IN_PLACE);
|
||
}
|
||
|
||
/* Finish up the enumeration. */
|
||
if (type != error_mark_node)
|
||
{
|
||
if (new_value_list)
|
||
finish_enum_value_list (type);
|
||
if (is_new_type)
|
||
finish_enum (type);
|
||
}
|
||
|
||
if (nested_name_specifier)
|
||
{
|
||
if (CLASS_TYPE_P (nested_name_specifier))
|
||
{
|
||
TYPE_BEING_DEFINED (nested_name_specifier) = nested_being_defined;
|
||
pop_scope (nested_name_specifier);
|
||
}
|
||
else if (TREE_CODE (nested_name_specifier) == NAMESPACE_DECL)
|
||
{
|
||
pop_nested_namespace (nested_name_specifier);
|
||
}
|
||
}
|
||
out:
|
||
parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p;
|
||
return type;
|
||
}
|
||
|
||
/* Parse an enumerator-list. The enumerators all have the indicated
|
||
TYPE.
|
||
|
||
enumerator-list:
|
||
enumerator-definition
|
||
enumerator-list , enumerator-definition */
|
||
|
||
static void
|
||
cp_parser_enumerator_list (cp_parser* parser, tree type)
|
||
{
|
||
while (true)
|
||
{
|
||
/* Parse an enumerator-definition. */
|
||
cp_parser_enumerator_definition (parser, type);
|
||
|
||
/* If the next token is not a ',', we've reached the end of
|
||
the list. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
|
||
break;
|
||
/* Otherwise, consume the `,' and keep going. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* If the next token is a `}', there is a trailing comma. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
|
||
{
|
||
if (cxx_dialect < cxx11 && !in_system_header_at (input_location))
|
||
pedwarn (input_location, OPT_Wpedantic,
|
||
"comma at end of enumerator list");
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Parse an enumerator-definition. The enumerator has the indicated
|
||
TYPE.
|
||
|
||
enumerator-definition:
|
||
enumerator
|
||
enumerator = constant-expression
|
||
|
||
enumerator:
|
||
identifier */
|
||
|
||
static void
|
||
cp_parser_enumerator_definition (cp_parser* parser, tree type)
|
||
{
|
||
tree identifier;
|
||
tree value;
|
||
location_t loc;
|
||
|
||
/* Save the input location because we are interested in the location
|
||
of the identifier and not the location of the explicit value. */
|
||
loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
/* Look for the identifier. */
|
||
identifier = cp_parser_identifier (parser);
|
||
if (identifier == error_mark_node)
|
||
return;
|
||
|
||
/* If the next token is an '=', then there is an explicit value. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
|
||
{
|
||
/* Consume the `=' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the value. */
|
||
value = cp_parser_constant_expression (parser,
|
||
/*allow_non_constant_p=*/false,
|
||
NULL);
|
||
}
|
||
else
|
||
value = NULL_TREE;
|
||
|
||
/* If we are processing a template, make sure the initializer of the
|
||
enumerator doesn't contain any bare template parameter pack. */
|
||
if (check_for_bare_parameter_packs (value))
|
||
value = error_mark_node;
|
||
|
||
/* integral_constant_value will pull out this expression, so make sure
|
||
it's folded as appropriate. */
|
||
value = fold_non_dependent_expr (value);
|
||
|
||
/* Create the enumerator. */
|
||
build_enumerator (identifier, value, type, loc);
|
||
}
|
||
|
||
/* Parse a namespace-name.
|
||
|
||
namespace-name:
|
||
original-namespace-name
|
||
namespace-alias
|
||
|
||
Returns the NAMESPACE_DECL for the namespace. */
|
||
|
||
static tree
|
||
cp_parser_namespace_name (cp_parser* parser)
|
||
{
|
||
tree identifier;
|
||
tree namespace_decl;
|
||
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* Get the name of the namespace. */
|
||
identifier = cp_parser_identifier (parser);
|
||
if (identifier == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Look up the identifier in the currently active scope. Look only
|
||
for namespaces, due to:
|
||
|
||
[basic.lookup.udir]
|
||
|
||
When looking up a namespace-name in a using-directive or alias
|
||
definition, only namespace names are considered.
|
||
|
||
And:
|
||
|
||
[basic.lookup.qual]
|
||
|
||
During the lookup of a name preceding the :: scope resolution
|
||
operator, object, function, and enumerator names are ignored.
|
||
|
||
(Note that cp_parser_qualifying_entity only calls this
|
||
function if the token after the name is the scope resolution
|
||
operator.) */
|
||
namespace_decl = cp_parser_lookup_name (parser, identifier,
|
||
none_type,
|
||
/*is_template=*/false,
|
||
/*is_namespace=*/true,
|
||
/*check_dependency=*/true,
|
||
/*ambiguous_decls=*/NULL,
|
||
token->location);
|
||
/* If it's not a namespace, issue an error. */
|
||
if (namespace_decl == error_mark_node
|
||
|| TREE_CODE (namespace_decl) != NAMESPACE_DECL)
|
||
{
|
||
if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
|
||
error_at (token->location, "%qD is not a namespace-name", identifier);
|
||
cp_parser_error (parser, "expected namespace-name");
|
||
namespace_decl = error_mark_node;
|
||
}
|
||
|
||
return namespace_decl;
|
||
}
|
||
|
||
/* Parse a namespace-definition.
|
||
|
||
namespace-definition:
|
||
named-namespace-definition
|
||
unnamed-namespace-definition
|
||
|
||
named-namespace-definition:
|
||
original-namespace-definition
|
||
extension-namespace-definition
|
||
|
||
original-namespace-definition:
|
||
namespace identifier { namespace-body }
|
||
|
||
extension-namespace-definition:
|
||
namespace original-namespace-name { namespace-body }
|
||
|
||
unnamed-namespace-definition:
|
||
namespace { namespace-body } */
|
||
|
||
static void
|
||
cp_parser_namespace_definition (cp_parser* parser)
|
||
{
|
||
tree identifier, attribs;
|
||
bool has_visibility;
|
||
bool is_inline;
|
||
|
||
cp_ensure_no_omp_declare_simd (parser);
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_INLINE))
|
||
{
|
||
maybe_warn_cpp0x (CPP0X_INLINE_NAMESPACES);
|
||
is_inline = true;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
else
|
||
is_inline = false;
|
||
|
||
/* Look for the `namespace' keyword. */
|
||
cp_parser_require_keyword (parser, RID_NAMESPACE, RT_NAMESPACE);
|
||
|
||
/* Get the name of the namespace. We do not attempt to distinguish
|
||
between an original-namespace-definition and an
|
||
extension-namespace-definition at this point. The semantic
|
||
analysis routines are responsible for that. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
identifier = cp_parser_identifier (parser);
|
||
else
|
||
identifier = NULL_TREE;
|
||
|
||
/* Parse any specified attributes. */
|
||
attribs = cp_parser_attributes_opt (parser);
|
||
|
||
/* Look for the `{' to start the namespace. */
|
||
cp_parser_require (parser, CPP_OPEN_BRACE, RT_OPEN_BRACE);
|
||
/* Start the namespace. */
|
||
push_namespace (identifier);
|
||
|
||
/* "inline namespace" is equivalent to a stub namespace definition
|
||
followed by a strong using directive. */
|
||
if (is_inline)
|
||
{
|
||
tree name_space = current_namespace;
|
||
/* Set up namespace association. */
|
||
DECL_NAMESPACE_ASSOCIATIONS (name_space)
|
||
= tree_cons (CP_DECL_CONTEXT (name_space), NULL_TREE,
|
||
DECL_NAMESPACE_ASSOCIATIONS (name_space));
|
||
/* Import the contents of the inline namespace. */
|
||
pop_namespace ();
|
||
do_using_directive (name_space);
|
||
push_namespace (identifier);
|
||
}
|
||
|
||
has_visibility = handle_namespace_attrs (current_namespace, attribs);
|
||
|
||
/* Parse the body of the namespace. */
|
||
cp_parser_namespace_body (parser);
|
||
|
||
if (has_visibility)
|
||
pop_visibility (1);
|
||
|
||
/* Finish the namespace. */
|
||
pop_namespace ();
|
||
/* Look for the final `}'. */
|
||
cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE);
|
||
}
|
||
|
||
/* Parse a namespace-body.
|
||
|
||
namespace-body:
|
||
declaration-seq [opt] */
|
||
|
||
static void
|
||
cp_parser_namespace_body (cp_parser* parser)
|
||
{
|
||
cp_parser_declaration_seq_opt (parser);
|
||
}
|
||
|
||
/* Parse a namespace-alias-definition.
|
||
|
||
namespace-alias-definition:
|
||
namespace identifier = qualified-namespace-specifier ; */
|
||
|
||
static void
|
||
cp_parser_namespace_alias_definition (cp_parser* parser)
|
||
{
|
||
tree identifier;
|
||
tree namespace_specifier;
|
||
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* Look for the `namespace' keyword. */
|
||
cp_parser_require_keyword (parser, RID_NAMESPACE, RT_NAMESPACE);
|
||
/* Look for the identifier. */
|
||
identifier = cp_parser_identifier (parser);
|
||
if (identifier == error_mark_node)
|
||
return;
|
||
/* Look for the `=' token. */
|
||
if (!cp_parser_uncommitted_to_tentative_parse_p (parser)
|
||
&& cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
error_at (token->location, "%<namespace%> definition is not allowed here");
|
||
/* Skip the definition. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (cp_parser_skip_to_closing_brace (parser))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return;
|
||
}
|
||
cp_parser_require (parser, CPP_EQ, RT_EQ);
|
||
/* Look for the qualified-namespace-specifier. */
|
||
namespace_specifier
|
||
= cp_parser_qualified_namespace_specifier (parser);
|
||
/* Look for the `;' token. */
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
|
||
/* Register the alias in the symbol table. */
|
||
do_namespace_alias (identifier, namespace_specifier);
|
||
}
|
||
|
||
/* Parse a qualified-namespace-specifier.
|
||
|
||
qualified-namespace-specifier:
|
||
:: [opt] nested-name-specifier [opt] namespace-name
|
||
|
||
Returns a NAMESPACE_DECL corresponding to the specified
|
||
namespace. */
|
||
|
||
static tree
|
||
cp_parser_qualified_namespace_specifier (cp_parser* parser)
|
||
{
|
||
/* Look for the optional `::'. */
|
||
cp_parser_global_scope_opt (parser,
|
||
/*current_scope_valid_p=*/false);
|
||
|
||
/* Look for the optional nested-name-specifier. */
|
||
cp_parser_nested_name_specifier_opt (parser,
|
||
/*typename_keyword_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
/*type_p=*/false,
|
||
/*is_declaration=*/true);
|
||
|
||
return cp_parser_namespace_name (parser);
|
||
}
|
||
|
||
/* Parse a using-declaration, or, if ACCESS_DECLARATION_P is true, an
|
||
access declaration.
|
||
|
||
using-declaration:
|
||
using typename [opt] :: [opt] nested-name-specifier unqualified-id ;
|
||
using :: unqualified-id ;
|
||
|
||
access-declaration:
|
||
qualified-id ;
|
||
|
||
*/
|
||
|
||
static bool
|
||
cp_parser_using_declaration (cp_parser* parser,
|
||
bool access_declaration_p)
|
||
{
|
||
cp_token *token;
|
||
bool typename_p = false;
|
||
bool global_scope_p;
|
||
tree decl;
|
||
tree identifier;
|
||
tree qscope;
|
||
int oldcount = errorcount;
|
||
cp_token *diag_token = NULL;
|
||
|
||
if (access_declaration_p)
|
||
{
|
||
diag_token = cp_lexer_peek_token (parser->lexer);
|
||
cp_parser_parse_tentatively (parser);
|
||
}
|
||
else
|
||
{
|
||
/* Look for the `using' keyword. */
|
||
cp_parser_require_keyword (parser, RID_USING, RT_USING);
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* See if it's `typename'. */
|
||
if (token->keyword == RID_TYPENAME)
|
||
{
|
||
/* Remember that we've seen it. */
|
||
typename_p = true;
|
||
/* Consume the `typename' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
}
|
||
|
||
/* Look for the optional global scope qualification. */
|
||
global_scope_p
|
||
= (cp_parser_global_scope_opt (parser,
|
||
/*current_scope_valid_p=*/false)
|
||
!= NULL_TREE);
|
||
|
||
/* If we saw `typename', or didn't see `::', then there must be a
|
||
nested-name-specifier present. */
|
||
if (typename_p || !global_scope_p)
|
||
{
|
||
qscope = cp_parser_nested_name_specifier (parser, typename_p,
|
||
/*check_dependency_p=*/true,
|
||
/*type_p=*/false,
|
||
/*is_declaration=*/true);
|
||
if (!qscope && !cp_parser_uncommitted_to_tentative_parse_p (parser))
|
||
{
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
return false;
|
||
}
|
||
}
|
||
/* Otherwise, we could be in either of the two productions. In that
|
||
case, treat the nested-name-specifier as optional. */
|
||
else
|
||
qscope = cp_parser_nested_name_specifier_opt (parser,
|
||
/*typename_keyword_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
/*type_p=*/false,
|
||
/*is_declaration=*/true);
|
||
if (!qscope)
|
||
qscope = global_namespace;
|
||
else if (UNSCOPED_ENUM_P (qscope))
|
||
qscope = CP_TYPE_CONTEXT (qscope);
|
||
|
||
if (access_declaration_p && cp_parser_error_occurred (parser))
|
||
/* Something has already gone wrong; there's no need to parse
|
||
further. Since an error has occurred, the return value of
|
||
cp_parser_parse_definitely will be false, as required. */
|
||
return cp_parser_parse_definitely (parser);
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* Parse the unqualified-id. */
|
||
identifier = cp_parser_unqualified_id (parser,
|
||
/*template_keyword_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
/*declarator_p=*/true,
|
||
/*optional_p=*/false);
|
||
|
||
if (access_declaration_p)
|
||
{
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
|
||
cp_parser_simulate_error (parser);
|
||
if (!cp_parser_parse_definitely (parser))
|
||
return false;
|
||
}
|
||
|
||
/* The function we call to handle a using-declaration is different
|
||
depending on what scope we are in. */
|
||
if (qscope == error_mark_node || identifier == error_mark_node)
|
||
;
|
||
else if (!identifier_p (identifier)
|
||
&& TREE_CODE (identifier) != BIT_NOT_EXPR)
|
||
/* [namespace.udecl]
|
||
|
||
A using declaration shall not name a template-id. */
|
||
error_at (token->location,
|
||
"a template-id may not appear in a using-declaration");
|
||
else
|
||
{
|
||
if (at_class_scope_p ())
|
||
{
|
||
/* Create the USING_DECL. */
|
||
decl = do_class_using_decl (parser->scope, identifier);
|
||
|
||
if (decl && typename_p)
|
||
USING_DECL_TYPENAME_P (decl) = 1;
|
||
|
||
if (check_for_bare_parameter_packs (decl))
|
||
{
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
return false;
|
||
}
|
||
else
|
||
/* Add it to the list of members in this class. */
|
||
finish_member_declaration (decl);
|
||
}
|
||
else
|
||
{
|
||
decl = cp_parser_lookup_name_simple (parser,
|
||
identifier,
|
||
token->location);
|
||
if (decl == error_mark_node)
|
||
cp_parser_name_lookup_error (parser, identifier,
|
||
decl, NLE_NULL,
|
||
token->location);
|
||
else if (check_for_bare_parameter_packs (decl))
|
||
{
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
return false;
|
||
}
|
||
else if (!at_namespace_scope_p ())
|
||
do_local_using_decl (decl, qscope, identifier);
|
||
else
|
||
do_toplevel_using_decl (decl, qscope, identifier);
|
||
}
|
||
}
|
||
|
||
/* Look for the final `;'. */
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
|
||
if (access_declaration_p && errorcount == oldcount)
|
||
warning_at (diag_token->location, OPT_Wdeprecated,
|
||
"access declarations are deprecated "
|
||
"in favour of using-declarations; "
|
||
"suggestion: add the %<using%> keyword");
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Parse an alias-declaration.
|
||
|
||
alias-declaration:
|
||
using identifier attribute-specifier-seq [opt] = type-id */
|
||
|
||
static tree
|
||
cp_parser_alias_declaration (cp_parser* parser)
|
||
{
|
||
tree id, type, decl, pushed_scope = NULL_TREE, attributes;
|
||
location_t id_location;
|
||
cp_declarator *declarator;
|
||
cp_decl_specifier_seq decl_specs;
|
||
bool member_p;
|
||
const char *saved_message = NULL;
|
||
|
||
/* Look for the `using' keyword. */
|
||
cp_token *using_token
|
||
= cp_parser_require_keyword (parser, RID_USING, RT_USING);
|
||
if (using_token == NULL)
|
||
return error_mark_node;
|
||
|
||
id_location = cp_lexer_peek_token (parser->lexer)->location;
|
||
id = cp_parser_identifier (parser);
|
||
if (id == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
cp_token *attrs_token = cp_lexer_peek_token (parser->lexer);
|
||
attributes = cp_parser_attributes_opt (parser);
|
||
if (attributes == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
cp_parser_require (parser, CPP_EQ, RT_EQ);
|
||
|
||
if (cp_parser_error_occurred (parser))
|
||
return error_mark_node;
|
||
|
||
cp_parser_commit_to_tentative_parse (parser);
|
||
|
||
/* Now we are going to parse the type-id of the declaration. */
|
||
|
||
/*
|
||
[dcl.type]/3 says:
|
||
|
||
"A type-specifier-seq shall not define a class or enumeration
|
||
unless it appears in the type-id of an alias-declaration (7.1.3) that
|
||
is not the declaration of a template-declaration."
|
||
|
||
In other words, if we currently are in an alias template, the
|
||
type-id should not define a type.
|
||
|
||
So let's set parser->type_definition_forbidden_message in that
|
||
case; cp_parser_check_type_definition (called by
|
||
cp_parser_class_specifier) will then emit an error if a type is
|
||
defined in the type-id. */
|
||
if (parser->num_template_parameter_lists)
|
||
{
|
||
saved_message = parser->type_definition_forbidden_message;
|
||
parser->type_definition_forbidden_message =
|
||
G_("types may not be defined in alias template declarations");
|
||
}
|
||
|
||
type = cp_parser_type_id (parser);
|
||
|
||
/* Restore the error message if need be. */
|
||
if (parser->num_template_parameter_lists)
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
|
||
if (type == error_mark_node
|
||
|| !cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON))
|
||
{
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* A typedef-name can also be introduced by an alias-declaration. The
|
||
identifier following the using keyword becomes a typedef-name. It has
|
||
the same semantics as if it were introduced by the typedef
|
||
specifier. In particular, it does not define a new type and it shall
|
||
not appear in the type-id. */
|
||
|
||
clear_decl_specs (&decl_specs);
|
||
decl_specs.type = type;
|
||
if (attributes != NULL_TREE)
|
||
{
|
||
decl_specs.attributes = attributes;
|
||
set_and_check_decl_spec_loc (&decl_specs,
|
||
ds_attribute,
|
||
attrs_token);
|
||
}
|
||
set_and_check_decl_spec_loc (&decl_specs,
|
||
ds_typedef,
|
||
using_token);
|
||
set_and_check_decl_spec_loc (&decl_specs,
|
||
ds_alias,
|
||
using_token);
|
||
|
||
declarator = make_id_declarator (NULL_TREE, id, sfk_none);
|
||
declarator->id_loc = id_location;
|
||
|
||
member_p = at_class_scope_p ();
|
||
if (member_p)
|
||
decl = grokfield (declarator, &decl_specs, NULL_TREE, false,
|
||
NULL_TREE, attributes);
|
||
else
|
||
decl = start_decl (declarator, &decl_specs, 0,
|
||
attributes, NULL_TREE, &pushed_scope);
|
||
if (decl == error_mark_node)
|
||
return decl;
|
||
|
||
cp_finish_decl (decl, NULL_TREE, 0, NULL_TREE, 0);
|
||
|
||
if (pushed_scope)
|
||
pop_scope (pushed_scope);
|
||
|
||
/* If decl is a template, return its TEMPLATE_DECL so that it gets
|
||
added into the symbol table; otherwise, return the TYPE_DECL. */
|
||
if (DECL_LANG_SPECIFIC (decl)
|
||
&& DECL_TEMPLATE_INFO (decl)
|
||
&& PRIMARY_TEMPLATE_P (DECL_TI_TEMPLATE (decl)))
|
||
{
|
||
decl = DECL_TI_TEMPLATE (decl);
|
||
if (member_p)
|
||
check_member_template (decl);
|
||
}
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Parse a using-directive.
|
||
|
||
using-directive:
|
||
using namespace :: [opt] nested-name-specifier [opt]
|
||
namespace-name ; */
|
||
|
||
static void
|
||
cp_parser_using_directive (cp_parser* parser)
|
||
{
|
||
tree namespace_decl;
|
||
tree attribs;
|
||
|
||
/* Look for the `using' keyword. */
|
||
cp_parser_require_keyword (parser, RID_USING, RT_USING);
|
||
/* And the `namespace' keyword. */
|
||
cp_parser_require_keyword (parser, RID_NAMESPACE, RT_NAMESPACE);
|
||
/* Look for the optional `::' operator. */
|
||
cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
|
||
/* And the optional nested-name-specifier. */
|
||
cp_parser_nested_name_specifier_opt (parser,
|
||
/*typename_keyword_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
/*type_p=*/false,
|
||
/*is_declaration=*/true);
|
||
/* Get the namespace being used. */
|
||
namespace_decl = cp_parser_namespace_name (parser);
|
||
/* And any specified attributes. */
|
||
attribs = cp_parser_attributes_opt (parser);
|
||
/* Update the symbol table. */
|
||
parse_using_directive (namespace_decl, attribs);
|
||
/* Look for the final `;'. */
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
}
|
||
|
||
/* Parse an asm-definition.
|
||
|
||
asm-definition:
|
||
asm ( string-literal ) ;
|
||
|
||
GNU Extension:
|
||
|
||
asm-definition:
|
||
asm volatile [opt] ( string-literal ) ;
|
||
asm volatile [opt] ( string-literal : asm-operand-list [opt] ) ;
|
||
asm volatile [opt] ( string-literal : asm-operand-list [opt]
|
||
: asm-operand-list [opt] ) ;
|
||
asm volatile [opt] ( string-literal : asm-operand-list [opt]
|
||
: asm-operand-list [opt]
|
||
: asm-clobber-list [opt] ) ;
|
||
asm volatile [opt] goto ( string-literal : : asm-operand-list [opt]
|
||
: asm-clobber-list [opt]
|
||
: asm-goto-list ) ; */
|
||
|
||
static void
|
||
cp_parser_asm_definition (cp_parser* parser)
|
||
{
|
||
tree string;
|
||
tree outputs = NULL_TREE;
|
||
tree inputs = NULL_TREE;
|
||
tree clobbers = NULL_TREE;
|
||
tree labels = NULL_TREE;
|
||
tree asm_stmt;
|
||
bool volatile_p = false;
|
||
bool extended_p = false;
|
||
bool invalid_inputs_p = false;
|
||
bool invalid_outputs_p = false;
|
||
bool goto_p = false;
|
||
required_token missing = RT_NONE;
|
||
|
||
/* Look for the `asm' keyword. */
|
||
cp_parser_require_keyword (parser, RID_ASM, RT_ASM);
|
||
/* See if the next token is `volatile'. */
|
||
if (cp_parser_allow_gnu_extensions_p (parser)
|
||
&& cp_lexer_next_token_is_keyword (parser->lexer, RID_VOLATILE))
|
||
{
|
||
/* Remember that we saw the `volatile' keyword. */
|
||
volatile_p = true;
|
||
/* Consume the token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
if (cp_parser_allow_gnu_extensions_p (parser)
|
||
&& parser->in_function_body
|
||
&& cp_lexer_next_token_is_keyword (parser->lexer, RID_GOTO))
|
||
{
|
||
/* Remember that we saw the `goto' keyword. */
|
||
goto_p = true;
|
||
/* Consume the token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
/* Look for the opening `('. */
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return;
|
||
/* Look for the string. */
|
||
string = cp_parser_string_literal (parser, false, false);
|
||
if (string == error_mark_node)
|
||
{
|
||
cp_parser_skip_to_closing_parenthesis (parser, true, false,
|
||
/*consume_paren=*/true);
|
||
return;
|
||
}
|
||
|
||
/* If we're allowing GNU extensions, check for the extended assembly
|
||
syntax. Unfortunately, the `:' tokens need not be separated by
|
||
a space in C, and so, for compatibility, we tolerate that here
|
||
too. Doing that means that we have to treat the `::' operator as
|
||
two `:' tokens. */
|
||
if (cp_parser_allow_gnu_extensions_p (parser)
|
||
&& parser->in_function_body
|
||
&& (cp_lexer_next_token_is (parser->lexer, CPP_COLON)
|
||
|| cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)))
|
||
{
|
||
bool inputs_p = false;
|
||
bool clobbers_p = false;
|
||
bool labels_p = false;
|
||
|
||
/* The extended syntax was used. */
|
||
extended_p = true;
|
||
|
||
/* Look for outputs. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
|
||
{
|
||
/* Consume the `:'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the output-operands. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer,
|
||
CPP_COLON)
|
||
&& cp_lexer_next_token_is_not (parser->lexer,
|
||
CPP_SCOPE)
|
||
&& cp_lexer_next_token_is_not (parser->lexer,
|
||
CPP_CLOSE_PAREN)
|
||
&& !goto_p)
|
||
outputs = cp_parser_asm_operand_list (parser);
|
||
|
||
if (outputs == error_mark_node)
|
||
invalid_outputs_p = true;
|
||
}
|
||
/* If the next token is `::', there are no outputs, and the
|
||
next token is the beginning of the inputs. */
|
||
else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
|
||
/* The inputs are coming next. */
|
||
inputs_p = true;
|
||
|
||
/* Look for inputs. */
|
||
if (inputs_p
|
||
|| cp_lexer_next_token_is (parser->lexer, CPP_COLON))
|
||
{
|
||
/* Consume the `:' or `::'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the output-operands. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer,
|
||
CPP_COLON)
|
||
&& cp_lexer_next_token_is_not (parser->lexer,
|
||
CPP_SCOPE)
|
||
&& cp_lexer_next_token_is_not (parser->lexer,
|
||
CPP_CLOSE_PAREN))
|
||
inputs = cp_parser_asm_operand_list (parser);
|
||
|
||
if (inputs == error_mark_node)
|
||
invalid_inputs_p = true;
|
||
}
|
||
else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
|
||
/* The clobbers are coming next. */
|
||
clobbers_p = true;
|
||
|
||
/* Look for clobbers. */
|
||
if (clobbers_p
|
||
|| cp_lexer_next_token_is (parser->lexer, CPP_COLON))
|
||
{
|
||
clobbers_p = true;
|
||
/* Consume the `:' or `::'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the clobbers. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer,
|
||
CPP_COLON)
|
||
&& cp_lexer_next_token_is_not (parser->lexer,
|
||
CPP_CLOSE_PAREN))
|
||
clobbers = cp_parser_asm_clobber_list (parser);
|
||
}
|
||
else if (goto_p
|
||
&& cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
|
||
/* The labels are coming next. */
|
||
labels_p = true;
|
||
|
||
/* Look for labels. */
|
||
if (labels_p
|
||
|| (goto_p && cp_lexer_next_token_is (parser->lexer, CPP_COLON)))
|
||
{
|
||
labels_p = true;
|
||
/* Consume the `:' or `::'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the labels. */
|
||
labels = cp_parser_asm_label_list (parser);
|
||
}
|
||
|
||
if (goto_p && !labels_p)
|
||
missing = clobbers_p ? RT_COLON : RT_COLON_SCOPE;
|
||
}
|
||
else if (goto_p)
|
||
missing = RT_COLON_SCOPE;
|
||
|
||
/* Look for the closing `)'. */
|
||
if (!cp_parser_require (parser, missing ? CPP_COLON : CPP_CLOSE_PAREN,
|
||
missing ? missing : RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser, true, false,
|
||
/*consume_paren=*/true);
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
|
||
if (!invalid_inputs_p && !invalid_outputs_p)
|
||
{
|
||
/* Create the ASM_EXPR. */
|
||
if (parser->in_function_body)
|
||
{
|
||
asm_stmt = finish_asm_stmt (volatile_p, string, outputs,
|
||
inputs, clobbers, labels);
|
||
/* If the extended syntax was not used, mark the ASM_EXPR. */
|
||
if (!extended_p)
|
||
{
|
||
tree temp = asm_stmt;
|
||
if (TREE_CODE (temp) == CLEANUP_POINT_EXPR)
|
||
temp = TREE_OPERAND (temp, 0);
|
||
|
||
ASM_INPUT_P (temp) = 1;
|
||
}
|
||
}
|
||
else
|
||
add_asm_node (string);
|
||
}
|
||
}
|
||
|
||
/* Declarators [gram.dcl.decl] */
|
||
|
||
/* Parse an init-declarator.
|
||
|
||
init-declarator:
|
||
declarator initializer [opt]
|
||
|
||
GNU Extension:
|
||
|
||
init-declarator:
|
||
declarator asm-specification [opt] attributes [opt] initializer [opt]
|
||
|
||
function-definition:
|
||
decl-specifier-seq [opt] declarator ctor-initializer [opt]
|
||
function-body
|
||
decl-specifier-seq [opt] declarator function-try-block
|
||
|
||
GNU Extension:
|
||
|
||
function-definition:
|
||
__extension__ function-definition
|
||
|
||
TM Extension:
|
||
|
||
function-definition:
|
||
decl-specifier-seq [opt] declarator function-transaction-block
|
||
|
||
The DECL_SPECIFIERS apply to this declarator. Returns a
|
||
representation of the entity declared. If MEMBER_P is TRUE, then
|
||
this declarator appears in a class scope. The new DECL created by
|
||
this declarator is returned.
|
||
|
||
The CHECKS are access checks that should be performed once we know
|
||
what entity is being declared (and, therefore, what classes have
|
||
befriended it).
|
||
|
||
If FUNCTION_DEFINITION_ALLOWED_P then we handle the declarator and
|
||
for a function-definition here as well. If the declarator is a
|
||
declarator for a function-definition, *FUNCTION_DEFINITION_P will
|
||
be TRUE upon return. By that point, the function-definition will
|
||
have been completely parsed.
|
||
|
||
FUNCTION_DEFINITION_P may be NULL if FUNCTION_DEFINITION_ALLOWED_P
|
||
is FALSE.
|
||
|
||
If MAYBE_RANGE_FOR_DECL is not NULL, the pointed tree will be set to the
|
||
parsed declaration if it is an uninitialized single declarator not followed
|
||
by a `;', or to error_mark_node otherwise. Either way, the trailing `;',
|
||
if present, will not be consumed. If returned, this declarator will be
|
||
created with SD_INITIALIZED but will not call cp_finish_decl. */
|
||
|
||
static tree
|
||
cp_parser_init_declarator (cp_parser* parser,
|
||
cp_decl_specifier_seq *decl_specifiers,
|
||
vec<deferred_access_check, va_gc> *checks,
|
||
bool function_definition_allowed_p,
|
||
bool member_p,
|
||
int declares_class_or_enum,
|
||
bool* function_definition_p,
|
||
tree* maybe_range_for_decl)
|
||
{
|
||
cp_token *token = NULL, *asm_spec_start_token = NULL,
|
||
*attributes_start_token = NULL;
|
||
cp_declarator *declarator;
|
||
tree prefix_attributes;
|
||
tree attributes = NULL;
|
||
tree asm_specification;
|
||
tree initializer;
|
||
tree decl = NULL_TREE;
|
||
tree scope;
|
||
int is_initialized;
|
||
/* Only valid if IS_INITIALIZED is true. In that case, CPP_EQ if
|
||
initialized with "= ..", CPP_OPEN_PAREN if initialized with
|
||
"(...)". */
|
||
enum cpp_ttype initialization_kind;
|
||
bool is_direct_init = false;
|
||
bool is_non_constant_init;
|
||
int ctor_dtor_or_conv_p;
|
||
bool friend_p = cp_parser_friend_p (decl_specifiers);
|
||
tree pushed_scope = NULL_TREE;
|
||
bool range_for_decl_p = false;
|
||
bool saved_default_arg_ok_p = parser->default_arg_ok_p;
|
||
|
||
/* Gather the attributes that were provided with the
|
||
decl-specifiers. */
|
||
prefix_attributes = decl_specifiers->attributes;
|
||
|
||
/* Assume that this is not the declarator for a function
|
||
definition. */
|
||
if (function_definition_p)
|
||
*function_definition_p = false;
|
||
|
||
/* Default arguments are only permitted for function parameters. */
|
||
if (decl_spec_seq_has_spec_p (decl_specifiers, ds_typedef))
|
||
parser->default_arg_ok_p = false;
|
||
|
||
/* Defer access checks while parsing the declarator; we cannot know
|
||
what names are accessible until we know what is being
|
||
declared. */
|
||
resume_deferring_access_checks ();
|
||
|
||
/* Parse the declarator. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
declarator
|
||
= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
|
||
&ctor_dtor_or_conv_p,
|
||
/*parenthesized_p=*/NULL,
|
||
member_p, friend_p);
|
||
/* Gather up the deferred checks. */
|
||
stop_deferring_access_checks ();
|
||
|
||
parser->default_arg_ok_p = saved_default_arg_ok_p;
|
||
|
||
/* If the DECLARATOR was erroneous, there's no need to go
|
||
further. */
|
||
if (declarator == cp_error_declarator)
|
||
return error_mark_node;
|
||
|
||
/* Check that the number of template-parameter-lists is OK. */
|
||
if (!cp_parser_check_declarator_template_parameters (parser, declarator,
|
||
token->location))
|
||
return error_mark_node;
|
||
|
||
if (declares_class_or_enum & 2)
|
||
cp_parser_check_for_definition_in_return_type (declarator,
|
||
decl_specifiers->type,
|
||
decl_specifiers->locations[ds_type_spec]);
|
||
|
||
/* Figure out what scope the entity declared by the DECLARATOR is
|
||
located in. `grokdeclarator' sometimes changes the scope, so
|
||
we compute it now. */
|
||
scope = get_scope_of_declarator (declarator);
|
||
|
||
/* Perform any lookups in the declared type which were thought to be
|
||
dependent, but are not in the scope of the declarator. */
|
||
decl_specifiers->type
|
||
= maybe_update_decl_type (decl_specifiers->type, scope);
|
||
|
||
/* If we're allowing GNU extensions, look for an
|
||
asm-specification. */
|
||
if (cp_parser_allow_gnu_extensions_p (parser))
|
||
{
|
||
/* Look for an asm-specification. */
|
||
asm_spec_start_token = cp_lexer_peek_token (parser->lexer);
|
||
asm_specification = cp_parser_asm_specification_opt (parser);
|
||
}
|
||
else
|
||
asm_specification = NULL_TREE;
|
||
|
||
/* Look for attributes. */
|
||
attributes_start_token = cp_lexer_peek_token (parser->lexer);
|
||
attributes = cp_parser_attributes_opt (parser);
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
if (function_declarator_p (declarator))
|
||
{
|
||
/* Check to see if the token indicates the start of a
|
||
function-definition. */
|
||
if (cp_parser_token_starts_function_definition_p (token))
|
||
{
|
||
if (!function_definition_allowed_p)
|
||
{
|
||
/* If a function-definition should not appear here, issue an
|
||
error message. */
|
||
cp_parser_error (parser,
|
||
"a function-definition is not allowed here");
|
||
return error_mark_node;
|
||
}
|
||
|
||
location_t func_brace_location
|
||
= cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
/* Neither attributes nor an asm-specification are allowed
|
||
on a function-definition. */
|
||
if (asm_specification)
|
||
error_at (asm_spec_start_token->location,
|
||
"an asm-specification is not allowed "
|
||
"on a function-definition");
|
||
if (attributes)
|
||
error_at (attributes_start_token->location,
|
||
"attributes are not allowed "
|
||
"on a function-definition");
|
||
/* This is a function-definition. */
|
||
*function_definition_p = true;
|
||
|
||
/* Parse the function definition. */
|
||
if (member_p)
|
||
decl = cp_parser_save_member_function_body (parser,
|
||
decl_specifiers,
|
||
declarator,
|
||
prefix_attributes);
|
||
else
|
||
decl =
|
||
(cp_parser_function_definition_from_specifiers_and_declarator
|
||
(parser, decl_specifiers, prefix_attributes, declarator));
|
||
|
||
if (decl != error_mark_node && DECL_STRUCT_FUNCTION (decl))
|
||
{
|
||
/* This is where the prologue starts... */
|
||
DECL_STRUCT_FUNCTION (decl)->function_start_locus
|
||
= func_brace_location;
|
||
}
|
||
|
||
return decl;
|
||
}
|
||
}
|
||
|
||
/* [dcl.dcl]
|
||
|
||
Only in function declarations for constructors, destructors, and
|
||
type conversions can the decl-specifier-seq be omitted.
|
||
|
||
We explicitly postpone this check past the point where we handle
|
||
function-definitions because we tolerate function-definitions
|
||
that are missing their return types in some modes. */
|
||
if (!decl_specifiers->any_specifiers_p && ctor_dtor_or_conv_p <= 0)
|
||
{
|
||
cp_parser_error (parser,
|
||
"expected constructor, destructor, or type conversion");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* An `=' or an `(', or an '{' in C++0x, indicates an initializer. */
|
||
if (token->type == CPP_EQ
|
||
|| token->type == CPP_OPEN_PAREN
|
||
|| token->type == CPP_OPEN_BRACE)
|
||
{
|
||
is_initialized = SD_INITIALIZED;
|
||
initialization_kind = token->type;
|
||
if (maybe_range_for_decl)
|
||
*maybe_range_for_decl = error_mark_node;
|
||
|
||
if (token->type == CPP_EQ
|
||
&& function_declarator_p (declarator))
|
||
{
|
||
cp_token *t2 = cp_lexer_peek_nth_token (parser->lexer, 2);
|
||
if (t2->keyword == RID_DEFAULT)
|
||
is_initialized = SD_DEFAULTED;
|
||
else if (t2->keyword == RID_DELETE)
|
||
is_initialized = SD_DELETED;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* If the init-declarator isn't initialized and isn't followed by a
|
||
`,' or `;', it's not a valid init-declarator. */
|
||
if (token->type != CPP_COMMA
|
||
&& token->type != CPP_SEMICOLON)
|
||
{
|
||
if (maybe_range_for_decl && *maybe_range_for_decl != error_mark_node)
|
||
range_for_decl_p = true;
|
||
else
|
||
{
|
||
cp_parser_error (parser, "expected initializer");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
is_initialized = SD_UNINITIALIZED;
|
||
initialization_kind = CPP_EOF;
|
||
}
|
||
|
||
/* Because start_decl has side-effects, we should only call it if we
|
||
know we're going ahead. By this point, we know that we cannot
|
||
possibly be looking at any other construct. */
|
||
cp_parser_commit_to_tentative_parse (parser);
|
||
|
||
/* If the decl specifiers were bad, issue an error now that we're
|
||
sure this was intended to be a declarator. Then continue
|
||
declaring the variable(s), as int, to try to cut down on further
|
||
errors. */
|
||
if (decl_specifiers->any_specifiers_p
|
||
&& decl_specifiers->type == error_mark_node)
|
||
{
|
||
cp_parser_error (parser, "invalid type in declaration");
|
||
decl_specifiers->type = integer_type_node;
|
||
}
|
||
|
||
/* Enter the newly declared entry in the symbol table. If we're
|
||
processing a declaration in a class-specifier, we wait until
|
||
after processing the initializer. */
|
||
if (!member_p)
|
||
{
|
||
if (parser->in_unbraced_linkage_specification_p)
|
||
decl_specifiers->storage_class = sc_extern;
|
||
decl = start_decl (declarator, decl_specifiers,
|
||
range_for_decl_p? SD_INITIALIZED : is_initialized,
|
||
attributes, prefix_attributes, &pushed_scope);
|
||
cp_finalize_omp_declare_simd (parser, decl);
|
||
/* Adjust location of decl if declarator->id_loc is more appropriate:
|
||
set, and decl wasn't merged with another decl, in which case its
|
||
location would be different from input_location, and more accurate. */
|
||
if (DECL_P (decl)
|
||
&& declarator->id_loc != UNKNOWN_LOCATION
|
||
&& DECL_SOURCE_LOCATION (decl) == input_location)
|
||
DECL_SOURCE_LOCATION (decl) = declarator->id_loc;
|
||
}
|
||
else if (scope)
|
||
/* Enter the SCOPE. That way unqualified names appearing in the
|
||
initializer will be looked up in SCOPE. */
|
||
pushed_scope = push_scope (scope);
|
||
|
||
/* Perform deferred access control checks, now that we know in which
|
||
SCOPE the declared entity resides. */
|
||
if (!member_p && decl)
|
||
{
|
||
tree saved_current_function_decl = NULL_TREE;
|
||
|
||
/* If the entity being declared is a function, pretend that we
|
||
are in its scope. If it is a `friend', it may have access to
|
||
things that would not otherwise be accessible. */
|
||
if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
{
|
||
saved_current_function_decl = current_function_decl;
|
||
current_function_decl = decl;
|
||
}
|
||
|
||
/* Perform access checks for template parameters. */
|
||
cp_parser_perform_template_parameter_access_checks (checks);
|
||
|
||
/* Perform the access control checks for the declarator and the
|
||
decl-specifiers. */
|
||
perform_deferred_access_checks (tf_warning_or_error);
|
||
|
||
/* Restore the saved value. */
|
||
if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
current_function_decl = saved_current_function_decl;
|
||
}
|
||
|
||
/* Parse the initializer. */
|
||
initializer = NULL_TREE;
|
||
is_direct_init = false;
|
||
is_non_constant_init = true;
|
||
if (is_initialized)
|
||
{
|
||
if (function_declarator_p (declarator))
|
||
{
|
||
cp_token *initializer_start_token = cp_lexer_peek_token (parser->lexer);
|
||
if (initialization_kind == CPP_EQ)
|
||
initializer = cp_parser_pure_specifier (parser);
|
||
else
|
||
{
|
||
/* If the declaration was erroneous, we don't really
|
||
know what the user intended, so just silently
|
||
consume the initializer. */
|
||
if (decl != error_mark_node)
|
||
error_at (initializer_start_token->location,
|
||
"initializer provided for function");
|
||
cp_parser_skip_to_closing_parenthesis (parser,
|
||
/*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* We want to record the extra mangling scope for in-class
|
||
initializers of class members and initializers of static data
|
||
member templates. The former involves deferring
|
||
parsing of the initializer until end of class as with default
|
||
arguments. So right here we only handle the latter. */
|
||
if (!member_p && processing_template_decl)
|
||
start_lambda_scope (decl);
|
||
initializer = cp_parser_initializer (parser,
|
||
&is_direct_init,
|
||
&is_non_constant_init);
|
||
if (!member_p && processing_template_decl)
|
||
finish_lambda_scope ();
|
||
if (initializer == error_mark_node)
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
}
|
||
}
|
||
|
||
/* The old parser allows attributes to appear after a parenthesized
|
||
initializer. Mark Mitchell proposed removing this functionality
|
||
on the GCC mailing lists on 2002-08-13. This parser accepts the
|
||
attributes -- but ignores them. */
|
||
if (cp_parser_allow_gnu_extensions_p (parser)
|
||
&& initialization_kind == CPP_OPEN_PAREN)
|
||
if (cp_parser_attributes_opt (parser))
|
||
warning (OPT_Wattributes,
|
||
"attributes after parenthesized initializer ignored");
|
||
|
||
/* A non-template declaration involving a function parameter list containing
|
||
an implicit template parameter will have been made into a template. If it
|
||
turns out that the resulting declaration is not an actual function then
|
||
finish the template declaration here. An error message will already have
|
||
been issued. */
|
||
if (parser->fully_implicit_function_template_p)
|
||
if (!function_declarator_p (declarator))
|
||
{
|
||
if (pushed_scope)
|
||
{
|
||
pop_scope (pushed_scope);
|
||
pushed_scope = 0;
|
||
}
|
||
finish_fully_implicit_template (parser, /*member_decl_opt=*/0);
|
||
}
|
||
|
||
/* For an in-class declaration, use `grokfield' to create the
|
||
declaration. */
|
||
if (member_p)
|
||
{
|
||
if (pushed_scope)
|
||
{
|
||
pop_scope (pushed_scope);
|
||
pushed_scope = NULL_TREE;
|
||
}
|
||
decl = grokfield (declarator, decl_specifiers,
|
||
initializer, !is_non_constant_init,
|
||
/*asmspec=*/NULL_TREE,
|
||
chainon (attributes, prefix_attributes));
|
||
if (decl && TREE_CODE (decl) == FUNCTION_DECL)
|
||
cp_parser_save_default_args (parser, decl);
|
||
cp_finalize_omp_declare_simd (parser, decl);
|
||
}
|
||
|
||
/* Finish processing the declaration. But, skip member
|
||
declarations. */
|
||
if (!member_p && decl && decl != error_mark_node && !range_for_decl_p)
|
||
{
|
||
cp_finish_decl (decl,
|
||
initializer, !is_non_constant_init,
|
||
asm_specification,
|
||
/* If the initializer is in parentheses, then this is
|
||
a direct-initialization, which means that an
|
||
`explicit' constructor is OK. Otherwise, an
|
||
`explicit' constructor cannot be used. */
|
||
((is_direct_init || !is_initialized)
|
||
? LOOKUP_NORMAL : LOOKUP_IMPLICIT));
|
||
}
|
||
else if ((cxx_dialect != cxx98) && friend_p
|
||
&& decl && TREE_CODE (decl) == FUNCTION_DECL)
|
||
/* Core issue #226 (C++0x only): A default template-argument
|
||
shall not be specified in a friend class template
|
||
declaration. */
|
||
check_default_tmpl_args (decl, current_template_parms, /*is_primary=*/true,
|
||
/*is_partial=*/false, /*is_friend_decl=*/1);
|
||
|
||
if (!friend_p && pushed_scope)
|
||
pop_scope (pushed_scope);
|
||
|
||
if (function_declarator_p (declarator)
|
||
&& parser->fully_implicit_function_template_p)
|
||
{
|
||
if (member_p)
|
||
decl = finish_fully_implicit_template (parser, decl);
|
||
else
|
||
finish_fully_implicit_template (parser, /*member_decl_opt=*/0);
|
||
}
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Parse a declarator.
|
||
|
||
declarator:
|
||
direct-declarator
|
||
ptr-operator declarator
|
||
|
||
abstract-declarator:
|
||
ptr-operator abstract-declarator [opt]
|
||
direct-abstract-declarator
|
||
|
||
GNU Extensions:
|
||
|
||
declarator:
|
||
attributes [opt] direct-declarator
|
||
attributes [opt] ptr-operator declarator
|
||
|
||
abstract-declarator:
|
||
attributes [opt] ptr-operator abstract-declarator [opt]
|
||
attributes [opt] direct-abstract-declarator
|
||
|
||
If CTOR_DTOR_OR_CONV_P is not NULL, *CTOR_DTOR_OR_CONV_P is used to
|
||
detect constructor, destructor or conversion operators. It is set
|
||
to -1 if the declarator is a name, and +1 if it is a
|
||
function. Otherwise it is set to zero. Usually you just want to
|
||
test for >0, but internally the negative value is used.
|
||
|
||
(The reason for CTOR_DTOR_OR_CONV_P is that a declaration must have
|
||
a decl-specifier-seq unless it declares a constructor, destructor,
|
||
or conversion. It might seem that we could check this condition in
|
||
semantic analysis, rather than parsing, but that makes it difficult
|
||
to handle something like `f()'. We want to notice that there are
|
||
no decl-specifiers, and therefore realize that this is an
|
||
expression, not a declaration.)
|
||
|
||
If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to true iff
|
||
the declarator is a direct-declarator of the form "(...)".
|
||
|
||
MEMBER_P is true iff this declarator is a member-declarator.
|
||
|
||
FRIEND_P is true iff this declarator is a friend. */
|
||
|
||
static cp_declarator *
|
||
cp_parser_declarator (cp_parser* parser,
|
||
cp_parser_declarator_kind dcl_kind,
|
||
int* ctor_dtor_or_conv_p,
|
||
bool* parenthesized_p,
|
||
bool member_p, bool friend_p)
|
||
{
|
||
cp_declarator *declarator;
|
||
enum tree_code code;
|
||
cp_cv_quals cv_quals;
|
||
tree class_type;
|
||
tree gnu_attributes = NULL_TREE, std_attributes = NULL_TREE;
|
||
|
||
/* Assume this is not a constructor, destructor, or type-conversion
|
||
operator. */
|
||
if (ctor_dtor_or_conv_p)
|
||
*ctor_dtor_or_conv_p = 0;
|
||
|
||
if (cp_parser_allow_gnu_extensions_p (parser))
|
||
gnu_attributes = cp_parser_gnu_attributes_opt (parser);
|
||
|
||
/* Check for the ptr-operator production. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Parse the ptr-operator. */
|
||
code = cp_parser_ptr_operator (parser,
|
||
&class_type,
|
||
&cv_quals,
|
||
&std_attributes);
|
||
|
||
/* If that worked, then we have a ptr-operator. */
|
||
if (cp_parser_parse_definitely (parser))
|
||
{
|
||
/* If a ptr-operator was found, then this declarator was not
|
||
parenthesized. */
|
||
if (parenthesized_p)
|
||
*parenthesized_p = true;
|
||
/* The dependent declarator is optional if we are parsing an
|
||
abstract-declarator. */
|
||
if (dcl_kind != CP_PARSER_DECLARATOR_NAMED)
|
||
cp_parser_parse_tentatively (parser);
|
||
|
||
/* Parse the dependent declarator. */
|
||
declarator = cp_parser_declarator (parser, dcl_kind,
|
||
/*ctor_dtor_or_conv_p=*/NULL,
|
||
/*parenthesized_p=*/NULL,
|
||
/*member_p=*/false,
|
||
friend_p);
|
||
|
||
/* If we are parsing an abstract-declarator, we must handle the
|
||
case where the dependent declarator is absent. */
|
||
if (dcl_kind != CP_PARSER_DECLARATOR_NAMED
|
||
&& !cp_parser_parse_definitely (parser))
|
||
declarator = NULL;
|
||
|
||
declarator = cp_parser_make_indirect_declarator
|
||
(code, class_type, cv_quals, declarator, std_attributes);
|
||
}
|
||
/* Everything else is a direct-declarator. */
|
||
else
|
||
{
|
||
if (parenthesized_p)
|
||
*parenthesized_p = cp_lexer_next_token_is (parser->lexer,
|
||
CPP_OPEN_PAREN);
|
||
declarator = cp_parser_direct_declarator (parser, dcl_kind,
|
||
ctor_dtor_or_conv_p,
|
||
member_p, friend_p);
|
||
}
|
||
|
||
if (gnu_attributes && declarator && declarator != cp_error_declarator)
|
||
declarator->attributes = gnu_attributes;
|
||
return declarator;
|
||
}
|
||
|
||
/* Parse a direct-declarator or direct-abstract-declarator.
|
||
|
||
direct-declarator:
|
||
declarator-id
|
||
direct-declarator ( parameter-declaration-clause )
|
||
cv-qualifier-seq [opt]
|
||
ref-qualifier [opt]
|
||
exception-specification [opt]
|
||
direct-declarator [ constant-expression [opt] ]
|
||
( declarator )
|
||
|
||
direct-abstract-declarator:
|
||
direct-abstract-declarator [opt]
|
||
( parameter-declaration-clause )
|
||
cv-qualifier-seq [opt]
|
||
ref-qualifier [opt]
|
||
exception-specification [opt]
|
||
direct-abstract-declarator [opt] [ constant-expression [opt] ]
|
||
( abstract-declarator )
|
||
|
||
Returns a representation of the declarator. DCL_KIND is
|
||
CP_PARSER_DECLARATOR_ABSTRACT, if we are parsing a
|
||
direct-abstract-declarator. It is CP_PARSER_DECLARATOR_NAMED, if
|
||
we are parsing a direct-declarator. It is
|
||
CP_PARSER_DECLARATOR_EITHER, if we can accept either - in the case
|
||
of ambiguity we prefer an abstract declarator, as per
|
||
[dcl.ambig.res]. CTOR_DTOR_OR_CONV_P, MEMBER_P, and FRIEND_P are
|
||
as for cp_parser_declarator. */
|
||
|
||
static cp_declarator *
|
||
cp_parser_direct_declarator (cp_parser* parser,
|
||
cp_parser_declarator_kind dcl_kind,
|
||
int* ctor_dtor_or_conv_p,
|
||
bool member_p, bool friend_p)
|
||
{
|
||
cp_token *token;
|
||
cp_declarator *declarator = NULL;
|
||
tree scope = NULL_TREE;
|
||
bool saved_default_arg_ok_p = parser->default_arg_ok_p;
|
||
bool saved_in_declarator_p = parser->in_declarator_p;
|
||
bool first = true;
|
||
tree pushed_scope = NULL_TREE;
|
||
|
||
while (true)
|
||
{
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type == CPP_OPEN_PAREN)
|
||
{
|
||
/* This is either a parameter-declaration-clause, or a
|
||
parenthesized declarator. When we know we are parsing a
|
||
named declarator, it must be a parenthesized declarator
|
||
if FIRST is true. For instance, `(int)' is a
|
||
parameter-declaration-clause, with an omitted
|
||
direct-abstract-declarator. But `((*))', is a
|
||
parenthesized abstract declarator. Finally, when T is a
|
||
template parameter `(T)' is a
|
||
parameter-declaration-clause, and not a parenthesized
|
||
named declarator.
|
||
|
||
We first try and parse a parameter-declaration-clause,
|
||
and then try a nested declarator (if FIRST is true).
|
||
|
||
It is not an error for it not to be a
|
||
parameter-declaration-clause, even when FIRST is
|
||
false. Consider,
|
||
|
||
int i (int);
|
||
int i (3);
|
||
|
||
The first is the declaration of a function while the
|
||
second is the definition of a variable, including its
|
||
initializer.
|
||
|
||
Having seen only the parenthesis, we cannot know which of
|
||
these two alternatives should be selected. Even more
|
||
complex are examples like:
|
||
|
||
int i (int (a));
|
||
int i (int (3));
|
||
|
||
The former is a function-declaration; the latter is a
|
||
variable initialization.
|
||
|
||
Thus again, we try a parameter-declaration-clause, and if
|
||
that fails, we back out and return. */
|
||
|
||
if (!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
|
||
{
|
||
tree params;
|
||
bool is_declarator = false;
|
||
|
||
/* In a member-declarator, the only valid interpretation
|
||
of a parenthesis is the start of a
|
||
parameter-declaration-clause. (It is invalid to
|
||
initialize a static data member with a parenthesized
|
||
initializer; only the "=" form of initialization is
|
||
permitted.) */
|
||
if (!member_p)
|
||
cp_parser_parse_tentatively (parser);
|
||
|
||
/* Consume the `('. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (first)
|
||
{
|
||
/* If this is going to be an abstract declarator, we're
|
||
in a declarator and we can't have default args. */
|
||
parser->default_arg_ok_p = false;
|
||
parser->in_declarator_p = true;
|
||
}
|
||
|
||
begin_scope (sk_function_parms, NULL_TREE);
|
||
|
||
/* Parse the parameter-declaration-clause. */
|
||
params = cp_parser_parameter_declaration_clause (parser);
|
||
|
||
/* Consume the `)'. */
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
|
||
/* If all went well, parse the cv-qualifier-seq,
|
||
ref-qualifier and the exception-specification. */
|
||
if (member_p || cp_parser_parse_definitely (parser))
|
||
{
|
||
cp_cv_quals cv_quals;
|
||
cp_virt_specifiers virt_specifiers;
|
||
cp_ref_qualifier ref_qual;
|
||
tree exception_specification;
|
||
tree late_return;
|
||
tree attrs;
|
||
bool memfn = (member_p || (pushed_scope
|
||
&& CLASS_TYPE_P (pushed_scope)));
|
||
|
||
is_declarator = true;
|
||
|
||
if (ctor_dtor_or_conv_p)
|
||
*ctor_dtor_or_conv_p = *ctor_dtor_or_conv_p < 0;
|
||
first = false;
|
||
|
||
/* Parse the cv-qualifier-seq. */
|
||
cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
|
||
/* Parse the ref-qualifier. */
|
||
ref_qual = cp_parser_ref_qualifier_opt (parser);
|
||
/* And the exception-specification. */
|
||
exception_specification
|
||
= cp_parser_exception_specification_opt (parser);
|
||
|
||
attrs = cp_parser_std_attribute_spec_seq (parser);
|
||
|
||
/* In here, we handle cases where attribute is used after
|
||
the function declaration. For example:
|
||
void func (int x) __attribute__((vector(..))); */
|
||
if (flag_cilkplus
|
||
&& cp_next_tokens_can_be_gnu_attribute_p (parser))
|
||
{
|
||
cp_parser_parse_tentatively (parser);
|
||
tree attr = cp_parser_gnu_attributes_opt (parser);
|
||
if (cp_lexer_next_token_is_not (parser->lexer,
|
||
CPP_SEMICOLON)
|
||
&& cp_lexer_next_token_is_not (parser->lexer,
|
||
CPP_OPEN_BRACE))
|
||
cp_parser_abort_tentative_parse (parser);
|
||
else if (!cp_parser_parse_definitely (parser))
|
||
;
|
||
else
|
||
attrs = chainon (attr, attrs);
|
||
}
|
||
late_return = (cp_parser_late_return_type_opt
|
||
(parser, declarator,
|
||
memfn ? cv_quals : -1));
|
||
|
||
|
||
/* Parse the virt-specifier-seq. */
|
||
virt_specifiers = cp_parser_virt_specifier_seq_opt (parser);
|
||
|
||
/* Create the function-declarator. */
|
||
declarator = make_call_declarator (declarator,
|
||
params,
|
||
cv_quals,
|
||
virt_specifiers,
|
||
ref_qual,
|
||
exception_specification,
|
||
late_return);
|
||
declarator->std_attributes = attrs;
|
||
/* Any subsequent parameter lists are to do with
|
||
return type, so are not those of the declared
|
||
function. */
|
||
parser->default_arg_ok_p = false;
|
||
}
|
||
|
||
/* Remove the function parms from scope. */
|
||
pop_bindings_and_leave_scope ();
|
||
|
||
if (is_declarator)
|
||
/* Repeat the main loop. */
|
||
continue;
|
||
}
|
||
|
||
/* If this is the first, we can try a parenthesized
|
||
declarator. */
|
||
if (first)
|
||
{
|
||
bool saved_in_type_id_in_expr_p;
|
||
|
||
parser->default_arg_ok_p = saved_default_arg_ok_p;
|
||
parser->in_declarator_p = saved_in_declarator_p;
|
||
|
||
/* Consume the `('. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the nested declarator. */
|
||
saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
|
||
parser->in_type_id_in_expr_p = true;
|
||
declarator
|
||
= cp_parser_declarator (parser, dcl_kind, ctor_dtor_or_conv_p,
|
||
/*parenthesized_p=*/NULL,
|
||
member_p, friend_p);
|
||
parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
|
||
first = false;
|
||
/* Expect a `)'. */
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
declarator = cp_error_declarator;
|
||
if (declarator == cp_error_declarator)
|
||
break;
|
||
|
||
goto handle_declarator;
|
||
}
|
||
/* Otherwise, we must be done. */
|
||
else
|
||
break;
|
||
}
|
||
else if ((!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
|
||
&& token->type == CPP_OPEN_SQUARE
|
||
&& !cp_next_tokens_can_be_attribute_p (parser))
|
||
{
|
||
/* Parse an array-declarator. */
|
||
tree bounds, attrs;
|
||
|
||
if (ctor_dtor_or_conv_p)
|
||
*ctor_dtor_or_conv_p = 0;
|
||
|
||
first = false;
|
||
parser->default_arg_ok_p = false;
|
||
parser->in_declarator_p = true;
|
||
/* Consume the `['. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If the next token is `]', then there is no
|
||
constant-expression. */
|
||
if (token->type != CPP_CLOSE_SQUARE)
|
||
{
|
||
bool non_constant_p;
|
||
bounds
|
||
= cp_parser_constant_expression (parser,
|
||
/*allow_non_constant=*/true,
|
||
&non_constant_p);
|
||
if (!non_constant_p)
|
||
/* OK */;
|
||
else if (error_operand_p (bounds))
|
||
/* Already gave an error. */;
|
||
else if (!parser->in_function_body
|
||
|| current_binding_level->kind == sk_function_parms)
|
||
{
|
||
/* Normally, the array bound must be an integral constant
|
||
expression. However, as an extension, we allow VLAs
|
||
in function scopes as long as they aren't part of a
|
||
parameter declaration. */
|
||
cp_parser_error (parser,
|
||
"array bound is not an integer constant");
|
||
bounds = error_mark_node;
|
||
}
|
||
else if (processing_template_decl
|
||
&& !type_dependent_expression_p (bounds))
|
||
{
|
||
/* Remember this wasn't a constant-expression. */
|
||
bounds = build_nop (TREE_TYPE (bounds), bounds);
|
||
TREE_SIDE_EFFECTS (bounds) = 1;
|
||
}
|
||
}
|
||
else
|
||
bounds = NULL_TREE;
|
||
/* Look for the closing `]'. */
|
||
if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE))
|
||
{
|
||
declarator = cp_error_declarator;
|
||
break;
|
||
}
|
||
|
||
attrs = cp_parser_std_attribute_spec_seq (parser);
|
||
declarator = make_array_declarator (declarator, bounds);
|
||
declarator->std_attributes = attrs;
|
||
}
|
||
else if (first && dcl_kind != CP_PARSER_DECLARATOR_ABSTRACT)
|
||
{
|
||
{
|
||
tree qualifying_scope;
|
||
tree unqualified_name;
|
||
tree attrs;
|
||
special_function_kind sfk;
|
||
bool abstract_ok;
|
||
bool pack_expansion_p = false;
|
||
cp_token *declarator_id_start_token;
|
||
|
||
/* Parse a declarator-id */
|
||
abstract_ok = (dcl_kind == CP_PARSER_DECLARATOR_EITHER);
|
||
if (abstract_ok)
|
||
{
|
||
cp_parser_parse_tentatively (parser);
|
||
|
||
/* If we see an ellipsis, we should be looking at a
|
||
parameter pack. */
|
||
if (token->type == CPP_ELLIPSIS)
|
||
{
|
||
/* Consume the `...' */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
pack_expansion_p = true;
|
||
}
|
||
}
|
||
|
||
declarator_id_start_token = cp_lexer_peek_token (parser->lexer);
|
||
unqualified_name
|
||
= cp_parser_declarator_id (parser, /*optional_p=*/abstract_ok);
|
||
qualifying_scope = parser->scope;
|
||
if (abstract_ok)
|
||
{
|
||
bool okay = false;
|
||
|
||
if (!unqualified_name && pack_expansion_p)
|
||
{
|
||
/* Check whether an error occurred. */
|
||
okay = !cp_parser_error_occurred (parser);
|
||
|
||
/* We already consumed the ellipsis to mark a
|
||
parameter pack, but we have no way to report it,
|
||
so abort the tentative parse. We will be exiting
|
||
immediately anyway. */
|
||
cp_parser_abort_tentative_parse (parser);
|
||
}
|
||
else
|
||
okay = cp_parser_parse_definitely (parser);
|
||
|
||
if (!okay)
|
||
unqualified_name = error_mark_node;
|
||
else if (unqualified_name
|
||
&& (qualifying_scope
|
||
|| (!identifier_p (unqualified_name))))
|
||
{
|
||
cp_parser_error (parser, "expected unqualified-id");
|
||
unqualified_name = error_mark_node;
|
||
}
|
||
}
|
||
|
||
if (!unqualified_name)
|
||
return NULL;
|
||
if (unqualified_name == error_mark_node)
|
||
{
|
||
declarator = cp_error_declarator;
|
||
pack_expansion_p = false;
|
||
declarator->parameter_pack_p = false;
|
||
break;
|
||
}
|
||
|
||
attrs = cp_parser_std_attribute_spec_seq (parser);
|
||
|
||
if (qualifying_scope && at_namespace_scope_p ()
|
||
&& TREE_CODE (qualifying_scope) == TYPENAME_TYPE)
|
||
{
|
||
/* In the declaration of a member of a template class
|
||
outside of the class itself, the SCOPE will sometimes
|
||
be a TYPENAME_TYPE. For example, given:
|
||
|
||
template <typename T>
|
||
int S<T>::R::i = 3;
|
||
|
||
the SCOPE will be a TYPENAME_TYPE for `S<T>::R'. In
|
||
this context, we must resolve S<T>::R to an ordinary
|
||
type, rather than a typename type.
|
||
|
||
The reason we normally avoid resolving TYPENAME_TYPEs
|
||
is that a specialization of `S' might render
|
||
`S<T>::R' not a type. However, if `S' is
|
||
specialized, then this `i' will not be used, so there
|
||
is no harm in resolving the types here. */
|
||
tree type;
|
||
|
||
/* Resolve the TYPENAME_TYPE. */
|
||
type = resolve_typename_type (qualifying_scope,
|
||
/*only_current_p=*/false);
|
||
/* If that failed, the declarator is invalid. */
|
||
if (TREE_CODE (type) == TYPENAME_TYPE)
|
||
{
|
||
if (typedef_variant_p (type))
|
||
error_at (declarator_id_start_token->location,
|
||
"cannot define member of dependent typedef "
|
||
"%qT", type);
|
||
else
|
||
error_at (declarator_id_start_token->location,
|
||
"%<%T::%E%> is not a type",
|
||
TYPE_CONTEXT (qualifying_scope),
|
||
TYPE_IDENTIFIER (qualifying_scope));
|
||
}
|
||
qualifying_scope = type;
|
||
}
|
||
|
||
sfk = sfk_none;
|
||
|
||
if (unqualified_name)
|
||
{
|
||
tree class_type;
|
||
|
||
if (qualifying_scope
|
||
&& CLASS_TYPE_P (qualifying_scope))
|
||
class_type = qualifying_scope;
|
||
else
|
||
class_type = current_class_type;
|
||
|
||
if (TREE_CODE (unqualified_name) == TYPE_DECL)
|
||
{
|
||
tree name_type = TREE_TYPE (unqualified_name);
|
||
if (class_type && same_type_p (name_type, class_type))
|
||
{
|
||
if (qualifying_scope
|
||
&& CLASSTYPE_USE_TEMPLATE (name_type))
|
||
{
|
||
error_at (declarator_id_start_token->location,
|
||
"invalid use of constructor as a template");
|
||
inform (declarator_id_start_token->location,
|
||
"use %<%T::%D%> instead of %<%T::%D%> to "
|
||
"name the constructor in a qualified name",
|
||
class_type,
|
||
DECL_NAME (TYPE_TI_TEMPLATE (class_type)),
|
||
class_type, name_type);
|
||
declarator = cp_error_declarator;
|
||
break;
|
||
}
|
||
else
|
||
unqualified_name = constructor_name (class_type);
|
||
}
|
||
else
|
||
{
|
||
/* We do not attempt to print the declarator
|
||
here because we do not have enough
|
||
information about its original syntactic
|
||
form. */
|
||
cp_parser_error (parser, "invalid declarator");
|
||
declarator = cp_error_declarator;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (class_type)
|
||
{
|
||
if (TREE_CODE (unqualified_name) == BIT_NOT_EXPR)
|
||
sfk = sfk_destructor;
|
||
else if (IDENTIFIER_TYPENAME_P (unqualified_name))
|
||
sfk = sfk_conversion;
|
||
else if (/* There's no way to declare a constructor
|
||
for an anonymous type, even if the type
|
||
got a name for linkage purposes. */
|
||
!TYPE_WAS_ANONYMOUS (class_type)
|
||
/* Handle correctly (c++/19200):
|
||
|
||
struct S {
|
||
struct T{};
|
||
friend void S(T);
|
||
};
|
||
|
||
and also:
|
||
|
||
namespace N {
|
||
void S();
|
||
}
|
||
|
||
struct S {
|
||
friend void N::S();
|
||
}; */
|
||
&& !(friend_p
|
||
&& class_type != qualifying_scope)
|
||
&& constructor_name_p (unqualified_name,
|
||
class_type))
|
||
{
|
||
unqualified_name = constructor_name (class_type);
|
||
sfk = sfk_constructor;
|
||
}
|
||
else if (is_overloaded_fn (unqualified_name)
|
||
&& DECL_CONSTRUCTOR_P (get_first_fn
|
||
(unqualified_name)))
|
||
sfk = sfk_constructor;
|
||
|
||
if (ctor_dtor_or_conv_p && sfk != sfk_none)
|
||
*ctor_dtor_or_conv_p = -1;
|
||
}
|
||
}
|
||
declarator = make_id_declarator (qualifying_scope,
|
||
unqualified_name,
|
||
sfk);
|
||
declarator->std_attributes = attrs;
|
||
declarator->id_loc = token->location;
|
||
declarator->parameter_pack_p = pack_expansion_p;
|
||
|
||
if (pack_expansion_p)
|
||
maybe_warn_variadic_templates ();
|
||
}
|
||
|
||
handle_declarator:;
|
||
scope = get_scope_of_declarator (declarator);
|
||
if (scope)
|
||
{
|
||
/* Any names that appear after the declarator-id for a
|
||
member are looked up in the containing scope. */
|
||
if (at_function_scope_p ())
|
||
{
|
||
/* But declarations with qualified-ids can't appear in a
|
||
function. */
|
||
cp_parser_error (parser, "qualified-id in declaration");
|
||
declarator = cp_error_declarator;
|
||
break;
|
||
}
|
||
pushed_scope = push_scope (scope);
|
||
}
|
||
parser->in_declarator_p = true;
|
||
if ((ctor_dtor_or_conv_p && *ctor_dtor_or_conv_p)
|
||
|| (declarator && declarator->kind == cdk_id))
|
||
/* Default args are only allowed on function
|
||
declarations. */
|
||
parser->default_arg_ok_p = saved_default_arg_ok_p;
|
||
else
|
||
parser->default_arg_ok_p = false;
|
||
|
||
first = false;
|
||
}
|
||
/* We're done. */
|
||
else
|
||
break;
|
||
}
|
||
|
||
/* For an abstract declarator, we might wind up with nothing at this
|
||
point. That's an error; the declarator is not optional. */
|
||
if (!declarator)
|
||
cp_parser_error (parser, "expected declarator");
|
||
|
||
/* If we entered a scope, we must exit it now. */
|
||
if (pushed_scope)
|
||
pop_scope (pushed_scope);
|
||
|
||
parser->default_arg_ok_p = saved_default_arg_ok_p;
|
||
parser->in_declarator_p = saved_in_declarator_p;
|
||
|
||
return declarator;
|
||
}
|
||
|
||
/* Parse a ptr-operator.
|
||
|
||
ptr-operator:
|
||
* attribute-specifier-seq [opt] cv-qualifier-seq [opt] (C++11)
|
||
* cv-qualifier-seq [opt]
|
||
&
|
||
:: [opt] nested-name-specifier * cv-qualifier-seq [opt]
|
||
nested-name-specifier * attribute-specifier-seq [opt] cv-qualifier-seq [opt] (C++11)
|
||
|
||
GNU Extension:
|
||
|
||
ptr-operator:
|
||
& cv-qualifier-seq [opt]
|
||
|
||
Returns INDIRECT_REF if a pointer, or pointer-to-member, was used.
|
||
Returns ADDR_EXPR if a reference was used, or NON_LVALUE_EXPR for
|
||
an rvalue reference. In the case of a pointer-to-member, *TYPE is
|
||
filled in with the TYPE containing the member. *CV_QUALS is
|
||
filled in with the cv-qualifier-seq, or TYPE_UNQUALIFIED, if there
|
||
are no cv-qualifiers. Returns ERROR_MARK if an error occurred.
|
||
Note that the tree codes returned by this function have nothing
|
||
to do with the types of trees that will be eventually be created
|
||
to represent the pointer or reference type being parsed. They are
|
||
just constants with suggestive names. */
|
||
static enum tree_code
|
||
cp_parser_ptr_operator (cp_parser* parser,
|
||
tree* type,
|
||
cp_cv_quals *cv_quals,
|
||
tree *attributes)
|
||
{
|
||
enum tree_code code = ERROR_MARK;
|
||
cp_token *token;
|
||
tree attrs = NULL_TREE;
|
||
|
||
/* Assume that it's not a pointer-to-member. */
|
||
*type = NULL_TREE;
|
||
/* And that there are no cv-qualifiers. */
|
||
*cv_quals = TYPE_UNQUALIFIED;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* If it's a `*', `&' or `&&' we have a pointer or reference. */
|
||
if (token->type == CPP_MULT)
|
||
code = INDIRECT_REF;
|
||
else if (token->type == CPP_AND)
|
||
code = ADDR_EXPR;
|
||
else if ((cxx_dialect != cxx98) &&
|
||
token->type == CPP_AND_AND) /* C++0x only */
|
||
code = NON_LVALUE_EXPR;
|
||
|
||
if (code != ERROR_MARK)
|
||
{
|
||
/* Consume the `*', `&' or `&&'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* A `*' can be followed by a cv-qualifier-seq, and so can a
|
||
`&', if we are allowing GNU extensions. (The only qualifier
|
||
that can legally appear after `&' is `restrict', but that is
|
||
enforced during semantic analysis. */
|
||
if (code == INDIRECT_REF
|
||
|| cp_parser_allow_gnu_extensions_p (parser))
|
||
*cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
|
||
|
||
attrs = cp_parser_std_attribute_spec_seq (parser);
|
||
if (attributes != NULL)
|
||
*attributes = attrs;
|
||
}
|
||
else
|
||
{
|
||
/* Try the pointer-to-member case. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Look for the optional `::' operator. */
|
||
cp_parser_global_scope_opt (parser,
|
||
/*current_scope_valid_p=*/false);
|
||
/* Look for the nested-name specifier. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
cp_parser_nested_name_specifier (parser,
|
||
/*typename_keyword_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
/*type_p=*/false,
|
||
/*is_declaration=*/false);
|
||
/* If we found it, and the next token is a `*', then we are
|
||
indeed looking at a pointer-to-member operator. */
|
||
if (!cp_parser_error_occurred (parser)
|
||
&& cp_parser_require (parser, CPP_MULT, RT_MULT))
|
||
{
|
||
/* Indicate that the `*' operator was used. */
|
||
code = INDIRECT_REF;
|
||
|
||
if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
|
||
error_at (token->location, "%qD is a namespace", parser->scope);
|
||
else if (TREE_CODE (parser->scope) == ENUMERAL_TYPE)
|
||
error_at (token->location, "cannot form pointer to member of "
|
||
"non-class %q#T", parser->scope);
|
||
else
|
||
{
|
||
/* The type of which the member is a member is given by the
|
||
current SCOPE. */
|
||
*type = parser->scope;
|
||
/* The next name will not be qualified. */
|
||
parser->scope = NULL_TREE;
|
||
parser->qualifying_scope = NULL_TREE;
|
||
parser->object_scope = NULL_TREE;
|
||
/* Look for optional c++11 attributes. */
|
||
attrs = cp_parser_std_attribute_spec_seq (parser);
|
||
if (attributes != NULL)
|
||
*attributes = attrs;
|
||
/* Look for the optional cv-qualifier-seq. */
|
||
*cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
|
||
}
|
||
}
|
||
/* If that didn't work we don't have a ptr-operator. */
|
||
if (!cp_parser_parse_definitely (parser))
|
||
cp_parser_error (parser, "expected ptr-operator");
|
||
}
|
||
|
||
return code;
|
||
}
|
||
|
||
/* Parse an (optional) cv-qualifier-seq.
|
||
|
||
cv-qualifier-seq:
|
||
cv-qualifier cv-qualifier-seq [opt]
|
||
|
||
cv-qualifier:
|
||
const
|
||
volatile
|
||
|
||
GNU Extension:
|
||
|
||
cv-qualifier:
|
||
__restrict__
|
||
|
||
Returns a bitmask representing the cv-qualifiers. */
|
||
|
||
static cp_cv_quals
|
||
cp_parser_cv_qualifier_seq_opt (cp_parser* parser)
|
||
{
|
||
cp_cv_quals cv_quals = TYPE_UNQUALIFIED;
|
||
|
||
while (true)
|
||
{
|
||
cp_token *token;
|
||
cp_cv_quals cv_qualifier;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* See if it's a cv-qualifier. */
|
||
switch (token->keyword)
|
||
{
|
||
case RID_CONST:
|
||
cv_qualifier = TYPE_QUAL_CONST;
|
||
break;
|
||
|
||
case RID_VOLATILE:
|
||
cv_qualifier = TYPE_QUAL_VOLATILE;
|
||
break;
|
||
|
||
case RID_RESTRICT:
|
||
cv_qualifier = TYPE_QUAL_RESTRICT;
|
||
break;
|
||
|
||
default:
|
||
cv_qualifier = TYPE_UNQUALIFIED;
|
||
break;
|
||
}
|
||
|
||
if (!cv_qualifier)
|
||
break;
|
||
|
||
if (cv_quals & cv_qualifier)
|
||
{
|
||
error_at (token->location, "duplicate cv-qualifier");
|
||
cp_lexer_purge_token (parser->lexer);
|
||
}
|
||
else
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
cv_quals |= cv_qualifier;
|
||
}
|
||
}
|
||
|
||
return cv_quals;
|
||
}
|
||
|
||
/* Parse an (optional) ref-qualifier
|
||
|
||
ref-qualifier:
|
||
&
|
||
&&
|
||
|
||
Returns cp_ref_qualifier representing ref-qualifier. */
|
||
|
||
static cp_ref_qualifier
|
||
cp_parser_ref_qualifier_opt (cp_parser* parser)
|
||
{
|
||
cp_ref_qualifier ref_qual = REF_QUAL_NONE;
|
||
|
||
/* Don't try to parse bitwise '&' as a ref-qualifier (c++/57532). */
|
||
if (cxx_dialect < cxx11 && cp_parser_parsing_tentatively (parser))
|
||
return ref_qual;
|
||
|
||
while (true)
|
||
{
|
||
cp_ref_qualifier curr_ref_qual = REF_QUAL_NONE;
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
switch (token->type)
|
||
{
|
||
case CPP_AND:
|
||
curr_ref_qual = REF_QUAL_LVALUE;
|
||
break;
|
||
|
||
case CPP_AND_AND:
|
||
curr_ref_qual = REF_QUAL_RVALUE;
|
||
break;
|
||
|
||
default:
|
||
curr_ref_qual = REF_QUAL_NONE;
|
||
break;
|
||
}
|
||
|
||
if (!curr_ref_qual)
|
||
break;
|
||
else if (ref_qual)
|
||
{
|
||
error_at (token->location, "multiple ref-qualifiers");
|
||
cp_lexer_purge_token (parser->lexer);
|
||
}
|
||
else
|
||
{
|
||
ref_qual = curr_ref_qual;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
}
|
||
|
||
return ref_qual;
|
||
}
|
||
|
||
/* Parse an (optional) virt-specifier-seq.
|
||
|
||
virt-specifier-seq:
|
||
virt-specifier virt-specifier-seq [opt]
|
||
|
||
virt-specifier:
|
||
override
|
||
final
|
||
|
||
Returns a bitmask representing the virt-specifiers. */
|
||
|
||
static cp_virt_specifiers
|
||
cp_parser_virt_specifier_seq_opt (cp_parser* parser)
|
||
{
|
||
cp_virt_specifiers virt_specifiers = VIRT_SPEC_UNSPECIFIED;
|
||
|
||
while (true)
|
||
{
|
||
cp_token *token;
|
||
cp_virt_specifiers virt_specifier;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* See if it's a virt-specifier-qualifier. */
|
||
if (token->type != CPP_NAME)
|
||
break;
|
||
if (!strcmp (IDENTIFIER_POINTER(token->u.value), "override"))
|
||
{
|
||
maybe_warn_cpp0x (CPP0X_OVERRIDE_CONTROLS);
|
||
virt_specifier = VIRT_SPEC_OVERRIDE;
|
||
}
|
||
else if (!strcmp (IDENTIFIER_POINTER(token->u.value), "final"))
|
||
{
|
||
maybe_warn_cpp0x (CPP0X_OVERRIDE_CONTROLS);
|
||
virt_specifier = VIRT_SPEC_FINAL;
|
||
}
|
||
else if (!strcmp (IDENTIFIER_POINTER(token->u.value), "__final"))
|
||
{
|
||
virt_specifier = VIRT_SPEC_FINAL;
|
||
}
|
||
else
|
||
break;
|
||
|
||
if (virt_specifiers & virt_specifier)
|
||
{
|
||
error_at (token->location, "duplicate virt-specifier");
|
||
cp_lexer_purge_token (parser->lexer);
|
||
}
|
||
else
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
virt_specifiers |= virt_specifier;
|
||
}
|
||
}
|
||
return virt_specifiers;
|
||
}
|
||
|
||
/* Used by handling of trailing-return-types and NSDMI, in which 'this'
|
||
is in scope even though it isn't real. */
|
||
|
||
void
|
||
inject_this_parameter (tree ctype, cp_cv_quals quals)
|
||
{
|
||
tree this_parm;
|
||
|
||
if (current_class_ptr)
|
||
{
|
||
/* We don't clear this between NSDMIs. Is it already what we want? */
|
||
tree type = TREE_TYPE (TREE_TYPE (current_class_ptr));
|
||
if (same_type_ignoring_top_level_qualifiers_p (ctype, type)
|
||
&& cp_type_quals (type) == quals)
|
||
return;
|
||
}
|
||
|
||
this_parm = build_this_parm (ctype, quals);
|
||
/* Clear this first to avoid shortcut in cp_build_indirect_ref. */
|
||
current_class_ptr = NULL_TREE;
|
||
current_class_ref
|
||
= cp_build_indirect_ref (this_parm, RO_NULL, tf_warning_or_error);
|
||
current_class_ptr = this_parm;
|
||
}
|
||
|
||
/* Return true iff our current scope is a non-static data member
|
||
initializer. */
|
||
|
||
bool
|
||
parsing_nsdmi (void)
|
||
{
|
||
/* We recognize NSDMI context by the context-less 'this' pointer set up
|
||
by the function above. */
|
||
if (current_class_ptr && DECL_CONTEXT (current_class_ptr) == NULL_TREE)
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Parse a late-specified return type, if any. This is not a separate
|
||
non-terminal, but part of a function declarator, which looks like
|
||
|
||
-> trailing-type-specifier-seq abstract-declarator(opt)
|
||
|
||
Returns the type indicated by the type-id.
|
||
|
||
In addition to this this parses any queued up omp declare simd
|
||
clauses and Cilk Plus SIMD-enabled function's vector attributes.
|
||
|
||
QUALS is either a bitmask of cv_qualifiers or -1 for a non-member
|
||
function. */
|
||
|
||
static tree
|
||
cp_parser_late_return_type_opt (cp_parser* parser, cp_declarator *declarator,
|
||
cp_cv_quals quals)
|
||
{
|
||
cp_token *token;
|
||
tree type = NULL_TREE;
|
||
bool declare_simd_p = (parser->omp_declare_simd
|
||
&& declarator
|
||
&& declarator->kind == cdk_id);
|
||
|
||
bool cilk_simd_fn_vector_p = (parser->cilk_simd_fn_info
|
||
&& declarator && declarator->kind == cdk_id);
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* A late-specified return type is indicated by an initial '->'. */
|
||
if (token->type != CPP_DEREF && !(declare_simd_p || cilk_simd_fn_vector_p))
|
||
return NULL_TREE;
|
||
|
||
tree save_ccp = current_class_ptr;
|
||
tree save_ccr = current_class_ref;
|
||
if (quals >= 0)
|
||
{
|
||
/* DR 1207: 'this' is in scope in the trailing return type. */
|
||
inject_this_parameter (current_class_type, quals);
|
||
}
|
||
|
||
if (token->type == CPP_DEREF)
|
||
{
|
||
/* Consume the ->. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
type = cp_parser_trailing_type_id (parser);
|
||
}
|
||
|
||
if (cilk_simd_fn_vector_p)
|
||
declarator->std_attributes
|
||
= cp_parser_late_parsing_cilk_simd_fn_info (parser,
|
||
declarator->std_attributes);
|
||
if (declare_simd_p)
|
||
declarator->std_attributes
|
||
= cp_parser_late_parsing_omp_declare_simd (parser,
|
||
declarator->std_attributes);
|
||
|
||
if (quals >= 0)
|
||
{
|
||
current_class_ptr = save_ccp;
|
||
current_class_ref = save_ccr;
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Parse a declarator-id.
|
||
|
||
declarator-id:
|
||
id-expression
|
||
:: [opt] nested-name-specifier [opt] type-name
|
||
|
||
In the `id-expression' case, the value returned is as for
|
||
cp_parser_id_expression if the id-expression was an unqualified-id.
|
||
If the id-expression was a qualified-id, then a SCOPE_REF is
|
||
returned. The first operand is the scope (either a NAMESPACE_DECL
|
||
or TREE_TYPE), but the second is still just a representation of an
|
||
unqualified-id. */
|
||
|
||
static tree
|
||
cp_parser_declarator_id (cp_parser* parser, bool optional_p)
|
||
{
|
||
tree id;
|
||
/* The expression must be an id-expression. Assume that qualified
|
||
names are the names of types so that:
|
||
|
||
template <class T>
|
||
int S<T>::R::i = 3;
|
||
|
||
will work; we must treat `S<T>::R' as the name of a type.
|
||
Similarly, assume that qualified names are templates, where
|
||
required, so that:
|
||
|
||
template <class T>
|
||
int S<T>::R<T>::i = 3;
|
||
|
||
will work, too. */
|
||
id = cp_parser_id_expression (parser,
|
||
/*template_keyword_p=*/false,
|
||
/*check_dependency_p=*/false,
|
||
/*template_p=*/NULL,
|
||
/*declarator_p=*/true,
|
||
optional_p);
|
||
if (id && BASELINK_P (id))
|
||
id = BASELINK_FUNCTIONS (id);
|
||
return id;
|
||
}
|
||
|
||
/* Parse a type-id.
|
||
|
||
type-id:
|
||
type-specifier-seq abstract-declarator [opt]
|
||
|
||
Returns the TYPE specified. */
|
||
|
||
static tree
|
||
cp_parser_type_id_1 (cp_parser* parser, bool is_template_arg,
|
||
bool is_trailing_return)
|
||
{
|
||
cp_decl_specifier_seq type_specifier_seq;
|
||
cp_declarator *abstract_declarator;
|
||
|
||
/* Parse the type-specifier-seq. */
|
||
cp_parser_type_specifier_seq (parser, /*is_declaration=*/false,
|
||
is_trailing_return,
|
||
&type_specifier_seq);
|
||
if (type_specifier_seq.type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* There might or might not be an abstract declarator. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Look for the declarator. */
|
||
abstract_declarator
|
||
= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_ABSTRACT, NULL,
|
||
/*parenthesized_p=*/NULL,
|
||
/*member_p=*/false,
|
||
/*friend_p=*/false);
|
||
/* Check to see if there really was a declarator. */
|
||
if (!cp_parser_parse_definitely (parser))
|
||
abstract_declarator = NULL;
|
||
|
||
if (type_specifier_seq.type
|
||
/* None of the valid uses of 'auto' in C++14 involve the type-id
|
||
nonterminal, but it is valid in a trailing-return-type. */
|
||
&& !(cxx_dialect >= cxx1y && is_trailing_return)
|
||
&& type_uses_auto (type_specifier_seq.type))
|
||
{
|
||
/* A type-id with type 'auto' is only ok if the abstract declarator
|
||
is a function declarator with a late-specified return type. */
|
||
if (abstract_declarator
|
||
&& abstract_declarator->kind == cdk_function
|
||
&& abstract_declarator->u.function.late_return_type)
|
||
/* OK */;
|
||
else
|
||
{
|
||
error ("invalid use of %<auto%>");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
return groktypename (&type_specifier_seq, abstract_declarator,
|
||
is_template_arg);
|
||
}
|
||
|
||
static tree cp_parser_type_id (cp_parser *parser)
|
||
{
|
||
return cp_parser_type_id_1 (parser, false, false);
|
||
}
|
||
|
||
static tree cp_parser_template_type_arg (cp_parser *parser)
|
||
{
|
||
tree r;
|
||
const char *saved_message = parser->type_definition_forbidden_message;
|
||
parser->type_definition_forbidden_message
|
||
= G_("types may not be defined in template arguments");
|
||
r = cp_parser_type_id_1 (parser, true, false);
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
if (cxx_dialect >= cxx1y && type_uses_auto (r))
|
||
{
|
||
error ("invalid use of %<auto%> in template argument");
|
||
r = error_mark_node;
|
||
}
|
||
return r;
|
||
}
|
||
|
||
static tree cp_parser_trailing_type_id (cp_parser *parser)
|
||
{
|
||
return cp_parser_type_id_1 (parser, false, true);
|
||
}
|
||
|
||
/* Parse a type-specifier-seq.
|
||
|
||
type-specifier-seq:
|
||
type-specifier type-specifier-seq [opt]
|
||
|
||
GNU extension:
|
||
|
||
type-specifier-seq:
|
||
attributes type-specifier-seq [opt]
|
||
|
||
If IS_DECLARATION is true, we are at the start of a "condition" or
|
||
exception-declaration, so we might be followed by a declarator-id.
|
||
|
||
If IS_TRAILING_RETURN is true, we are in a trailing-return-type,
|
||
i.e. we've just seen "->".
|
||
|
||
Sets *TYPE_SPECIFIER_SEQ to represent the sequence. */
|
||
|
||
static void
|
||
cp_parser_type_specifier_seq (cp_parser* parser,
|
||
bool is_declaration,
|
||
bool is_trailing_return,
|
||
cp_decl_specifier_seq *type_specifier_seq)
|
||
{
|
||
bool seen_type_specifier = false;
|
||
cp_parser_flags flags = CP_PARSER_FLAGS_OPTIONAL;
|
||
cp_token *start_token = NULL;
|
||
|
||
/* Clear the TYPE_SPECIFIER_SEQ. */
|
||
clear_decl_specs (type_specifier_seq);
|
||
|
||
/* In the context of a trailing return type, enum E { } is an
|
||
elaborated-type-specifier followed by a function-body, not an
|
||
enum-specifier. */
|
||
if (is_trailing_return)
|
||
flags |= CP_PARSER_FLAGS_NO_TYPE_DEFINITIONS;
|
||
|
||
/* Parse the type-specifiers and attributes. */
|
||
while (true)
|
||
{
|
||
tree type_specifier;
|
||
bool is_cv_qualifier;
|
||
|
||
/* Check for attributes first. */
|
||
if (cp_next_tokens_can_be_attribute_p (parser))
|
||
{
|
||
type_specifier_seq->attributes =
|
||
chainon (type_specifier_seq->attributes,
|
||
cp_parser_attributes_opt (parser));
|
||
continue;
|
||
}
|
||
|
||
/* record the token of the beginning of the type specifier seq,
|
||
for error reporting purposes*/
|
||
if (!start_token)
|
||
start_token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* Look for the type-specifier. */
|
||
type_specifier = cp_parser_type_specifier (parser,
|
||
flags,
|
||
type_specifier_seq,
|
||
/*is_declaration=*/false,
|
||
NULL,
|
||
&is_cv_qualifier);
|
||
if (!type_specifier)
|
||
{
|
||
/* If the first type-specifier could not be found, this is not a
|
||
type-specifier-seq at all. */
|
||
if (!seen_type_specifier)
|
||
{
|
||
/* Set in_declarator_p to avoid skipping to the semicolon. */
|
||
int in_decl = parser->in_declarator_p;
|
||
parser->in_declarator_p = true;
|
||
|
||
if (cp_parser_uncommitted_to_tentative_parse_p (parser)
|
||
|| !cp_parser_parse_and_diagnose_invalid_type_name (parser))
|
||
cp_parser_error (parser, "expected type-specifier");
|
||
|
||
parser->in_declarator_p = in_decl;
|
||
|
||
type_specifier_seq->type = error_mark_node;
|
||
return;
|
||
}
|
||
/* If subsequent type-specifiers could not be found, the
|
||
type-specifier-seq is complete. */
|
||
break;
|
||
}
|
||
|
||
seen_type_specifier = true;
|
||
/* The standard says that a condition can be:
|
||
|
||
type-specifier-seq declarator = assignment-expression
|
||
|
||
However, given:
|
||
|
||
struct S {};
|
||
if (int S = ...)
|
||
|
||
we should treat the "S" as a declarator, not as a
|
||
type-specifier. The standard doesn't say that explicitly for
|
||
type-specifier-seq, but it does say that for
|
||
decl-specifier-seq in an ordinary declaration. Perhaps it
|
||
would be clearer just to allow a decl-specifier-seq here, and
|
||
then add a semantic restriction that if any decl-specifiers
|
||
that are not type-specifiers appear, the program is invalid. */
|
||
if (is_declaration && !is_cv_qualifier)
|
||
flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
|
||
}
|
||
}
|
||
|
||
/* Return whether the function currently being declared has an associated
|
||
template parameter list. */
|
||
|
||
static bool
|
||
function_being_declared_is_template_p (cp_parser* parser)
|
||
{
|
||
if (!current_template_parms || processing_template_parmlist)
|
||
return false;
|
||
|
||
if (parser->implicit_template_scope)
|
||
return true;
|
||
|
||
if (at_class_scope_p ()
|
||
&& TYPE_BEING_DEFINED (current_class_type))
|
||
return parser->num_template_parameter_lists != 0;
|
||
|
||
return ((int) parser->num_template_parameter_lists > template_class_depth
|
||
(current_class_type));
|
||
}
|
||
|
||
/* Parse a parameter-declaration-clause.
|
||
|
||
parameter-declaration-clause:
|
||
parameter-declaration-list [opt] ... [opt]
|
||
parameter-declaration-list , ...
|
||
|
||
Returns a representation for the parameter declarations. A return
|
||
value of NULL indicates a parameter-declaration-clause consisting
|
||
only of an ellipsis. */
|
||
|
||
static tree
|
||
cp_parser_parameter_declaration_clause (cp_parser* parser)
|
||
{
|
||
tree parameters;
|
||
cp_token *token;
|
||
bool ellipsis_p;
|
||
bool is_error;
|
||
|
||
struct cleanup {
|
||
cp_parser* parser;
|
||
int auto_is_implicit_function_template_parm_p;
|
||
~cleanup() {
|
||
parser->auto_is_implicit_function_template_parm_p
|
||
= auto_is_implicit_function_template_parm_p;
|
||
}
|
||
} cleanup = { parser, parser->auto_is_implicit_function_template_parm_p };
|
||
|
||
(void) cleanup;
|
||
|
||
if (!processing_specialization
|
||
&& !processing_template_parmlist
|
||
&& !processing_explicit_instantiation)
|
||
if (!current_function_decl
|
||
|| (current_class_type && LAMBDA_TYPE_P (current_class_type)))
|
||
parser->auto_is_implicit_function_template_parm_p = true;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* Check for trivial parameter-declaration-clauses. */
|
||
if (token->type == CPP_ELLIPSIS)
|
||
{
|
||
/* Consume the `...' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return NULL_TREE;
|
||
}
|
||
else if (token->type == CPP_CLOSE_PAREN)
|
||
/* There are no parameters. */
|
||
{
|
||
#ifndef NO_IMPLICIT_EXTERN_C
|
||
if (in_system_header_at (input_location)
|
||
&& current_class_type == NULL
|
||
&& current_lang_name == lang_name_c)
|
||
return NULL_TREE;
|
||
else
|
||
#endif
|
||
return void_list_node;
|
||
}
|
||
/* Check for `(void)', too, which is a special case. */
|
||
else if (token->keyword == RID_VOID
|
||
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
|
||
== CPP_CLOSE_PAREN))
|
||
{
|
||
/* Consume the `void' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* There are no parameters. */
|
||
return void_list_node;
|
||
}
|
||
|
||
/* Parse the parameter-declaration-list. */
|
||
parameters = cp_parser_parameter_declaration_list (parser, &is_error);
|
||
/* If a parse error occurred while parsing the
|
||
parameter-declaration-list, then the entire
|
||
parameter-declaration-clause is erroneous. */
|
||
if (is_error)
|
||
return NULL;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If it's a `,', the clause should terminate with an ellipsis. */
|
||
if (token->type == CPP_COMMA)
|
||
{
|
||
/* Consume the `,'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Expect an ellipsis. */
|
||
ellipsis_p
|
||
= (cp_parser_require (parser, CPP_ELLIPSIS, RT_ELLIPSIS) != NULL);
|
||
}
|
||
/* It might also be `...' if the optional trailing `,' was
|
||
omitted. */
|
||
else if (token->type == CPP_ELLIPSIS)
|
||
{
|
||
/* Consume the `...' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* And remember that we saw it. */
|
||
ellipsis_p = true;
|
||
}
|
||
else
|
||
ellipsis_p = false;
|
||
|
||
/* Finish the parameter list. */
|
||
if (!ellipsis_p)
|
||
parameters = chainon (parameters, void_list_node);
|
||
|
||
return parameters;
|
||
}
|
||
|
||
/* Parse a parameter-declaration-list.
|
||
|
||
parameter-declaration-list:
|
||
parameter-declaration
|
||
parameter-declaration-list , parameter-declaration
|
||
|
||
Returns a representation of the parameter-declaration-list, as for
|
||
cp_parser_parameter_declaration_clause. However, the
|
||
`void_list_node' is never appended to the list. Upon return,
|
||
*IS_ERROR will be true iff an error occurred. */
|
||
|
||
static tree
|
||
cp_parser_parameter_declaration_list (cp_parser* parser, bool *is_error)
|
||
{
|
||
tree parameters = NULL_TREE;
|
||
tree *tail = ¶meters;
|
||
bool saved_in_unbraced_linkage_specification_p;
|
||
int index = 0;
|
||
|
||
/* Assume all will go well. */
|
||
*is_error = false;
|
||
/* The special considerations that apply to a function within an
|
||
unbraced linkage specifications do not apply to the parameters
|
||
to the function. */
|
||
saved_in_unbraced_linkage_specification_p
|
||
= parser->in_unbraced_linkage_specification_p;
|
||
parser->in_unbraced_linkage_specification_p = false;
|
||
|
||
/* Look for more parameters. */
|
||
while (true)
|
||
{
|
||
cp_parameter_declarator *parameter;
|
||
tree decl = error_mark_node;
|
||
bool parenthesized_p = false;
|
||
int template_parm_idx = (function_being_declared_is_template_p (parser)?
|
||
TREE_VEC_LENGTH (INNERMOST_TEMPLATE_PARMS
|
||
(current_template_parms)) : 0);
|
||
|
||
/* Parse the parameter. */
|
||
parameter
|
||
= cp_parser_parameter_declaration (parser,
|
||
/*template_parm_p=*/false,
|
||
&parenthesized_p);
|
||
|
||
/* We don't know yet if the enclosing context is deprecated, so wait
|
||
and warn in grokparms if appropriate. */
|
||
deprecated_state = DEPRECATED_SUPPRESS;
|
||
|
||
if (parameter)
|
||
{
|
||
/* If a function parameter pack was specified and an implicit template
|
||
parameter was introduced during cp_parser_parameter_declaration,
|
||
change any implicit parameters introduced into packs. */
|
||
if (parser->implicit_template_parms
|
||
&& parameter->declarator
|
||
&& parameter->declarator->parameter_pack_p)
|
||
{
|
||
int latest_template_parm_idx = TREE_VEC_LENGTH
|
||
(INNERMOST_TEMPLATE_PARMS (current_template_parms));
|
||
|
||
if (latest_template_parm_idx != template_parm_idx)
|
||
parameter->decl_specifiers.type = convert_generic_types_to_packs
|
||
(parameter->decl_specifiers.type,
|
||
template_parm_idx, latest_template_parm_idx);
|
||
}
|
||
|
||
decl = grokdeclarator (parameter->declarator,
|
||
¶meter->decl_specifiers,
|
||
PARM,
|
||
parameter->default_argument != NULL_TREE,
|
||
¶meter->decl_specifiers.attributes);
|
||
}
|
||
|
||
deprecated_state = DEPRECATED_NORMAL;
|
||
|
||
/* If a parse error occurred parsing the parameter declaration,
|
||
then the entire parameter-declaration-list is erroneous. */
|
||
if (decl == error_mark_node)
|
||
{
|
||
*is_error = true;
|
||
parameters = error_mark_node;
|
||
break;
|
||
}
|
||
|
||
if (parameter->decl_specifiers.attributes)
|
||
cplus_decl_attributes (&decl,
|
||
parameter->decl_specifiers.attributes,
|
||
0);
|
||
if (DECL_NAME (decl))
|
||
decl = pushdecl (decl);
|
||
|
||
if (decl != error_mark_node)
|
||
{
|
||
retrofit_lang_decl (decl);
|
||
DECL_PARM_INDEX (decl) = ++index;
|
||
DECL_PARM_LEVEL (decl) = function_parm_depth ();
|
||
}
|
||
|
||
/* Add the new parameter to the list. */
|
||
*tail = build_tree_list (parameter->default_argument, decl);
|
||
tail = &TREE_CHAIN (*tail);
|
||
|
||
/* Peek at the next token. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)
|
||
|| cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)
|
||
/* These are for Objective-C++ */
|
||
|| cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
|
||
|| cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
/* The parameter-declaration-list is complete. */
|
||
break;
|
||
else if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
|
||
{
|
||
cp_token *token;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_nth_token (parser->lexer, 2);
|
||
/* If it's an ellipsis, then the list is complete. */
|
||
if (token->type == CPP_ELLIPSIS)
|
||
break;
|
||
/* Otherwise, there must be more parameters. Consume the
|
||
`,'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* When parsing something like:
|
||
|
||
int i(float f, double d)
|
||
|
||
we can tell after seeing the declaration for "f" that we
|
||
are not looking at an initialization of a variable "i",
|
||
but rather at the declaration of a function "i".
|
||
|
||
Due to the fact that the parsing of template arguments
|
||
(as specified to a template-id) requires backtracking we
|
||
cannot use this technique when inside a template argument
|
||
list. */
|
||
if (!parser->in_template_argument_list_p
|
||
&& !parser->in_type_id_in_expr_p
|
||
&& cp_parser_uncommitted_to_tentative_parse_p (parser)
|
||
/* However, a parameter-declaration of the form
|
||
"float(f)" (which is a valid declaration of a
|
||
parameter "f") can also be interpreted as an
|
||
expression (the conversion of "f" to "float"). */
|
||
&& !parenthesized_p)
|
||
cp_parser_commit_to_tentative_parse (parser);
|
||
}
|
||
else
|
||
{
|
||
cp_parser_error (parser, "expected %<,%> or %<...%>");
|
||
if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
|
||
cp_parser_skip_to_closing_parenthesis (parser,
|
||
/*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/false);
|
||
break;
|
||
}
|
||
}
|
||
|
||
parser->in_unbraced_linkage_specification_p
|
||
= saved_in_unbraced_linkage_specification_p;
|
||
|
||
/* Reset implicit_template_scope if we are about to leave the function
|
||
parameter list that introduced it. Note that for out-of-line member
|
||
definitions, there will be one or more class scopes before we get to
|
||
the template parameter scope. */
|
||
|
||
if (cp_binding_level *its = parser->implicit_template_scope)
|
||
if (cp_binding_level *maybe_its = current_binding_level->level_chain)
|
||
{
|
||
while (maybe_its->kind == sk_class)
|
||
maybe_its = maybe_its->level_chain;
|
||
if (maybe_its == its)
|
||
{
|
||
parser->implicit_template_parms = 0;
|
||
parser->implicit_template_scope = 0;
|
||
}
|
||
}
|
||
|
||
return parameters;
|
||
}
|
||
|
||
/* Parse a parameter declaration.
|
||
|
||
parameter-declaration:
|
||
decl-specifier-seq ... [opt] declarator
|
||
decl-specifier-seq declarator = assignment-expression
|
||
decl-specifier-seq ... [opt] abstract-declarator [opt]
|
||
decl-specifier-seq abstract-declarator [opt] = assignment-expression
|
||
|
||
If TEMPLATE_PARM_P is TRUE, then this parameter-declaration
|
||
declares a template parameter. (In that case, a non-nested `>'
|
||
token encountered during the parsing of the assignment-expression
|
||
is not interpreted as a greater-than operator.)
|
||
|
||
Returns a representation of the parameter, or NULL if an error
|
||
occurs. If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to
|
||
true iff the declarator is of the form "(p)". */
|
||
|
||
static cp_parameter_declarator *
|
||
cp_parser_parameter_declaration (cp_parser *parser,
|
||
bool template_parm_p,
|
||
bool *parenthesized_p)
|
||
{
|
||
int declares_class_or_enum;
|
||
cp_decl_specifier_seq decl_specifiers;
|
||
cp_declarator *declarator;
|
||
tree default_argument;
|
||
cp_token *token = NULL, *declarator_token_start = NULL;
|
||
const char *saved_message;
|
||
|
||
/* In a template parameter, `>' is not an operator.
|
||
|
||
[temp.param]
|
||
|
||
When parsing a default template-argument for a non-type
|
||
template-parameter, the first non-nested `>' is taken as the end
|
||
of the template parameter-list rather than a greater-than
|
||
operator. */
|
||
|
||
/* Type definitions may not appear in parameter types. */
|
||
saved_message = parser->type_definition_forbidden_message;
|
||
parser->type_definition_forbidden_message
|
||
= G_("types may not be defined in parameter types");
|
||
|
||
/* Parse the declaration-specifiers. */
|
||
cp_parser_decl_specifier_seq (parser,
|
||
CP_PARSER_FLAGS_NONE,
|
||
&decl_specifiers,
|
||
&declares_class_or_enum);
|
||
|
||
/* Complain about missing 'typename' or other invalid type names. */
|
||
if (!decl_specifiers.any_type_specifiers_p
|
||
&& cp_parser_parse_and_diagnose_invalid_type_name (parser))
|
||
decl_specifiers.type = error_mark_node;
|
||
|
||
/* If an error occurred, there's no reason to attempt to parse the
|
||
rest of the declaration. */
|
||
if (cp_parser_error_occurred (parser))
|
||
{
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
return NULL;
|
||
}
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* If the next token is a `)', `,', `=', `>', or `...', then there
|
||
is no declarator. However, when variadic templates are enabled,
|
||
there may be a declarator following `...'. */
|
||
if (token->type == CPP_CLOSE_PAREN
|
||
|| token->type == CPP_COMMA
|
||
|| token->type == CPP_EQ
|
||
|| token->type == CPP_GREATER)
|
||
{
|
||
declarator = NULL;
|
||
if (parenthesized_p)
|
||
*parenthesized_p = false;
|
||
}
|
||
/* Otherwise, there should be a declarator. */
|
||
else
|
||
{
|
||
bool saved_default_arg_ok_p = parser->default_arg_ok_p;
|
||
parser->default_arg_ok_p = false;
|
||
|
||
/* After seeing a decl-specifier-seq, if the next token is not a
|
||
"(", there is no possibility that the code is a valid
|
||
expression. Therefore, if parsing tentatively, we commit at
|
||
this point. */
|
||
if (!parser->in_template_argument_list_p
|
||
/* In an expression context, having seen:
|
||
|
||
(int((char ...
|
||
|
||
we cannot be sure whether we are looking at a
|
||
function-type (taking a "char" as a parameter) or a cast
|
||
of some object of type "char" to "int". */
|
||
&& !parser->in_type_id_in_expr_p
|
||
&& cp_parser_uncommitted_to_tentative_parse_p (parser)
|
||
&& cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE)
|
||
&& cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
|
||
cp_parser_commit_to_tentative_parse (parser);
|
||
/* Parse the declarator. */
|
||
declarator_token_start = token;
|
||
declarator = cp_parser_declarator (parser,
|
||
CP_PARSER_DECLARATOR_EITHER,
|
||
/*ctor_dtor_or_conv_p=*/NULL,
|
||
parenthesized_p,
|
||
/*member_p=*/false,
|
||
/*friend_p=*/false);
|
||
parser->default_arg_ok_p = saved_default_arg_ok_p;
|
||
/* After the declarator, allow more attributes. */
|
||
decl_specifiers.attributes
|
||
= chainon (decl_specifiers.attributes,
|
||
cp_parser_attributes_opt (parser));
|
||
}
|
||
|
||
/* If the next token is an ellipsis, and we have not seen a
|
||
declarator name, and the type of the declarator contains parameter
|
||
packs but it is not a TYPE_PACK_EXPANSION, then we actually have
|
||
a parameter pack expansion expression. Otherwise, leave the
|
||
ellipsis for a C-style variadic function. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
|
||
{
|
||
tree type = decl_specifiers.type;
|
||
|
||
if (type && DECL_P (type))
|
||
type = TREE_TYPE (type);
|
||
|
||
if (type
|
||
&& TREE_CODE (type) != TYPE_PACK_EXPANSION
|
||
&& declarator_can_be_parameter_pack (declarator)
|
||
&& (!declarator || !declarator->parameter_pack_p)
|
||
&& uses_parameter_packs (type))
|
||
{
|
||
/* Consume the `...'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
maybe_warn_variadic_templates ();
|
||
|
||
/* Build a pack expansion type */
|
||
if (declarator)
|
||
declarator->parameter_pack_p = true;
|
||
else
|
||
decl_specifiers.type = make_pack_expansion (type);
|
||
}
|
||
}
|
||
|
||
/* The restriction on defining new types applies only to the type
|
||
of the parameter, not to the default argument. */
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
|
||
/* If the next token is `=', then process a default argument. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
|
||
{
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If we are defining a class, then the tokens that make up the
|
||
default argument must be saved and processed later. */
|
||
if (!template_parm_p && at_class_scope_p ()
|
||
&& TYPE_BEING_DEFINED (current_class_type)
|
||
&& !LAMBDA_TYPE_P (current_class_type))
|
||
default_argument = cp_parser_cache_defarg (parser, /*nsdmi=*/false);
|
||
/* Outside of a class definition, we can just parse the
|
||
assignment-expression. */
|
||
else
|
||
default_argument
|
||
= cp_parser_default_argument (parser, template_parm_p);
|
||
|
||
if (!parser->default_arg_ok_p)
|
||
{
|
||
if (flag_permissive)
|
||
warning (0, "deprecated use of default argument for parameter of non-function");
|
||
else
|
||
{
|
||
error_at (token->location,
|
||
"default arguments are only "
|
||
"permitted for function parameters");
|
||
default_argument = NULL_TREE;
|
||
}
|
||
}
|
||
else if ((declarator && declarator->parameter_pack_p)
|
||
|| (decl_specifiers.type
|
||
&& PACK_EXPANSION_P (decl_specifiers.type)))
|
||
{
|
||
/* Find the name of the parameter pack. */
|
||
cp_declarator *id_declarator = declarator;
|
||
while (id_declarator && id_declarator->kind != cdk_id)
|
||
id_declarator = id_declarator->declarator;
|
||
|
||
if (id_declarator && id_declarator->kind == cdk_id)
|
||
error_at (declarator_token_start->location,
|
||
template_parm_p
|
||
? G_("template parameter pack %qD "
|
||
"cannot have a default argument")
|
||
: G_("parameter pack %qD cannot have "
|
||
"a default argument"),
|
||
id_declarator->u.id.unqualified_name);
|
||
else
|
||
error_at (declarator_token_start->location,
|
||
template_parm_p
|
||
? G_("template parameter pack cannot have "
|
||
"a default argument")
|
||
: G_("parameter pack cannot have a "
|
||
"default argument"));
|
||
|
||
default_argument = NULL_TREE;
|
||
}
|
||
}
|
||
else
|
||
default_argument = NULL_TREE;
|
||
|
||
return make_parameter_declarator (&decl_specifiers,
|
||
declarator,
|
||
default_argument);
|
||
}
|
||
|
||
/* Parse a default argument and return it.
|
||
|
||
TEMPLATE_PARM_P is true if this is a default argument for a
|
||
non-type template parameter. */
|
||
static tree
|
||
cp_parser_default_argument (cp_parser *parser, bool template_parm_p)
|
||
{
|
||
tree default_argument = NULL_TREE;
|
||
bool saved_greater_than_is_operator_p;
|
||
bool saved_local_variables_forbidden_p;
|
||
bool non_constant_p, is_direct_init;
|
||
|
||
/* Make sure that PARSER->GREATER_THAN_IS_OPERATOR_P is
|
||
set correctly. */
|
||
saved_greater_than_is_operator_p = parser->greater_than_is_operator_p;
|
||
parser->greater_than_is_operator_p = !template_parm_p;
|
||
/* Local variable names (and the `this' keyword) may not
|
||
appear in a default argument. */
|
||
saved_local_variables_forbidden_p = parser->local_variables_forbidden_p;
|
||
parser->local_variables_forbidden_p = true;
|
||
/* Parse the assignment-expression. */
|
||
if (template_parm_p)
|
||
push_deferring_access_checks (dk_no_deferred);
|
||
tree saved_class_ptr = NULL_TREE;
|
||
tree saved_class_ref = NULL_TREE;
|
||
/* The "this" pointer is not valid in a default argument. */
|
||
if (cfun)
|
||
{
|
||
saved_class_ptr = current_class_ptr;
|
||
cp_function_chain->x_current_class_ptr = NULL_TREE;
|
||
saved_class_ref = current_class_ref;
|
||
cp_function_chain->x_current_class_ref = NULL_TREE;
|
||
}
|
||
default_argument
|
||
= cp_parser_initializer (parser, &is_direct_init, &non_constant_p);
|
||
/* Restore the "this" pointer. */
|
||
if (cfun)
|
||
{
|
||
cp_function_chain->x_current_class_ptr = saved_class_ptr;
|
||
cp_function_chain->x_current_class_ref = saved_class_ref;
|
||
}
|
||
if (BRACE_ENCLOSED_INITIALIZER_P (default_argument))
|
||
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
|
||
if (template_parm_p)
|
||
pop_deferring_access_checks ();
|
||
parser->greater_than_is_operator_p = saved_greater_than_is_operator_p;
|
||
parser->local_variables_forbidden_p = saved_local_variables_forbidden_p;
|
||
|
||
return default_argument;
|
||
}
|
||
|
||
/* Parse a function-body.
|
||
|
||
function-body:
|
||
compound_statement */
|
||
|
||
static void
|
||
cp_parser_function_body (cp_parser *parser, bool in_function_try_block)
|
||
{
|
||
cp_parser_compound_statement (parser, NULL, in_function_try_block, true);
|
||
}
|
||
|
||
/* Parse a ctor-initializer-opt followed by a function-body. Return
|
||
true if a ctor-initializer was present. When IN_FUNCTION_TRY_BLOCK
|
||
is true we are parsing a function-try-block. */
|
||
|
||
static bool
|
||
cp_parser_ctor_initializer_opt_and_function_body (cp_parser *parser,
|
||
bool in_function_try_block)
|
||
{
|
||
tree body, list;
|
||
bool ctor_initializer_p;
|
||
const bool check_body_p =
|
||
DECL_CONSTRUCTOR_P (current_function_decl)
|
||
&& DECL_DECLARED_CONSTEXPR_P (current_function_decl);
|
||
tree last = NULL;
|
||
|
||
/* Begin the function body. */
|
||
body = begin_function_body ();
|
||
/* Parse the optional ctor-initializer. */
|
||
ctor_initializer_p = cp_parser_ctor_initializer_opt (parser);
|
||
|
||
/* If we're parsing a constexpr constructor definition, we need
|
||
to check that the constructor body is indeed empty. However,
|
||
before we get to cp_parser_function_body lot of junk has been
|
||
generated, so we can't just check that we have an empty block.
|
||
Rather we take a snapshot of the outermost block, and check whether
|
||
cp_parser_function_body changed its state. */
|
||
if (check_body_p)
|
||
{
|
||
list = cur_stmt_list;
|
||
if (STATEMENT_LIST_TAIL (list))
|
||
last = STATEMENT_LIST_TAIL (list)->stmt;
|
||
}
|
||
/* Parse the function-body. */
|
||
cp_parser_function_body (parser, in_function_try_block);
|
||
if (check_body_p)
|
||
check_constexpr_ctor_body (last, list);
|
||
/* Finish the function body. */
|
||
finish_function_body (body);
|
||
|
||
return ctor_initializer_p;
|
||
}
|
||
|
||
/* Parse an initializer.
|
||
|
||
initializer:
|
||
= initializer-clause
|
||
( expression-list )
|
||
|
||
Returns an expression representing the initializer. If no
|
||
initializer is present, NULL_TREE is returned.
|
||
|
||
*IS_DIRECT_INIT is set to FALSE if the `= initializer-clause'
|
||
production is used, and TRUE otherwise. *IS_DIRECT_INIT is
|
||
set to TRUE if there is no initializer present. If there is an
|
||
initializer, and it is not a constant-expression, *NON_CONSTANT_P
|
||
is set to true; otherwise it is set to false. */
|
||
|
||
static tree
|
||
cp_parser_initializer (cp_parser* parser, bool* is_direct_init,
|
||
bool* non_constant_p)
|
||
{
|
||
cp_token *token;
|
||
tree init;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* Let our caller know whether or not this initializer was
|
||
parenthesized. */
|
||
*is_direct_init = (token->type != CPP_EQ);
|
||
/* Assume that the initializer is constant. */
|
||
*non_constant_p = false;
|
||
|
||
if (token->type == CPP_EQ)
|
||
{
|
||
/* Consume the `='. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the initializer-clause. */
|
||
init = cp_parser_initializer_clause (parser, non_constant_p);
|
||
}
|
||
else if (token->type == CPP_OPEN_PAREN)
|
||
{
|
||
vec<tree, va_gc> *vec;
|
||
vec = cp_parser_parenthesized_expression_list (parser, non_attr,
|
||
/*cast_p=*/false,
|
||
/*allow_expansion_p=*/true,
|
||
non_constant_p);
|
||
if (vec == NULL)
|
||
return error_mark_node;
|
||
init = build_tree_list_vec (vec);
|
||
release_tree_vector (vec);
|
||
}
|
||
else if (token->type == CPP_OPEN_BRACE)
|
||
{
|
||
cp_lexer_set_source_position (parser->lexer);
|
||
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
|
||
init = cp_parser_braced_list (parser, non_constant_p);
|
||
CONSTRUCTOR_IS_DIRECT_INIT (init) = 1;
|
||
}
|
||
else
|
||
{
|
||
/* Anything else is an error. */
|
||
cp_parser_error (parser, "expected initializer");
|
||
init = error_mark_node;
|
||
}
|
||
|
||
return init;
|
||
}
|
||
|
||
/* Parse an initializer-clause.
|
||
|
||
initializer-clause:
|
||
assignment-expression
|
||
braced-init-list
|
||
|
||
Returns an expression representing the initializer.
|
||
|
||
If the `assignment-expression' production is used the value
|
||
returned is simply a representation for the expression.
|
||
|
||
Otherwise, calls cp_parser_braced_list. */
|
||
|
||
static tree
|
||
cp_parser_initializer_clause (cp_parser* parser, bool* non_constant_p)
|
||
{
|
||
tree initializer;
|
||
|
||
/* Assume the expression is constant. */
|
||
*non_constant_p = false;
|
||
|
||
/* If it is not a `{', then we are looking at an
|
||
assignment-expression. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
initializer
|
||
= cp_parser_constant_expression (parser,
|
||
/*allow_non_constant_p=*/true,
|
||
non_constant_p);
|
||
}
|
||
else
|
||
initializer = cp_parser_braced_list (parser, non_constant_p);
|
||
|
||
return initializer;
|
||
}
|
||
|
||
/* Parse a brace-enclosed initializer list.
|
||
|
||
braced-init-list:
|
||
{ initializer-list , [opt] }
|
||
{ }
|
||
|
||
Returns a CONSTRUCTOR. The CONSTRUCTOR_ELTS will be
|
||
the elements of the initializer-list (or NULL, if the last
|
||
production is used). The TREE_TYPE for the CONSTRUCTOR will be
|
||
NULL_TREE. There is no way to detect whether or not the optional
|
||
trailing `,' was provided. NON_CONSTANT_P is as for
|
||
cp_parser_initializer. */
|
||
|
||
static tree
|
||
cp_parser_braced_list (cp_parser* parser, bool* non_constant_p)
|
||
{
|
||
tree initializer;
|
||
|
||
/* Consume the `{' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Create a CONSTRUCTOR to represent the braced-initializer. */
|
||
initializer = make_node (CONSTRUCTOR);
|
||
/* If it's not a `}', then there is a non-trivial initializer. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
|
||
{
|
||
/* Parse the initializer list. */
|
||
CONSTRUCTOR_ELTS (initializer)
|
||
= cp_parser_initializer_list (parser, non_constant_p);
|
||
/* A trailing `,' token is allowed. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
else
|
||
*non_constant_p = false;
|
||
/* Now, there should be a trailing `}'. */
|
||
cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE);
|
||
TREE_TYPE (initializer) = init_list_type_node;
|
||
return initializer;
|
||
}
|
||
|
||
/* Parse an initializer-list.
|
||
|
||
initializer-list:
|
||
initializer-clause ... [opt]
|
||
initializer-list , initializer-clause ... [opt]
|
||
|
||
GNU Extension:
|
||
|
||
initializer-list:
|
||
designation initializer-clause ...[opt]
|
||
initializer-list , designation initializer-clause ...[opt]
|
||
|
||
designation:
|
||
. identifier =
|
||
identifier :
|
||
[ constant-expression ] =
|
||
|
||
Returns a vec of constructor_elt. The VALUE of each elt is an expression
|
||
for the initializer. If the INDEX of the elt is non-NULL, it is the
|
||
IDENTIFIER_NODE naming the field to initialize. NON_CONSTANT_P is
|
||
as for cp_parser_initializer. */
|
||
|
||
static vec<constructor_elt, va_gc> *
|
||
cp_parser_initializer_list (cp_parser* parser, bool* non_constant_p)
|
||
{
|
||
vec<constructor_elt, va_gc> *v = NULL;
|
||
|
||
/* Assume all of the expressions are constant. */
|
||
*non_constant_p = false;
|
||
|
||
/* Parse the rest of the list. */
|
||
while (true)
|
||
{
|
||
cp_token *token;
|
||
tree designator;
|
||
tree initializer;
|
||
bool clause_non_constant_p;
|
||
|
||
/* If the next token is an identifier and the following one is a
|
||
colon, we are looking at the GNU designated-initializer
|
||
syntax. */
|
||
if (cp_parser_allow_gnu_extensions_p (parser)
|
||
&& cp_lexer_next_token_is (parser->lexer, CPP_NAME)
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_COLON)
|
||
{
|
||
/* Warn the user that they are using an extension. */
|
||
pedwarn (input_location, OPT_Wpedantic,
|
||
"ISO C++ does not allow designated initializers");
|
||
/* Consume the identifier. */
|
||
designator = cp_lexer_consume_token (parser->lexer)->u.value;
|
||
/* Consume the `:'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
/* Also handle the C99 syntax, '. id ='. */
|
||
else if (cp_parser_allow_gnu_extensions_p (parser)
|
||
&& cp_lexer_next_token_is (parser->lexer, CPP_DOT)
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_NAME
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_EQ)
|
||
{
|
||
/* Warn the user that they are using an extension. */
|
||
pedwarn (input_location, OPT_Wpedantic,
|
||
"ISO C++ does not allow C99 designated initializers");
|
||
/* Consume the `.'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Consume the identifier. */
|
||
designator = cp_lexer_consume_token (parser->lexer)->u.value;
|
||
/* Consume the `='. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
/* Also handle C99 array designators, '[ const ] ='. */
|
||
else if (cp_parser_allow_gnu_extensions_p (parser)
|
||
&& !c_dialect_objc ()
|
||
&& cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
|
||
{
|
||
/* In C++11, [ could start a lambda-introducer. */
|
||
bool non_const = false;
|
||
|
||
cp_parser_parse_tentatively (parser);
|
||
cp_lexer_consume_token (parser->lexer);
|
||
designator = cp_parser_constant_expression (parser, true, &non_const);
|
||
cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
|
||
cp_parser_require (parser, CPP_EQ, RT_EQ);
|
||
if (!cp_parser_parse_definitely (parser))
|
||
designator = NULL_TREE;
|
||
else if (non_const)
|
||
require_potential_rvalue_constant_expression (designator);
|
||
}
|
||
else
|
||
designator = NULL_TREE;
|
||
|
||
/* Parse the initializer. */
|
||
initializer = cp_parser_initializer_clause (parser,
|
||
&clause_non_constant_p);
|
||
/* If any clause is non-constant, so is the entire initializer. */
|
||
if (clause_non_constant_p)
|
||
*non_constant_p = true;
|
||
|
||
/* If we have an ellipsis, this is an initializer pack
|
||
expansion. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
|
||
{
|
||
/* Consume the `...'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* Turn the initializer into an initializer expansion. */
|
||
initializer = make_pack_expansion (initializer);
|
||
}
|
||
|
||
/* Add it to the vector. */
|
||
CONSTRUCTOR_APPEND_ELT (v, designator, initializer);
|
||
|
||
/* If the next token is not a comma, we have reached the end of
|
||
the list. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
|
||
break;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_nth_token (parser->lexer, 2);
|
||
/* If the next token is a `}', then we're still done. An
|
||
initializer-clause can have a trailing `,' after the
|
||
initializer-list and before the closing `}'. */
|
||
if (token->type == CPP_CLOSE_BRACE)
|
||
break;
|
||
|
||
/* Consume the `,' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
return v;
|
||
}
|
||
|
||
/* Classes [gram.class] */
|
||
|
||
/* Parse a class-name.
|
||
|
||
class-name:
|
||
identifier
|
||
template-id
|
||
|
||
TYPENAME_KEYWORD_P is true iff the `typename' keyword has been used
|
||
to indicate that names looked up in dependent types should be
|
||
assumed to be types. TEMPLATE_KEYWORD_P is true iff the `template'
|
||
keyword has been used to indicate that the name that appears next
|
||
is a template. TAG_TYPE indicates the explicit tag given before
|
||
the type name, if any. If CHECK_DEPENDENCY_P is FALSE, names are
|
||
looked up in dependent scopes. If CLASS_HEAD_P is TRUE, this class
|
||
is the class being defined in a class-head.
|
||
|
||
Returns the TYPE_DECL representing the class. */
|
||
|
||
static tree
|
||
cp_parser_class_name (cp_parser *parser,
|
||
bool typename_keyword_p,
|
||
bool template_keyword_p,
|
||
enum tag_types tag_type,
|
||
bool check_dependency_p,
|
||
bool class_head_p,
|
||
bool is_declaration)
|
||
{
|
||
tree decl;
|
||
tree scope;
|
||
bool typename_p;
|
||
cp_token *token;
|
||
tree identifier = NULL_TREE;
|
||
|
||
/* All class-names start with an identifier. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type != CPP_NAME && token->type != CPP_TEMPLATE_ID)
|
||
{
|
||
cp_parser_error (parser, "expected class-name");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* PARSER->SCOPE can be cleared when parsing the template-arguments
|
||
to a template-id, so we save it here. */
|
||
scope = parser->scope;
|
||
if (scope == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Any name names a type if we're following the `typename' keyword
|
||
in a qualified name where the enclosing scope is type-dependent. */
|
||
typename_p = (typename_keyword_p && scope && TYPE_P (scope)
|
||
&& dependent_type_p (scope));
|
||
/* Handle the common case (an identifier, but not a template-id)
|
||
efficiently. */
|
||
if (token->type == CPP_NAME
|
||
&& !cp_parser_nth_token_starts_template_argument_list_p (parser, 2))
|
||
{
|
||
cp_token *identifier_token;
|
||
bool ambiguous_p;
|
||
|
||
/* Look for the identifier. */
|
||
identifier_token = cp_lexer_peek_token (parser->lexer);
|
||
ambiguous_p = identifier_token->error_reported;
|
||
identifier = cp_parser_identifier (parser);
|
||
/* If the next token isn't an identifier, we are certainly not
|
||
looking at a class-name. */
|
||
if (identifier == error_mark_node)
|
||
decl = error_mark_node;
|
||
/* If we know this is a type-name, there's no need to look it
|
||
up. */
|
||
else if (typename_p)
|
||
decl = identifier;
|
||
else
|
||
{
|
||
tree ambiguous_decls;
|
||
/* If we already know that this lookup is ambiguous, then
|
||
we've already issued an error message; there's no reason
|
||
to check again. */
|
||
if (ambiguous_p)
|
||
{
|
||
cp_parser_simulate_error (parser);
|
||
return error_mark_node;
|
||
}
|
||
/* If the next token is a `::', then the name must be a type
|
||
name.
|
||
|
||
[basic.lookup.qual]
|
||
|
||
During the lookup for a name preceding the :: scope
|
||
resolution operator, object, function, and enumerator
|
||
names are ignored. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
|
||
tag_type = typename_type;
|
||
/* Look up the name. */
|
||
decl = cp_parser_lookup_name (parser, identifier,
|
||
tag_type,
|
||
/*is_template=*/false,
|
||
/*is_namespace=*/false,
|
||
check_dependency_p,
|
||
&ambiguous_decls,
|
||
identifier_token->location);
|
||
if (ambiguous_decls)
|
||
{
|
||
if (cp_parser_parsing_tentatively (parser))
|
||
cp_parser_simulate_error (parser);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Try a template-id. */
|
||
decl = cp_parser_template_id (parser, template_keyword_p,
|
||
check_dependency_p,
|
||
tag_type,
|
||
is_declaration);
|
||
if (decl == error_mark_node)
|
||
return error_mark_node;
|
||
}
|
||
|
||
decl = cp_parser_maybe_treat_template_as_class (decl, class_head_p);
|
||
|
||
/* If this is a typename, create a TYPENAME_TYPE. */
|
||
if (typename_p && decl != error_mark_node)
|
||
{
|
||
decl = make_typename_type (scope, decl, typename_type,
|
||
/*complain=*/tf_error);
|
||
if (decl != error_mark_node)
|
||
decl = TYPE_NAME (decl);
|
||
}
|
||
|
||
decl = strip_using_decl (decl);
|
||
|
||
/* Check to see that it is really the name of a class. */
|
||
if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
|
||
&& identifier_p (TREE_OPERAND (decl, 0))
|
||
&& cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
|
||
/* Situations like this:
|
||
|
||
template <typename T> struct A {
|
||
typename T::template X<int>::I i;
|
||
};
|
||
|
||
are problematic. Is `T::template X<int>' a class-name? The
|
||
standard does not seem to be definitive, but there is no other
|
||
valid interpretation of the following `::'. Therefore, those
|
||
names are considered class-names. */
|
||
{
|
||
decl = make_typename_type (scope, decl, tag_type, tf_error);
|
||
if (decl != error_mark_node)
|
||
decl = TYPE_NAME (decl);
|
||
}
|
||
else if (TREE_CODE (decl) != TYPE_DECL
|
||
|| TREE_TYPE (decl) == error_mark_node
|
||
|| !MAYBE_CLASS_TYPE_P (TREE_TYPE (decl))
|
||
/* In Objective-C 2.0, a classname followed by '.' starts a
|
||
dot-syntax expression, and it's not a type-name. */
|
||
|| (c_dialect_objc ()
|
||
&& cp_lexer_peek_token (parser->lexer)->type == CPP_DOT
|
||
&& objc_is_class_name (decl)))
|
||
decl = error_mark_node;
|
||
|
||
if (decl == error_mark_node)
|
||
cp_parser_error (parser, "expected class-name");
|
||
else if (identifier && !parser->scope)
|
||
maybe_note_name_used_in_class (identifier, decl);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Parse a class-specifier.
|
||
|
||
class-specifier:
|
||
class-head { member-specification [opt] }
|
||
|
||
Returns the TREE_TYPE representing the class. */
|
||
|
||
static tree
|
||
cp_parser_class_specifier_1 (cp_parser* parser)
|
||
{
|
||
tree type;
|
||
tree attributes = NULL_TREE;
|
||
bool nested_name_specifier_p;
|
||
unsigned saved_num_template_parameter_lists;
|
||
bool saved_in_function_body;
|
||
unsigned char in_statement;
|
||
bool in_switch_statement_p;
|
||
bool saved_in_unbraced_linkage_specification_p;
|
||
tree old_scope = NULL_TREE;
|
||
tree scope = NULL_TREE;
|
||
cp_token *closing_brace;
|
||
|
||
push_deferring_access_checks (dk_no_deferred);
|
||
|
||
/* Parse the class-head. */
|
||
type = cp_parser_class_head (parser,
|
||
&nested_name_specifier_p);
|
||
/* If the class-head was a semantic disaster, skip the entire body
|
||
of the class. */
|
||
if (!type)
|
||
{
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
pop_deferring_access_checks ();
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Look for the `{'. */
|
||
if (!cp_parser_require (parser, CPP_OPEN_BRACE, RT_OPEN_BRACE))
|
||
{
|
||
pop_deferring_access_checks ();
|
||
return error_mark_node;
|
||
}
|
||
|
||
cp_ensure_no_omp_declare_simd (parser);
|
||
|
||
/* Issue an error message if type-definitions are forbidden here. */
|
||
cp_parser_check_type_definition (parser);
|
||
/* Remember that we are defining one more class. */
|
||
++parser->num_classes_being_defined;
|
||
/* Inside the class, surrounding template-parameter-lists do not
|
||
apply. */
|
||
saved_num_template_parameter_lists
|
||
= parser->num_template_parameter_lists;
|
||
parser->num_template_parameter_lists = 0;
|
||
/* We are not in a function body. */
|
||
saved_in_function_body = parser->in_function_body;
|
||
parser->in_function_body = false;
|
||
/* Or in a loop. */
|
||
in_statement = parser->in_statement;
|
||
parser->in_statement = 0;
|
||
/* Or in a switch. */
|
||
in_switch_statement_p = parser->in_switch_statement_p;
|
||
parser->in_switch_statement_p = false;
|
||
/* We are not immediately inside an extern "lang" block. */
|
||
saved_in_unbraced_linkage_specification_p
|
||
= parser->in_unbraced_linkage_specification_p;
|
||
parser->in_unbraced_linkage_specification_p = false;
|
||
|
||
/* Start the class. */
|
||
if (nested_name_specifier_p)
|
||
{
|
||
scope = CP_DECL_CONTEXT (TYPE_MAIN_DECL (type));
|
||
old_scope = push_inner_scope (scope);
|
||
}
|
||
type = begin_class_definition (type);
|
||
|
||
if (type == error_mark_node)
|
||
/* If the type is erroneous, skip the entire body of the class. */
|
||
cp_parser_skip_to_closing_brace (parser);
|
||
else
|
||
/* Parse the member-specification. */
|
||
cp_parser_member_specification_opt (parser);
|
||
|
||
/* Look for the trailing `}'. */
|
||
closing_brace = cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE);
|
||
/* Look for trailing attributes to apply to this class. */
|
||
if (cp_parser_allow_gnu_extensions_p (parser))
|
||
attributes = cp_parser_gnu_attributes_opt (parser);
|
||
if (type != error_mark_node)
|
||
type = finish_struct (type, attributes);
|
||
if (nested_name_specifier_p)
|
||
pop_inner_scope (old_scope, scope);
|
||
|
||
/* We've finished a type definition. Check for the common syntax
|
||
error of forgetting a semicolon after the definition. We need to
|
||
be careful, as we can't just check for not-a-semicolon and be done
|
||
with it; the user might have typed:
|
||
|
||
class X { } c = ...;
|
||
class X { } *p = ...;
|
||
|
||
and so forth. Instead, enumerate all the possible tokens that
|
||
might follow this production; if we don't see one of them, then
|
||
complain and silently insert the semicolon. */
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
bool want_semicolon = true;
|
||
|
||
if (cp_next_tokens_can_be_std_attribute_p (parser))
|
||
/* Don't try to parse c++11 attributes here. As per the
|
||
grammar, that should be a task for
|
||
cp_parser_decl_specifier_seq. */
|
||
want_semicolon = false;
|
||
|
||
switch (token->type)
|
||
{
|
||
case CPP_NAME:
|
||
case CPP_SEMICOLON:
|
||
case CPP_MULT:
|
||
case CPP_AND:
|
||
case CPP_OPEN_PAREN:
|
||
case CPP_CLOSE_PAREN:
|
||
case CPP_COMMA:
|
||
want_semicolon = false;
|
||
break;
|
||
|
||
/* While it's legal for type qualifiers and storage class
|
||
specifiers to follow type definitions in the grammar, only
|
||
compiler testsuites contain code like that. Assume that if
|
||
we see such code, then what we're really seeing is a case
|
||
like:
|
||
|
||
class X { }
|
||
const <type> var = ...;
|
||
|
||
or
|
||
|
||
class Y { }
|
||
static <type> func (...) ...
|
||
|
||
i.e. the qualifier or specifier applies to the next
|
||
declaration. To do so, however, we need to look ahead one
|
||
more token to see if *that* token is a type specifier.
|
||
|
||
This code could be improved to handle:
|
||
|
||
class Z { }
|
||
static const <type> var = ...; */
|
||
case CPP_KEYWORD:
|
||
if (keyword_is_decl_specifier (token->keyword))
|
||
{
|
||
cp_token *lookahead = cp_lexer_peek_nth_token (parser->lexer, 2);
|
||
|
||
/* Handling user-defined types here would be nice, but very
|
||
tricky. */
|
||
want_semicolon
|
||
= (lookahead->type == CPP_KEYWORD
|
||
&& keyword_begins_type_specifier (lookahead->keyword));
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If we don't have a type, then something is very wrong and we
|
||
shouldn't try to do anything clever. Likewise for not seeing the
|
||
closing brace. */
|
||
if (closing_brace && TYPE_P (type) && want_semicolon)
|
||
{
|
||
cp_token_position prev
|
||
= cp_lexer_previous_token_position (parser->lexer);
|
||
cp_token *prev_token = cp_lexer_token_at (parser->lexer, prev);
|
||
location_t loc = prev_token->location;
|
||
|
||
if (CLASSTYPE_DECLARED_CLASS (type))
|
||
error_at (loc, "expected %<;%> after class definition");
|
||
else if (TREE_CODE (type) == RECORD_TYPE)
|
||
error_at (loc, "expected %<;%> after struct definition");
|
||
else if (TREE_CODE (type) == UNION_TYPE)
|
||
error_at (loc, "expected %<;%> after union definition");
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
/* Unget one token and smash it to look as though we encountered
|
||
a semicolon in the input stream. */
|
||
cp_lexer_set_token_position (parser->lexer, prev);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
token->type = CPP_SEMICOLON;
|
||
token->keyword = RID_MAX;
|
||
}
|
||
}
|
||
|
||
/* If this class is not itself within the scope of another class,
|
||
then we need to parse the bodies of all of the queued function
|
||
definitions. Note that the queued functions defined in a class
|
||
are not always processed immediately following the
|
||
class-specifier for that class. Consider:
|
||
|
||
struct A {
|
||
struct B { void f() { sizeof (A); } };
|
||
};
|
||
|
||
If `f' were processed before the processing of `A' were
|
||
completed, there would be no way to compute the size of `A'.
|
||
Note that the nesting we are interested in here is lexical --
|
||
not the semantic nesting given by TYPE_CONTEXT. In particular,
|
||
for:
|
||
|
||
struct A { struct B; };
|
||
struct A::B { void f() { } };
|
||
|
||
there is no need to delay the parsing of `A::B::f'. */
|
||
if (--parser->num_classes_being_defined == 0)
|
||
{
|
||
tree decl;
|
||
tree class_type = NULL_TREE;
|
||
tree pushed_scope = NULL_TREE;
|
||
unsigned ix;
|
||
cp_default_arg_entry *e;
|
||
tree save_ccp, save_ccr;
|
||
|
||
/* In a first pass, parse default arguments to the functions.
|
||
Then, in a second pass, parse the bodies of the functions.
|
||
This two-phased approach handles cases like:
|
||
|
||
struct S {
|
||
void f() { g(); }
|
||
void g(int i = 3);
|
||
};
|
||
|
||
*/
|
||
FOR_EACH_VEC_SAFE_ELT (unparsed_funs_with_default_args, ix, e)
|
||
{
|
||
decl = e->decl;
|
||
/* If there are default arguments that have not yet been processed,
|
||
take care of them now. */
|
||
if (class_type != e->class_type)
|
||
{
|
||
if (pushed_scope)
|
||
pop_scope (pushed_scope);
|
||
class_type = e->class_type;
|
||
pushed_scope = push_scope (class_type);
|
||
}
|
||
/* Make sure that any template parameters are in scope. */
|
||
maybe_begin_member_template_processing (decl);
|
||
/* Parse the default argument expressions. */
|
||
cp_parser_late_parsing_default_args (parser, decl);
|
||
/* Remove any template parameters from the symbol table. */
|
||
maybe_end_member_template_processing ();
|
||
}
|
||
vec_safe_truncate (unparsed_funs_with_default_args, 0);
|
||
/* Now parse any NSDMIs. */
|
||
save_ccp = current_class_ptr;
|
||
save_ccr = current_class_ref;
|
||
FOR_EACH_VEC_SAFE_ELT (unparsed_nsdmis, ix, decl)
|
||
{
|
||
if (class_type != DECL_CONTEXT (decl))
|
||
{
|
||
if (pushed_scope)
|
||
pop_scope (pushed_scope);
|
||
class_type = DECL_CONTEXT (decl);
|
||
pushed_scope = push_scope (class_type);
|
||
}
|
||
inject_this_parameter (class_type, TYPE_UNQUALIFIED);
|
||
cp_parser_late_parsing_nsdmi (parser, decl);
|
||
}
|
||
vec_safe_truncate (unparsed_nsdmis, 0);
|
||
current_class_ptr = save_ccp;
|
||
current_class_ref = save_ccr;
|
||
if (pushed_scope)
|
||
pop_scope (pushed_scope);
|
||
|
||
/* Now do some post-NSDMI bookkeeping. */
|
||
FOR_EACH_VEC_SAFE_ELT (unparsed_classes, ix, class_type)
|
||
after_nsdmi_defaulted_late_checks (class_type);
|
||
vec_safe_truncate (unparsed_classes, 0);
|
||
after_nsdmi_defaulted_late_checks (type);
|
||
|
||
/* Now parse the body of the functions. */
|
||
if (flag_openmp)
|
||
{
|
||
/* OpenMP UDRs need to be parsed before all other functions. */
|
||
FOR_EACH_VEC_SAFE_ELT (unparsed_funs_with_definitions, ix, decl)
|
||
if (DECL_OMP_DECLARE_REDUCTION_P (decl))
|
||
cp_parser_late_parsing_for_member (parser, decl);
|
||
FOR_EACH_VEC_SAFE_ELT (unparsed_funs_with_definitions, ix, decl)
|
||
if (!DECL_OMP_DECLARE_REDUCTION_P (decl))
|
||
cp_parser_late_parsing_for_member (parser, decl);
|
||
}
|
||
else
|
||
FOR_EACH_VEC_SAFE_ELT (unparsed_funs_with_definitions, ix, decl)
|
||
cp_parser_late_parsing_for_member (parser, decl);
|
||
vec_safe_truncate (unparsed_funs_with_definitions, 0);
|
||
}
|
||
else
|
||
vec_safe_push (unparsed_classes, type);
|
||
|
||
/* Put back any saved access checks. */
|
||
pop_deferring_access_checks ();
|
||
|
||
/* Restore saved state. */
|
||
parser->in_switch_statement_p = in_switch_statement_p;
|
||
parser->in_statement = in_statement;
|
||
parser->in_function_body = saved_in_function_body;
|
||
parser->num_template_parameter_lists
|
||
= saved_num_template_parameter_lists;
|
||
parser->in_unbraced_linkage_specification_p
|
||
= saved_in_unbraced_linkage_specification_p;
|
||
|
||
return type;
|
||
}
|
||
|
||
static tree
|
||
cp_parser_class_specifier (cp_parser* parser)
|
||
{
|
||
tree ret;
|
||
timevar_push (TV_PARSE_STRUCT);
|
||
ret = cp_parser_class_specifier_1 (parser);
|
||
timevar_pop (TV_PARSE_STRUCT);
|
||
return ret;
|
||
}
|
||
|
||
/* Parse a class-head.
|
||
|
||
class-head:
|
||
class-key identifier [opt] base-clause [opt]
|
||
class-key nested-name-specifier identifier class-virt-specifier [opt] base-clause [opt]
|
||
class-key nested-name-specifier [opt] template-id
|
||
base-clause [opt]
|
||
|
||
class-virt-specifier:
|
||
final
|
||
|
||
GNU Extensions:
|
||
class-key attributes identifier [opt] base-clause [opt]
|
||
class-key attributes nested-name-specifier identifier base-clause [opt]
|
||
class-key attributes nested-name-specifier [opt] template-id
|
||
base-clause [opt]
|
||
|
||
Upon return BASES is initialized to the list of base classes (or
|
||
NULL, if there are none) in the same form returned by
|
||
cp_parser_base_clause.
|
||
|
||
Returns the TYPE of the indicated class. Sets
|
||
*NESTED_NAME_SPECIFIER_P to TRUE iff one of the productions
|
||
involving a nested-name-specifier was used, and FALSE otherwise.
|
||
|
||
Returns error_mark_node if this is not a class-head.
|
||
|
||
Returns NULL_TREE if the class-head is syntactically valid, but
|
||
semantically invalid in a way that means we should skip the entire
|
||
body of the class. */
|
||
|
||
static tree
|
||
cp_parser_class_head (cp_parser* parser,
|
||
bool* nested_name_specifier_p)
|
||
{
|
||
tree nested_name_specifier;
|
||
enum tag_types class_key;
|
||
tree id = NULL_TREE;
|
||
tree type = NULL_TREE;
|
||
tree attributes;
|
||
tree bases;
|
||
cp_virt_specifiers virt_specifiers = VIRT_SPEC_UNSPECIFIED;
|
||
bool template_id_p = false;
|
||
bool qualified_p = false;
|
||
bool invalid_nested_name_p = false;
|
||
bool invalid_explicit_specialization_p = false;
|
||
bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p;
|
||
tree pushed_scope = NULL_TREE;
|
||
unsigned num_templates;
|
||
cp_token *type_start_token = NULL, *nested_name_specifier_token_start = NULL;
|
||
/* Assume no nested-name-specifier will be present. */
|
||
*nested_name_specifier_p = false;
|
||
/* Assume no template parameter lists will be used in defining the
|
||
type. */
|
||
num_templates = 0;
|
||
parser->colon_corrects_to_scope_p = false;
|
||
|
||
/* Look for the class-key. */
|
||
class_key = cp_parser_class_key (parser);
|
||
if (class_key == none_type)
|
||
return error_mark_node;
|
||
|
||
/* Parse the attributes. */
|
||
attributes = cp_parser_attributes_opt (parser);
|
||
|
||
/* If the next token is `::', that is invalid -- but sometimes
|
||
people do try to write:
|
||
|
||
struct ::S {};
|
||
|
||
Handle this gracefully by accepting the extra qualifier, and then
|
||
issuing an error about it later if this really is a
|
||
class-head. If it turns out just to be an elaborated type
|
||
specifier, remain silent. */
|
||
if (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false))
|
||
qualified_p = true;
|
||
|
||
push_deferring_access_checks (dk_no_check);
|
||
|
||
/* Determine the name of the class. Begin by looking for an
|
||
optional nested-name-specifier. */
|
||
nested_name_specifier_token_start = cp_lexer_peek_token (parser->lexer);
|
||
nested_name_specifier
|
||
= cp_parser_nested_name_specifier_opt (parser,
|
||
/*typename_keyword_p=*/false,
|
||
/*check_dependency_p=*/false,
|
||
/*type_p=*/true,
|
||
/*is_declaration=*/false);
|
||
/* If there was a nested-name-specifier, then there *must* be an
|
||
identifier. */
|
||
if (nested_name_specifier)
|
||
{
|
||
type_start_token = cp_lexer_peek_token (parser->lexer);
|
||
/* Although the grammar says `identifier', it really means
|
||
`class-name' or `template-name'. You are only allowed to
|
||
define a class that has already been declared with this
|
||
syntax.
|
||
|
||
The proposed resolution for Core Issue 180 says that wherever
|
||
you see `class T::X' you should treat `X' as a type-name.
|
||
|
||
It is OK to define an inaccessible class; for example:
|
||
|
||
class A { class B; };
|
||
class A::B {};
|
||
|
||
We do not know if we will see a class-name, or a
|
||
template-name. We look for a class-name first, in case the
|
||
class-name is a template-id; if we looked for the
|
||
template-name first we would stop after the template-name. */
|
||
cp_parser_parse_tentatively (parser);
|
||
type = cp_parser_class_name (parser,
|
||
/*typename_keyword_p=*/false,
|
||
/*template_keyword_p=*/false,
|
||
class_type,
|
||
/*check_dependency_p=*/false,
|
||
/*class_head_p=*/true,
|
||
/*is_declaration=*/false);
|
||
/* If that didn't work, ignore the nested-name-specifier. */
|
||
if (!cp_parser_parse_definitely (parser))
|
||
{
|
||
invalid_nested_name_p = true;
|
||
type_start_token = cp_lexer_peek_token (parser->lexer);
|
||
id = cp_parser_identifier (parser);
|
||
if (id == error_mark_node)
|
||
id = NULL_TREE;
|
||
}
|
||
/* If we could not find a corresponding TYPE, treat this
|
||
declaration like an unqualified declaration. */
|
||
if (type == error_mark_node)
|
||
nested_name_specifier = NULL_TREE;
|
||
/* Otherwise, count the number of templates used in TYPE and its
|
||
containing scopes. */
|
||
else
|
||
{
|
||
tree scope;
|
||
|
||
for (scope = TREE_TYPE (type);
|
||
scope && TREE_CODE (scope) != NAMESPACE_DECL;
|
||
scope = get_containing_scope (scope))
|
||
if (TYPE_P (scope)
|
||
&& CLASS_TYPE_P (scope)
|
||
&& CLASSTYPE_TEMPLATE_INFO (scope)
|
||
&& PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope))
|
||
&& (!CLASSTYPE_TEMPLATE_SPECIALIZATION (scope)
|
||
|| uses_template_parms (CLASSTYPE_TI_ARGS (scope))))
|
||
++num_templates;
|
||
}
|
||
}
|
||
/* Otherwise, the identifier is optional. */
|
||
else
|
||
{
|
||
/* We don't know whether what comes next is a template-id,
|
||
an identifier, or nothing at all. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Check for a template-id. */
|
||
type_start_token = cp_lexer_peek_token (parser->lexer);
|
||
id = cp_parser_template_id (parser,
|
||
/*template_keyword_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
class_key,
|
||
/*is_declaration=*/true);
|
||
/* If that didn't work, it could still be an identifier. */
|
||
if (!cp_parser_parse_definitely (parser))
|
||
{
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
type_start_token = cp_lexer_peek_token (parser->lexer);
|
||
id = cp_parser_identifier (parser);
|
||
}
|
||
else
|
||
id = NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
template_id_p = true;
|
||
++num_templates;
|
||
}
|
||
}
|
||
|
||
pop_deferring_access_checks ();
|
||
|
||
if (id)
|
||
{
|
||
cp_parser_check_for_invalid_template_id (parser, id,
|
||
class_key,
|
||
type_start_token->location);
|
||
}
|
||
virt_specifiers = cp_parser_virt_specifier_seq_opt (parser);
|
||
|
||
/* If it's not a `:' or a `{' then we can't really be looking at a
|
||
class-head, since a class-head only appears as part of a
|
||
class-specifier. We have to detect this situation before calling
|
||
xref_tag, since that has irreversible side-effects. */
|
||
if (!cp_parser_next_token_starts_class_definition_p (parser))
|
||
{
|
||
cp_parser_error (parser, "expected %<{%> or %<:%>");
|
||
type = error_mark_node;
|
||
goto out;
|
||
}
|
||
|
||
/* At this point, we're going ahead with the class-specifier, even
|
||
if some other problem occurs. */
|
||
cp_parser_commit_to_tentative_parse (parser);
|
||
if (virt_specifiers & VIRT_SPEC_OVERRIDE)
|
||
{
|
||
cp_parser_error (parser,
|
||
"cannot specify %<override%> for a class");
|
||
type = error_mark_node;
|
||
goto out;
|
||
}
|
||
/* Issue the error about the overly-qualified name now. */
|
||
if (qualified_p)
|
||
{
|
||
cp_parser_error (parser,
|
||
"global qualification of class name is invalid");
|
||
type = error_mark_node;
|
||
goto out;
|
||
}
|
||
else if (invalid_nested_name_p)
|
||
{
|
||
cp_parser_error (parser,
|
||
"qualified name does not name a class");
|
||
type = error_mark_node;
|
||
goto out;
|
||
}
|
||
else if (nested_name_specifier)
|
||
{
|
||
tree scope;
|
||
|
||
/* Reject typedef-names in class heads. */
|
||
if (!DECL_IMPLICIT_TYPEDEF_P (type))
|
||
{
|
||
error_at (type_start_token->location,
|
||
"invalid class name in declaration of %qD",
|
||
type);
|
||
type = NULL_TREE;
|
||
goto done;
|
||
}
|
||
|
||
/* Figure out in what scope the declaration is being placed. */
|
||
scope = current_scope ();
|
||
/* If that scope does not contain the scope in which the
|
||
class was originally declared, the program is invalid. */
|
||
if (scope && !is_ancestor (scope, nested_name_specifier))
|
||
{
|
||
if (at_namespace_scope_p ())
|
||
error_at (type_start_token->location,
|
||
"declaration of %qD in namespace %qD which does not "
|
||
"enclose %qD",
|
||
type, scope, nested_name_specifier);
|
||
else
|
||
error_at (type_start_token->location,
|
||
"declaration of %qD in %qD which does not enclose %qD",
|
||
type, scope, nested_name_specifier);
|
||
type = NULL_TREE;
|
||
goto done;
|
||
}
|
||
/* [dcl.meaning]
|
||
|
||
A declarator-id shall not be qualified except for the
|
||
definition of a ... nested class outside of its class
|
||
... [or] the definition or explicit instantiation of a
|
||
class member of a namespace outside of its namespace. */
|
||
if (scope == nested_name_specifier)
|
||
{
|
||
permerror (nested_name_specifier_token_start->location,
|
||
"extra qualification not allowed");
|
||
nested_name_specifier = NULL_TREE;
|
||
num_templates = 0;
|
||
}
|
||
}
|
||
/* An explicit-specialization must be preceded by "template <>". If
|
||
it is not, try to recover gracefully. */
|
||
if (at_namespace_scope_p ()
|
||
&& parser->num_template_parameter_lists == 0
|
||
&& template_id_p)
|
||
{
|
||
error_at (type_start_token->location,
|
||
"an explicit specialization must be preceded by %<template <>%>");
|
||
invalid_explicit_specialization_p = true;
|
||
/* Take the same action that would have been taken by
|
||
cp_parser_explicit_specialization. */
|
||
++parser->num_template_parameter_lists;
|
||
begin_specialization ();
|
||
}
|
||
/* There must be no "return" statements between this point and the
|
||
end of this function; set "type "to the correct return value and
|
||
use "goto done;" to return. */
|
||
/* Make sure that the right number of template parameters were
|
||
present. */
|
||
if (!cp_parser_check_template_parameters (parser, num_templates,
|
||
type_start_token->location,
|
||
/*declarator=*/NULL))
|
||
{
|
||
/* If something went wrong, there is no point in even trying to
|
||
process the class-definition. */
|
||
type = NULL_TREE;
|
||
goto done;
|
||
}
|
||
|
||
/* Look up the type. */
|
||
if (template_id_p)
|
||
{
|
||
if (TREE_CODE (id) == TEMPLATE_ID_EXPR
|
||
&& (DECL_FUNCTION_TEMPLATE_P (TREE_OPERAND (id, 0))
|
||
|| TREE_CODE (TREE_OPERAND (id, 0)) == OVERLOAD))
|
||
{
|
||
error_at (type_start_token->location,
|
||
"function template %qD redeclared as a class template", id);
|
||
type = error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
type = TREE_TYPE (id);
|
||
type = maybe_process_partial_specialization (type);
|
||
}
|
||
if (nested_name_specifier)
|
||
pushed_scope = push_scope (nested_name_specifier);
|
||
}
|
||
else if (nested_name_specifier)
|
||
{
|
||
tree class_type;
|
||
|
||
/* Given:
|
||
|
||
template <typename T> struct S { struct T };
|
||
template <typename T> struct S<T>::T { };
|
||
|
||
we will get a TYPENAME_TYPE when processing the definition of
|
||
`S::T'. We need to resolve it to the actual type before we
|
||
try to define it. */
|
||
if (TREE_CODE (TREE_TYPE (type)) == TYPENAME_TYPE)
|
||
{
|
||
class_type = resolve_typename_type (TREE_TYPE (type),
|
||
/*only_current_p=*/false);
|
||
if (TREE_CODE (class_type) != TYPENAME_TYPE)
|
||
type = TYPE_NAME (class_type);
|
||
else
|
||
{
|
||
cp_parser_error (parser, "could not resolve typename type");
|
||
type = error_mark_node;
|
||
}
|
||
}
|
||
|
||
if (maybe_process_partial_specialization (TREE_TYPE (type))
|
||
== error_mark_node)
|
||
{
|
||
type = NULL_TREE;
|
||
goto done;
|
||
}
|
||
|
||
class_type = current_class_type;
|
||
/* Enter the scope indicated by the nested-name-specifier. */
|
||
pushed_scope = push_scope (nested_name_specifier);
|
||
/* Get the canonical version of this type. */
|
||
type = TYPE_MAIN_DECL (TREE_TYPE (type));
|
||
/* Call push_template_decl if it seems like we should be defining a
|
||
template either from the template headers or the type we're
|
||
defining, so that we diagnose both extra and missing headers. */
|
||
if ((PROCESSING_REAL_TEMPLATE_DECL_P ()
|
||
|| (CLASSTYPE_TEMPLATE_INFO (TREE_TYPE (type))
|
||
&& PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE
|
||
(TREE_TYPE (type)))))
|
||
&& !CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (type)))
|
||
{
|
||
type = push_template_decl (type);
|
||
if (type == error_mark_node)
|
||
{
|
||
type = NULL_TREE;
|
||
goto done;
|
||
}
|
||
}
|
||
|
||
type = TREE_TYPE (type);
|
||
*nested_name_specifier_p = true;
|
||
}
|
||
else /* The name is not a nested name. */
|
||
{
|
||
/* If the class was unnamed, create a dummy name. */
|
||
if (!id)
|
||
id = make_anon_name ();
|
||
type = xref_tag (class_key, id, /*tag_scope=*/ts_current,
|
||
parser->num_template_parameter_lists);
|
||
}
|
||
|
||
/* Indicate whether this class was declared as a `class' or as a
|
||
`struct'. */
|
||
if (TREE_CODE (type) == RECORD_TYPE)
|
||
CLASSTYPE_DECLARED_CLASS (type) = (class_key == class_type);
|
||
cp_parser_check_class_key (class_key, type);
|
||
|
||
/* If this type was already complete, and we see another definition,
|
||
that's an error. */
|
||
if (type != error_mark_node && COMPLETE_TYPE_P (type))
|
||
{
|
||
error_at (type_start_token->location, "redefinition of %q#T",
|
||
type);
|
||
error_at (type_start_token->location, "previous definition of %q+#T",
|
||
type);
|
||
type = NULL_TREE;
|
||
goto done;
|
||
}
|
||
else if (type == error_mark_node)
|
||
type = NULL_TREE;
|
||
|
||
if (type)
|
||
{
|
||
/* Apply attributes now, before any use of the class as a template
|
||
argument in its base list. */
|
||
cplus_decl_attributes (&type, attributes, (int)ATTR_FLAG_TYPE_IN_PLACE);
|
||
fixup_attribute_variants (type);
|
||
}
|
||
|
||
/* We will have entered the scope containing the class; the names of
|
||
base classes should be looked up in that context. For example:
|
||
|
||
struct A { struct B {}; struct C; };
|
||
struct A::C : B {};
|
||
|
||
is valid. */
|
||
|
||
/* Get the list of base-classes, if there is one. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
|
||
{
|
||
/* PR59482: enter the class scope so that base-specifiers are looked
|
||
up correctly. */
|
||
if (type)
|
||
pushclass (type);
|
||
bases = cp_parser_base_clause (parser);
|
||
/* PR59482: get out of the previously pushed class scope so that the
|
||
subsequent pops pop the right thing. */
|
||
if (type)
|
||
popclass ();
|
||
}
|
||
else
|
||
bases = NULL_TREE;
|
||
|
||
/* If we're really defining a class, process the base classes.
|
||
If they're invalid, fail. */
|
||
if (type && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)
|
||
&& !xref_basetypes (type, bases))
|
||
type = NULL_TREE;
|
||
|
||
done:
|
||
/* Leave the scope given by the nested-name-specifier. We will
|
||
enter the class scope itself while processing the members. */
|
||
if (pushed_scope)
|
||
pop_scope (pushed_scope);
|
||
|
||
if (invalid_explicit_specialization_p)
|
||
{
|
||
end_specialization ();
|
||
--parser->num_template_parameter_lists;
|
||
}
|
||
|
||
if (type)
|
||
DECL_SOURCE_LOCATION (TYPE_NAME (type)) = type_start_token->location;
|
||
if (type && (virt_specifiers & VIRT_SPEC_FINAL))
|
||
CLASSTYPE_FINAL (type) = 1;
|
||
out:
|
||
parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p;
|
||
return type;
|
||
}
|
||
|
||
/* Parse a class-key.
|
||
|
||
class-key:
|
||
class
|
||
struct
|
||
union
|
||
|
||
Returns the kind of class-key specified, or none_type to indicate
|
||
error. */
|
||
|
||
static enum tag_types
|
||
cp_parser_class_key (cp_parser* parser)
|
||
{
|
||
cp_token *token;
|
||
enum tag_types tag_type;
|
||
|
||
/* Look for the class-key. */
|
||
token = cp_parser_require (parser, CPP_KEYWORD, RT_CLASS_KEY);
|
||
if (!token)
|
||
return none_type;
|
||
|
||
/* Check to see if the TOKEN is a class-key. */
|
||
tag_type = cp_parser_token_is_class_key (token);
|
||
if (!tag_type)
|
||
cp_parser_error (parser, "expected class-key");
|
||
return tag_type;
|
||
}
|
||
|
||
/* Parse a type-parameter-key.
|
||
|
||
type-parameter-key:
|
||
class
|
||
typename
|
||
*/
|
||
|
||
static void
|
||
cp_parser_type_parameter_key (cp_parser* parser)
|
||
{
|
||
/* Look for the type-parameter-key. */
|
||
enum tag_types tag_type = none_type;
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
if ((tag_type = cp_parser_token_is_type_parameter_key (token)) != none_type)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (pedantic && tag_type == typename_type && cxx_dialect < cxx1z)
|
||
/* typename is not allowed in a template template parameter
|
||
by the standard until C++1Z. */
|
||
pedwarn (token->location, OPT_Wpedantic,
|
||
"ISO C++ forbids typename key in template template parameter;"
|
||
" use -std=c++1z or -std=gnu++1z");
|
||
}
|
||
else
|
||
cp_parser_error (parser, "expected %<class%> or %<typename%>");
|
||
|
||
return;
|
||
}
|
||
|
||
/* Parse an (optional) member-specification.
|
||
|
||
member-specification:
|
||
member-declaration member-specification [opt]
|
||
access-specifier : member-specification [opt] */
|
||
|
||
static void
|
||
cp_parser_member_specification_opt (cp_parser* parser)
|
||
{
|
||
while (true)
|
||
{
|
||
cp_token *token;
|
||
enum rid keyword;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If it's a `}', or EOF then we've seen all the members. */
|
||
if (token->type == CPP_CLOSE_BRACE
|
||
|| token->type == CPP_EOF
|
||
|| token->type == CPP_PRAGMA_EOL)
|
||
break;
|
||
|
||
/* See if this token is a keyword. */
|
||
keyword = token->keyword;
|
||
switch (keyword)
|
||
{
|
||
case RID_PUBLIC:
|
||
case RID_PROTECTED:
|
||
case RID_PRIVATE:
|
||
/* Consume the access-specifier. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Remember which access-specifier is active. */
|
||
current_access_specifier = token->u.value;
|
||
/* Look for the `:'. */
|
||
cp_parser_require (parser, CPP_COLON, RT_COLON);
|
||
break;
|
||
|
||
default:
|
||
/* Accept #pragmas at class scope. */
|
||
if (token->type == CPP_PRAGMA)
|
||
{
|
||
cp_parser_pragma (parser, pragma_member);
|
||
break;
|
||
}
|
||
|
||
/* Otherwise, the next construction must be a
|
||
member-declaration. */
|
||
cp_parser_member_declaration (parser);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Parse a member-declaration.
|
||
|
||
member-declaration:
|
||
decl-specifier-seq [opt] member-declarator-list [opt] ;
|
||
function-definition ; [opt]
|
||
:: [opt] nested-name-specifier template [opt] unqualified-id ;
|
||
using-declaration
|
||
template-declaration
|
||
alias-declaration
|
||
|
||
member-declarator-list:
|
||
member-declarator
|
||
member-declarator-list , member-declarator
|
||
|
||
member-declarator:
|
||
declarator pure-specifier [opt]
|
||
declarator constant-initializer [opt]
|
||
identifier [opt] : constant-expression
|
||
|
||
GNU Extensions:
|
||
|
||
member-declaration:
|
||
__extension__ member-declaration
|
||
|
||
member-declarator:
|
||
declarator attributes [opt] pure-specifier [opt]
|
||
declarator attributes [opt] constant-initializer [opt]
|
||
identifier [opt] attributes [opt] : constant-expression
|
||
|
||
C++0x Extensions:
|
||
|
||
member-declaration:
|
||
static_assert-declaration */
|
||
|
||
static void
|
||
cp_parser_member_declaration (cp_parser* parser)
|
||
{
|
||
cp_decl_specifier_seq decl_specifiers;
|
||
tree prefix_attributes;
|
||
tree decl;
|
||
int declares_class_or_enum;
|
||
bool friend_p;
|
||
cp_token *token = NULL;
|
||
cp_token *decl_spec_token_start = NULL;
|
||
cp_token *initializer_token_start = NULL;
|
||
int saved_pedantic;
|
||
bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p;
|
||
|
||
/* Check for the `__extension__' keyword. */
|
||
if (cp_parser_extension_opt (parser, &saved_pedantic))
|
||
{
|
||
/* Recurse. */
|
||
cp_parser_member_declaration (parser);
|
||
/* Restore the old value of the PEDANTIC flag. */
|
||
pedantic = saved_pedantic;
|
||
|
||
return;
|
||
}
|
||
|
||
/* Check for a template-declaration. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
|
||
{
|
||
/* An explicit specialization here is an error condition, and we
|
||
expect the specialization handler to detect and report this. */
|
||
if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
|
||
cp_parser_explicit_specialization (parser);
|
||
else
|
||
cp_parser_template_declaration (parser, /*member_p=*/true);
|
||
|
||
return;
|
||
}
|
||
|
||
/* Check for a using-declaration. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_USING))
|
||
{
|
||
if (cxx_dialect < cxx11)
|
||
{
|
||
/* Parse the using-declaration. */
|
||
cp_parser_using_declaration (parser,
|
||
/*access_declaration_p=*/false);
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
tree decl;
|
||
bool alias_decl_expected;
|
||
cp_parser_parse_tentatively (parser);
|
||
decl = cp_parser_alias_declaration (parser);
|
||
/* Note that if we actually see the '=' token after the
|
||
identifier, cp_parser_alias_declaration commits the
|
||
tentative parse. In that case, we really expects an
|
||
alias-declaration. Otherwise, we expect a using
|
||
declaration. */
|
||
alias_decl_expected =
|
||
!cp_parser_uncommitted_to_tentative_parse_p (parser);
|
||
cp_parser_parse_definitely (parser);
|
||
|
||
if (alias_decl_expected)
|
||
finish_member_declaration (decl);
|
||
else
|
||
cp_parser_using_declaration (parser,
|
||
/*access_declaration_p=*/false);
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Check for @defs. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_DEFS))
|
||
{
|
||
tree ivar, member;
|
||
tree ivar_chains = cp_parser_objc_defs_expression (parser);
|
||
ivar = ivar_chains;
|
||
while (ivar)
|
||
{
|
||
member = ivar;
|
||
ivar = TREE_CHAIN (member);
|
||
TREE_CHAIN (member) = NULL_TREE;
|
||
finish_member_declaration (member);
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* If the next token is `static_assert' we have a static assertion. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_STATIC_ASSERT))
|
||
{
|
||
cp_parser_static_assert (parser, /*member_p=*/true);
|
||
return;
|
||
}
|
||
|
||
parser->colon_corrects_to_scope_p = false;
|
||
|
||
if (cp_parser_using_declaration (parser, /*access_declaration=*/true))
|
||
goto out;
|
||
|
||
/* Parse the decl-specifier-seq. */
|
||
decl_spec_token_start = cp_lexer_peek_token (parser->lexer);
|
||
cp_parser_decl_specifier_seq (parser,
|
||
CP_PARSER_FLAGS_OPTIONAL,
|
||
&decl_specifiers,
|
||
&declares_class_or_enum);
|
||
/* Check for an invalid type-name. */
|
||
if (!decl_specifiers.any_type_specifiers_p
|
||
&& cp_parser_parse_and_diagnose_invalid_type_name (parser))
|
||
goto out;
|
||
/* If there is no declarator, then the decl-specifier-seq should
|
||
specify a type. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
|
||
{
|
||
/* If there was no decl-specifier-seq, and the next token is a
|
||
`;', then we have something like:
|
||
|
||
struct S { ; };
|
||
|
||
[class.mem]
|
||
|
||
Each member-declaration shall declare at least one member
|
||
name of the class. */
|
||
if (!decl_specifiers.any_specifiers_p)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
if (!in_system_header_at (token->location))
|
||
pedwarn (token->location, OPT_Wpedantic, "extra %<;%>");
|
||
}
|
||
else
|
||
{
|
||
tree type;
|
||
|
||
/* See if this declaration is a friend. */
|
||
friend_p = cp_parser_friend_p (&decl_specifiers);
|
||
/* If there were decl-specifiers, check to see if there was
|
||
a class-declaration. */
|
||
type = check_tag_decl (&decl_specifiers,
|
||
/*explicit_type_instantiation_p=*/false);
|
||
/* Nested classes have already been added to the class, but
|
||
a `friend' needs to be explicitly registered. */
|
||
if (friend_p)
|
||
{
|
||
/* If the `friend' keyword was present, the friend must
|
||
be introduced with a class-key. */
|
||
if (!declares_class_or_enum && cxx_dialect < cxx11)
|
||
pedwarn (decl_spec_token_start->location, OPT_Wpedantic,
|
||
"in C++03 a class-key must be used "
|
||
"when declaring a friend");
|
||
/* In this case:
|
||
|
||
template <typename T> struct A {
|
||
friend struct A<T>::B;
|
||
};
|
||
|
||
A<T>::B will be represented by a TYPENAME_TYPE, and
|
||
therefore not recognized by check_tag_decl. */
|
||
if (!type)
|
||
{
|
||
type = decl_specifiers.type;
|
||
if (type && TREE_CODE (type) == TYPE_DECL)
|
||
type = TREE_TYPE (type);
|
||
}
|
||
if (!type || !TYPE_P (type))
|
||
error_at (decl_spec_token_start->location,
|
||
"friend declaration does not name a class or "
|
||
"function");
|
||
else
|
||
make_friend_class (current_class_type, type,
|
||
/*complain=*/true);
|
||
}
|
||
/* If there is no TYPE, an error message will already have
|
||
been issued. */
|
||
else if (!type || type == error_mark_node)
|
||
;
|
||
/* An anonymous aggregate has to be handled specially; such
|
||
a declaration really declares a data member (with a
|
||
particular type), as opposed to a nested class. */
|
||
else if (ANON_AGGR_TYPE_P (type))
|
||
{
|
||
/* C++11 9.5/6. */
|
||
if (decl_specifiers.storage_class != sc_none)
|
||
error_at (decl_spec_token_start->location,
|
||
"a storage class on an anonymous aggregate "
|
||
"in class scope is not allowed");
|
||
|
||
/* Remove constructors and such from TYPE, now that we
|
||
know it is an anonymous aggregate. */
|
||
fixup_anonymous_aggr (type);
|
||
/* And make the corresponding data member. */
|
||
decl = build_decl (decl_spec_token_start->location,
|
||
FIELD_DECL, NULL_TREE, type);
|
||
/* Add it to the class. */
|
||
finish_member_declaration (decl);
|
||
}
|
||
else
|
||
cp_parser_check_access_in_redeclaration
|
||
(TYPE_NAME (type),
|
||
decl_spec_token_start->location);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
bool assume_semicolon = false;
|
||
|
||
/* Clear attributes from the decl_specifiers but keep them
|
||
around as prefix attributes that apply them to the entity
|
||
being declared. */
|
||
prefix_attributes = decl_specifiers.attributes;
|
||
decl_specifiers.attributes = NULL_TREE;
|
||
|
||
/* See if these declarations will be friends. */
|
||
friend_p = cp_parser_friend_p (&decl_specifiers);
|
||
|
||
/* Keep going until we hit the `;' at the end of the
|
||
declaration. */
|
||
while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
|
||
{
|
||
tree attributes = NULL_TREE;
|
||
tree first_attribute;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* Check for a bitfield declaration. */
|
||
if (token->type == CPP_COLON
|
||
|| (token->type == CPP_NAME
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type
|
||
== CPP_COLON))
|
||
{
|
||
tree identifier;
|
||
tree width;
|
||
|
||
/* Get the name of the bitfield. Note that we cannot just
|
||
check TOKEN here because it may have been invalidated by
|
||
the call to cp_lexer_peek_nth_token above. */
|
||
if (cp_lexer_peek_token (parser->lexer)->type != CPP_COLON)
|
||
identifier = cp_parser_identifier (parser);
|
||
else
|
||
identifier = NULL_TREE;
|
||
|
||
/* Consume the `:' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Get the width of the bitfield. */
|
||
width
|
||
= cp_parser_constant_expression (parser,
|
||
/*allow_non_constant=*/false,
|
||
NULL);
|
||
|
||
/* Look for attributes that apply to the bitfield. */
|
||
attributes = cp_parser_attributes_opt (parser);
|
||
/* Remember which attributes are prefix attributes and
|
||
which are not. */
|
||
first_attribute = attributes;
|
||
/* Combine the attributes. */
|
||
attributes = chainon (prefix_attributes, attributes);
|
||
|
||
/* Create the bitfield declaration. */
|
||
decl = grokbitfield (identifier
|
||
? make_id_declarator (NULL_TREE,
|
||
identifier,
|
||
sfk_none)
|
||
: NULL,
|
||
&decl_specifiers,
|
||
width,
|
||
attributes);
|
||
}
|
||
else
|
||
{
|
||
cp_declarator *declarator;
|
||
tree initializer;
|
||
tree asm_specification;
|
||
int ctor_dtor_or_conv_p;
|
||
|
||
/* Parse the declarator. */
|
||
declarator
|
||
= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
|
||
&ctor_dtor_or_conv_p,
|
||
/*parenthesized_p=*/NULL,
|
||
/*member_p=*/true,
|
||
friend_p);
|
||
|
||
/* If something went wrong parsing the declarator, make sure
|
||
that we at least consume some tokens. */
|
||
if (declarator == cp_error_declarator)
|
||
{
|
||
/* Skip to the end of the statement. */
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
/* If the next token is not a semicolon, that is
|
||
probably because we just skipped over the body of
|
||
a function. So, we consume a semicolon if
|
||
present, but do not issue an error message if it
|
||
is not present. */
|
||
if (cp_lexer_next_token_is (parser->lexer,
|
||
CPP_SEMICOLON))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
goto out;
|
||
}
|
||
|
||
if (declares_class_or_enum & 2)
|
||
cp_parser_check_for_definition_in_return_type
|
||
(declarator, decl_specifiers.type,
|
||
decl_specifiers.locations[ds_type_spec]);
|
||
|
||
/* Look for an asm-specification. */
|
||
asm_specification = cp_parser_asm_specification_opt (parser);
|
||
/* Look for attributes that apply to the declaration. */
|
||
attributes = cp_parser_attributes_opt (parser);
|
||
/* Remember which attributes are prefix attributes and
|
||
which are not. */
|
||
first_attribute = attributes;
|
||
/* Combine the attributes. */
|
||
attributes = chainon (prefix_attributes, attributes);
|
||
|
||
/* If it's an `=', then we have a constant-initializer or a
|
||
pure-specifier. It is not correct to parse the
|
||
initializer before registering the member declaration
|
||
since the member declaration should be in scope while
|
||
its initializer is processed. However, the rest of the
|
||
front end does not yet provide an interface that allows
|
||
us to handle this correctly. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
|
||
{
|
||
/* In [class.mem]:
|
||
|
||
A pure-specifier shall be used only in the declaration of
|
||
a virtual function.
|
||
|
||
A member-declarator can contain a constant-initializer
|
||
only if it declares a static member of integral or
|
||
enumeration type.
|
||
|
||
Therefore, if the DECLARATOR is for a function, we look
|
||
for a pure-specifier; otherwise, we look for a
|
||
constant-initializer. When we call `grokfield', it will
|
||
perform more stringent semantics checks. */
|
||
initializer_token_start = cp_lexer_peek_token (parser->lexer);
|
||
if (function_declarator_p (declarator)
|
||
|| (decl_specifiers.type
|
||
&& TREE_CODE (decl_specifiers.type) == TYPE_DECL
|
||
&& declarator->kind == cdk_id
|
||
&& (TREE_CODE (TREE_TYPE (decl_specifiers.type))
|
||
== FUNCTION_TYPE)))
|
||
initializer = cp_parser_pure_specifier (parser);
|
||
else if (decl_specifiers.storage_class != sc_static)
|
||
initializer = cp_parser_save_nsdmi (parser);
|
||
else if (cxx_dialect >= cxx11)
|
||
{
|
||
bool nonconst;
|
||
/* Don't require a constant rvalue in C++11, since we
|
||
might want a reference constant. We'll enforce
|
||
constancy later. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Parse the initializer. */
|
||
initializer = cp_parser_initializer_clause (parser,
|
||
&nonconst);
|
||
}
|
||
else
|
||
/* Parse the initializer. */
|
||
initializer = cp_parser_constant_initializer (parser);
|
||
}
|
||
else if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE)
|
||
&& !function_declarator_p (declarator))
|
||
{
|
||
bool x;
|
||
if (decl_specifiers.storage_class != sc_static)
|
||
initializer = cp_parser_save_nsdmi (parser);
|
||
else
|
||
initializer = cp_parser_initializer (parser, &x, &x);
|
||
}
|
||
/* Otherwise, there is no initializer. */
|
||
else
|
||
initializer = NULL_TREE;
|
||
|
||
/* See if we are probably looking at a function
|
||
definition. We are certainly not looking at a
|
||
member-declarator. Calling `grokfield' has
|
||
side-effects, so we must not do it unless we are sure
|
||
that we are looking at a member-declarator. */
|
||
if (cp_parser_token_starts_function_definition_p
|
||
(cp_lexer_peek_token (parser->lexer)))
|
||
{
|
||
/* The grammar does not allow a pure-specifier to be
|
||
used when a member function is defined. (It is
|
||
possible that this fact is an oversight in the
|
||
standard, since a pure function may be defined
|
||
outside of the class-specifier. */
|
||
if (initializer && initializer_token_start)
|
||
error_at (initializer_token_start->location,
|
||
"pure-specifier on function-definition");
|
||
decl = cp_parser_save_member_function_body (parser,
|
||
&decl_specifiers,
|
||
declarator,
|
||
attributes);
|
||
if (parser->fully_implicit_function_template_p)
|
||
decl = finish_fully_implicit_template (parser, decl);
|
||
/* If the member was not a friend, declare it here. */
|
||
if (!friend_p)
|
||
finish_member_declaration (decl);
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If the next token is a semicolon, consume it. */
|
||
if (token->type == CPP_SEMICOLON)
|
||
cp_lexer_consume_token (parser->lexer);
|
||
goto out;
|
||
}
|
||
else
|
||
if (declarator->kind == cdk_function)
|
||
declarator->id_loc = token->location;
|
||
/* Create the declaration. */
|
||
decl = grokfield (declarator, &decl_specifiers,
|
||
initializer, /*init_const_expr_p=*/true,
|
||
asm_specification, attributes);
|
||
if (parser->fully_implicit_function_template_p)
|
||
{
|
||
if (friend_p)
|
||
finish_fully_implicit_template (parser, 0);
|
||
else
|
||
decl = finish_fully_implicit_template (parser, decl);
|
||
}
|
||
}
|
||
|
||
cp_finalize_omp_declare_simd (parser, decl);
|
||
|
||
/* Reset PREFIX_ATTRIBUTES. */
|
||
while (attributes && TREE_CHAIN (attributes) != first_attribute)
|
||
attributes = TREE_CHAIN (attributes);
|
||
if (attributes)
|
||
TREE_CHAIN (attributes) = NULL_TREE;
|
||
|
||
/* If there is any qualification still in effect, clear it
|
||
now; we will be starting fresh with the next declarator. */
|
||
parser->scope = NULL_TREE;
|
||
parser->qualifying_scope = NULL_TREE;
|
||
parser->object_scope = NULL_TREE;
|
||
/* If it's a `,', then there are more declarators. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
|
||
{
|
||
cp_token *token = cp_lexer_previous_token (parser->lexer);
|
||
error_at (token->location,
|
||
"stray %<,%> at end of member declaration");
|
||
}
|
||
}
|
||
/* If the next token isn't a `;', then we have a parse error. */
|
||
else if (cp_lexer_next_token_is_not (parser->lexer,
|
||
CPP_SEMICOLON))
|
||
{
|
||
/* The next token might be a ways away from where the
|
||
actual semicolon is missing. Find the previous token
|
||
and use that for our error position. */
|
||
cp_token *token = cp_lexer_previous_token (parser->lexer);
|
||
error_at (token->location,
|
||
"expected %<;%> at end of member declaration");
|
||
|
||
/* Assume that the user meant to provide a semicolon. If
|
||
we were to cp_parser_skip_to_end_of_statement, we might
|
||
skip to a semicolon inside a member function definition
|
||
and issue nonsensical error messages. */
|
||
assume_semicolon = true;
|
||
}
|
||
|
||
if (decl)
|
||
{
|
||
/* Add DECL to the list of members. */
|
||
if (!friend_p)
|
||
finish_member_declaration (decl);
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
cp_parser_save_default_args (parser, decl);
|
||
else if (TREE_CODE (decl) == FIELD_DECL
|
||
&& !DECL_C_BIT_FIELD (decl)
|
||
&& DECL_INITIAL (decl))
|
||
/* Add DECL to the queue of NSDMI to be parsed later. */
|
||
vec_safe_push (unparsed_nsdmis, decl);
|
||
}
|
||
|
||
if (assume_semicolon)
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
out:
|
||
parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p;
|
||
}
|
||
|
||
/* Parse a pure-specifier.
|
||
|
||
pure-specifier:
|
||
= 0
|
||
|
||
Returns INTEGER_ZERO_NODE if a pure specifier is found.
|
||
Otherwise, ERROR_MARK_NODE is returned. */
|
||
|
||
static tree
|
||
cp_parser_pure_specifier (cp_parser* parser)
|
||
{
|
||
cp_token *token;
|
||
|
||
/* Look for the `=' token. */
|
||
if (!cp_parser_require (parser, CPP_EQ, RT_EQ))
|
||
return error_mark_node;
|
||
/* Look for the `0' token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
if (token->type == CPP_EOF
|
||
|| token->type == CPP_PRAGMA_EOL)
|
||
return error_mark_node;
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* Accept = default or = delete in c++0x mode. */
|
||
if (token->keyword == RID_DEFAULT
|
||
|| token->keyword == RID_DELETE)
|
||
{
|
||
maybe_warn_cpp0x (CPP0X_DEFAULTED_DELETED);
|
||
return token->u.value;
|
||
}
|
||
|
||
/* c_lex_with_flags marks a single digit '0' with PURE_ZERO. */
|
||
if (token->type != CPP_NUMBER || !(token->flags & PURE_ZERO))
|
||
{
|
||
cp_parser_error (parser,
|
||
"invalid pure specifier (only %<= 0%> is allowed)");
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
return error_mark_node;
|
||
}
|
||
if (PROCESSING_REAL_TEMPLATE_DECL_P ())
|
||
{
|
||
error_at (token->location, "templates may not be %<virtual%>");
|
||
return error_mark_node;
|
||
}
|
||
|
||
return integer_zero_node;
|
||
}
|
||
|
||
/* Parse a constant-initializer.
|
||
|
||
constant-initializer:
|
||
= constant-expression
|
||
|
||
Returns a representation of the constant-expression. */
|
||
|
||
static tree
|
||
cp_parser_constant_initializer (cp_parser* parser)
|
||
{
|
||
/* Look for the `=' token. */
|
||
if (!cp_parser_require (parser, CPP_EQ, RT_EQ))
|
||
return error_mark_node;
|
||
|
||
/* It is invalid to write:
|
||
|
||
struct S { static const int i = { 7 }; };
|
||
|
||
*/
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
cp_parser_error (parser,
|
||
"a brace-enclosed initializer is not allowed here");
|
||
/* Consume the opening brace. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Skip the initializer. */
|
||
cp_parser_skip_to_closing_brace (parser);
|
||
/* Look for the trailing `}'. */
|
||
cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE);
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
return cp_parser_constant_expression (parser,
|
||
/*allow_non_constant=*/false,
|
||
NULL);
|
||
}
|
||
|
||
/* Derived classes [gram.class.derived] */
|
||
|
||
/* Parse a base-clause.
|
||
|
||
base-clause:
|
||
: base-specifier-list
|
||
|
||
base-specifier-list:
|
||
base-specifier ... [opt]
|
||
base-specifier-list , base-specifier ... [opt]
|
||
|
||
Returns a TREE_LIST representing the base-classes, in the order in
|
||
which they were declared. The representation of each node is as
|
||
described by cp_parser_base_specifier.
|
||
|
||
In the case that no bases are specified, this function will return
|
||
NULL_TREE, not ERROR_MARK_NODE. */
|
||
|
||
static tree
|
||
cp_parser_base_clause (cp_parser* parser)
|
||
{
|
||
tree bases = NULL_TREE;
|
||
|
||
/* Look for the `:' that begins the list. */
|
||
cp_parser_require (parser, CPP_COLON, RT_COLON);
|
||
|
||
/* Scan the base-specifier-list. */
|
||
while (true)
|
||
{
|
||
cp_token *token;
|
||
tree base;
|
||
bool pack_expansion_p = false;
|
||
|
||
/* Look for the base-specifier. */
|
||
base = cp_parser_base_specifier (parser);
|
||
/* Look for the (optional) ellipsis. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
|
||
{
|
||
/* Consume the `...'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
pack_expansion_p = true;
|
||
}
|
||
|
||
/* Add BASE to the front of the list. */
|
||
if (base && base != error_mark_node)
|
||
{
|
||
if (pack_expansion_p)
|
||
/* Make this a pack expansion type. */
|
||
TREE_VALUE (base) = make_pack_expansion (TREE_VALUE (base));
|
||
|
||
if (!check_for_bare_parameter_packs (TREE_VALUE (base)))
|
||
{
|
||
TREE_CHAIN (base) = bases;
|
||
bases = base;
|
||
}
|
||
}
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If it's not a comma, then the list is complete. */
|
||
if (token->type != CPP_COMMA)
|
||
break;
|
||
/* Consume the `,'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
/* PARSER->SCOPE may still be non-NULL at this point, if the last
|
||
base class had a qualified name. However, the next name that
|
||
appears is certainly not qualified. */
|
||
parser->scope = NULL_TREE;
|
||
parser->qualifying_scope = NULL_TREE;
|
||
parser->object_scope = NULL_TREE;
|
||
|
||
return nreverse (bases);
|
||
}
|
||
|
||
/* Parse a base-specifier.
|
||
|
||
base-specifier:
|
||
:: [opt] nested-name-specifier [opt] class-name
|
||
virtual access-specifier [opt] :: [opt] nested-name-specifier
|
||
[opt] class-name
|
||
access-specifier virtual [opt] :: [opt] nested-name-specifier
|
||
[opt] class-name
|
||
|
||
Returns a TREE_LIST. The TREE_PURPOSE will be one of
|
||
ACCESS_{DEFAULT,PUBLIC,PROTECTED,PRIVATE}_[VIRTUAL]_NODE to
|
||
indicate the specifiers provided. The TREE_VALUE will be a TYPE
|
||
(or the ERROR_MARK_NODE) indicating the type that was specified. */
|
||
|
||
static tree
|
||
cp_parser_base_specifier (cp_parser* parser)
|
||
{
|
||
cp_token *token;
|
||
bool done = false;
|
||
bool virtual_p = false;
|
||
bool duplicate_virtual_error_issued_p = false;
|
||
bool duplicate_access_error_issued_p = false;
|
||
bool class_scope_p, template_p;
|
||
tree access = access_default_node;
|
||
tree type;
|
||
|
||
/* Process the optional `virtual' and `access-specifier'. */
|
||
while (!done)
|
||
{
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* Process `virtual'. */
|
||
switch (token->keyword)
|
||
{
|
||
case RID_VIRTUAL:
|
||
/* If `virtual' appears more than once, issue an error. */
|
||
if (virtual_p && !duplicate_virtual_error_issued_p)
|
||
{
|
||
cp_parser_error (parser,
|
||
"%<virtual%> specified more than once in base-specified");
|
||
duplicate_virtual_error_issued_p = true;
|
||
}
|
||
|
||
virtual_p = true;
|
||
|
||
/* Consume the `virtual' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
break;
|
||
|
||
case RID_PUBLIC:
|
||
case RID_PROTECTED:
|
||
case RID_PRIVATE:
|
||
/* If more than one access specifier appears, issue an
|
||
error. */
|
||
if (access != access_default_node
|
||
&& !duplicate_access_error_issued_p)
|
||
{
|
||
cp_parser_error (parser,
|
||
"more than one access specifier in base-specified");
|
||
duplicate_access_error_issued_p = true;
|
||
}
|
||
|
||
access = ridpointers[(int) token->keyword];
|
||
|
||
/* Consume the access-specifier. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
break;
|
||
|
||
default:
|
||
done = true;
|
||
break;
|
||
}
|
||
}
|
||
/* It is not uncommon to see programs mechanically, erroneously, use
|
||
the 'typename' keyword to denote (dependent) qualified types
|
||
as base classes. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
|
||
{
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (!processing_template_decl)
|
||
error_at (token->location,
|
||
"keyword %<typename%> not allowed outside of templates");
|
||
else
|
||
error_at (token->location,
|
||
"keyword %<typename%> not allowed in this context "
|
||
"(the base class is implicitly a type)");
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
/* Look for the optional `::' operator. */
|
||
cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
|
||
/* Look for the nested-name-specifier. The simplest way to
|
||
implement:
|
||
|
||
[temp.res]
|
||
|
||
The keyword `typename' is not permitted in a base-specifier or
|
||
mem-initializer; in these contexts a qualified name that
|
||
depends on a template-parameter is implicitly assumed to be a
|
||
type name.
|
||
|
||
is to pretend that we have seen the `typename' keyword at this
|
||
point. */
|
||
cp_parser_nested_name_specifier_opt (parser,
|
||
/*typename_keyword_p=*/true,
|
||
/*check_dependency_p=*/true,
|
||
typename_type,
|
||
/*is_declaration=*/true);
|
||
/* If the base class is given by a qualified name, assume that names
|
||
we see are type names or templates, as appropriate. */
|
||
class_scope_p = (parser->scope && TYPE_P (parser->scope));
|
||
template_p = class_scope_p && cp_parser_optional_template_keyword (parser);
|
||
|
||
if (!parser->scope
|
||
&& cp_lexer_next_token_is_decltype (parser->lexer))
|
||
/* DR 950 allows decltype as a base-specifier. */
|
||
type = cp_parser_decltype (parser);
|
||
else
|
||
{
|
||
/* Otherwise, look for the class-name. */
|
||
type = cp_parser_class_name (parser,
|
||
class_scope_p,
|
||
template_p,
|
||
typename_type,
|
||
/*check_dependency_p=*/true,
|
||
/*class_head_p=*/false,
|
||
/*is_declaration=*/true);
|
||
type = TREE_TYPE (type);
|
||
}
|
||
|
||
if (type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
return finish_base_specifier (type, access, virtual_p);
|
||
}
|
||
|
||
/* Exception handling [gram.exception] */
|
||
|
||
/* Parse an (optional) noexcept-specification.
|
||
|
||
noexcept-specification:
|
||
noexcept ( constant-expression ) [opt]
|
||
|
||
If no noexcept-specification is present, returns NULL_TREE.
|
||
Otherwise, if REQUIRE_CONSTEXPR is false, then either parse and return any
|
||
expression if parentheses follow noexcept, or return BOOLEAN_TRUE_NODE if
|
||
there are no parentheses. CONSUMED_EXPR will be set accordingly.
|
||
Otherwise, returns a noexcept specification unless RETURN_COND is true,
|
||
in which case a boolean condition is returned instead. */
|
||
|
||
static tree
|
||
cp_parser_noexcept_specification_opt (cp_parser* parser,
|
||
bool require_constexpr,
|
||
bool* consumed_expr,
|
||
bool return_cond)
|
||
{
|
||
cp_token *token;
|
||
const char *saved_message;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* Is it a noexcept-specification? */
|
||
if (cp_parser_is_keyword (token, RID_NOEXCEPT))
|
||
{
|
||
tree expr;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
if (cp_lexer_peek_token (parser->lexer)->type == CPP_OPEN_PAREN)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
if (require_constexpr)
|
||
{
|
||
/* Types may not be defined in an exception-specification. */
|
||
saved_message = parser->type_definition_forbidden_message;
|
||
parser->type_definition_forbidden_message
|
||
= G_("types may not be defined in an exception-specification");
|
||
|
||
expr = cp_parser_constant_expression (parser, false, NULL);
|
||
|
||
/* Restore the saved message. */
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
}
|
||
else
|
||
{
|
||
expr = cp_parser_expression (parser, false, NULL);
|
||
*consumed_expr = true;
|
||
}
|
||
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
}
|
||
else
|
||
{
|
||
expr = boolean_true_node;
|
||
if (!require_constexpr)
|
||
*consumed_expr = false;
|
||
}
|
||
|
||
/* We cannot build a noexcept-spec right away because this will check
|
||
that expr is a constexpr. */
|
||
if (!return_cond)
|
||
return build_noexcept_spec (expr, tf_warning_or_error);
|
||
else
|
||
return expr;
|
||
}
|
||
else
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Parse an (optional) exception-specification.
|
||
|
||
exception-specification:
|
||
throw ( type-id-list [opt] )
|
||
|
||
Returns a TREE_LIST representing the exception-specification. The
|
||
TREE_VALUE of each node is a type. */
|
||
|
||
static tree
|
||
cp_parser_exception_specification_opt (cp_parser* parser)
|
||
{
|
||
cp_token *token;
|
||
tree type_id_list;
|
||
const char *saved_message;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* Is it a noexcept-specification? */
|
||
type_id_list = cp_parser_noexcept_specification_opt(parser, true, NULL,
|
||
false);
|
||
if (type_id_list != NULL_TREE)
|
||
return type_id_list;
|
||
|
||
/* If it's not `throw', then there's no exception-specification. */
|
||
if (!cp_parser_is_keyword (token, RID_THROW))
|
||
return NULL_TREE;
|
||
|
||
#if 0
|
||
/* Enable this once a lot of code has transitioned to noexcept? */
|
||
if (cxx_dialect >= cxx11 && !in_system_header_at (input_location))
|
||
warning (OPT_Wdeprecated, "dynamic exception specifications are "
|
||
"deprecated in C++0x; use %<noexcept%> instead");
|
||
#endif
|
||
|
||
/* Consume the `throw'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* Look for the `('. */
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If it's not a `)', then there is a type-id-list. */
|
||
if (token->type != CPP_CLOSE_PAREN)
|
||
{
|
||
/* Types may not be defined in an exception-specification. */
|
||
saved_message = parser->type_definition_forbidden_message;
|
||
parser->type_definition_forbidden_message
|
||
= G_("types may not be defined in an exception-specification");
|
||
/* Parse the type-id-list. */
|
||
type_id_list = cp_parser_type_id_list (parser);
|
||
/* Restore the saved message. */
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
}
|
||
else
|
||
type_id_list = empty_except_spec;
|
||
|
||
/* Look for the `)'. */
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
|
||
return type_id_list;
|
||
}
|
||
|
||
/* Parse an (optional) type-id-list.
|
||
|
||
type-id-list:
|
||
type-id ... [opt]
|
||
type-id-list , type-id ... [opt]
|
||
|
||
Returns a TREE_LIST. The TREE_VALUE of each node is a TYPE,
|
||
in the order that the types were presented. */
|
||
|
||
static tree
|
||
cp_parser_type_id_list (cp_parser* parser)
|
||
{
|
||
tree types = NULL_TREE;
|
||
|
||
while (true)
|
||
{
|
||
cp_token *token;
|
||
tree type;
|
||
|
||
/* Get the next type-id. */
|
||
type = cp_parser_type_id (parser);
|
||
/* Parse the optional ellipsis. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
|
||
{
|
||
/* Consume the `...'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* Turn the type into a pack expansion expression. */
|
||
type = make_pack_expansion (type);
|
||
}
|
||
/* Add it to the list. */
|
||
types = add_exception_specifier (types, type, /*complain=*/1);
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If it is not a `,', we are done. */
|
||
if (token->type != CPP_COMMA)
|
||
break;
|
||
/* Consume the `,'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
return nreverse (types);
|
||
}
|
||
|
||
/* Parse a try-block.
|
||
|
||
try-block:
|
||
try compound-statement handler-seq */
|
||
|
||
static tree
|
||
cp_parser_try_block (cp_parser* parser)
|
||
{
|
||
tree try_block;
|
||
|
||
cp_parser_require_keyword (parser, RID_TRY, RT_TRY);
|
||
try_block = begin_try_block ();
|
||
cp_parser_compound_statement (parser, NULL, true, false);
|
||
finish_try_block (try_block);
|
||
cp_parser_handler_seq (parser);
|
||
finish_handler_sequence (try_block);
|
||
|
||
return try_block;
|
||
}
|
||
|
||
/* Parse a function-try-block.
|
||
|
||
function-try-block:
|
||
try ctor-initializer [opt] function-body handler-seq */
|
||
|
||
static bool
|
||
cp_parser_function_try_block (cp_parser* parser)
|
||
{
|
||
tree compound_stmt;
|
||
tree try_block;
|
||
bool ctor_initializer_p;
|
||
|
||
/* Look for the `try' keyword. */
|
||
if (!cp_parser_require_keyword (parser, RID_TRY, RT_TRY))
|
||
return false;
|
||
/* Let the rest of the front end know where we are. */
|
||
try_block = begin_function_try_block (&compound_stmt);
|
||
/* Parse the function-body. */
|
||
ctor_initializer_p = cp_parser_ctor_initializer_opt_and_function_body
|
||
(parser, /*in_function_try_block=*/true);
|
||
/* We're done with the `try' part. */
|
||
finish_function_try_block (try_block);
|
||
/* Parse the handlers. */
|
||
cp_parser_handler_seq (parser);
|
||
/* We're done with the handlers. */
|
||
finish_function_handler_sequence (try_block, compound_stmt);
|
||
|
||
return ctor_initializer_p;
|
||
}
|
||
|
||
/* Parse a handler-seq.
|
||
|
||
handler-seq:
|
||
handler handler-seq [opt] */
|
||
|
||
static void
|
||
cp_parser_handler_seq (cp_parser* parser)
|
||
{
|
||
while (true)
|
||
{
|
||
cp_token *token;
|
||
|
||
/* Parse the handler. */
|
||
cp_parser_handler (parser);
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If it's not `catch' then there are no more handlers. */
|
||
if (!cp_parser_is_keyword (token, RID_CATCH))
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Parse a handler.
|
||
|
||
handler:
|
||
catch ( exception-declaration ) compound-statement */
|
||
|
||
static void
|
||
cp_parser_handler (cp_parser* parser)
|
||
{
|
||
tree handler;
|
||
tree declaration;
|
||
|
||
cp_parser_require_keyword (parser, RID_CATCH, RT_CATCH);
|
||
handler = begin_handler ();
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
declaration = cp_parser_exception_declaration (parser);
|
||
finish_handler_parms (declaration, handler);
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
cp_parser_compound_statement (parser, NULL, false, false);
|
||
finish_handler (handler);
|
||
}
|
||
|
||
/* Parse an exception-declaration.
|
||
|
||
exception-declaration:
|
||
type-specifier-seq declarator
|
||
type-specifier-seq abstract-declarator
|
||
type-specifier-seq
|
||
...
|
||
|
||
Returns a VAR_DECL for the declaration, or NULL_TREE if the
|
||
ellipsis variant is used. */
|
||
|
||
static tree
|
||
cp_parser_exception_declaration (cp_parser* parser)
|
||
{
|
||
cp_decl_specifier_seq type_specifiers;
|
||
cp_declarator *declarator;
|
||
const char *saved_message;
|
||
|
||
/* If it's an ellipsis, it's easy to handle. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
|
||
{
|
||
/* Consume the `...' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Types may not be defined in exception-declarations. */
|
||
saved_message = parser->type_definition_forbidden_message;
|
||
parser->type_definition_forbidden_message
|
||
= G_("types may not be defined in exception-declarations");
|
||
|
||
/* Parse the type-specifier-seq. */
|
||
cp_parser_type_specifier_seq (parser, /*is_declaration=*/true,
|
||
/*is_trailing_return=*/false,
|
||
&type_specifiers);
|
||
/* If it's a `)', then there is no declarator. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
|
||
declarator = NULL;
|
||
else
|
||
declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_EITHER,
|
||
/*ctor_dtor_or_conv_p=*/NULL,
|
||
/*parenthesized_p=*/NULL,
|
||
/*member_p=*/false,
|
||
/*friend_p=*/false);
|
||
|
||
/* Restore the saved message. */
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
|
||
if (!type_specifiers.any_specifiers_p)
|
||
return error_mark_node;
|
||
|
||
return grokdeclarator (declarator, &type_specifiers, CATCHPARM, 1, NULL);
|
||
}
|
||
|
||
/* Parse a throw-expression.
|
||
|
||
throw-expression:
|
||
throw assignment-expression [opt]
|
||
|
||
Returns a THROW_EXPR representing the throw-expression. */
|
||
|
||
static tree
|
||
cp_parser_throw_expression (cp_parser* parser)
|
||
{
|
||
tree expression;
|
||
cp_token* token;
|
||
|
||
cp_parser_require_keyword (parser, RID_THROW, RT_THROW);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* Figure out whether or not there is an assignment-expression
|
||
following the "throw" keyword. */
|
||
if (token->type == CPP_COMMA
|
||
|| token->type == CPP_SEMICOLON
|
||
|| token->type == CPP_CLOSE_PAREN
|
||
|| token->type == CPP_CLOSE_SQUARE
|
||
|| token->type == CPP_CLOSE_BRACE
|
||
|| token->type == CPP_COLON)
|
||
expression = NULL_TREE;
|
||
else
|
||
expression = cp_parser_assignment_expression (parser,
|
||
/*cast_p=*/false, NULL);
|
||
|
||
return build_throw (expression);
|
||
}
|
||
|
||
/* GNU Extensions */
|
||
|
||
/* Parse an (optional) asm-specification.
|
||
|
||
asm-specification:
|
||
asm ( string-literal )
|
||
|
||
If the asm-specification is present, returns a STRING_CST
|
||
corresponding to the string-literal. Otherwise, returns
|
||
NULL_TREE. */
|
||
|
||
static tree
|
||
cp_parser_asm_specification_opt (cp_parser* parser)
|
||
{
|
||
cp_token *token;
|
||
tree asm_specification;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If the next token isn't the `asm' keyword, then there's no
|
||
asm-specification. */
|
||
if (!cp_parser_is_keyword (token, RID_ASM))
|
||
return NULL_TREE;
|
||
|
||
/* Consume the `asm' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Look for the `('. */
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
|
||
/* Look for the string-literal. */
|
||
asm_specification = cp_parser_string_literal (parser, false, false);
|
||
|
||
/* Look for the `)'. */
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
|
||
return asm_specification;
|
||
}
|
||
|
||
/* Parse an asm-operand-list.
|
||
|
||
asm-operand-list:
|
||
asm-operand
|
||
asm-operand-list , asm-operand
|
||
|
||
asm-operand:
|
||
string-literal ( expression )
|
||
[ string-literal ] string-literal ( expression )
|
||
|
||
Returns a TREE_LIST representing the operands. The TREE_VALUE of
|
||
each node is the expression. The TREE_PURPOSE is itself a
|
||
TREE_LIST whose TREE_PURPOSE is a STRING_CST for the bracketed
|
||
string-literal (or NULL_TREE if not present) and whose TREE_VALUE
|
||
is a STRING_CST for the string literal before the parenthesis. Returns
|
||
ERROR_MARK_NODE if any of the operands are invalid. */
|
||
|
||
static tree
|
||
cp_parser_asm_operand_list (cp_parser* parser)
|
||
{
|
||
tree asm_operands = NULL_TREE;
|
||
bool invalid_operands = false;
|
||
|
||
while (true)
|
||
{
|
||
tree string_literal;
|
||
tree expression;
|
||
tree name;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
|
||
{
|
||
/* Consume the `[' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Read the operand name. */
|
||
name = cp_parser_identifier (parser);
|
||
if (name != error_mark_node)
|
||
name = build_string (IDENTIFIER_LENGTH (name),
|
||
IDENTIFIER_POINTER (name));
|
||
/* Look for the closing `]'. */
|
||
cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
|
||
}
|
||
else
|
||
name = NULL_TREE;
|
||
/* Look for the string-literal. */
|
||
string_literal = cp_parser_string_literal (parser, false, false);
|
||
|
||
/* Look for the `('. */
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
/* Parse the expression. */
|
||
expression = cp_parser_expression (parser, /*cast_p=*/false, NULL);
|
||
/* Look for the `)'. */
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
|
||
if (name == error_mark_node
|
||
|| string_literal == error_mark_node
|
||
|| expression == error_mark_node)
|
||
invalid_operands = true;
|
||
|
||
/* Add this operand to the list. */
|
||
asm_operands = tree_cons (build_tree_list (name, string_literal),
|
||
expression,
|
||
asm_operands);
|
||
/* If the next token is not a `,', there are no more
|
||
operands. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
|
||
break;
|
||
/* Consume the `,'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
return invalid_operands ? error_mark_node : nreverse (asm_operands);
|
||
}
|
||
|
||
/* Parse an asm-clobber-list.
|
||
|
||
asm-clobber-list:
|
||
string-literal
|
||
asm-clobber-list , string-literal
|
||
|
||
Returns a TREE_LIST, indicating the clobbers in the order that they
|
||
appeared. The TREE_VALUE of each node is a STRING_CST. */
|
||
|
||
static tree
|
||
cp_parser_asm_clobber_list (cp_parser* parser)
|
||
{
|
||
tree clobbers = NULL_TREE;
|
||
|
||
while (true)
|
||
{
|
||
tree string_literal;
|
||
|
||
/* Look for the string literal. */
|
||
string_literal = cp_parser_string_literal (parser, false, false);
|
||
/* Add it to the list. */
|
||
clobbers = tree_cons (NULL_TREE, string_literal, clobbers);
|
||
/* If the next token is not a `,', then the list is
|
||
complete. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
|
||
break;
|
||
/* Consume the `,' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
return clobbers;
|
||
}
|
||
|
||
/* Parse an asm-label-list.
|
||
|
||
asm-label-list:
|
||
identifier
|
||
asm-label-list , identifier
|
||
|
||
Returns a TREE_LIST, indicating the labels in the order that they
|
||
appeared. The TREE_VALUE of each node is a label. */
|
||
|
||
static tree
|
||
cp_parser_asm_label_list (cp_parser* parser)
|
||
{
|
||
tree labels = NULL_TREE;
|
||
|
||
while (true)
|
||
{
|
||
tree identifier, label, name;
|
||
|
||
/* Look for the identifier. */
|
||
identifier = cp_parser_identifier (parser);
|
||
if (!error_operand_p (identifier))
|
||
{
|
||
label = lookup_label (identifier);
|
||
if (TREE_CODE (label) == LABEL_DECL)
|
||
{
|
||
TREE_USED (label) = 1;
|
||
check_goto (label);
|
||
name = build_string (IDENTIFIER_LENGTH (identifier),
|
||
IDENTIFIER_POINTER (identifier));
|
||
labels = tree_cons (name, label, labels);
|
||
}
|
||
}
|
||
/* If the next token is not a `,', then the list is
|
||
complete. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
|
||
break;
|
||
/* Consume the `,' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
return nreverse (labels);
|
||
}
|
||
|
||
/* Return TRUE iff the next tokens in the stream are possibly the
|
||
beginning of a GNU extension attribute. */
|
||
|
||
static bool
|
||
cp_next_tokens_can_be_gnu_attribute_p (cp_parser *parser)
|
||
{
|
||
return cp_nth_tokens_can_be_gnu_attribute_p (parser, 1);
|
||
}
|
||
|
||
/* Return TRUE iff the next tokens in the stream are possibly the
|
||
beginning of a standard C++-11 attribute specifier. */
|
||
|
||
static bool
|
||
cp_next_tokens_can_be_std_attribute_p (cp_parser *parser)
|
||
{
|
||
return cp_nth_tokens_can_be_std_attribute_p (parser, 1);
|
||
}
|
||
|
||
/* Return TRUE iff the next Nth tokens in the stream are possibly the
|
||
beginning of a standard C++-11 attribute specifier. */
|
||
|
||
static bool
|
||
cp_nth_tokens_can_be_std_attribute_p (cp_parser *parser, size_t n)
|
||
{
|
||
cp_token *token = cp_lexer_peek_nth_token (parser->lexer, n);
|
||
|
||
return (cxx_dialect >= cxx11
|
||
&& ((token->type == CPP_KEYWORD && token->keyword == RID_ALIGNAS)
|
||
|| (token->type == CPP_OPEN_SQUARE
|
||
&& (token = cp_lexer_peek_nth_token (parser->lexer, n + 1))
|
||
&& token->type == CPP_OPEN_SQUARE)));
|
||
}
|
||
|
||
/* Return TRUE iff the next Nth tokens in the stream are possibly the
|
||
beginning of a GNU extension attribute. */
|
||
|
||
static bool
|
||
cp_nth_tokens_can_be_gnu_attribute_p (cp_parser *parser, size_t n)
|
||
{
|
||
cp_token *token = cp_lexer_peek_nth_token (parser->lexer, n);
|
||
|
||
return token->type == CPP_KEYWORD && token->keyword == RID_ATTRIBUTE;
|
||
}
|
||
|
||
/* Return true iff the next tokens can be the beginning of either a
|
||
GNU attribute list, or a standard C++11 attribute sequence. */
|
||
|
||
static bool
|
||
cp_next_tokens_can_be_attribute_p (cp_parser *parser)
|
||
{
|
||
return (cp_next_tokens_can_be_gnu_attribute_p (parser)
|
||
|| cp_next_tokens_can_be_std_attribute_p (parser));
|
||
}
|
||
|
||
/* Return true iff the next Nth tokens can be the beginning of either
|
||
a GNU attribute list, or a standard C++11 attribute sequence. */
|
||
|
||
static bool
|
||
cp_nth_tokens_can_be_attribute_p (cp_parser *parser, size_t n)
|
||
{
|
||
return (cp_nth_tokens_can_be_gnu_attribute_p (parser, n)
|
||
|| cp_nth_tokens_can_be_std_attribute_p (parser, n));
|
||
}
|
||
|
||
/* Parse either a standard C++-11 attribute-specifier-seq, or a series
|
||
of GNU attributes, or return NULL. */
|
||
|
||
static tree
|
||
cp_parser_attributes_opt (cp_parser *parser)
|
||
{
|
||
if (cp_next_tokens_can_be_gnu_attribute_p (parser))
|
||
return cp_parser_gnu_attributes_opt (parser);
|
||
return cp_parser_std_attribute_spec_seq (parser);
|
||
}
|
||
|
||
#define CILK_SIMD_FN_CLAUSE_MASK \
|
||
((OMP_CLAUSE_MASK_1 << PRAGMA_CILK_CLAUSE_VECTORLENGTH) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_CILK_CLAUSE_LINEAR) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_CILK_CLAUSE_UNIFORM) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_CILK_CLAUSE_MASK) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_CILK_CLAUSE_NOMASK))
|
||
|
||
/* Parses the Cilk Plus SIMD-enabled function's attribute. Syntax:
|
||
vector [(<clauses>)] */
|
||
|
||
static void
|
||
cp_parser_cilk_simd_fn_vector_attrs (cp_parser *parser, cp_token *v_token)
|
||
{
|
||
bool first_p = parser->cilk_simd_fn_info == NULL;
|
||
cp_token *token = v_token;
|
||
if (first_p)
|
||
{
|
||
parser->cilk_simd_fn_info = XNEW (cp_omp_declare_simd_data);
|
||
parser->cilk_simd_fn_info->error_seen = false;
|
||
parser->cilk_simd_fn_info->fndecl_seen = false;
|
||
parser->cilk_simd_fn_info->tokens = vNULL;
|
||
}
|
||
int paren_scope = 0;
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
v_token = cp_lexer_peek_token (parser->lexer);
|
||
paren_scope++;
|
||
}
|
||
while (paren_scope > 0)
|
||
{
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type == CPP_OPEN_PAREN)
|
||
paren_scope++;
|
||
else if (token->type == CPP_CLOSE_PAREN)
|
||
paren_scope--;
|
||
/* Do not push the last ')' */
|
||
if (!(token->type == CPP_CLOSE_PAREN && paren_scope == 0))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
token->type = CPP_PRAGMA_EOL;
|
||
parser->lexer->next_token = token;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
struct cp_token_cache *cp
|
||
= cp_token_cache_new (v_token, cp_lexer_peek_token (parser->lexer));
|
||
parser->cilk_simd_fn_info->tokens.safe_push (cp);
|
||
}
|
||
|
||
/* Parse an (optional) series of attributes.
|
||
|
||
attributes:
|
||
attributes attribute
|
||
|
||
attribute:
|
||
__attribute__ (( attribute-list [opt] ))
|
||
|
||
The return value is as for cp_parser_gnu_attribute_list. */
|
||
|
||
static tree
|
||
cp_parser_gnu_attributes_opt (cp_parser* parser)
|
||
{
|
||
tree attributes = NULL_TREE;
|
||
|
||
while (true)
|
||
{
|
||
cp_token *token;
|
||
tree attribute_list;
|
||
bool ok = true;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If it's not `__attribute__', then we're done. */
|
||
if (token->keyword != RID_ATTRIBUTE)
|
||
break;
|
||
|
||
/* Consume the `__attribute__' keyword. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Look for the two `(' tokens. */
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type != CPP_CLOSE_PAREN)
|
||
/* Parse the attribute-list. */
|
||
attribute_list = cp_parser_gnu_attribute_list (parser);
|
||
else
|
||
/* If the next token is a `)', then there is no attribute
|
||
list. */
|
||
attribute_list = NULL;
|
||
|
||
/* Look for the two `)' tokens. */
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
ok = false;
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
ok = false;
|
||
if (!ok)
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
|
||
/* Add these new attributes to the list. */
|
||
attributes = chainon (attributes, attribute_list);
|
||
}
|
||
|
||
return attributes;
|
||
}
|
||
|
||
/* Returns true of NAME is an IDENTIFIER_NODE with identiifer "vector,"
|
||
"__vector" or "__vector__." */
|
||
|
||
static inline bool
|
||
is_cilkplus_vector_p (tree name)
|
||
{
|
||
if (flag_cilkplus && is_attribute_p ("vector", name))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Parse a GNU attribute-list.
|
||
|
||
attribute-list:
|
||
attribute
|
||
attribute-list , attribute
|
||
|
||
attribute:
|
||
identifier
|
||
identifier ( identifier )
|
||
identifier ( identifier , expression-list )
|
||
identifier ( expression-list )
|
||
|
||
Returns a TREE_LIST, or NULL_TREE on error. Each node corresponds
|
||
to an attribute. The TREE_PURPOSE of each node is the identifier
|
||
indicating which attribute is in use. The TREE_VALUE represents
|
||
the arguments, if any. */
|
||
|
||
static tree
|
||
cp_parser_gnu_attribute_list (cp_parser* parser)
|
||
{
|
||
tree attribute_list = NULL_TREE;
|
||
bool save_translate_strings_p = parser->translate_strings_p;
|
||
|
||
parser->translate_strings_p = false;
|
||
while (true)
|
||
{
|
||
cp_token *token;
|
||
tree identifier;
|
||
tree attribute;
|
||
|
||
/* Look for the identifier. We also allow keywords here; for
|
||
example `__attribute__ ((const))' is legal. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type == CPP_NAME
|
||
|| token->type == CPP_KEYWORD)
|
||
{
|
||
tree arguments = NULL_TREE;
|
||
|
||
/* Consume the token, but save it since we need it for the
|
||
SIMD enabled function parsing. */
|
||
cp_token *id_token = cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* Save away the identifier that indicates which attribute
|
||
this is. */
|
||
identifier = (token->type == CPP_KEYWORD)
|
||
/* For keywords, use the canonical spelling, not the
|
||
parsed identifier. */
|
||
? ridpointers[(int) token->keyword]
|
||
: id_token->u.value;
|
||
|
||
attribute = build_tree_list (identifier, NULL_TREE);
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If it's an `(', then parse the attribute arguments. */
|
||
if (token->type == CPP_OPEN_PAREN)
|
||
{
|
||
vec<tree, va_gc> *vec;
|
||
int attr_flag = (attribute_takes_identifier_p (identifier)
|
||
? id_attr : normal_attr);
|
||
if (is_cilkplus_vector_p (identifier))
|
||
{
|
||
cp_parser_cilk_simd_fn_vector_attrs (parser, id_token);
|
||
continue;
|
||
}
|
||
else
|
||
vec = cp_parser_parenthesized_expression_list
|
||
(parser, attr_flag, /*cast_p=*/false,
|
||
/*allow_expansion_p=*/false,
|
||
/*non_constant_p=*/NULL);
|
||
if (vec == NULL)
|
||
arguments = error_mark_node;
|
||
else
|
||
{
|
||
arguments = build_tree_list_vec (vec);
|
||
release_tree_vector (vec);
|
||
}
|
||
/* Save the arguments away. */
|
||
TREE_VALUE (attribute) = arguments;
|
||
}
|
||
else if (is_cilkplus_vector_p (identifier))
|
||
{
|
||
cp_parser_cilk_simd_fn_vector_attrs (parser, id_token);
|
||
continue;
|
||
}
|
||
|
||
if (arguments != error_mark_node)
|
||
{
|
||
/* Add this attribute to the list. */
|
||
TREE_CHAIN (attribute) = attribute_list;
|
||
attribute_list = attribute;
|
||
}
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
}
|
||
/* Now, look for more attributes. If the next token isn't a
|
||
`,', we're done. */
|
||
if (token->type != CPP_COMMA)
|
||
break;
|
||
|
||
/* Consume the comma and keep going. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
parser->translate_strings_p = save_translate_strings_p;
|
||
|
||
/* We built up the list in reverse order. */
|
||
return nreverse (attribute_list);
|
||
}
|
||
|
||
/* Parse a standard C++11 attribute.
|
||
|
||
The returned representation is a TREE_LIST which TREE_PURPOSE is
|
||
the scoped name of the attribute, and the TREE_VALUE is its
|
||
arguments list.
|
||
|
||
Note that the scoped name of the attribute is itself a TREE_LIST
|
||
which TREE_PURPOSE is the namespace of the attribute, and
|
||
TREE_VALUE its name. This is unlike a GNU attribute -- as parsed
|
||
by cp_parser_gnu_attribute_list -- that doesn't have any namespace
|
||
and which TREE_PURPOSE is directly the attribute name.
|
||
|
||
Clients of the attribute code should use get_attribute_namespace
|
||
and get_attribute_name to get the actual namespace and name of
|
||
attributes, regardless of their being GNU or C++11 attributes.
|
||
|
||
attribute:
|
||
attribute-token attribute-argument-clause [opt]
|
||
|
||
attribute-token:
|
||
identifier
|
||
attribute-scoped-token
|
||
|
||
attribute-scoped-token:
|
||
attribute-namespace :: identifier
|
||
|
||
attribute-namespace:
|
||
identifier
|
||
|
||
attribute-argument-clause:
|
||
( balanced-token-seq )
|
||
|
||
balanced-token-seq:
|
||
balanced-token [opt]
|
||
balanced-token-seq balanced-token
|
||
|
||
balanced-token:
|
||
( balanced-token-seq )
|
||
[ balanced-token-seq ]
|
||
{ balanced-token-seq }. */
|
||
|
||
static tree
|
||
cp_parser_std_attribute (cp_parser *parser)
|
||
{
|
||
tree attribute, attr_ns = NULL_TREE, attr_id = NULL_TREE, arguments;
|
||
cp_token *token;
|
||
|
||
/* First, parse name of the the attribute, a.k.a
|
||
attribute-token. */
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type == CPP_NAME)
|
||
attr_id = token->u.value;
|
||
else if (token->type == CPP_KEYWORD)
|
||
attr_id = ridpointers[(int) token->keyword];
|
||
else if (token->flags & NAMED_OP)
|
||
attr_id = get_identifier (cpp_type2name (token->type, token->flags));
|
||
|
||
if (attr_id == NULL_TREE)
|
||
return NULL_TREE;
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type == CPP_SCOPE)
|
||
{
|
||
/* We are seeing a scoped attribute token. */
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
attr_ns = attr_id;
|
||
|
||
token = cp_lexer_consume_token (parser->lexer);
|
||
if (token->type == CPP_NAME)
|
||
attr_id = token->u.value;
|
||
else if (token->type == CPP_KEYWORD)
|
||
attr_id = ridpointers[(int) token->keyword];
|
||
else
|
||
{
|
||
error_at (token->location,
|
||
"expected an identifier for the attribute name");
|
||
return error_mark_node;
|
||
}
|
||
attribute = build_tree_list (build_tree_list (attr_ns, attr_id),
|
||
NULL_TREE);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
}
|
||
else
|
||
{
|
||
attribute = build_tree_list (build_tree_list (NULL_TREE, attr_id),
|
||
NULL_TREE);
|
||
/* C++11 noreturn attribute is equivalent to GNU's. */
|
||
if (is_attribute_p ("noreturn", attr_id))
|
||
TREE_PURPOSE (TREE_PURPOSE (attribute)) = get_identifier ("gnu");
|
||
/* C++14 deprecated attribute is equivalent to GNU's. */
|
||
else if (cxx_dialect >= cxx1y && is_attribute_p ("deprecated", attr_id))
|
||
TREE_PURPOSE (TREE_PURPOSE (attribute)) = get_identifier ("gnu");
|
||
}
|
||
|
||
/* Now parse the optional argument clause of the attribute. */
|
||
|
||
if (token->type != CPP_OPEN_PAREN)
|
||
return attribute;
|
||
|
||
{
|
||
vec<tree, va_gc> *vec;
|
||
int attr_flag = normal_attr;
|
||
|
||
if (attr_ns == get_identifier ("gnu")
|
||
&& attribute_takes_identifier_p (attr_id))
|
||
/* A GNU attribute that takes an identifier in parameter. */
|
||
attr_flag = id_attr;
|
||
|
||
vec = cp_parser_parenthesized_expression_list
|
||
(parser, attr_flag, /*cast_p=*/false,
|
||
/*allow_expansion_p=*/true,
|
||
/*non_constant_p=*/NULL);
|
||
if (vec == NULL)
|
||
arguments = error_mark_node;
|
||
else
|
||
{
|
||
arguments = build_tree_list_vec (vec);
|
||
release_tree_vector (vec);
|
||
}
|
||
|
||
if (arguments == error_mark_node)
|
||
attribute = error_mark_node;
|
||
else
|
||
TREE_VALUE (attribute) = arguments;
|
||
}
|
||
|
||
return attribute;
|
||
}
|
||
|
||
/* Parse a list of standard C++-11 attributes.
|
||
|
||
attribute-list:
|
||
attribute [opt]
|
||
attribute-list , attribute[opt]
|
||
attribute ...
|
||
attribute-list , attribute ...
|
||
*/
|
||
|
||
static tree
|
||
cp_parser_std_attribute_list (cp_parser *parser)
|
||
{
|
||
tree attributes = NULL_TREE, attribute = NULL_TREE;
|
||
cp_token *token = NULL;
|
||
|
||
while (true)
|
||
{
|
||
attribute = cp_parser_std_attribute (parser);
|
||
if (attribute == error_mark_node)
|
||
break;
|
||
if (attribute != NULL_TREE)
|
||
{
|
||
TREE_CHAIN (attribute) = attributes;
|
||
attributes = attribute;
|
||
}
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type != CPP_COMMA)
|
||
break;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
attributes = nreverse (attributes);
|
||
return attributes;
|
||
}
|
||
|
||
/* Parse a standard C++-11 attribute specifier.
|
||
|
||
attribute-specifier:
|
||
[ [ attribute-list ] ]
|
||
alignment-specifier
|
||
|
||
alignment-specifier:
|
||
alignas ( type-id ... [opt] )
|
||
alignas ( alignment-expression ... [opt] ). */
|
||
|
||
static tree
|
||
cp_parser_std_attribute_spec (cp_parser *parser)
|
||
{
|
||
tree attributes = NULL_TREE;
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
if (token->type == CPP_OPEN_SQUARE
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_OPEN_SQUARE)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
attributes = cp_parser_std_attribute_list (parser);
|
||
|
||
if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE)
|
||
|| !cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE))
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
else
|
||
/* Warn about parsing c++11 attribute in non-c++1 mode, only
|
||
when we are sure that we have actually parsed them. */
|
||
maybe_warn_cpp0x (CPP0X_ATTRIBUTES);
|
||
}
|
||
else
|
||
{
|
||
tree alignas_expr;
|
||
|
||
/* Look for an alignment-specifier. */
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
if (token->type != CPP_KEYWORD
|
||
|| token->keyword != RID_ALIGNAS)
|
||
return NULL_TREE;
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
maybe_warn_cpp0x (CPP0X_ATTRIBUTES);
|
||
|
||
if (cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN) == NULL)
|
||
{
|
||
cp_parser_error (parser, "expected %<(%>");
|
||
return error_mark_node;
|
||
}
|
||
|
||
cp_parser_parse_tentatively (parser);
|
||
alignas_expr = cp_parser_type_id (parser);
|
||
|
||
if (!cp_parser_parse_definitely (parser))
|
||
{
|
||
gcc_assert (alignas_expr == error_mark_node
|
||
|| alignas_expr == NULL_TREE);
|
||
|
||
alignas_expr =
|
||
cp_parser_assignment_expression (parser, /*cast_p=*/false,
|
||
/**cp_id_kind=*/NULL);
|
||
if (alignas_expr == error_mark_node)
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
if (alignas_expr == NULL_TREE
|
||
|| alignas_expr == error_mark_node)
|
||
return alignas_expr;
|
||
}
|
||
|
||
if (cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN) == NULL)
|
||
{
|
||
cp_parser_error (parser, "expected %<)%>");
|
||
return error_mark_node;
|
||
}
|
||
|
||
alignas_expr = cxx_alignas_expr (alignas_expr);
|
||
|
||
/* Build the C++-11 representation of an 'aligned'
|
||
attribute. */
|
||
attributes =
|
||
build_tree_list (build_tree_list (get_identifier ("gnu"),
|
||
get_identifier ("aligned")),
|
||
build_tree_list (NULL_TREE, alignas_expr));
|
||
}
|
||
|
||
return attributes;
|
||
}
|
||
|
||
/* Parse a standard C++-11 attribute-specifier-seq.
|
||
|
||
attribute-specifier-seq:
|
||
attribute-specifier-seq [opt] attribute-specifier
|
||
*/
|
||
|
||
static tree
|
||
cp_parser_std_attribute_spec_seq (cp_parser *parser)
|
||
{
|
||
tree attr_specs = NULL;
|
||
|
||
while (true)
|
||
{
|
||
tree attr_spec = cp_parser_std_attribute_spec (parser);
|
||
if (attr_spec == NULL_TREE)
|
||
break;
|
||
if (attr_spec == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
TREE_CHAIN (attr_spec) = attr_specs;
|
||
attr_specs = attr_spec;
|
||
}
|
||
|
||
attr_specs = nreverse (attr_specs);
|
||
return attr_specs;
|
||
}
|
||
|
||
/* Parse an optional `__extension__' keyword. Returns TRUE if it is
|
||
present, and FALSE otherwise. *SAVED_PEDANTIC is set to the
|
||
current value of the PEDANTIC flag, regardless of whether or not
|
||
the `__extension__' keyword is present. The caller is responsible
|
||
for restoring the value of the PEDANTIC flag. */
|
||
|
||
static bool
|
||
cp_parser_extension_opt (cp_parser* parser, int* saved_pedantic)
|
||
{
|
||
/* Save the old value of the PEDANTIC flag. */
|
||
*saved_pedantic = pedantic;
|
||
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXTENSION))
|
||
{
|
||
/* Consume the `__extension__' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* We're not being pedantic while the `__extension__' keyword is
|
||
in effect. */
|
||
pedantic = 0;
|
||
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Parse a label declaration.
|
||
|
||
label-declaration:
|
||
__label__ label-declarator-seq ;
|
||
|
||
label-declarator-seq:
|
||
identifier , label-declarator-seq
|
||
identifier */
|
||
|
||
static void
|
||
cp_parser_label_declaration (cp_parser* parser)
|
||
{
|
||
/* Look for the `__label__' keyword. */
|
||
cp_parser_require_keyword (parser, RID_LABEL, RT_LABEL);
|
||
|
||
while (true)
|
||
{
|
||
tree identifier;
|
||
|
||
/* Look for an identifier. */
|
||
identifier = cp_parser_identifier (parser);
|
||
/* If we failed, stop. */
|
||
if (identifier == error_mark_node)
|
||
break;
|
||
/* Declare it as a label. */
|
||
finish_label_decl (identifier);
|
||
/* If the next token is a `;', stop. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
|
||
break;
|
||
/* Look for the `,' separating the label declarations. */
|
||
cp_parser_require (parser, CPP_COMMA, RT_COMMA);
|
||
}
|
||
|
||
/* Look for the final `;'. */
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
}
|
||
|
||
/* Support Functions */
|
||
|
||
/* Looks up NAME in the current scope, as given by PARSER->SCOPE.
|
||
NAME should have one of the representations used for an
|
||
id-expression. If NAME is the ERROR_MARK_NODE, the ERROR_MARK_NODE
|
||
is returned. If PARSER->SCOPE is a dependent type, then a
|
||
SCOPE_REF is returned.
|
||
|
||
If NAME is a TEMPLATE_ID_EXPR, then it will be immediately
|
||
returned; the name was already resolved when the TEMPLATE_ID_EXPR
|
||
was formed. Abstractly, such entities should not be passed to this
|
||
function, because they do not need to be looked up, but it is
|
||
simpler to check for this special case here, rather than at the
|
||
call-sites.
|
||
|
||
In cases not explicitly covered above, this function returns a
|
||
DECL, OVERLOAD, or baselink representing the result of the lookup.
|
||
If there was no entity with the indicated NAME, the ERROR_MARK_NODE
|
||
is returned.
|
||
|
||
If TAG_TYPE is not NONE_TYPE, it indicates an explicit type keyword
|
||
(e.g., "struct") that was used. In that case bindings that do not
|
||
refer to types are ignored.
|
||
|
||
If IS_TEMPLATE is TRUE, bindings that do not refer to templates are
|
||
ignored.
|
||
|
||
If IS_NAMESPACE is TRUE, bindings that do not refer to namespaces
|
||
are ignored.
|
||
|
||
If CHECK_DEPENDENCY is TRUE, names are not looked up in dependent
|
||
types.
|
||
|
||
If AMBIGUOUS_DECLS is non-NULL, *AMBIGUOUS_DECLS is set to a
|
||
TREE_LIST of candidates if name-lookup results in an ambiguity, and
|
||
NULL_TREE otherwise. */
|
||
|
||
static tree
|
||
cp_parser_lookup_name (cp_parser *parser, tree name,
|
||
enum tag_types tag_type,
|
||
bool is_template,
|
||
bool is_namespace,
|
||
bool check_dependency,
|
||
tree *ambiguous_decls,
|
||
location_t name_location)
|
||
{
|
||
tree decl;
|
||
tree object_type = parser->context->object_type;
|
||
|
||
/* Assume that the lookup will be unambiguous. */
|
||
if (ambiguous_decls)
|
||
*ambiguous_decls = NULL_TREE;
|
||
|
||
/* Now that we have looked up the name, the OBJECT_TYPE (if any) is
|
||
no longer valid. Note that if we are parsing tentatively, and
|
||
the parse fails, OBJECT_TYPE will be automatically restored. */
|
||
parser->context->object_type = NULL_TREE;
|
||
|
||
if (name == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* A template-id has already been resolved; there is no lookup to
|
||
do. */
|
||
if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
|
||
return name;
|
||
if (BASELINK_P (name))
|
||
{
|
||
gcc_assert (TREE_CODE (BASELINK_FUNCTIONS (name))
|
||
== TEMPLATE_ID_EXPR);
|
||
return name;
|
||
}
|
||
|
||
/* A BIT_NOT_EXPR is used to represent a destructor. By this point,
|
||
it should already have been checked to make sure that the name
|
||
used matches the type being destroyed. */
|
||
if (TREE_CODE (name) == BIT_NOT_EXPR)
|
||
{
|
||
tree type;
|
||
|
||
/* Figure out to which type this destructor applies. */
|
||
if (parser->scope)
|
||
type = parser->scope;
|
||
else if (object_type)
|
||
type = object_type;
|
||
else
|
||
type = current_class_type;
|
||
/* If that's not a class type, there is no destructor. */
|
||
if (!type || !CLASS_TYPE_P (type))
|
||
return error_mark_node;
|
||
if (CLASSTYPE_LAZY_DESTRUCTOR (type))
|
||
lazily_declare_fn (sfk_destructor, type);
|
||
if (!CLASSTYPE_DESTRUCTORS (type))
|
||
return error_mark_node;
|
||
/* If it was a class type, return the destructor. */
|
||
return CLASSTYPE_DESTRUCTORS (type);
|
||
}
|
||
|
||
/* By this point, the NAME should be an ordinary identifier. If
|
||
the id-expression was a qualified name, the qualifying scope is
|
||
stored in PARSER->SCOPE at this point. */
|
||
gcc_assert (identifier_p (name));
|
||
|
||
/* Perform the lookup. */
|
||
if (parser->scope)
|
||
{
|
||
bool dependent_p;
|
||
|
||
if (parser->scope == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* If the SCOPE is dependent, the lookup must be deferred until
|
||
the template is instantiated -- unless we are explicitly
|
||
looking up names in uninstantiated templates. Even then, we
|
||
cannot look up the name if the scope is not a class type; it
|
||
might, for example, be a template type parameter. */
|
||
dependent_p = (TYPE_P (parser->scope)
|
||
&& dependent_scope_p (parser->scope));
|
||
if ((check_dependency || !CLASS_TYPE_P (parser->scope))
|
||
&& dependent_p)
|
||
/* Defer lookup. */
|
||
decl = error_mark_node;
|
||
else
|
||
{
|
||
tree pushed_scope = NULL_TREE;
|
||
|
||
/* If PARSER->SCOPE is a dependent type, then it must be a
|
||
class type, and we must not be checking dependencies;
|
||
otherwise, we would have processed this lookup above. So
|
||
that PARSER->SCOPE is not considered a dependent base by
|
||
lookup_member, we must enter the scope here. */
|
||
if (dependent_p)
|
||
pushed_scope = push_scope (parser->scope);
|
||
|
||
/* If the PARSER->SCOPE is a template specialization, it
|
||
may be instantiated during name lookup. In that case,
|
||
errors may be issued. Even if we rollback the current
|
||
tentative parse, those errors are valid. */
|
||
decl = lookup_qualified_name (parser->scope, name,
|
||
tag_type != none_type,
|
||
/*complain=*/true);
|
||
|
||
/* 3.4.3.1: In a lookup in which the constructor is an acceptable
|
||
lookup result and the nested-name-specifier nominates a class C:
|
||
* if the name specified after the nested-name-specifier, when
|
||
looked up in C, is the injected-class-name of C (Clause 9), or
|
||
* if the name specified after the nested-name-specifier is the
|
||
same as the identifier or the simple-template-id's template-
|
||
name in the last component of the nested-name-specifier,
|
||
the name is instead considered to name the constructor of
|
||
class C. [ Note: for example, the constructor is not an
|
||
acceptable lookup result in an elaborated-type-specifier so
|
||
the constructor would not be used in place of the
|
||
injected-class-name. --end note ] Such a constructor name
|
||
shall be used only in the declarator-id of a declaration that
|
||
names a constructor or in a using-declaration. */
|
||
if (tag_type == none_type
|
||
&& DECL_SELF_REFERENCE_P (decl)
|
||
&& same_type_p (DECL_CONTEXT (decl), parser->scope))
|
||
decl = lookup_qualified_name (parser->scope, ctor_identifier,
|
||
tag_type != none_type,
|
||
/*complain=*/true);
|
||
|
||
/* If we have a single function from a using decl, pull it out. */
|
||
if (TREE_CODE (decl) == OVERLOAD
|
||
&& !really_overloaded_fn (decl))
|
||
decl = OVL_FUNCTION (decl);
|
||
|
||
if (pushed_scope)
|
||
pop_scope (pushed_scope);
|
||
}
|
||
|
||
/* If the scope is a dependent type and either we deferred lookup or
|
||
we did lookup but didn't find the name, rememeber the name. */
|
||
if (decl == error_mark_node && TYPE_P (parser->scope)
|
||
&& dependent_type_p (parser->scope))
|
||
{
|
||
if (tag_type)
|
||
{
|
||
tree type;
|
||
|
||
/* The resolution to Core Issue 180 says that `struct
|
||
A::B' should be considered a type-name, even if `A'
|
||
is dependent. */
|
||
type = make_typename_type (parser->scope, name, tag_type,
|
||
/*complain=*/tf_error);
|
||
if (type != error_mark_node)
|
||
decl = TYPE_NAME (type);
|
||
}
|
||
else if (is_template
|
||
&& (cp_parser_next_token_ends_template_argument_p (parser)
|
||
|| cp_lexer_next_token_is (parser->lexer,
|
||
CPP_CLOSE_PAREN)))
|
||
decl = make_unbound_class_template (parser->scope,
|
||
name, NULL_TREE,
|
||
/*complain=*/tf_error);
|
||
else
|
||
decl = build_qualified_name (/*type=*/NULL_TREE,
|
||
parser->scope, name,
|
||
is_template);
|
||
}
|
||
parser->qualifying_scope = parser->scope;
|
||
parser->object_scope = NULL_TREE;
|
||
}
|
||
else if (object_type)
|
||
{
|
||
/* Look up the name in the scope of the OBJECT_TYPE, unless the
|
||
OBJECT_TYPE is not a class. */
|
||
if (CLASS_TYPE_P (object_type))
|
||
/* If the OBJECT_TYPE is a template specialization, it may
|
||
be instantiated during name lookup. In that case, errors
|
||
may be issued. Even if we rollback the current tentative
|
||
parse, those errors are valid. */
|
||
decl = lookup_member (object_type,
|
||
name,
|
||
/*protect=*/0,
|
||
tag_type != none_type,
|
||
tf_warning_or_error);
|
||
else
|
||
decl = NULL_TREE;
|
||
|
||
if (!decl)
|
||
/* Look it up in the enclosing context. */
|
||
decl = lookup_name_real (name, tag_type != none_type,
|
||
/*nonclass=*/0,
|
||
/*block_p=*/true, is_namespace, 0);
|
||
parser->object_scope = object_type;
|
||
parser->qualifying_scope = NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
decl = lookup_name_real (name, tag_type != none_type,
|
||
/*nonclass=*/0,
|
||
/*block_p=*/true, is_namespace, 0);
|
||
parser->qualifying_scope = NULL_TREE;
|
||
parser->object_scope = NULL_TREE;
|
||
}
|
||
|
||
/* If the lookup failed, let our caller know. */
|
||
if (!decl || decl == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Pull out the template from an injected-class-name (or multiple). */
|
||
if (is_template)
|
||
decl = maybe_get_template_decl_from_type_decl (decl);
|
||
|
||
/* If it's a TREE_LIST, the result of the lookup was ambiguous. */
|
||
if (TREE_CODE (decl) == TREE_LIST)
|
||
{
|
||
if (ambiguous_decls)
|
||
*ambiguous_decls = decl;
|
||
/* The error message we have to print is too complicated for
|
||
cp_parser_error, so we incorporate its actions directly. */
|
||
if (!cp_parser_simulate_error (parser))
|
||
{
|
||
error_at (name_location, "reference to %qD is ambiguous",
|
||
name);
|
||
print_candidates (decl);
|
||
}
|
||
return error_mark_node;
|
||
}
|
||
|
||
gcc_assert (DECL_P (decl)
|
||
|| TREE_CODE (decl) == OVERLOAD
|
||
|| TREE_CODE (decl) == SCOPE_REF
|
||
|| TREE_CODE (decl) == UNBOUND_CLASS_TEMPLATE
|
||
|| BASELINK_P (decl));
|
||
|
||
/* If we have resolved the name of a member declaration, check to
|
||
see if the declaration is accessible. When the name resolves to
|
||
set of overloaded functions, accessibility is checked when
|
||
overload resolution is done.
|
||
|
||
During an explicit instantiation, access is not checked at all,
|
||
as per [temp.explicit]. */
|
||
if (DECL_P (decl))
|
||
check_accessibility_of_qualified_id (decl, object_type, parser->scope);
|
||
|
||
maybe_record_typedef_use (decl);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Like cp_parser_lookup_name, but for use in the typical case where
|
||
CHECK_ACCESS is TRUE, IS_TYPE is FALSE, IS_TEMPLATE is FALSE,
|
||
IS_NAMESPACE is FALSE, and CHECK_DEPENDENCY is TRUE. */
|
||
|
||
static tree
|
||
cp_parser_lookup_name_simple (cp_parser* parser, tree name, location_t location)
|
||
{
|
||
return cp_parser_lookup_name (parser, name,
|
||
none_type,
|
||
/*is_template=*/false,
|
||
/*is_namespace=*/false,
|
||
/*check_dependency=*/true,
|
||
/*ambiguous_decls=*/NULL,
|
||
location);
|
||
}
|
||
|
||
/* If DECL is a TEMPLATE_DECL that can be treated like a TYPE_DECL in
|
||
the current context, return the TYPE_DECL. If TAG_NAME_P is
|
||
true, the DECL indicates the class being defined in a class-head,
|
||
or declared in an elaborated-type-specifier.
|
||
|
||
Otherwise, return DECL. */
|
||
|
||
static tree
|
||
cp_parser_maybe_treat_template_as_class (tree decl, bool tag_name_p)
|
||
{
|
||
/* If the TEMPLATE_DECL is being declared as part of a class-head,
|
||
the translation from TEMPLATE_DECL to TYPE_DECL occurs:
|
||
|
||
struct A {
|
||
template <typename T> struct B;
|
||
};
|
||
|
||
template <typename T> struct A::B {};
|
||
|
||
Similarly, in an elaborated-type-specifier:
|
||
|
||
namespace N { struct X{}; }
|
||
|
||
struct A {
|
||
template <typename T> friend struct N::X;
|
||
};
|
||
|
||
However, if the DECL refers to a class type, and we are in
|
||
the scope of the class, then the name lookup automatically
|
||
finds the TYPE_DECL created by build_self_reference rather
|
||
than a TEMPLATE_DECL. For example, in:
|
||
|
||
template <class T> struct S {
|
||
S s;
|
||
};
|
||
|
||
there is no need to handle such case. */
|
||
|
||
if (DECL_CLASS_TEMPLATE_P (decl) && tag_name_p)
|
||
return DECL_TEMPLATE_RESULT (decl);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* If too many, or too few, template-parameter lists apply to the
|
||
declarator, issue an error message. Returns TRUE if all went well,
|
||
and FALSE otherwise. */
|
||
|
||
static bool
|
||
cp_parser_check_declarator_template_parameters (cp_parser* parser,
|
||
cp_declarator *declarator,
|
||
location_t declarator_location)
|
||
{
|
||
switch (declarator->kind)
|
||
{
|
||
case cdk_id:
|
||
{
|
||
unsigned num_templates = 0;
|
||
tree scope = declarator->u.id.qualifying_scope;
|
||
|
||
if (scope)
|
||
num_templates = num_template_headers_for_class (scope);
|
||
else if (TREE_CODE (declarator->u.id.unqualified_name)
|
||
== TEMPLATE_ID_EXPR)
|
||
/* If the DECLARATOR has the form `X<y>' then it uses one
|
||
additional level of template parameters. */
|
||
++num_templates;
|
||
|
||
return cp_parser_check_template_parameters
|
||
(parser, num_templates, declarator_location, declarator);
|
||
}
|
||
|
||
case cdk_function:
|
||
case cdk_array:
|
||
case cdk_pointer:
|
||
case cdk_reference:
|
||
case cdk_ptrmem:
|
||
return (cp_parser_check_declarator_template_parameters
|
||
(parser, declarator->declarator, declarator_location));
|
||
|
||
case cdk_error:
|
||
return true;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* NUM_TEMPLATES were used in the current declaration. If that is
|
||
invalid, return FALSE and issue an error messages. Otherwise,
|
||
return TRUE. If DECLARATOR is non-NULL, then we are checking a
|
||
declarator and we can print more accurate diagnostics. */
|
||
|
||
static bool
|
||
cp_parser_check_template_parameters (cp_parser* parser,
|
||
unsigned num_templates,
|
||
location_t location,
|
||
cp_declarator *declarator)
|
||
{
|
||
/* If there are the same number of template classes and parameter
|
||
lists, that's OK. */
|
||
if (parser->num_template_parameter_lists == num_templates)
|
||
return true;
|
||
/* If there are more, but only one more, then we are referring to a
|
||
member template. That's OK too. */
|
||
if (parser->num_template_parameter_lists == num_templates + 1)
|
||
return true;
|
||
/* If there are more template classes than parameter lists, we have
|
||
something like:
|
||
|
||
template <class T> void S<T>::R<T>::f (); */
|
||
if (parser->num_template_parameter_lists < num_templates)
|
||
{
|
||
if (declarator && !current_function_decl)
|
||
error_at (location, "specializing member %<%T::%E%> "
|
||
"requires %<template<>%> syntax",
|
||
declarator->u.id.qualifying_scope,
|
||
declarator->u.id.unqualified_name);
|
||
else if (declarator)
|
||
error_at (location, "invalid declaration of %<%T::%E%>",
|
||
declarator->u.id.qualifying_scope,
|
||
declarator->u.id.unqualified_name);
|
||
else
|
||
error_at (location, "too few template-parameter-lists");
|
||
return false;
|
||
}
|
||
/* Otherwise, there are too many template parameter lists. We have
|
||
something like:
|
||
|
||
template <class T> template <class U> void S::f(); */
|
||
error_at (location, "too many template-parameter-lists");
|
||
return false;
|
||
}
|
||
|
||
/* Parse an optional `::' token indicating that the following name is
|
||
from the global namespace. If so, PARSER->SCOPE is set to the
|
||
GLOBAL_NAMESPACE. Otherwise, PARSER->SCOPE is set to NULL_TREE,
|
||
unless CURRENT_SCOPE_VALID_P is TRUE, in which case it is left alone.
|
||
Returns the new value of PARSER->SCOPE, if the `::' token is
|
||
present, and NULL_TREE otherwise. */
|
||
|
||
static tree
|
||
cp_parser_global_scope_opt (cp_parser* parser, bool current_scope_valid_p)
|
||
{
|
||
cp_token *token;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* If we're looking at a `::' token then we're starting from the
|
||
global namespace, not our current location. */
|
||
if (token->type == CPP_SCOPE)
|
||
{
|
||
/* Consume the `::' token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Set the SCOPE so that we know where to start the lookup. */
|
||
parser->scope = global_namespace;
|
||
parser->qualifying_scope = global_namespace;
|
||
parser->object_scope = NULL_TREE;
|
||
|
||
return parser->scope;
|
||
}
|
||
else if (!current_scope_valid_p)
|
||
{
|
||
parser->scope = NULL_TREE;
|
||
parser->qualifying_scope = NULL_TREE;
|
||
parser->object_scope = NULL_TREE;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Returns TRUE if the upcoming token sequence is the start of a
|
||
constructor declarator. If FRIEND_P is true, the declarator is
|
||
preceded by the `friend' specifier. */
|
||
|
||
static bool
|
||
cp_parser_constructor_declarator_p (cp_parser *parser, bool friend_p)
|
||
{
|
||
bool constructor_p;
|
||
bool outside_class_specifier_p;
|
||
tree nested_name_specifier;
|
||
cp_token *next_token;
|
||
|
||
/* The common case is that this is not a constructor declarator, so
|
||
try to avoid doing lots of work if at all possible. It's not
|
||
valid declare a constructor at function scope. */
|
||
if (parser->in_function_body)
|
||
return false;
|
||
/* And only certain tokens can begin a constructor declarator. */
|
||
next_token = cp_lexer_peek_token (parser->lexer);
|
||
if (next_token->type != CPP_NAME
|
||
&& next_token->type != CPP_SCOPE
|
||
&& next_token->type != CPP_NESTED_NAME_SPECIFIER
|
||
&& next_token->type != CPP_TEMPLATE_ID)
|
||
return false;
|
||
|
||
/* Parse tentatively; we are going to roll back all of the tokens
|
||
consumed here. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Assume that we are looking at a constructor declarator. */
|
||
constructor_p = true;
|
||
|
||
/* Look for the optional `::' operator. */
|
||
cp_parser_global_scope_opt (parser,
|
||
/*current_scope_valid_p=*/false);
|
||
/* Look for the nested-name-specifier. */
|
||
nested_name_specifier
|
||
= (cp_parser_nested_name_specifier_opt (parser,
|
||
/*typename_keyword_p=*/false,
|
||
/*check_dependency_p=*/false,
|
||
/*type_p=*/false,
|
||
/*is_declaration=*/false));
|
||
|
||
outside_class_specifier_p = (!at_class_scope_p ()
|
||
|| !TYPE_BEING_DEFINED (current_class_type)
|
||
|| friend_p);
|
||
|
||
/* Outside of a class-specifier, there must be a
|
||
nested-name-specifier. */
|
||
if (!nested_name_specifier && outside_class_specifier_p)
|
||
constructor_p = false;
|
||
else if (nested_name_specifier == error_mark_node)
|
||
constructor_p = false;
|
||
|
||
/* If we have a class scope, this is easy; DR 147 says that S::S always
|
||
names the constructor, and no other qualified name could. */
|
||
if (constructor_p && nested_name_specifier
|
||
&& CLASS_TYPE_P (nested_name_specifier))
|
||
{
|
||
tree id = cp_parser_unqualified_id (parser,
|
||
/*template_keyword_p=*/false,
|
||
/*check_dependency_p=*/false,
|
||
/*declarator_p=*/true,
|
||
/*optional_p=*/false);
|
||
if (is_overloaded_fn (id))
|
||
id = DECL_NAME (get_first_fn (id));
|
||
if (!constructor_name_p (id, nested_name_specifier))
|
||
constructor_p = false;
|
||
}
|
||
/* If we still think that this might be a constructor-declarator,
|
||
look for a class-name. */
|
||
else if (constructor_p)
|
||
{
|
||
/* If we have:
|
||
|
||
template <typename T> struct S {
|
||
S();
|
||
};
|
||
|
||
we must recognize that the nested `S' names a class. */
|
||
tree type_decl;
|
||
type_decl = cp_parser_class_name (parser,
|
||
/*typename_keyword_p=*/false,
|
||
/*template_keyword_p=*/false,
|
||
none_type,
|
||
/*check_dependency_p=*/false,
|
||
/*class_head_p=*/false,
|
||
/*is_declaration=*/false);
|
||
/* If there was no class-name, then this is not a constructor.
|
||
Otherwise, if we are in a class-specifier and we aren't
|
||
handling a friend declaration, check that its type matches
|
||
current_class_type (c++/38313). Note: error_mark_node
|
||
is left alone for error recovery purposes. */
|
||
constructor_p = (!cp_parser_error_occurred (parser)
|
||
&& (outside_class_specifier_p
|
||
|| type_decl == error_mark_node
|
||
|| same_type_p (current_class_type,
|
||
TREE_TYPE (type_decl))));
|
||
|
||
/* If we're still considering a constructor, we have to see a `(',
|
||
to begin the parameter-declaration-clause, followed by either a
|
||
`)', an `...', or a decl-specifier. We need to check for a
|
||
type-specifier to avoid being fooled into thinking that:
|
||
|
||
S (f) (int);
|
||
|
||
is a constructor. (It is actually a function named `f' that
|
||
takes one parameter (of type `int') and returns a value of type
|
||
`S'. */
|
||
if (constructor_p
|
||
&& !cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
constructor_p = false;
|
||
|
||
if (constructor_p
|
||
&& cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)
|
||
&& cp_lexer_next_token_is_not (parser->lexer, CPP_ELLIPSIS)
|
||
/* A parameter declaration begins with a decl-specifier,
|
||
which is either the "attribute" keyword, a storage class
|
||
specifier, or (usually) a type-specifier. */
|
||
&& !cp_lexer_next_token_is_decl_specifier_keyword (parser->lexer))
|
||
{
|
||
tree type;
|
||
tree pushed_scope = NULL_TREE;
|
||
unsigned saved_num_template_parameter_lists;
|
||
|
||
/* Names appearing in the type-specifier should be looked up
|
||
in the scope of the class. */
|
||
if (current_class_type)
|
||
type = NULL_TREE;
|
||
else
|
||
{
|
||
type = TREE_TYPE (type_decl);
|
||
if (TREE_CODE (type) == TYPENAME_TYPE)
|
||
{
|
||
type = resolve_typename_type (type,
|
||
/*only_current_p=*/false);
|
||
if (TREE_CODE (type) == TYPENAME_TYPE)
|
||
{
|
||
cp_parser_abort_tentative_parse (parser);
|
||
return false;
|
||
}
|
||
}
|
||
pushed_scope = push_scope (type);
|
||
}
|
||
|
||
/* Inside the constructor parameter list, surrounding
|
||
template-parameter-lists do not apply. */
|
||
saved_num_template_parameter_lists
|
||
= parser->num_template_parameter_lists;
|
||
parser->num_template_parameter_lists = 0;
|
||
|
||
/* Look for the type-specifier. */
|
||
cp_parser_type_specifier (parser,
|
||
CP_PARSER_FLAGS_NONE,
|
||
/*decl_specs=*/NULL,
|
||
/*is_declarator=*/true,
|
||
/*declares_class_or_enum=*/NULL,
|
||
/*is_cv_qualifier=*/NULL);
|
||
|
||
parser->num_template_parameter_lists
|
||
= saved_num_template_parameter_lists;
|
||
|
||
/* Leave the scope of the class. */
|
||
if (pushed_scope)
|
||
pop_scope (pushed_scope);
|
||
|
||
constructor_p = !cp_parser_error_occurred (parser);
|
||
}
|
||
}
|
||
|
||
/* We did not really want to consume any tokens. */
|
||
cp_parser_abort_tentative_parse (parser);
|
||
|
||
return constructor_p;
|
||
}
|
||
|
||
/* Parse the definition of the function given by the DECL_SPECIFIERS,
|
||
ATTRIBUTES, and DECLARATOR. The access checks have been deferred;
|
||
they must be performed once we are in the scope of the function.
|
||
|
||
Returns the function defined. */
|
||
|
||
static tree
|
||
cp_parser_function_definition_from_specifiers_and_declarator
|
||
(cp_parser* parser,
|
||
cp_decl_specifier_seq *decl_specifiers,
|
||
tree attributes,
|
||
const cp_declarator *declarator)
|
||
{
|
||
tree fn;
|
||
bool success_p;
|
||
|
||
/* Begin the function-definition. */
|
||
success_p = start_function (decl_specifiers, declarator, attributes);
|
||
|
||
/* The things we're about to see are not directly qualified by any
|
||
template headers we've seen thus far. */
|
||
reset_specialization ();
|
||
|
||
/* If there were names looked up in the decl-specifier-seq that we
|
||
did not check, check them now. We must wait until we are in the
|
||
scope of the function to perform the checks, since the function
|
||
might be a friend. */
|
||
perform_deferred_access_checks (tf_warning_or_error);
|
||
|
||
if (success_p)
|
||
{
|
||
cp_finalize_omp_declare_simd (parser, current_function_decl);
|
||
parser->omp_declare_simd = NULL;
|
||
}
|
||
|
||
if (!success_p)
|
||
{
|
||
/* Skip the entire function. */
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
fn = error_mark_node;
|
||
}
|
||
else if (DECL_INITIAL (current_function_decl) != error_mark_node)
|
||
{
|
||
/* Seen already, skip it. An error message has already been output. */
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
fn = current_function_decl;
|
||
current_function_decl = NULL_TREE;
|
||
/* If this is a function from a class, pop the nested class. */
|
||
if (current_class_name)
|
||
pop_nested_class ();
|
||
}
|
||
else
|
||
{
|
||
timevar_id_t tv;
|
||
if (DECL_DECLARED_INLINE_P (current_function_decl))
|
||
tv = TV_PARSE_INLINE;
|
||
else
|
||
tv = TV_PARSE_FUNC;
|
||
timevar_push (tv);
|
||
fn = cp_parser_function_definition_after_declarator (parser,
|
||
/*inline_p=*/false);
|
||
timevar_pop (tv);
|
||
}
|
||
|
||
return fn;
|
||
}
|
||
|
||
/* Parse the part of a function-definition that follows the
|
||
declarator. INLINE_P is TRUE iff this function is an inline
|
||
function defined within a class-specifier.
|
||
|
||
Returns the function defined. */
|
||
|
||
static tree
|
||
cp_parser_function_definition_after_declarator (cp_parser* parser,
|
||
bool inline_p)
|
||
{
|
||
tree fn;
|
||
bool ctor_initializer_p = false;
|
||
bool saved_in_unbraced_linkage_specification_p;
|
||
bool saved_in_function_body;
|
||
unsigned saved_num_template_parameter_lists;
|
||
cp_token *token;
|
||
bool fully_implicit_function_template_p
|
||
= parser->fully_implicit_function_template_p;
|
||
parser->fully_implicit_function_template_p = false;
|
||
tree implicit_template_parms
|
||
= parser->implicit_template_parms;
|
||
parser->implicit_template_parms = 0;
|
||
cp_binding_level* implicit_template_scope
|
||
= parser->implicit_template_scope;
|
||
parser->implicit_template_scope = 0;
|
||
|
||
saved_in_function_body = parser->in_function_body;
|
||
parser->in_function_body = true;
|
||
/* If the next token is `return', then the code may be trying to
|
||
make use of the "named return value" extension that G++ used to
|
||
support. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_RETURN))
|
||
{
|
||
/* Consume the `return' keyword. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Look for the identifier that indicates what value is to be
|
||
returned. */
|
||
cp_parser_identifier (parser);
|
||
/* Issue an error message. */
|
||
error_at (token->location,
|
||
"named return values are no longer supported");
|
||
/* Skip tokens until we reach the start of the function body. */
|
||
while (true)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type == CPP_OPEN_BRACE
|
||
|| token->type == CPP_EOF
|
||
|| token->type == CPP_PRAGMA_EOL)
|
||
break;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
}
|
||
/* The `extern' in `extern "C" void f () { ... }' does not apply to
|
||
anything declared inside `f'. */
|
||
saved_in_unbraced_linkage_specification_p
|
||
= parser->in_unbraced_linkage_specification_p;
|
||
parser->in_unbraced_linkage_specification_p = false;
|
||
/* Inside the function, surrounding template-parameter-lists do not
|
||
apply. */
|
||
saved_num_template_parameter_lists
|
||
= parser->num_template_parameter_lists;
|
||
parser->num_template_parameter_lists = 0;
|
||
|
||
start_lambda_scope (current_function_decl);
|
||
|
||
/* If the next token is `try', `__transaction_atomic', or
|
||
`__transaction_relaxed`, then we are looking at either function-try-block
|
||
or function-transaction-block. Note that all of these include the
|
||
function-body. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRANSACTION_ATOMIC))
|
||
ctor_initializer_p = cp_parser_function_transaction (parser,
|
||
RID_TRANSACTION_ATOMIC);
|
||
else if (cp_lexer_next_token_is_keyword (parser->lexer,
|
||
RID_TRANSACTION_RELAXED))
|
||
ctor_initializer_p = cp_parser_function_transaction (parser,
|
||
RID_TRANSACTION_RELAXED);
|
||
else if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY))
|
||
ctor_initializer_p = cp_parser_function_try_block (parser);
|
||
else
|
||
ctor_initializer_p = cp_parser_ctor_initializer_opt_and_function_body
|
||
(parser, /*in_function_try_block=*/false);
|
||
|
||
finish_lambda_scope ();
|
||
|
||
/* Finish the function. */
|
||
fn = finish_function ((ctor_initializer_p ? 1 : 0) |
|
||
(inline_p ? 2 : 0));
|
||
/* Generate code for it, if necessary. */
|
||
expand_or_defer_fn (fn);
|
||
/* Restore the saved values. */
|
||
parser->in_unbraced_linkage_specification_p
|
||
= saved_in_unbraced_linkage_specification_p;
|
||
parser->num_template_parameter_lists
|
||
= saved_num_template_parameter_lists;
|
||
parser->in_function_body = saved_in_function_body;
|
||
|
||
parser->fully_implicit_function_template_p
|
||
= fully_implicit_function_template_p;
|
||
parser->implicit_template_parms
|
||
= implicit_template_parms;
|
||
parser->implicit_template_scope
|
||
= implicit_template_scope;
|
||
|
||
if (parser->fully_implicit_function_template_p)
|
||
finish_fully_implicit_template (parser, /*member_decl_opt=*/0);
|
||
|
||
return fn;
|
||
}
|
||
|
||
/* Parse a template-declaration, assuming that the `export' (and
|
||
`extern') keywords, if present, has already been scanned. MEMBER_P
|
||
is as for cp_parser_template_declaration. */
|
||
|
||
static void
|
||
cp_parser_template_declaration_after_export (cp_parser* parser, bool member_p)
|
||
{
|
||
tree decl = NULL_TREE;
|
||
vec<deferred_access_check, va_gc> *checks;
|
||
tree parameter_list;
|
||
bool friend_p = false;
|
||
bool need_lang_pop;
|
||
cp_token *token;
|
||
|
||
/* Look for the `template' keyword. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (!cp_parser_require_keyword (parser, RID_TEMPLATE, RT_TEMPLATE))
|
||
return;
|
||
|
||
/* And the `<'. */
|
||
if (!cp_parser_require (parser, CPP_LESS, RT_LESS))
|
||
return;
|
||
if (at_class_scope_p () && current_function_decl)
|
||
{
|
||
/* 14.5.2.2 [temp.mem]
|
||
|
||
A local class shall not have member templates. */
|
||
error_at (token->location,
|
||
"invalid declaration of member template in local class");
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
return;
|
||
}
|
||
/* [temp]
|
||
|
||
A template ... shall not have C linkage. */
|
||
if (current_lang_name == lang_name_c)
|
||
{
|
||
error_at (token->location, "template with C linkage");
|
||
/* Give it C++ linkage to avoid confusing other parts of the
|
||
front end. */
|
||
push_lang_context (lang_name_cplusplus);
|
||
need_lang_pop = true;
|
||
}
|
||
else
|
||
need_lang_pop = false;
|
||
|
||
/* We cannot perform access checks on the template parameter
|
||
declarations until we know what is being declared, just as we
|
||
cannot check the decl-specifier list. */
|
||
push_deferring_access_checks (dk_deferred);
|
||
|
||
/* If the next token is `>', then we have an invalid
|
||
specialization. Rather than complain about an invalid template
|
||
parameter, issue an error message here. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
|
||
{
|
||
cp_parser_error (parser, "invalid explicit specialization");
|
||
begin_specialization ();
|
||
parameter_list = NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
/* Parse the template parameters. */
|
||
parameter_list = cp_parser_template_parameter_list (parser);
|
||
}
|
||
|
||
/* Get the deferred access checks from the parameter list. These
|
||
will be checked once we know what is being declared, as for a
|
||
member template the checks must be performed in the scope of the
|
||
class containing the member. */
|
||
checks = get_deferred_access_checks ();
|
||
|
||
/* Look for the `>'. */
|
||
cp_parser_skip_to_end_of_template_parameter_list (parser);
|
||
/* We just processed one more parameter list. */
|
||
++parser->num_template_parameter_lists;
|
||
/* If the next token is `template', there are more template
|
||
parameters. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer,
|
||
RID_TEMPLATE))
|
||
cp_parser_template_declaration_after_export (parser, member_p);
|
||
else if (cxx_dialect >= cxx11
|
||
&& cp_lexer_next_token_is_keyword (parser->lexer, RID_USING))
|
||
decl = cp_parser_alias_declaration (parser);
|
||
else
|
||
{
|
||
/* There are no access checks when parsing a template, as we do not
|
||
know if a specialization will be a friend. */
|
||
push_deferring_access_checks (dk_no_check);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
decl = cp_parser_single_declaration (parser,
|
||
checks,
|
||
member_p,
|
||
/*explicit_specialization_p=*/false,
|
||
&friend_p);
|
||
pop_deferring_access_checks ();
|
||
|
||
/* If this is a member template declaration, let the front
|
||
end know. */
|
||
if (member_p && !friend_p && decl)
|
||
{
|
||
if (TREE_CODE (decl) == TYPE_DECL)
|
||
cp_parser_check_access_in_redeclaration (decl, token->location);
|
||
|
||
decl = finish_member_template_decl (decl);
|
||
}
|
||
else if (friend_p && decl
|
||
&& DECL_DECLARES_TYPE_P (decl))
|
||
make_friend_class (current_class_type, TREE_TYPE (decl),
|
||
/*complain=*/true);
|
||
}
|
||
/* We are done with the current parameter list. */
|
||
--parser->num_template_parameter_lists;
|
||
|
||
pop_deferring_access_checks ();
|
||
|
||
/* Finish up. */
|
||
finish_template_decl (parameter_list);
|
||
|
||
/* Check the template arguments for a literal operator template. */
|
||
if (decl
|
||
&& DECL_DECLARES_FUNCTION_P (decl)
|
||
&& UDLIT_OPER_P (DECL_NAME (decl)))
|
||
{
|
||
bool ok = true;
|
||
if (parameter_list == NULL_TREE)
|
||
ok = false;
|
||
else
|
||
{
|
||
int num_parms = TREE_VEC_LENGTH (parameter_list);
|
||
if (num_parms == 1)
|
||
{
|
||
tree parm_list = TREE_VEC_ELT (parameter_list, 0);
|
||
tree parm = INNERMOST_TEMPLATE_PARMS (parm_list);
|
||
if (TREE_TYPE (parm) != char_type_node
|
||
|| !TEMPLATE_PARM_PARAMETER_PACK (DECL_INITIAL (parm)))
|
||
ok = false;
|
||
}
|
||
else if (num_parms == 2 && cxx_dialect >= cxx1y)
|
||
{
|
||
tree parm_type = TREE_VEC_ELT (parameter_list, 0);
|
||
tree type = INNERMOST_TEMPLATE_PARMS (parm_type);
|
||
tree parm_list = TREE_VEC_ELT (parameter_list, 1);
|
||
tree parm = INNERMOST_TEMPLATE_PARMS (parm_list);
|
||
if (TREE_TYPE (parm) != TREE_TYPE (type)
|
||
|| !TEMPLATE_PARM_PARAMETER_PACK (DECL_INITIAL (parm)))
|
||
ok = false;
|
||
}
|
||
else
|
||
ok = false;
|
||
}
|
||
if (!ok)
|
||
{
|
||
if (cxx_dialect >= cxx1y)
|
||
error ("literal operator template %qD has invalid parameter list."
|
||
" Expected non-type template argument pack <char...>"
|
||
" or <typename CharT, CharT...>",
|
||
decl);
|
||
else
|
||
error ("literal operator template %qD has invalid parameter list."
|
||
" Expected non-type template argument pack <char...>",
|
||
decl);
|
||
}
|
||
}
|
||
/* Register member declarations. */
|
||
if (member_p && !friend_p && decl && !DECL_CLASS_TEMPLATE_P (decl))
|
||
finish_member_declaration (decl);
|
||
/* For the erroneous case of a template with C linkage, we pushed an
|
||
implicit C++ linkage scope; exit that scope now. */
|
||
if (need_lang_pop)
|
||
pop_lang_context ();
|
||
/* If DECL is a function template, we must return to parse it later.
|
||
(Even though there is no definition, there might be default
|
||
arguments that need handling.) */
|
||
if (member_p && decl
|
||
&& DECL_DECLARES_FUNCTION_P (decl))
|
||
vec_safe_push (unparsed_funs_with_definitions, decl);
|
||
}
|
||
|
||
/* Perform the deferred access checks from a template-parameter-list.
|
||
CHECKS is a TREE_LIST of access checks, as returned by
|
||
get_deferred_access_checks. */
|
||
|
||
static void
|
||
cp_parser_perform_template_parameter_access_checks (vec<deferred_access_check, va_gc> *checks)
|
||
{
|
||
++processing_template_parmlist;
|
||
perform_access_checks (checks, tf_warning_or_error);
|
||
--processing_template_parmlist;
|
||
}
|
||
|
||
/* Parse a `decl-specifier-seq [opt] init-declarator [opt] ;' or
|
||
`function-definition' sequence that follows a template header.
|
||
If MEMBER_P is true, this declaration appears in a class scope.
|
||
|
||
Returns the DECL for the declared entity. If FRIEND_P is non-NULL,
|
||
*FRIEND_P is set to TRUE iff the declaration is a friend. */
|
||
|
||
static tree
|
||
cp_parser_single_declaration (cp_parser* parser,
|
||
vec<deferred_access_check, va_gc> *checks,
|
||
bool member_p,
|
||
bool explicit_specialization_p,
|
||
bool* friend_p)
|
||
{
|
||
int declares_class_or_enum;
|
||
tree decl = NULL_TREE;
|
||
cp_decl_specifier_seq decl_specifiers;
|
||
bool function_definition_p = false;
|
||
cp_token *decl_spec_token_start;
|
||
|
||
/* This function is only used when processing a template
|
||
declaration. */
|
||
gcc_assert (innermost_scope_kind () == sk_template_parms
|
||
|| innermost_scope_kind () == sk_template_spec);
|
||
|
||
/* Defer access checks until we know what is being declared. */
|
||
push_deferring_access_checks (dk_deferred);
|
||
|
||
/* Try the `decl-specifier-seq [opt] init-declarator [opt]'
|
||
alternative. */
|
||
decl_spec_token_start = cp_lexer_peek_token (parser->lexer);
|
||
cp_parser_decl_specifier_seq (parser,
|
||
CP_PARSER_FLAGS_OPTIONAL,
|
||
&decl_specifiers,
|
||
&declares_class_or_enum);
|
||
if (friend_p)
|
||
*friend_p = cp_parser_friend_p (&decl_specifiers);
|
||
|
||
/* There are no template typedefs. */
|
||
if (decl_spec_seq_has_spec_p (&decl_specifiers, ds_typedef))
|
||
{
|
||
error_at (decl_spec_token_start->location,
|
||
"template declaration of %<typedef%>");
|
||
decl = error_mark_node;
|
||
}
|
||
|
||
/* Gather up the access checks that occurred the
|
||
decl-specifier-seq. */
|
||
stop_deferring_access_checks ();
|
||
|
||
/* Check for the declaration of a template class. */
|
||
if (declares_class_or_enum)
|
||
{
|
||
if (cp_parser_declares_only_class_p (parser))
|
||
{
|
||
decl = shadow_tag (&decl_specifiers);
|
||
|
||
/* In this case:
|
||
|
||
struct C {
|
||
friend template <typename T> struct A<T>::B;
|
||
};
|
||
|
||
A<T>::B will be represented by a TYPENAME_TYPE, and
|
||
therefore not recognized by shadow_tag. */
|
||
if (friend_p && *friend_p
|
||
&& !decl
|
||
&& decl_specifiers.type
|
||
&& TYPE_P (decl_specifiers.type))
|
||
decl = decl_specifiers.type;
|
||
|
||
if (decl && decl != error_mark_node)
|
||
decl = TYPE_NAME (decl);
|
||
else
|
||
decl = error_mark_node;
|
||
|
||
/* Perform access checks for template parameters. */
|
||
cp_parser_perform_template_parameter_access_checks (checks);
|
||
}
|
||
}
|
||
|
||
/* Complain about missing 'typename' or other invalid type names. */
|
||
if (!decl_specifiers.any_type_specifiers_p
|
||
&& cp_parser_parse_and_diagnose_invalid_type_name (parser))
|
||
{
|
||
/* cp_parser_parse_and_diagnose_invalid_type_name calls
|
||
cp_parser_skip_to_end_of_block_or_statement, so don't try to parse
|
||
the rest of this declaration. */
|
||
decl = error_mark_node;
|
||
goto out;
|
||
}
|
||
|
||
/* If it's not a template class, try for a template function. If
|
||
the next token is a `;', then this declaration does not declare
|
||
anything. But, if there were errors in the decl-specifiers, then
|
||
the error might well have come from an attempted class-specifier.
|
||
In that case, there's no need to warn about a missing declarator. */
|
||
if (!decl
|
||
&& (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)
|
||
|| decl_specifiers.type != error_mark_node))
|
||
{
|
||
decl = cp_parser_init_declarator (parser,
|
||
&decl_specifiers,
|
||
checks,
|
||
/*function_definition_allowed_p=*/true,
|
||
member_p,
|
||
declares_class_or_enum,
|
||
&function_definition_p,
|
||
NULL);
|
||
|
||
/* 7.1.1-1 [dcl.stc]
|
||
|
||
A storage-class-specifier shall not be specified in an explicit
|
||
specialization... */
|
||
if (decl
|
||
&& explicit_specialization_p
|
||
&& decl_specifiers.storage_class != sc_none)
|
||
{
|
||
error_at (decl_spec_token_start->location,
|
||
"explicit template specialization cannot have a storage class");
|
||
decl = error_mark_node;
|
||
}
|
||
|
||
if (decl && VAR_P (decl))
|
||
check_template_variable (decl);
|
||
}
|
||
|
||
/* Look for a trailing `;' after the declaration. */
|
||
if (!function_definition_p
|
||
&& (decl == error_mark_node
|
||
|| !cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON)))
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
|
||
out:
|
||
pop_deferring_access_checks ();
|
||
|
||
/* Clear any current qualification; whatever comes next is the start
|
||
of something new. */
|
||
parser->scope = NULL_TREE;
|
||
parser->qualifying_scope = NULL_TREE;
|
||
parser->object_scope = NULL_TREE;
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Parse a cast-expression that is not the operand of a unary "&". */
|
||
|
||
static tree
|
||
cp_parser_simple_cast_expression (cp_parser *parser)
|
||
{
|
||
return cp_parser_cast_expression (parser, /*address_p=*/false,
|
||
/*cast_p=*/false, /*decltype*/false, NULL);
|
||
}
|
||
|
||
/* Parse a functional cast to TYPE. Returns an expression
|
||
representing the cast. */
|
||
|
||
static tree
|
||
cp_parser_functional_cast (cp_parser* parser, tree type)
|
||
{
|
||
vec<tree, va_gc> *vec;
|
||
tree expression_list;
|
||
tree cast;
|
||
bool nonconst_p;
|
||
|
||
if (!type)
|
||
type = error_mark_node;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
cp_lexer_set_source_position (parser->lexer);
|
||
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
|
||
expression_list = cp_parser_braced_list (parser, &nonconst_p);
|
||
CONSTRUCTOR_IS_DIRECT_INIT (expression_list) = 1;
|
||
if (TREE_CODE (type) == TYPE_DECL)
|
||
type = TREE_TYPE (type);
|
||
return finish_compound_literal (type, expression_list,
|
||
tf_warning_or_error);
|
||
}
|
||
|
||
|
||
vec = cp_parser_parenthesized_expression_list (parser, non_attr,
|
||
/*cast_p=*/true,
|
||
/*allow_expansion_p=*/true,
|
||
/*non_constant_p=*/NULL);
|
||
if (vec == NULL)
|
||
expression_list = error_mark_node;
|
||
else
|
||
{
|
||
expression_list = build_tree_list_vec (vec);
|
||
release_tree_vector (vec);
|
||
}
|
||
|
||
cast = build_functional_cast (type, expression_list,
|
||
tf_warning_or_error);
|
||
/* [expr.const]/1: In an integral constant expression "only type
|
||
conversions to integral or enumeration type can be used". */
|
||
if (TREE_CODE (type) == TYPE_DECL)
|
||
type = TREE_TYPE (type);
|
||
if (cast != error_mark_node
|
||
&& !cast_valid_in_integral_constant_expression_p (type)
|
||
&& cp_parser_non_integral_constant_expression (parser,
|
||
NIC_CONSTRUCTOR))
|
||
return error_mark_node;
|
||
return cast;
|
||
}
|
||
|
||
/* Save the tokens that make up the body of a member function defined
|
||
in a class-specifier. The DECL_SPECIFIERS and DECLARATOR have
|
||
already been parsed. The ATTRIBUTES are any GNU "__attribute__"
|
||
specifiers applied to the declaration. Returns the FUNCTION_DECL
|
||
for the member function. */
|
||
|
||
static tree
|
||
cp_parser_save_member_function_body (cp_parser* parser,
|
||
cp_decl_specifier_seq *decl_specifiers,
|
||
cp_declarator *declarator,
|
||
tree attributes)
|
||
{
|
||
cp_token *first;
|
||
cp_token *last;
|
||
tree fn;
|
||
|
||
/* Create the FUNCTION_DECL. */
|
||
fn = grokmethod (decl_specifiers, declarator, attributes);
|
||
cp_finalize_omp_declare_simd (parser, fn);
|
||
/* If something went badly wrong, bail out now. */
|
||
if (fn == error_mark_node)
|
||
{
|
||
/* If there's a function-body, skip it. */
|
||
if (cp_parser_token_starts_function_definition_p
|
||
(cp_lexer_peek_token (parser->lexer)))
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Remember it, if there default args to post process. */
|
||
cp_parser_save_default_args (parser, fn);
|
||
|
||
/* Save away the tokens that make up the body of the
|
||
function. */
|
||
first = parser->lexer->next_token;
|
||
/* Handle function try blocks. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* We can have braced-init-list mem-initializers before the fn body. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
while (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
/* cache_group will stop after an un-nested { } pair, too. */
|
||
if (cp_parser_cache_group (parser, CPP_CLOSE_PAREN, /*depth=*/0))
|
||
break;
|
||
|
||
/* variadic mem-inits have ... after the ')'. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
}
|
||
cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
|
||
/* Handle function try blocks. */
|
||
while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH))
|
||
cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
|
||
last = parser->lexer->next_token;
|
||
|
||
/* Save away the inline definition; we will process it when the
|
||
class is complete. */
|
||
DECL_PENDING_INLINE_INFO (fn) = cp_token_cache_new (first, last);
|
||
DECL_PENDING_INLINE_P (fn) = 1;
|
||
|
||
/* We need to know that this was defined in the class, so that
|
||
friend templates are handled correctly. */
|
||
DECL_INITIALIZED_IN_CLASS_P (fn) = 1;
|
||
|
||
/* Add FN to the queue of functions to be parsed later. */
|
||
vec_safe_push (unparsed_funs_with_definitions, fn);
|
||
|
||
return fn;
|
||
}
|
||
|
||
/* Save the tokens that make up the in-class initializer for a non-static
|
||
data member. Returns a DEFAULT_ARG. */
|
||
|
||
static tree
|
||
cp_parser_save_nsdmi (cp_parser* parser)
|
||
{
|
||
return cp_parser_cache_defarg (parser, /*nsdmi=*/true);
|
||
}
|
||
|
||
/* Parse a template-argument-list, as well as the trailing ">" (but
|
||
not the opening "<"). See cp_parser_template_argument_list for the
|
||
return value. */
|
||
|
||
static tree
|
||
cp_parser_enclosed_template_argument_list (cp_parser* parser)
|
||
{
|
||
tree arguments;
|
||
tree saved_scope;
|
||
tree saved_qualifying_scope;
|
||
tree saved_object_scope;
|
||
bool saved_greater_than_is_operator_p;
|
||
int saved_unevaluated_operand;
|
||
int saved_inhibit_evaluation_warnings;
|
||
|
||
/* [temp.names]
|
||
|
||
When parsing a template-id, the first non-nested `>' is taken as
|
||
the end of the template-argument-list rather than a greater-than
|
||
operator. */
|
||
saved_greater_than_is_operator_p
|
||
= parser->greater_than_is_operator_p;
|
||
parser->greater_than_is_operator_p = false;
|
||
/* Parsing the argument list may modify SCOPE, so we save it
|
||
here. */
|
||
saved_scope = parser->scope;
|
||
saved_qualifying_scope = parser->qualifying_scope;
|
||
saved_object_scope = parser->object_scope;
|
||
/* We need to evaluate the template arguments, even though this
|
||
template-id may be nested within a "sizeof". */
|
||
saved_unevaluated_operand = cp_unevaluated_operand;
|
||
cp_unevaluated_operand = 0;
|
||
saved_inhibit_evaluation_warnings = c_inhibit_evaluation_warnings;
|
||
c_inhibit_evaluation_warnings = 0;
|
||
/* Parse the template-argument-list itself. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER)
|
||
|| cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
|
||
arguments = NULL_TREE;
|
||
else
|
||
arguments = cp_parser_template_argument_list (parser);
|
||
/* Look for the `>' that ends the template-argument-list. If we find
|
||
a '>>' instead, it's probably just a typo. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
|
||
{
|
||
if (cxx_dialect != cxx98)
|
||
{
|
||
/* In C++0x, a `>>' in a template argument list or cast
|
||
expression is considered to be two separate `>'
|
||
tokens. So, change the current token to a `>', but don't
|
||
consume it: it will be consumed later when the outer
|
||
template argument list (or cast expression) is parsed.
|
||
Note that this replacement of `>' for `>>' is necessary
|
||
even if we are parsing tentatively: in the tentative
|
||
case, after calling
|
||
cp_parser_enclosed_template_argument_list we will always
|
||
throw away all of the template arguments and the first
|
||
closing `>', either because the template argument list
|
||
was erroneous or because we are replacing those tokens
|
||
with a CPP_TEMPLATE_ID token. The second `>' (which will
|
||
not have been thrown away) is needed either to close an
|
||
outer template argument list or to complete a new-style
|
||
cast. */
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
token->type = CPP_GREATER;
|
||
}
|
||
else if (!saved_greater_than_is_operator_p)
|
||
{
|
||
/* If we're in a nested template argument list, the '>>' has
|
||
to be a typo for '> >'. We emit the error message, but we
|
||
continue parsing and we push a '>' as next token, so that
|
||
the argument list will be parsed correctly. Note that the
|
||
global source location is still on the token before the
|
||
'>>', so we need to say explicitly where we want it. */
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
error_at (token->location, "%<>>%> should be %<> >%> "
|
||
"within a nested template argument list");
|
||
|
||
token->type = CPP_GREATER;
|
||
}
|
||
else
|
||
{
|
||
/* If this is not a nested template argument list, the '>>'
|
||
is a typo for '>'. Emit an error message and continue.
|
||
Same deal about the token location, but here we can get it
|
||
right by consuming the '>>' before issuing the diagnostic. */
|
||
cp_token *token = cp_lexer_consume_token (parser->lexer);
|
||
error_at (token->location,
|
||
"spurious %<>>%>, use %<>%> to terminate "
|
||
"a template argument list");
|
||
}
|
||
}
|
||
else
|
||
cp_parser_skip_to_end_of_template_parameter_list (parser);
|
||
/* The `>' token might be a greater-than operator again now. */
|
||
parser->greater_than_is_operator_p
|
||
= saved_greater_than_is_operator_p;
|
||
/* Restore the SAVED_SCOPE. */
|
||
parser->scope = saved_scope;
|
||
parser->qualifying_scope = saved_qualifying_scope;
|
||
parser->object_scope = saved_object_scope;
|
||
cp_unevaluated_operand = saved_unevaluated_operand;
|
||
c_inhibit_evaluation_warnings = saved_inhibit_evaluation_warnings;
|
||
|
||
return arguments;
|
||
}
|
||
|
||
/* MEMBER_FUNCTION is a member function, or a friend. If default
|
||
arguments, or the body of the function have not yet been parsed,
|
||
parse them now. */
|
||
|
||
static void
|
||
cp_parser_late_parsing_for_member (cp_parser* parser, tree member_function)
|
||
{
|
||
timevar_push (TV_PARSE_INMETH);
|
||
/* If this member is a template, get the underlying
|
||
FUNCTION_DECL. */
|
||
if (DECL_FUNCTION_TEMPLATE_P (member_function))
|
||
member_function = DECL_TEMPLATE_RESULT (member_function);
|
||
|
||
/* There should not be any class definitions in progress at this
|
||
point; the bodies of members are only parsed outside of all class
|
||
definitions. */
|
||
gcc_assert (parser->num_classes_being_defined == 0);
|
||
/* While we're parsing the member functions we might encounter more
|
||
classes. We want to handle them right away, but we don't want
|
||
them getting mixed up with functions that are currently in the
|
||
queue. */
|
||
push_unparsed_function_queues (parser);
|
||
|
||
/* Make sure that any template parameters are in scope. */
|
||
maybe_begin_member_template_processing (member_function);
|
||
|
||
/* If the body of the function has not yet been parsed, parse it
|
||
now. */
|
||
if (DECL_PENDING_INLINE_P (member_function))
|
||
{
|
||
tree function_scope;
|
||
cp_token_cache *tokens;
|
||
|
||
/* The function is no longer pending; we are processing it. */
|
||
tokens = DECL_PENDING_INLINE_INFO (member_function);
|
||
DECL_PENDING_INLINE_INFO (member_function) = NULL;
|
||
DECL_PENDING_INLINE_P (member_function) = 0;
|
||
|
||
/* If this is a local class, enter the scope of the containing
|
||
function. */
|
||
function_scope = current_function_decl;
|
||
if (function_scope)
|
||
push_function_context ();
|
||
|
||
/* Push the body of the function onto the lexer stack. */
|
||
cp_parser_push_lexer_for_tokens (parser, tokens);
|
||
|
||
/* Let the front end know that we going to be defining this
|
||
function. */
|
||
start_preparsed_function (member_function, NULL_TREE,
|
||
SF_PRE_PARSED | SF_INCLASS_INLINE);
|
||
|
||
/* Don't do access checking if it is a templated function. */
|
||
if (processing_template_decl)
|
||
push_deferring_access_checks (dk_no_check);
|
||
|
||
/* #pragma omp declare reduction needs special parsing. */
|
||
if (DECL_OMP_DECLARE_REDUCTION_P (member_function))
|
||
{
|
||
parser->lexer->in_pragma = true;
|
||
cp_parser_omp_declare_reduction_exprs (member_function, parser);
|
||
finish_function (/*inline*/2);
|
||
cp_check_omp_declare_reduction (member_function);
|
||
}
|
||
else
|
||
/* Now, parse the body of the function. */
|
||
cp_parser_function_definition_after_declarator (parser,
|
||
/*inline_p=*/true);
|
||
|
||
if (processing_template_decl)
|
||
pop_deferring_access_checks ();
|
||
|
||
/* Leave the scope of the containing function. */
|
||
if (function_scope)
|
||
pop_function_context ();
|
||
cp_parser_pop_lexer (parser);
|
||
}
|
||
|
||
/* Remove any template parameters from the symbol table. */
|
||
maybe_end_member_template_processing ();
|
||
|
||
/* Restore the queue. */
|
||
pop_unparsed_function_queues (parser);
|
||
timevar_pop (TV_PARSE_INMETH);
|
||
}
|
||
|
||
/* If DECL contains any default args, remember it on the unparsed
|
||
functions queue. */
|
||
|
||
static void
|
||
cp_parser_save_default_args (cp_parser* parser, tree decl)
|
||
{
|
||
tree probe;
|
||
|
||
for (probe = TYPE_ARG_TYPES (TREE_TYPE (decl));
|
||
probe;
|
||
probe = TREE_CHAIN (probe))
|
||
if (TREE_PURPOSE (probe))
|
||
{
|
||
cp_default_arg_entry entry = {current_class_type, decl};
|
||
vec_safe_push (unparsed_funs_with_default_args, entry);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* DEFAULT_ARG contains the saved tokens for the initializer of DECL,
|
||
which is either a FIELD_DECL or PARM_DECL. Parse it and return
|
||
the result. For a PARM_DECL, PARMTYPE is the corresponding type
|
||
from the parameter-type-list. */
|
||
|
||
static tree
|
||
cp_parser_late_parse_one_default_arg (cp_parser *parser, tree decl,
|
||
tree default_arg, tree parmtype)
|
||
{
|
||
cp_token_cache *tokens;
|
||
tree parsed_arg;
|
||
bool dummy;
|
||
|
||
if (default_arg == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Push the saved tokens for the default argument onto the parser's
|
||
lexer stack. */
|
||
tokens = DEFARG_TOKENS (default_arg);
|
||
cp_parser_push_lexer_for_tokens (parser, tokens);
|
||
|
||
start_lambda_scope (decl);
|
||
|
||
/* Parse the default argument. */
|
||
parsed_arg = cp_parser_initializer (parser, &dummy, &dummy);
|
||
if (BRACE_ENCLOSED_INITIALIZER_P (parsed_arg))
|
||
maybe_warn_cpp0x (CPP0X_INITIALIZER_LISTS);
|
||
|
||
finish_lambda_scope ();
|
||
|
||
if (parsed_arg == error_mark_node)
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
|
||
if (!processing_template_decl)
|
||
{
|
||
/* In a non-template class, check conversions now. In a template,
|
||
we'll wait and instantiate these as needed. */
|
||
if (TREE_CODE (decl) == PARM_DECL)
|
||
parsed_arg = check_default_argument (parmtype, parsed_arg,
|
||
tf_warning_or_error);
|
||
else
|
||
parsed_arg = digest_nsdmi_init (decl, parsed_arg);
|
||
}
|
||
|
||
/* If the token stream has not been completely used up, then
|
||
there was extra junk after the end of the default
|
||
argument. */
|
||
if (!cp_lexer_next_token_is (parser->lexer, CPP_EOF))
|
||
{
|
||
if (TREE_CODE (decl) == PARM_DECL)
|
||
cp_parser_error (parser, "expected %<,%>");
|
||
else
|
||
cp_parser_error (parser, "expected %<;%>");
|
||
}
|
||
|
||
/* Revert to the main lexer. */
|
||
cp_parser_pop_lexer (parser);
|
||
|
||
return parsed_arg;
|
||
}
|
||
|
||
/* FIELD is a non-static data member with an initializer which we saved for
|
||
later; parse it now. */
|
||
|
||
static void
|
||
cp_parser_late_parsing_nsdmi (cp_parser *parser, tree field)
|
||
{
|
||
tree def;
|
||
|
||
maybe_begin_member_template_processing (field);
|
||
|
||
push_unparsed_function_queues (parser);
|
||
def = cp_parser_late_parse_one_default_arg (parser, field,
|
||
DECL_INITIAL (field),
|
||
NULL_TREE);
|
||
pop_unparsed_function_queues (parser);
|
||
|
||
maybe_end_member_template_processing ();
|
||
|
||
DECL_INITIAL (field) = def;
|
||
}
|
||
|
||
/* FN is a FUNCTION_DECL which may contains a parameter with an
|
||
unparsed DEFAULT_ARG. Parse the default args now. This function
|
||
assumes that the current scope is the scope in which the default
|
||
argument should be processed. */
|
||
|
||
static void
|
||
cp_parser_late_parsing_default_args (cp_parser *parser, tree fn)
|
||
{
|
||
bool saved_local_variables_forbidden_p;
|
||
tree parm, parmdecl;
|
||
|
||
/* While we're parsing the default args, we might (due to the
|
||
statement expression extension) encounter more classes. We want
|
||
to handle them right away, but we don't want them getting mixed
|
||
up with default args that are currently in the queue. */
|
||
push_unparsed_function_queues (parser);
|
||
|
||
/* Local variable names (and the `this' keyword) may not appear
|
||
in a default argument. */
|
||
saved_local_variables_forbidden_p = parser->local_variables_forbidden_p;
|
||
parser->local_variables_forbidden_p = true;
|
||
|
||
push_defarg_context (fn);
|
||
|
||
for (parm = TYPE_ARG_TYPES (TREE_TYPE (fn)),
|
||
parmdecl = DECL_ARGUMENTS (fn);
|
||
parm && parm != void_list_node;
|
||
parm = TREE_CHAIN (parm),
|
||
parmdecl = DECL_CHAIN (parmdecl))
|
||
{
|
||
tree default_arg = TREE_PURPOSE (parm);
|
||
tree parsed_arg;
|
||
vec<tree, va_gc> *insts;
|
||
tree copy;
|
||
unsigned ix;
|
||
|
||
if (!default_arg)
|
||
continue;
|
||
|
||
if (TREE_CODE (default_arg) != DEFAULT_ARG)
|
||
/* This can happen for a friend declaration for a function
|
||
already declared with default arguments. */
|
||
continue;
|
||
|
||
parsed_arg
|
||
= cp_parser_late_parse_one_default_arg (parser, parmdecl,
|
||
default_arg,
|
||
TREE_VALUE (parm));
|
||
if (parsed_arg == error_mark_node)
|
||
{
|
||
continue;
|
||
}
|
||
|
||
TREE_PURPOSE (parm) = parsed_arg;
|
||
|
||
/* Update any instantiations we've already created. */
|
||
for (insts = DEFARG_INSTANTIATIONS (default_arg), ix = 0;
|
||
vec_safe_iterate (insts, ix, ©); ix++)
|
||
TREE_PURPOSE (copy) = parsed_arg;
|
||
}
|
||
|
||
pop_defarg_context ();
|
||
|
||
/* Make sure no default arg is missing. */
|
||
check_default_args (fn);
|
||
|
||
/* Restore the state of local_variables_forbidden_p. */
|
||
parser->local_variables_forbidden_p = saved_local_variables_forbidden_p;
|
||
|
||
/* Restore the queue. */
|
||
pop_unparsed_function_queues (parser);
|
||
}
|
||
|
||
/* Subroutine of cp_parser_sizeof_operand, for handling C++11
|
||
|
||
sizeof ... ( identifier )
|
||
|
||
where the 'sizeof' token has already been consumed. */
|
||
|
||
static tree
|
||
cp_parser_sizeof_pack (cp_parser *parser)
|
||
{
|
||
/* Consume the `...'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
maybe_warn_variadic_templates ();
|
||
|
||
bool paren = cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN);
|
||
if (paren)
|
||
cp_lexer_consume_token (parser->lexer);
|
||
else
|
||
permerror (cp_lexer_peek_token (parser->lexer)->location,
|
||
"%<sizeof...%> argument must be surrounded by parentheses");
|
||
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
tree name = cp_parser_identifier (parser);
|
||
if (name == error_mark_node)
|
||
return error_mark_node;
|
||
/* The name is not qualified. */
|
||
parser->scope = NULL_TREE;
|
||
parser->qualifying_scope = NULL_TREE;
|
||
parser->object_scope = NULL_TREE;
|
||
tree expr = cp_parser_lookup_name_simple (parser, name, token->location);
|
||
if (expr == error_mark_node)
|
||
cp_parser_name_lookup_error (parser, name, expr, NLE_NULL,
|
||
token->location);
|
||
if (TREE_CODE (expr) == TYPE_DECL)
|
||
expr = TREE_TYPE (expr);
|
||
else if (TREE_CODE (expr) == CONST_DECL)
|
||
expr = DECL_INITIAL (expr);
|
||
expr = make_pack_expansion (expr);
|
||
|
||
if (paren)
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Parse the operand of `sizeof' (or a similar operator). Returns
|
||
either a TYPE or an expression, depending on the form of the
|
||
input. The KEYWORD indicates which kind of expression we have
|
||
encountered. */
|
||
|
||
static tree
|
||
cp_parser_sizeof_operand (cp_parser* parser, enum rid keyword)
|
||
{
|
||
tree expr = NULL_TREE;
|
||
const char *saved_message;
|
||
char *tmp;
|
||
bool saved_integral_constant_expression_p;
|
||
bool saved_non_integral_constant_expression_p;
|
||
|
||
/* If it's a `...', then we are computing the length of a parameter
|
||
pack. */
|
||
if (keyword == RID_SIZEOF
|
||
&& cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
|
||
return cp_parser_sizeof_pack (parser);
|
||
|
||
/* Types cannot be defined in a `sizeof' expression. Save away the
|
||
old message. */
|
||
saved_message = parser->type_definition_forbidden_message;
|
||
/* And create the new one. */
|
||
tmp = concat ("types may not be defined in %<",
|
||
IDENTIFIER_POINTER (ridpointers[keyword]),
|
||
"%> expressions", NULL);
|
||
parser->type_definition_forbidden_message = tmp;
|
||
|
||
/* The restrictions on constant-expressions do not apply inside
|
||
sizeof expressions. */
|
||
saved_integral_constant_expression_p
|
||
= parser->integral_constant_expression_p;
|
||
saved_non_integral_constant_expression_p
|
||
= parser->non_integral_constant_expression_p;
|
||
parser->integral_constant_expression_p = false;
|
||
|
||
/* Do not actually evaluate the expression. */
|
||
++cp_unevaluated_operand;
|
||
++c_inhibit_evaluation_warnings;
|
||
/* If it's a `(', then we might be looking at the type-id
|
||
construction. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
|
||
{
|
||
tree type = NULL_TREE;
|
||
|
||
/* We can't be sure yet whether we're looking at a type-id or an
|
||
expression. */
|
||
cp_parser_parse_tentatively (parser);
|
||
/* Note: as a GNU Extension, compound literals are considered
|
||
postfix-expressions as they are in C99, so they are valid
|
||
arguments to sizeof. See comment in cp_parser_cast_expression
|
||
for details. */
|
||
if (cp_parser_compound_literal_p (parser))
|
||
cp_parser_simulate_error (parser);
|
||
else
|
||
{
|
||
bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
|
||
parser->in_type_id_in_expr_p = true;
|
||
/* Look for the type-id. */
|
||
type = cp_parser_type_id (parser);
|
||
/* Look for the closing `)'. */
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
|
||
}
|
||
|
||
/* If all went well, then we're done. */
|
||
if (cp_parser_parse_definitely (parser))
|
||
{
|
||
cp_decl_specifier_seq decl_specs;
|
||
|
||
/* Build a trivial decl-specifier-seq. */
|
||
clear_decl_specs (&decl_specs);
|
||
decl_specs.type = type;
|
||
|
||
/* Call grokdeclarator to figure out what type this is. */
|
||
expr = grokdeclarator (NULL,
|
||
&decl_specs,
|
||
TYPENAME,
|
||
/*initialized=*/0,
|
||
/*attrlist=*/NULL);
|
||
}
|
||
}
|
||
|
||
/* If the type-id production did not work out, then we must be
|
||
looking at the unary-expression production. */
|
||
if (!expr)
|
||
expr = cp_parser_unary_expression (parser, /*address_p=*/false,
|
||
/*cast_p=*/false, NULL);
|
||
|
||
/* Go back to evaluating expressions. */
|
||
--cp_unevaluated_operand;
|
||
--c_inhibit_evaluation_warnings;
|
||
|
||
/* Free the message we created. */
|
||
free (tmp);
|
||
/* And restore the old one. */
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
parser->integral_constant_expression_p
|
||
= saved_integral_constant_expression_p;
|
||
parser->non_integral_constant_expression_p
|
||
= saved_non_integral_constant_expression_p;
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* If the current declaration has no declarator, return true. */
|
||
|
||
static bool
|
||
cp_parser_declares_only_class_p (cp_parser *parser)
|
||
{
|
||
/* If the next token is a `;' or a `,' then there is no
|
||
declarator. */
|
||
return (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
|
||
|| cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
|
||
}
|
||
|
||
/* Update the DECL_SPECS to reflect the storage class indicated by
|
||
KEYWORD. */
|
||
|
||
static void
|
||
cp_parser_set_storage_class (cp_parser *parser,
|
||
cp_decl_specifier_seq *decl_specs,
|
||
enum rid keyword,
|
||
cp_token *token)
|
||
{
|
||
cp_storage_class storage_class;
|
||
|
||
if (parser->in_unbraced_linkage_specification_p)
|
||
{
|
||
error_at (token->location, "invalid use of %qD in linkage specification",
|
||
ridpointers[keyword]);
|
||
return;
|
||
}
|
||
else if (decl_specs->storage_class != sc_none)
|
||
{
|
||
decl_specs->conflicting_specifiers_p = true;
|
||
return;
|
||
}
|
||
|
||
if ((keyword == RID_EXTERN || keyword == RID_STATIC)
|
||
&& decl_spec_seq_has_spec_p (decl_specs, ds_thread)
|
||
&& decl_specs->gnu_thread_keyword_p)
|
||
{
|
||
pedwarn (decl_specs->locations[ds_thread], 0,
|
||
"%<__thread%> before %qD", ridpointers[keyword]);
|
||
}
|
||
|
||
switch (keyword)
|
||
{
|
||
case RID_AUTO:
|
||
storage_class = sc_auto;
|
||
break;
|
||
case RID_REGISTER:
|
||
storage_class = sc_register;
|
||
break;
|
||
case RID_STATIC:
|
||
storage_class = sc_static;
|
||
break;
|
||
case RID_EXTERN:
|
||
storage_class = sc_extern;
|
||
break;
|
||
case RID_MUTABLE:
|
||
storage_class = sc_mutable;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
decl_specs->storage_class = storage_class;
|
||
set_and_check_decl_spec_loc (decl_specs, ds_storage_class, token);
|
||
|
||
/* A storage class specifier cannot be applied alongside a typedef
|
||
specifier. If there is a typedef specifier present then set
|
||
conflicting_specifiers_p which will trigger an error later
|
||
on in grokdeclarator. */
|
||
if (decl_spec_seq_has_spec_p (decl_specs, ds_typedef))
|
||
decl_specs->conflicting_specifiers_p = true;
|
||
}
|
||
|
||
/* Update the DECL_SPECS to reflect the TYPE_SPEC. If TYPE_DEFINITION_P
|
||
is true, the type is a class or enum definition. */
|
||
|
||
static void
|
||
cp_parser_set_decl_spec_type (cp_decl_specifier_seq *decl_specs,
|
||
tree type_spec,
|
||
cp_token *token,
|
||
bool type_definition_p)
|
||
{
|
||
decl_specs->any_specifiers_p = true;
|
||
|
||
/* If the user tries to redeclare bool, char16_t, char32_t, or wchar_t
|
||
(with, for example, in "typedef int wchar_t;") we remember that
|
||
this is what happened. In system headers, we ignore these
|
||
declarations so that G++ can work with system headers that are not
|
||
C++-safe. */
|
||
if (decl_spec_seq_has_spec_p (decl_specs, ds_typedef)
|
||
&& !type_definition_p
|
||
&& (type_spec == boolean_type_node
|
||
|| type_spec == char16_type_node
|
||
|| type_spec == char32_type_node
|
||
|| type_spec == wchar_type_node)
|
||
&& (decl_specs->type
|
||
|| decl_spec_seq_has_spec_p (decl_specs, ds_long)
|
||
|| decl_spec_seq_has_spec_p (decl_specs, ds_short)
|
||
|| decl_spec_seq_has_spec_p (decl_specs, ds_unsigned)
|
||
|| decl_spec_seq_has_spec_p (decl_specs, ds_signed)))
|
||
{
|
||
decl_specs->redefined_builtin_type = type_spec;
|
||
set_and_check_decl_spec_loc (decl_specs,
|
||
ds_redefined_builtin_type_spec,
|
||
token);
|
||
if (!decl_specs->type)
|
||
{
|
||
decl_specs->type = type_spec;
|
||
decl_specs->type_definition_p = false;
|
||
set_and_check_decl_spec_loc (decl_specs,ds_type_spec, token);
|
||
}
|
||
}
|
||
else if (decl_specs->type)
|
||
decl_specs->multiple_types_p = true;
|
||
else
|
||
{
|
||
decl_specs->type = type_spec;
|
||
decl_specs->type_definition_p = type_definition_p;
|
||
decl_specs->redefined_builtin_type = NULL_TREE;
|
||
set_and_check_decl_spec_loc (decl_specs, ds_type_spec, token);
|
||
}
|
||
}
|
||
|
||
/* True iff TOKEN is the GNU keyword __thread. */
|
||
|
||
static bool
|
||
token_is__thread (cp_token *token)
|
||
{
|
||
gcc_assert (token->keyword == RID_THREAD);
|
||
return !strcmp (IDENTIFIER_POINTER (token->u.value), "__thread");
|
||
}
|
||
|
||
/* Set the location for a declarator specifier and check if it is
|
||
duplicated.
|
||
|
||
DECL_SPECS is the sequence of declarator specifiers onto which to
|
||
set the location.
|
||
|
||
DS is the single declarator specifier to set which location is to
|
||
be set onto the existing sequence of declarators.
|
||
|
||
LOCATION is the location for the declarator specifier to
|
||
consider. */
|
||
|
||
static void
|
||
set_and_check_decl_spec_loc (cp_decl_specifier_seq *decl_specs,
|
||
cp_decl_spec ds, cp_token *token)
|
||
{
|
||
gcc_assert (ds < ds_last);
|
||
|
||
if (decl_specs == NULL)
|
||
return;
|
||
|
||
source_location location = token->location;
|
||
|
||
if (decl_specs->locations[ds] == 0)
|
||
{
|
||
decl_specs->locations[ds] = location;
|
||
if (ds == ds_thread)
|
||
decl_specs->gnu_thread_keyword_p = token_is__thread (token);
|
||
}
|
||
else
|
||
{
|
||
if (ds == ds_long)
|
||
{
|
||
if (decl_specs->locations[ds_long_long] != 0)
|
||
error_at (location,
|
||
"%<long long long%> is too long for GCC");
|
||
else
|
||
{
|
||
decl_specs->locations[ds_long_long] = location;
|
||
pedwarn_cxx98 (location,
|
||
OPT_Wlong_long,
|
||
"ISO C++ 1998 does not support %<long long%>");
|
||
}
|
||
}
|
||
else if (ds == ds_thread)
|
||
{
|
||
bool gnu = token_is__thread (token);
|
||
if (gnu != decl_specs->gnu_thread_keyword_p)
|
||
error_at (location,
|
||
"both %<__thread%> and %<thread_local%> specified");
|
||
else
|
||
error_at (location, "duplicate %qD", token->u.value);
|
||
}
|
||
else
|
||
{
|
||
static const char *const decl_spec_names[] = {
|
||
"signed",
|
||
"unsigned",
|
||
"short",
|
||
"long",
|
||
"const",
|
||
"volatile",
|
||
"restrict",
|
||
"inline",
|
||
"virtual",
|
||
"explicit",
|
||
"friend",
|
||
"typedef",
|
||
"using",
|
||
"constexpr",
|
||
"__complex"
|
||
};
|
||
error_at (location,
|
||
"duplicate %qs", decl_spec_names[ds]);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return true iff the declarator specifier DS is present in the
|
||
sequence of declarator specifiers DECL_SPECS. */
|
||
|
||
bool
|
||
decl_spec_seq_has_spec_p (const cp_decl_specifier_seq * decl_specs,
|
||
cp_decl_spec ds)
|
||
{
|
||
gcc_assert (ds < ds_last);
|
||
|
||
if (decl_specs == NULL)
|
||
return false;
|
||
|
||
return decl_specs->locations[ds] != 0;
|
||
}
|
||
|
||
/* DECL_SPECIFIERS is the representation of a decl-specifier-seq.
|
||
Returns TRUE iff `friend' appears among the DECL_SPECIFIERS. */
|
||
|
||
static bool
|
||
cp_parser_friend_p (const cp_decl_specifier_seq *decl_specifiers)
|
||
{
|
||
return decl_spec_seq_has_spec_p (decl_specifiers, ds_friend);
|
||
}
|
||
|
||
/* Issue an error message indicating that TOKEN_DESC was expected.
|
||
If KEYWORD is true, it indicated this function is called by
|
||
cp_parser_require_keword and the required token can only be
|
||
a indicated keyword. */
|
||
|
||
static void
|
||
cp_parser_required_error (cp_parser *parser,
|
||
required_token token_desc,
|
||
bool keyword)
|
||
{
|
||
switch (token_desc)
|
||
{
|
||
case RT_NEW:
|
||
cp_parser_error (parser, "expected %<new%>");
|
||
return;
|
||
case RT_DELETE:
|
||
cp_parser_error (parser, "expected %<delete%>");
|
||
return;
|
||
case RT_RETURN:
|
||
cp_parser_error (parser, "expected %<return%>");
|
||
return;
|
||
case RT_WHILE:
|
||
cp_parser_error (parser, "expected %<while%>");
|
||
return;
|
||
case RT_EXTERN:
|
||
cp_parser_error (parser, "expected %<extern%>");
|
||
return;
|
||
case RT_STATIC_ASSERT:
|
||
cp_parser_error (parser, "expected %<static_assert%>");
|
||
return;
|
||
case RT_DECLTYPE:
|
||
cp_parser_error (parser, "expected %<decltype%>");
|
||
return;
|
||
case RT_OPERATOR:
|
||
cp_parser_error (parser, "expected %<operator%>");
|
||
return;
|
||
case RT_CLASS:
|
||
cp_parser_error (parser, "expected %<class%>");
|
||
return;
|
||
case RT_TEMPLATE:
|
||
cp_parser_error (parser, "expected %<template%>");
|
||
return;
|
||
case RT_NAMESPACE:
|
||
cp_parser_error (parser, "expected %<namespace%>");
|
||
return;
|
||
case RT_USING:
|
||
cp_parser_error (parser, "expected %<using%>");
|
||
return;
|
||
case RT_ASM:
|
||
cp_parser_error (parser, "expected %<asm%>");
|
||
return;
|
||
case RT_TRY:
|
||
cp_parser_error (parser, "expected %<try%>");
|
||
return;
|
||
case RT_CATCH:
|
||
cp_parser_error (parser, "expected %<catch%>");
|
||
return;
|
||
case RT_THROW:
|
||
cp_parser_error (parser, "expected %<throw%>");
|
||
return;
|
||
case RT_LABEL:
|
||
cp_parser_error (parser, "expected %<__label__%>");
|
||
return;
|
||
case RT_AT_TRY:
|
||
cp_parser_error (parser, "expected %<@try%>");
|
||
return;
|
||
case RT_AT_SYNCHRONIZED:
|
||
cp_parser_error (parser, "expected %<@synchronized%>");
|
||
return;
|
||
case RT_AT_THROW:
|
||
cp_parser_error (parser, "expected %<@throw%>");
|
||
return;
|
||
case RT_TRANSACTION_ATOMIC:
|
||
cp_parser_error (parser, "expected %<__transaction_atomic%>");
|
||
return;
|
||
case RT_TRANSACTION_RELAXED:
|
||
cp_parser_error (parser, "expected %<__transaction_relaxed%>");
|
||
return;
|
||
default:
|
||
break;
|
||
}
|
||
if (!keyword)
|
||
{
|
||
switch (token_desc)
|
||
{
|
||
case RT_SEMICOLON:
|
||
cp_parser_error (parser, "expected %<;%>");
|
||
return;
|
||
case RT_OPEN_PAREN:
|
||
cp_parser_error (parser, "expected %<(%>");
|
||
return;
|
||
case RT_CLOSE_BRACE:
|
||
cp_parser_error (parser, "expected %<}%>");
|
||
return;
|
||
case RT_OPEN_BRACE:
|
||
cp_parser_error (parser, "expected %<{%>");
|
||
return;
|
||
case RT_CLOSE_SQUARE:
|
||
cp_parser_error (parser, "expected %<]%>");
|
||
return;
|
||
case RT_OPEN_SQUARE:
|
||
cp_parser_error (parser, "expected %<[%>");
|
||
return;
|
||
case RT_COMMA:
|
||
cp_parser_error (parser, "expected %<,%>");
|
||
return;
|
||
case RT_SCOPE:
|
||
cp_parser_error (parser, "expected %<::%>");
|
||
return;
|
||
case RT_LESS:
|
||
cp_parser_error (parser, "expected %<<%>");
|
||
return;
|
||
case RT_GREATER:
|
||
cp_parser_error (parser, "expected %<>%>");
|
||
return;
|
||
case RT_EQ:
|
||
cp_parser_error (parser, "expected %<=%>");
|
||
return;
|
||
case RT_ELLIPSIS:
|
||
cp_parser_error (parser, "expected %<...%>");
|
||
return;
|
||
case RT_MULT:
|
||
cp_parser_error (parser, "expected %<*%>");
|
||
return;
|
||
case RT_COMPL:
|
||
cp_parser_error (parser, "expected %<~%>");
|
||
return;
|
||
case RT_COLON:
|
||
cp_parser_error (parser, "expected %<:%>");
|
||
return;
|
||
case RT_COLON_SCOPE:
|
||
cp_parser_error (parser, "expected %<:%> or %<::%>");
|
||
return;
|
||
case RT_CLOSE_PAREN:
|
||
cp_parser_error (parser, "expected %<)%>");
|
||
return;
|
||
case RT_COMMA_CLOSE_PAREN:
|
||
cp_parser_error (parser, "expected %<,%> or %<)%>");
|
||
return;
|
||
case RT_PRAGMA_EOL:
|
||
cp_parser_error (parser, "expected end of line");
|
||
return;
|
||
case RT_NAME:
|
||
cp_parser_error (parser, "expected identifier");
|
||
return;
|
||
case RT_SELECT:
|
||
cp_parser_error (parser, "expected selection-statement");
|
||
return;
|
||
case RT_INTERATION:
|
||
cp_parser_error (parser, "expected iteration-statement");
|
||
return;
|
||
case RT_JUMP:
|
||
cp_parser_error (parser, "expected jump-statement");
|
||
return;
|
||
case RT_CLASS_KEY:
|
||
cp_parser_error (parser, "expected class-key");
|
||
return;
|
||
case RT_CLASS_TYPENAME_TEMPLATE:
|
||
cp_parser_error (parser,
|
||
"expected %<class%>, %<typename%>, or %<template%>");
|
||
return;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
|
||
|
||
/* If the next token is of the indicated TYPE, consume it. Otherwise,
|
||
issue an error message indicating that TOKEN_DESC was expected.
|
||
|
||
Returns the token consumed, if the token had the appropriate type.
|
||
Otherwise, returns NULL. */
|
||
|
||
static cp_token *
|
||
cp_parser_require (cp_parser* parser,
|
||
enum cpp_ttype type,
|
||
required_token token_desc)
|
||
{
|
||
if (cp_lexer_next_token_is (parser->lexer, type))
|
||
return cp_lexer_consume_token (parser->lexer);
|
||
else
|
||
{
|
||
/* Output the MESSAGE -- unless we're parsing tentatively. */
|
||
if (!cp_parser_simulate_error (parser))
|
||
cp_parser_required_error (parser, token_desc, /*keyword=*/false);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* An error message is produced if the next token is not '>'.
|
||
All further tokens are skipped until the desired token is
|
||
found or '{', '}', ';' or an unbalanced ')' or ']'. */
|
||
|
||
static void
|
||
cp_parser_skip_to_end_of_template_parameter_list (cp_parser* parser)
|
||
{
|
||
/* Current level of '< ... >'. */
|
||
unsigned level = 0;
|
||
/* Ignore '<' and '>' nested inside '( ... )' or '[ ... ]'. */
|
||
unsigned nesting_depth = 0;
|
||
|
||
/* Are we ready, yet? If not, issue error message. */
|
||
if (cp_parser_require (parser, CPP_GREATER, RT_GREATER))
|
||
return;
|
||
|
||
/* Skip tokens until the desired token is found. */
|
||
while (true)
|
||
{
|
||
/* Peek at the next token. */
|
||
switch (cp_lexer_peek_token (parser->lexer)->type)
|
||
{
|
||
case CPP_LESS:
|
||
if (!nesting_depth)
|
||
++level;
|
||
break;
|
||
|
||
case CPP_RSHIFT:
|
||
if (cxx_dialect == cxx98)
|
||
/* C++0x views the `>>' operator as two `>' tokens, but
|
||
C++98 does not. */
|
||
break;
|
||
else if (!nesting_depth && level-- == 0)
|
||
{
|
||
/* We've hit a `>>' where the first `>' closes the
|
||
template argument list, and the second `>' is
|
||
spurious. Just consume the `>>' and stop; we've
|
||
already produced at least one error. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return;
|
||
}
|
||
/* Fall through for C++0x, so we handle the second `>' in
|
||
the `>>'. */
|
||
|
||
case CPP_GREATER:
|
||
if (!nesting_depth && level-- == 0)
|
||
{
|
||
/* We've reached the token we want, consume it and stop. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case CPP_OPEN_PAREN:
|
||
case CPP_OPEN_SQUARE:
|
||
++nesting_depth;
|
||
break;
|
||
|
||
case CPP_CLOSE_PAREN:
|
||
case CPP_CLOSE_SQUARE:
|
||
if (nesting_depth-- == 0)
|
||
return;
|
||
break;
|
||
|
||
case CPP_EOF:
|
||
case CPP_PRAGMA_EOL:
|
||
case CPP_SEMICOLON:
|
||
case CPP_OPEN_BRACE:
|
||
case CPP_CLOSE_BRACE:
|
||
/* The '>' was probably forgotten, don't look further. */
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Consume this token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
}
|
||
|
||
/* If the next token is the indicated keyword, consume it. Otherwise,
|
||
issue an error message indicating that TOKEN_DESC was expected.
|
||
|
||
Returns the token consumed, if the token had the appropriate type.
|
||
Otherwise, returns NULL. */
|
||
|
||
static cp_token *
|
||
cp_parser_require_keyword (cp_parser* parser,
|
||
enum rid keyword,
|
||
required_token token_desc)
|
||
{
|
||
cp_token *token = cp_parser_require (parser, CPP_KEYWORD, token_desc);
|
||
|
||
if (token && token->keyword != keyword)
|
||
{
|
||
cp_parser_required_error (parser, token_desc, /*keyword=*/true);
|
||
return NULL;
|
||
}
|
||
|
||
return token;
|
||
}
|
||
|
||
/* Returns TRUE iff TOKEN is a token that can begin the body of a
|
||
function-definition. */
|
||
|
||
static bool
|
||
cp_parser_token_starts_function_definition_p (cp_token* token)
|
||
{
|
||
return (/* An ordinary function-body begins with an `{'. */
|
||
token->type == CPP_OPEN_BRACE
|
||
/* A ctor-initializer begins with a `:'. */
|
||
|| token->type == CPP_COLON
|
||
/* A function-try-block begins with `try'. */
|
||
|| token->keyword == RID_TRY
|
||
/* A function-transaction-block begins with `__transaction_atomic'
|
||
or `__transaction_relaxed'. */
|
||
|| token->keyword == RID_TRANSACTION_ATOMIC
|
||
|| token->keyword == RID_TRANSACTION_RELAXED
|
||
/* The named return value extension begins with `return'. */
|
||
|| token->keyword == RID_RETURN);
|
||
}
|
||
|
||
/* Returns TRUE iff the next token is the ":" or "{" beginning a class
|
||
definition. */
|
||
|
||
static bool
|
||
cp_parser_next_token_starts_class_definition_p (cp_parser *parser)
|
||
{
|
||
cp_token *token;
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
return (token->type == CPP_OPEN_BRACE
|
||
|| (token->type == CPP_COLON
|
||
&& !parser->colon_doesnt_start_class_def_p));
|
||
}
|
||
|
||
/* Returns TRUE iff the next token is the "," or ">" (or `>>', in
|
||
C++0x) ending a template-argument. */
|
||
|
||
static bool
|
||
cp_parser_next_token_ends_template_argument_p (cp_parser *parser)
|
||
{
|
||
cp_token *token;
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
return (token->type == CPP_COMMA
|
||
|| token->type == CPP_GREATER
|
||
|| token->type == CPP_ELLIPSIS
|
||
|| ((cxx_dialect != cxx98) && token->type == CPP_RSHIFT));
|
||
}
|
||
|
||
/* Returns TRUE iff the n-th token is a "<", or the n-th is a "[" and the
|
||
(n+1)-th is a ":" (which is a possible digraph typo for "< ::"). */
|
||
|
||
static bool
|
||
cp_parser_nth_token_starts_template_argument_list_p (cp_parser * parser,
|
||
size_t n)
|
||
{
|
||
cp_token *token;
|
||
|
||
token = cp_lexer_peek_nth_token (parser->lexer, n);
|
||
if (token->type == CPP_LESS)
|
||
return true;
|
||
/* Check for the sequence `<::' in the original code. It would be lexed as
|
||
`[:', where `[' is a digraph, and there is no whitespace before
|
||
`:'. */
|
||
if (token->type == CPP_OPEN_SQUARE && token->flags & DIGRAPH)
|
||
{
|
||
cp_token *token2;
|
||
token2 = cp_lexer_peek_nth_token (parser->lexer, n+1);
|
||
if (token2->type == CPP_COLON && !(token2->flags & PREV_WHITE))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Returns the kind of tag indicated by TOKEN, if it is a class-key,
|
||
or none_type otherwise. */
|
||
|
||
static enum tag_types
|
||
cp_parser_token_is_class_key (cp_token* token)
|
||
{
|
||
switch (token->keyword)
|
||
{
|
||
case RID_CLASS:
|
||
return class_type;
|
||
case RID_STRUCT:
|
||
return record_type;
|
||
case RID_UNION:
|
||
return union_type;
|
||
|
||
default:
|
||
return none_type;
|
||
}
|
||
}
|
||
|
||
/* Returns the kind of tag indicated by TOKEN, if it is a type-parameter-key,
|
||
or none_type otherwise or if the token is null. */
|
||
|
||
static enum tag_types
|
||
cp_parser_token_is_type_parameter_key (cp_token* token)
|
||
{
|
||
if (!token)
|
||
return none_type;
|
||
|
||
switch (token->keyword)
|
||
{
|
||
case RID_CLASS:
|
||
return class_type;
|
||
case RID_TYPENAME:
|
||
return typename_type;
|
||
|
||
default:
|
||
return none_type;
|
||
}
|
||
}
|
||
|
||
/* Issue an error message if the CLASS_KEY does not match the TYPE. */
|
||
|
||
static void
|
||
cp_parser_check_class_key (enum tag_types class_key, tree type)
|
||
{
|
||
if (type == error_mark_node)
|
||
return;
|
||
if ((TREE_CODE (type) == UNION_TYPE) != (class_key == union_type))
|
||
{
|
||
if (permerror (input_location, "%qs tag used in naming %q#T",
|
||
class_key == union_type ? "union"
|
||
: class_key == record_type ? "struct" : "class",
|
||
type))
|
||
inform (DECL_SOURCE_LOCATION (TYPE_NAME (type)),
|
||
"%q#T was previously declared here", type);
|
||
}
|
||
}
|
||
|
||
/* Issue an error message if DECL is redeclared with different
|
||
access than its original declaration [class.access.spec/3].
|
||
This applies to nested classes and nested class templates.
|
||
[class.mem/1]. */
|
||
|
||
static void
|
||
cp_parser_check_access_in_redeclaration (tree decl, location_t location)
|
||
{
|
||
if (!decl || !CLASS_TYPE_P (TREE_TYPE (decl)))
|
||
return;
|
||
|
||
if ((TREE_PRIVATE (decl)
|
||
!= (current_access_specifier == access_private_node))
|
||
|| (TREE_PROTECTED (decl)
|
||
!= (current_access_specifier == access_protected_node)))
|
||
error_at (location, "%qD redeclared with different access", decl);
|
||
}
|
||
|
||
/* Look for the `template' keyword, as a syntactic disambiguator.
|
||
Return TRUE iff it is present, in which case it will be
|
||
consumed. */
|
||
|
||
static bool
|
||
cp_parser_optional_template_keyword (cp_parser *parser)
|
||
{
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
|
||
{
|
||
/* In C++98 the `template' keyword can only be used within templates;
|
||
outside templates the parser can always figure out what is a
|
||
template and what is not. In C++11, per the resolution of DR 468,
|
||
`template' is allowed in cases where it is not strictly necessary. */
|
||
if (!processing_template_decl
|
||
&& pedantic && cxx_dialect == cxx98)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
pedwarn (token->location, OPT_Wpedantic,
|
||
"in C++98 %<template%> (as a disambiguator) is only "
|
||
"allowed within templates");
|
||
/* If this part of the token stream is rescanned, the same
|
||
error message would be generated. So, we purge the token
|
||
from the stream. */
|
||
cp_lexer_purge_token (parser->lexer);
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
/* Consume the `template' keyword. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* The next token is a CPP_NESTED_NAME_SPECIFIER. Consume the token,
|
||
set PARSER->SCOPE, and perform other related actions. */
|
||
|
||
static void
|
||
cp_parser_pre_parsed_nested_name_specifier (cp_parser *parser)
|
||
{
|
||
int i;
|
||
struct tree_check *check_value;
|
||
deferred_access_check *chk;
|
||
vec<deferred_access_check, va_gc> *checks;
|
||
|
||
/* Get the stored value. */
|
||
check_value = cp_lexer_consume_token (parser->lexer)->u.tree_check_value;
|
||
/* Perform any access checks that were deferred. */
|
||
checks = check_value->checks;
|
||
if (checks)
|
||
{
|
||
FOR_EACH_VEC_SAFE_ELT (checks, i, chk)
|
||
perform_or_defer_access_check (chk->binfo,
|
||
chk->decl,
|
||
chk->diag_decl, tf_warning_or_error);
|
||
}
|
||
/* Set the scope from the stored value. */
|
||
parser->scope = check_value->value;
|
||
parser->qualifying_scope = check_value->qualifying_scope;
|
||
parser->object_scope = NULL_TREE;
|
||
}
|
||
|
||
/* Consume tokens up through a non-nested END token. Returns TRUE if we
|
||
encounter the end of a block before what we were looking for. */
|
||
|
||
static bool
|
||
cp_parser_cache_group (cp_parser *parser,
|
||
enum cpp_ttype end,
|
||
unsigned depth)
|
||
{
|
||
while (true)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* Abort a parenthesized expression if we encounter a semicolon. */
|
||
if ((end == CPP_CLOSE_PAREN || depth == 0)
|
||
&& token->type == CPP_SEMICOLON)
|
||
return true;
|
||
/* If we've reached the end of the file, stop. */
|
||
if (token->type == CPP_EOF
|
||
|| (end != CPP_PRAGMA_EOL
|
||
&& token->type == CPP_PRAGMA_EOL))
|
||
return true;
|
||
if (token->type == CPP_CLOSE_BRACE && depth == 0)
|
||
/* We've hit the end of an enclosing block, so there's been some
|
||
kind of syntax error. */
|
||
return true;
|
||
|
||
/* Consume the token. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* See if it starts a new group. */
|
||
if (token->type == CPP_OPEN_BRACE)
|
||
{
|
||
cp_parser_cache_group (parser, CPP_CLOSE_BRACE, depth + 1);
|
||
/* In theory this should probably check end == '}', but
|
||
cp_parser_save_member_function_body needs it to exit
|
||
after either '}' or ')' when called with ')'. */
|
||
if (depth == 0)
|
||
return false;
|
||
}
|
||
else if (token->type == CPP_OPEN_PAREN)
|
||
{
|
||
cp_parser_cache_group (parser, CPP_CLOSE_PAREN, depth + 1);
|
||
if (depth == 0 && end == CPP_CLOSE_PAREN)
|
||
return false;
|
||
}
|
||
else if (token->type == CPP_PRAGMA)
|
||
cp_parser_cache_group (parser, CPP_PRAGMA_EOL, depth + 1);
|
||
else if (token->type == end)
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Like above, for caching a default argument or NSDMI. Both of these are
|
||
terminated by a non-nested comma, but it can be unclear whether or not a
|
||
comma is nested in a template argument list unless we do more parsing.
|
||
In order to handle this ambiguity, when we encounter a ',' after a '<'
|
||
we try to parse what follows as a parameter-declaration-list (in the
|
||
case of a default argument) or a member-declarator (in the case of an
|
||
NSDMI). If that succeeds, then we stop caching. */
|
||
|
||
static tree
|
||
cp_parser_cache_defarg (cp_parser *parser, bool nsdmi)
|
||
{
|
||
unsigned depth = 0;
|
||
int maybe_template_id = 0;
|
||
cp_token *first_token;
|
||
cp_token *token;
|
||
tree default_argument;
|
||
|
||
/* Add tokens until we have processed the entire default
|
||
argument. We add the range [first_token, token). */
|
||
first_token = cp_lexer_peek_token (parser->lexer);
|
||
if (first_token->type == CPP_OPEN_BRACE)
|
||
{
|
||
/* For list-initialization, this is straightforward. */
|
||
cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
}
|
||
else while (true)
|
||
{
|
||
bool done = false;
|
||
|
||
/* Peek at the next token. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
/* What we do depends on what token we have. */
|
||
switch (token->type)
|
||
{
|
||
/* In valid code, a default argument must be
|
||
immediately followed by a `,' `)', or `...'. */
|
||
case CPP_COMMA:
|
||
if (depth == 0 && maybe_template_id)
|
||
{
|
||
/* If we've seen a '<', we might be in a
|
||
template-argument-list. Until Core issue 325 is
|
||
resolved, we don't know how this situation ought
|
||
to be handled, so try to DTRT. We check whether
|
||
what comes after the comma is a valid parameter
|
||
declaration list. If it is, then the comma ends
|
||
the default argument; otherwise the default
|
||
argument continues. */
|
||
bool error = false;
|
||
|
||
/* Set ITALP so cp_parser_parameter_declaration_list
|
||
doesn't decide to commit to this parse. */
|
||
bool saved_italp = parser->in_template_argument_list_p;
|
||
parser->in_template_argument_list_p = true;
|
||
|
||
cp_parser_parse_tentatively (parser);
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
if (nsdmi)
|
||
{
|
||
int ctor_dtor_or_conv_p;
|
||
cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
|
||
&ctor_dtor_or_conv_p,
|
||
/*parenthesized_p=*/NULL,
|
||
/*member_p=*/true,
|
||
/*friend_p=*/false);
|
||
}
|
||
else
|
||
{
|
||
begin_scope (sk_function_parms, NULL_TREE);
|
||
cp_parser_parameter_declaration_list (parser, &error);
|
||
pop_bindings_and_leave_scope ();
|
||
}
|
||
if (!cp_parser_error_occurred (parser) && !error)
|
||
done = true;
|
||
cp_parser_abort_tentative_parse (parser);
|
||
|
||
parser->in_template_argument_list_p = saved_italp;
|
||
break;
|
||
}
|
||
case CPP_CLOSE_PAREN:
|
||
case CPP_ELLIPSIS:
|
||
/* If we run into a non-nested `;', `}', or `]',
|
||
then the code is invalid -- but the default
|
||
argument is certainly over. */
|
||
case CPP_SEMICOLON:
|
||
case CPP_CLOSE_BRACE:
|
||
case CPP_CLOSE_SQUARE:
|
||
if (depth == 0
|
||
/* Handle correctly int n = sizeof ... ( p ); */
|
||
&& token->type != CPP_ELLIPSIS)
|
||
done = true;
|
||
/* Update DEPTH, if necessary. */
|
||
else if (token->type == CPP_CLOSE_PAREN
|
||
|| token->type == CPP_CLOSE_BRACE
|
||
|| token->type == CPP_CLOSE_SQUARE)
|
||
--depth;
|
||
break;
|
||
|
||
case CPP_OPEN_PAREN:
|
||
case CPP_OPEN_SQUARE:
|
||
case CPP_OPEN_BRACE:
|
||
++depth;
|
||
break;
|
||
|
||
case CPP_LESS:
|
||
if (depth == 0)
|
||
/* This might be the comparison operator, or it might
|
||
start a template argument list. */
|
||
++maybe_template_id;
|
||
break;
|
||
|
||
case CPP_RSHIFT:
|
||
if (cxx_dialect == cxx98)
|
||
break;
|
||
/* Fall through for C++0x, which treats the `>>'
|
||
operator like two `>' tokens in certain
|
||
cases. */
|
||
|
||
case CPP_GREATER:
|
||
if (depth == 0)
|
||
{
|
||
/* This might be an operator, or it might close a
|
||
template argument list. But if a previous '<'
|
||
started a template argument list, this will have
|
||
closed it, so we can't be in one anymore. */
|
||
maybe_template_id -= 1 + (token->type == CPP_RSHIFT);
|
||
if (maybe_template_id < 0)
|
||
maybe_template_id = 0;
|
||
}
|
||
break;
|
||
|
||
/* If we run out of tokens, issue an error message. */
|
||
case CPP_EOF:
|
||
case CPP_PRAGMA_EOL:
|
||
error_at (token->location, "file ends in default argument");
|
||
done = true;
|
||
break;
|
||
|
||
case CPP_NAME:
|
||
case CPP_SCOPE:
|
||
/* In these cases, we should look for template-ids.
|
||
For example, if the default argument is
|
||
`X<int, double>()', we need to do name lookup to
|
||
figure out whether or not `X' is a template; if
|
||
so, the `,' does not end the default argument.
|
||
|
||
That is not yet done. */
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If we've reached the end, stop. */
|
||
if (done)
|
||
break;
|
||
|
||
/* Add the token to the token block. */
|
||
token = cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
/* Create a DEFAULT_ARG to represent the unparsed default
|
||
argument. */
|
||
default_argument = make_node (DEFAULT_ARG);
|
||
DEFARG_TOKENS (default_argument)
|
||
= cp_token_cache_new (first_token, token);
|
||
DEFARG_INSTANTIATIONS (default_argument) = NULL;
|
||
|
||
return default_argument;
|
||
}
|
||
|
||
/* Begin parsing tentatively. We always save tokens while parsing
|
||
tentatively so that if the tentative parsing fails we can restore the
|
||
tokens. */
|
||
|
||
static void
|
||
cp_parser_parse_tentatively (cp_parser* parser)
|
||
{
|
||
/* Enter a new parsing context. */
|
||
parser->context = cp_parser_context_new (parser->context);
|
||
/* Begin saving tokens. */
|
||
cp_lexer_save_tokens (parser->lexer);
|
||
/* In order to avoid repetitive access control error messages,
|
||
access checks are queued up until we are no longer parsing
|
||
tentatively. */
|
||
push_deferring_access_checks (dk_deferred);
|
||
}
|
||
|
||
/* Commit to the currently active tentative parse. */
|
||
|
||
static void
|
||
cp_parser_commit_to_tentative_parse (cp_parser* parser)
|
||
{
|
||
cp_parser_context *context;
|
||
cp_lexer *lexer;
|
||
|
||
/* Mark all of the levels as committed. */
|
||
lexer = parser->lexer;
|
||
for (context = parser->context; context->next; context = context->next)
|
||
{
|
||
if (context->status == CP_PARSER_STATUS_KIND_COMMITTED)
|
||
break;
|
||
context->status = CP_PARSER_STATUS_KIND_COMMITTED;
|
||
while (!cp_lexer_saving_tokens (lexer))
|
||
lexer = lexer->next;
|
||
cp_lexer_commit_tokens (lexer);
|
||
}
|
||
}
|
||
|
||
/* Commit to the topmost currently active tentative parse.
|
||
|
||
Note that this function shouldn't be called when there are
|
||
irreversible side-effects while in a tentative state. For
|
||
example, we shouldn't create a permanent entry in the symbol
|
||
table, or issue an error message that might not apply if the
|
||
tentative parse is aborted. */
|
||
|
||
static void
|
||
cp_parser_commit_to_topmost_tentative_parse (cp_parser* parser)
|
||
{
|
||
cp_parser_context *context = parser->context;
|
||
cp_lexer *lexer = parser->lexer;
|
||
|
||
if (context)
|
||
{
|
||
if (context->status == CP_PARSER_STATUS_KIND_COMMITTED)
|
||
return;
|
||
context->status = CP_PARSER_STATUS_KIND_COMMITTED;
|
||
|
||
while (!cp_lexer_saving_tokens (lexer))
|
||
lexer = lexer->next;
|
||
cp_lexer_commit_tokens (lexer);
|
||
}
|
||
}
|
||
|
||
/* Abort the currently active tentative parse. All consumed tokens
|
||
will be rolled back, and no diagnostics will be issued. */
|
||
|
||
static void
|
||
cp_parser_abort_tentative_parse (cp_parser* parser)
|
||
{
|
||
gcc_assert (parser->context->status != CP_PARSER_STATUS_KIND_COMMITTED
|
||
|| errorcount > 0);
|
||
cp_parser_simulate_error (parser);
|
||
/* Now, pretend that we want to see if the construct was
|
||
successfully parsed. */
|
||
cp_parser_parse_definitely (parser);
|
||
}
|
||
|
||
/* Stop parsing tentatively. If a parse error has occurred, restore the
|
||
token stream. Otherwise, commit to the tokens we have consumed.
|
||
Returns true if no error occurred; false otherwise. */
|
||
|
||
static bool
|
||
cp_parser_parse_definitely (cp_parser* parser)
|
||
{
|
||
bool error_occurred;
|
||
cp_parser_context *context;
|
||
|
||
/* Remember whether or not an error occurred, since we are about to
|
||
destroy that information. */
|
||
error_occurred = cp_parser_error_occurred (parser);
|
||
/* Remove the topmost context from the stack. */
|
||
context = parser->context;
|
||
parser->context = context->next;
|
||
/* If no parse errors occurred, commit to the tentative parse. */
|
||
if (!error_occurred)
|
||
{
|
||
/* Commit to the tokens read tentatively, unless that was
|
||
already done. */
|
||
if (context->status != CP_PARSER_STATUS_KIND_COMMITTED)
|
||
cp_lexer_commit_tokens (parser->lexer);
|
||
|
||
pop_to_parent_deferring_access_checks ();
|
||
}
|
||
/* Otherwise, if errors occurred, roll back our state so that things
|
||
are just as they were before we began the tentative parse. */
|
||
else
|
||
{
|
||
cp_lexer_rollback_tokens (parser->lexer);
|
||
pop_deferring_access_checks ();
|
||
}
|
||
/* Add the context to the front of the free list. */
|
||
context->next = cp_parser_context_free_list;
|
||
cp_parser_context_free_list = context;
|
||
|
||
return !error_occurred;
|
||
}
|
||
|
||
/* Returns true if we are parsing tentatively and are not committed to
|
||
this tentative parse. */
|
||
|
||
static bool
|
||
cp_parser_uncommitted_to_tentative_parse_p (cp_parser* parser)
|
||
{
|
||
return (cp_parser_parsing_tentatively (parser)
|
||
&& parser->context->status != CP_PARSER_STATUS_KIND_COMMITTED);
|
||
}
|
||
|
||
/* Returns nonzero iff an error has occurred during the most recent
|
||
tentative parse. */
|
||
|
||
static bool
|
||
cp_parser_error_occurred (cp_parser* parser)
|
||
{
|
||
return (cp_parser_parsing_tentatively (parser)
|
||
&& parser->context->status == CP_PARSER_STATUS_KIND_ERROR);
|
||
}
|
||
|
||
/* Returns nonzero if GNU extensions are allowed. */
|
||
|
||
static bool
|
||
cp_parser_allow_gnu_extensions_p (cp_parser* parser)
|
||
{
|
||
return parser->allow_gnu_extensions_p;
|
||
}
|
||
|
||
/* Objective-C++ Productions */
|
||
|
||
|
||
/* Parse an Objective-C expression, which feeds into a primary-expression
|
||
above.
|
||
|
||
objc-expression:
|
||
objc-message-expression
|
||
objc-string-literal
|
||
objc-encode-expression
|
||
objc-protocol-expression
|
||
objc-selector-expression
|
||
|
||
Returns a tree representation of the expression. */
|
||
|
||
static tree
|
||
cp_parser_objc_expression (cp_parser* parser)
|
||
{
|
||
/* Try to figure out what kind of declaration is present. */
|
||
cp_token *kwd = cp_lexer_peek_token (parser->lexer);
|
||
|
||
switch (kwd->type)
|
||
{
|
||
case CPP_OPEN_SQUARE:
|
||
return cp_parser_objc_message_expression (parser);
|
||
|
||
case CPP_OBJC_STRING:
|
||
kwd = cp_lexer_consume_token (parser->lexer);
|
||
return objc_build_string_object (kwd->u.value);
|
||
|
||
case CPP_KEYWORD:
|
||
switch (kwd->keyword)
|
||
{
|
||
case RID_AT_ENCODE:
|
||
return cp_parser_objc_encode_expression (parser);
|
||
|
||
case RID_AT_PROTOCOL:
|
||
return cp_parser_objc_protocol_expression (parser);
|
||
|
||
case RID_AT_SELECTOR:
|
||
return cp_parser_objc_selector_expression (parser);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
default:
|
||
error_at (kwd->location,
|
||
"misplaced %<@%D%> Objective-C++ construct",
|
||
kwd->u.value);
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
}
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Parse an Objective-C message expression.
|
||
|
||
objc-message-expression:
|
||
[ objc-message-receiver objc-message-args ]
|
||
|
||
Returns a representation of an Objective-C message. */
|
||
|
||
static tree
|
||
cp_parser_objc_message_expression (cp_parser* parser)
|
||
{
|
||
tree receiver, messageargs;
|
||
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '['. */
|
||
receiver = cp_parser_objc_message_receiver (parser);
|
||
messageargs = cp_parser_objc_message_args (parser);
|
||
cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
|
||
|
||
return objc_build_message_expr (receiver, messageargs);
|
||
}
|
||
|
||
/* Parse an objc-message-receiver.
|
||
|
||
objc-message-receiver:
|
||
expression
|
||
simple-type-specifier
|
||
|
||
Returns a representation of the type or expression. */
|
||
|
||
static tree
|
||
cp_parser_objc_message_receiver (cp_parser* parser)
|
||
{
|
||
tree rcv;
|
||
|
||
/* An Objective-C message receiver may be either (1) a type
|
||
or (2) an expression. */
|
||
cp_parser_parse_tentatively (parser);
|
||
rcv = cp_parser_expression (parser, false, NULL);
|
||
|
||
if (cp_parser_parse_definitely (parser))
|
||
return rcv;
|
||
|
||
rcv = cp_parser_simple_type_specifier (parser,
|
||
/*decl_specs=*/NULL,
|
||
CP_PARSER_FLAGS_NONE);
|
||
|
||
return objc_get_class_reference (rcv);
|
||
}
|
||
|
||
/* Parse the arguments and selectors comprising an Objective-C message.
|
||
|
||
objc-message-args:
|
||
objc-selector
|
||
objc-selector-args
|
||
objc-selector-args , objc-comma-args
|
||
|
||
objc-selector-args:
|
||
objc-selector [opt] : assignment-expression
|
||
objc-selector-args objc-selector [opt] : assignment-expression
|
||
|
||
objc-comma-args:
|
||
assignment-expression
|
||
objc-comma-args , assignment-expression
|
||
|
||
Returns a TREE_LIST, with TREE_PURPOSE containing a list of
|
||
selector arguments and TREE_VALUE containing a list of comma
|
||
arguments. */
|
||
|
||
static tree
|
||
cp_parser_objc_message_args (cp_parser* parser)
|
||
{
|
||
tree sel_args = NULL_TREE, addl_args = NULL_TREE;
|
||
bool maybe_unary_selector_p = true;
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON)
|
||
{
|
||
tree selector = NULL_TREE, arg;
|
||
|
||
if (token->type != CPP_COLON)
|
||
selector = cp_parser_objc_selector (parser);
|
||
|
||
/* Detect if we have a unary selector. */
|
||
if (maybe_unary_selector_p
|
||
&& cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
|
||
return build_tree_list (selector, NULL_TREE);
|
||
|
||
maybe_unary_selector_p = false;
|
||
cp_parser_require (parser, CPP_COLON, RT_COLON);
|
||
arg = cp_parser_assignment_expression (parser, false, NULL);
|
||
|
||
sel_args
|
||
= chainon (sel_args,
|
||
build_tree_list (selector, arg));
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
}
|
||
|
||
/* Handle non-selector arguments, if any. */
|
||
while (token->type == CPP_COMMA)
|
||
{
|
||
tree arg;
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
arg = cp_parser_assignment_expression (parser, false, NULL);
|
||
|
||
addl_args
|
||
= chainon (addl_args,
|
||
build_tree_list (NULL_TREE, arg));
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
}
|
||
|
||
if (sel_args == NULL_TREE && addl_args == NULL_TREE)
|
||
{
|
||
cp_parser_error (parser, "objective-c++ message argument(s) are expected");
|
||
return build_tree_list (error_mark_node, error_mark_node);
|
||
}
|
||
|
||
return build_tree_list (sel_args, addl_args);
|
||
}
|
||
|
||
/* Parse an Objective-C encode expression.
|
||
|
||
objc-encode-expression:
|
||
@encode objc-typename
|
||
|
||
Returns an encoded representation of the type argument. */
|
||
|
||
static tree
|
||
cp_parser_objc_encode_expression (cp_parser* parser)
|
||
{
|
||
tree type;
|
||
cp_token *token;
|
||
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '@encode'. */
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
type = complete_type (cp_parser_type_id (parser));
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
|
||
if (!type)
|
||
{
|
||
error_at (token->location,
|
||
"%<@encode%> must specify a type as an argument");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* This happens if we find @encode(T) (where T is a template
|
||
typename or something dependent on a template typename) when
|
||
parsing a template. In that case, we can't compile it
|
||
immediately, but we rather create an AT_ENCODE_EXPR which will
|
||
need to be instantiated when the template is used.
|
||
*/
|
||
if (dependent_type_p (type))
|
||
{
|
||
tree value = build_min (AT_ENCODE_EXPR, size_type_node, type);
|
||
TREE_READONLY (value) = 1;
|
||
return value;
|
||
}
|
||
|
||
return objc_build_encode_expr (type);
|
||
}
|
||
|
||
/* Parse an Objective-C @defs expression. */
|
||
|
||
static tree
|
||
cp_parser_objc_defs_expression (cp_parser *parser)
|
||
{
|
||
tree name;
|
||
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '@defs'. */
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
name = cp_parser_identifier (parser);
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
|
||
return objc_get_class_ivars (name);
|
||
}
|
||
|
||
/* Parse an Objective-C protocol expression.
|
||
|
||
objc-protocol-expression:
|
||
@protocol ( identifier )
|
||
|
||
Returns a representation of the protocol expression. */
|
||
|
||
static tree
|
||
cp_parser_objc_protocol_expression (cp_parser* parser)
|
||
{
|
||
tree proto;
|
||
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '@protocol'. */
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
proto = cp_parser_identifier (parser);
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
|
||
return objc_build_protocol_expr (proto);
|
||
}
|
||
|
||
/* Parse an Objective-C selector expression.
|
||
|
||
objc-selector-expression:
|
||
@selector ( objc-method-signature )
|
||
|
||
objc-method-signature:
|
||
objc-selector
|
||
objc-selector-seq
|
||
|
||
objc-selector-seq:
|
||
objc-selector :
|
||
objc-selector-seq objc-selector :
|
||
|
||
Returns a representation of the method selector. */
|
||
|
||
static tree
|
||
cp_parser_objc_selector_expression (cp_parser* parser)
|
||
{
|
||
tree sel_seq = NULL_TREE;
|
||
bool maybe_unary_selector_p = true;
|
||
cp_token *token;
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '@selector'. */
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON
|
||
|| token->type == CPP_SCOPE)
|
||
{
|
||
tree selector = NULL_TREE;
|
||
|
||
if (token->type != CPP_COLON
|
||
|| token->type == CPP_SCOPE)
|
||
selector = cp_parser_objc_selector (parser);
|
||
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON)
|
||
&& cp_lexer_next_token_is_not (parser->lexer, CPP_SCOPE))
|
||
{
|
||
/* Detect if we have a unary selector. */
|
||
if (maybe_unary_selector_p)
|
||
{
|
||
sel_seq = selector;
|
||
goto finish_selector;
|
||
}
|
||
else
|
||
{
|
||
cp_parser_error (parser, "expected %<:%>");
|
||
}
|
||
}
|
||
maybe_unary_selector_p = false;
|
||
token = cp_lexer_consume_token (parser->lexer);
|
||
|
||
if (token->type == CPP_SCOPE)
|
||
{
|
||
sel_seq
|
||
= chainon (sel_seq,
|
||
build_tree_list (selector, NULL_TREE));
|
||
sel_seq
|
||
= chainon (sel_seq,
|
||
build_tree_list (NULL_TREE, NULL_TREE));
|
||
}
|
||
else
|
||
sel_seq
|
||
= chainon (sel_seq,
|
||
build_tree_list (selector, NULL_TREE));
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
}
|
||
|
||
finish_selector:
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
|
||
return objc_build_selector_expr (loc, sel_seq);
|
||
}
|
||
|
||
/* Parse a list of identifiers.
|
||
|
||
objc-identifier-list:
|
||
identifier
|
||
objc-identifier-list , identifier
|
||
|
||
Returns a TREE_LIST of identifier nodes. */
|
||
|
||
static tree
|
||
cp_parser_objc_identifier_list (cp_parser* parser)
|
||
{
|
||
tree identifier;
|
||
tree list;
|
||
cp_token *sep;
|
||
|
||
identifier = cp_parser_identifier (parser);
|
||
if (identifier == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
list = build_tree_list (NULL_TREE, identifier);
|
||
sep = cp_lexer_peek_token (parser->lexer);
|
||
|
||
while (sep->type == CPP_COMMA)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer); /* Eat ','. */
|
||
identifier = cp_parser_identifier (parser);
|
||
if (identifier == error_mark_node)
|
||
return list;
|
||
|
||
list = chainon (list, build_tree_list (NULL_TREE,
|
||
identifier));
|
||
sep = cp_lexer_peek_token (parser->lexer);
|
||
}
|
||
|
||
return list;
|
||
}
|
||
|
||
/* Parse an Objective-C alias declaration.
|
||
|
||
objc-alias-declaration:
|
||
@compatibility_alias identifier identifier ;
|
||
|
||
This function registers the alias mapping with the Objective-C front end.
|
||
It returns nothing. */
|
||
|
||
static void
|
||
cp_parser_objc_alias_declaration (cp_parser* parser)
|
||
{
|
||
tree alias, orig;
|
||
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '@compatibility_alias'. */
|
||
alias = cp_parser_identifier (parser);
|
||
orig = cp_parser_identifier (parser);
|
||
objc_declare_alias (alias, orig);
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
}
|
||
|
||
/* Parse an Objective-C class forward-declaration.
|
||
|
||
objc-class-declaration:
|
||
@class objc-identifier-list ;
|
||
|
||
The function registers the forward declarations with the Objective-C
|
||
front end. It returns nothing. */
|
||
|
||
static void
|
||
cp_parser_objc_class_declaration (cp_parser* parser)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '@class'. */
|
||
while (true)
|
||
{
|
||
tree id;
|
||
|
||
id = cp_parser_identifier (parser);
|
||
if (id == error_mark_node)
|
||
break;
|
||
|
||
objc_declare_class (id);
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
else
|
||
break;
|
||
}
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
}
|
||
|
||
/* Parse a list of Objective-C protocol references.
|
||
|
||
objc-protocol-refs-opt:
|
||
objc-protocol-refs [opt]
|
||
|
||
objc-protocol-refs:
|
||
< objc-identifier-list >
|
||
|
||
Returns a TREE_LIST of identifiers, if any. */
|
||
|
||
static tree
|
||
cp_parser_objc_protocol_refs_opt (cp_parser* parser)
|
||
{
|
||
tree protorefs = NULL_TREE;
|
||
|
||
if(cp_lexer_next_token_is (parser->lexer, CPP_LESS))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '<'. */
|
||
protorefs = cp_parser_objc_identifier_list (parser);
|
||
cp_parser_require (parser, CPP_GREATER, RT_GREATER);
|
||
}
|
||
|
||
return protorefs;
|
||
}
|
||
|
||
/* Parse a Objective-C visibility specification. */
|
||
|
||
static void
|
||
cp_parser_objc_visibility_spec (cp_parser* parser)
|
||
{
|
||
cp_token *vis = cp_lexer_peek_token (parser->lexer);
|
||
|
||
switch (vis->keyword)
|
||
{
|
||
case RID_AT_PRIVATE:
|
||
objc_set_visibility (OBJC_IVAR_VIS_PRIVATE);
|
||
break;
|
||
case RID_AT_PROTECTED:
|
||
objc_set_visibility (OBJC_IVAR_VIS_PROTECTED);
|
||
break;
|
||
case RID_AT_PUBLIC:
|
||
objc_set_visibility (OBJC_IVAR_VIS_PUBLIC);
|
||
break;
|
||
case RID_AT_PACKAGE:
|
||
objc_set_visibility (OBJC_IVAR_VIS_PACKAGE);
|
||
break;
|
||
default:
|
||
return;
|
||
}
|
||
|
||
/* Eat '@private'/'@protected'/'@public'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
/* Parse an Objective-C method type. Return 'true' if it is a class
|
||
(+) method, and 'false' if it is an instance (-) method. */
|
||
|
||
static inline bool
|
||
cp_parser_objc_method_type (cp_parser* parser)
|
||
{
|
||
if (cp_lexer_consume_token (parser->lexer)->type == CPP_PLUS)
|
||
return true;
|
||
else
|
||
return false;
|
||
}
|
||
|
||
/* Parse an Objective-C protocol qualifier. */
|
||
|
||
static tree
|
||
cp_parser_objc_protocol_qualifiers (cp_parser* parser)
|
||
{
|
||
tree quals = NULL_TREE, node;
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
node = token->u.value;
|
||
|
||
while (node && identifier_p (node)
|
||
&& (node == ridpointers [(int) RID_IN]
|
||
|| node == ridpointers [(int) RID_OUT]
|
||
|| node == ridpointers [(int) RID_INOUT]
|
||
|| node == ridpointers [(int) RID_BYCOPY]
|
||
|| node == ridpointers [(int) RID_BYREF]
|
||
|| node == ridpointers [(int) RID_ONEWAY]))
|
||
{
|
||
quals = tree_cons (NULL_TREE, node, quals);
|
||
cp_lexer_consume_token (parser->lexer);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
node = token->u.value;
|
||
}
|
||
|
||
return quals;
|
||
}
|
||
|
||
/* Parse an Objective-C typename. */
|
||
|
||
static tree
|
||
cp_parser_objc_typename (cp_parser* parser)
|
||
{
|
||
tree type_name = NULL_TREE;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
|
||
{
|
||
tree proto_quals, cp_type = NULL_TREE;
|
||
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '('. */
|
||
proto_quals = cp_parser_objc_protocol_qualifiers (parser);
|
||
|
||
/* An ObjC type name may consist of just protocol qualifiers, in which
|
||
case the type shall default to 'id'. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
|
||
{
|
||
cp_type = cp_parser_type_id (parser);
|
||
|
||
/* If the type could not be parsed, an error has already
|
||
been produced. For error recovery, behave as if it had
|
||
not been specified, which will use the default type
|
||
'id'. */
|
||
if (cp_type == error_mark_node)
|
||
{
|
||
cp_type = NULL_TREE;
|
||
/* We need to skip to the closing parenthesis as
|
||
cp_parser_type_id() does not seem to do it for
|
||
us. */
|
||
cp_parser_skip_to_closing_parenthesis (parser,
|
||
/*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/false);
|
||
}
|
||
}
|
||
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
type_name = build_tree_list (proto_quals, cp_type);
|
||
}
|
||
|
||
return type_name;
|
||
}
|
||
|
||
/* Check to see if TYPE refers to an Objective-C selector name. */
|
||
|
||
static bool
|
||
cp_parser_objc_selector_p (enum cpp_ttype type)
|
||
{
|
||
return (type == CPP_NAME || type == CPP_KEYWORD
|
||
|| type == CPP_AND_AND || type == CPP_AND_EQ || type == CPP_AND
|
||
|| type == CPP_OR || type == CPP_COMPL || type == CPP_NOT
|
||
|| type == CPP_NOT_EQ || type == CPP_OR_OR || type == CPP_OR_EQ
|
||
|| type == CPP_XOR || type == CPP_XOR_EQ);
|
||
}
|
||
|
||
/* Parse an Objective-C selector. */
|
||
|
||
static tree
|
||
cp_parser_objc_selector (cp_parser* parser)
|
||
{
|
||
cp_token *token = cp_lexer_consume_token (parser->lexer);
|
||
|
||
if (!cp_parser_objc_selector_p (token->type))
|
||
{
|
||
error_at (token->location, "invalid Objective-C++ selector name");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* C++ operator names are allowed to appear in ObjC selectors. */
|
||
switch (token->type)
|
||
{
|
||
case CPP_AND_AND: return get_identifier ("and");
|
||
case CPP_AND_EQ: return get_identifier ("and_eq");
|
||
case CPP_AND: return get_identifier ("bitand");
|
||
case CPP_OR: return get_identifier ("bitor");
|
||
case CPP_COMPL: return get_identifier ("compl");
|
||
case CPP_NOT: return get_identifier ("not");
|
||
case CPP_NOT_EQ: return get_identifier ("not_eq");
|
||
case CPP_OR_OR: return get_identifier ("or");
|
||
case CPP_OR_EQ: return get_identifier ("or_eq");
|
||
case CPP_XOR: return get_identifier ("xor");
|
||
case CPP_XOR_EQ: return get_identifier ("xor_eq");
|
||
default: return token->u.value;
|
||
}
|
||
}
|
||
|
||
/* Parse an Objective-C params list. */
|
||
|
||
static tree
|
||
cp_parser_objc_method_keyword_params (cp_parser* parser, tree* attributes)
|
||
{
|
||
tree params = NULL_TREE;
|
||
bool maybe_unary_selector_p = true;
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON)
|
||
{
|
||
tree selector = NULL_TREE, type_name, identifier;
|
||
tree parm_attr = NULL_TREE;
|
||
|
||
if (token->keyword == RID_ATTRIBUTE)
|
||
break;
|
||
|
||
if (token->type != CPP_COLON)
|
||
selector = cp_parser_objc_selector (parser);
|
||
|
||
/* Detect if we have a unary selector. */
|
||
if (maybe_unary_selector_p
|
||
&& cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
|
||
{
|
||
params = selector; /* Might be followed by attributes. */
|
||
break;
|
||
}
|
||
|
||
maybe_unary_selector_p = false;
|
||
if (!cp_parser_require (parser, CPP_COLON, RT_COLON))
|
||
{
|
||
/* Something went quite wrong. There should be a colon
|
||
here, but there is not. Stop parsing parameters. */
|
||
break;
|
||
}
|
||
type_name = cp_parser_objc_typename (parser);
|
||
/* New ObjC allows attributes on parameters too. */
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE))
|
||
parm_attr = cp_parser_attributes_opt (parser);
|
||
identifier = cp_parser_identifier (parser);
|
||
|
||
params
|
||
= chainon (params,
|
||
objc_build_keyword_decl (selector,
|
||
type_name,
|
||
identifier,
|
||
parm_attr));
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
}
|
||
|
||
if (params == NULL_TREE)
|
||
{
|
||
cp_parser_error (parser, "objective-c++ method declaration is expected");
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* We allow tail attributes for the method. */
|
||
if (token->keyword == RID_ATTRIBUTE)
|
||
{
|
||
*attributes = cp_parser_attributes_opt (parser);
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
|
||
|| cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
return params;
|
||
cp_parser_error (parser,
|
||
"method attributes must be specified at the end");
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (params == NULL_TREE)
|
||
{
|
||
cp_parser_error (parser, "objective-c++ method declaration is expected");
|
||
return error_mark_node;
|
||
}
|
||
return params;
|
||
}
|
||
|
||
/* Parse the non-keyword Objective-C params. */
|
||
|
||
static tree
|
||
cp_parser_objc_method_tail_params_opt (cp_parser* parser, bool *ellipsisp,
|
||
tree* attributes)
|
||
{
|
||
tree params = make_node (TREE_LIST);
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
*ellipsisp = false; /* Initially, assume no ellipsis. */
|
||
|
||
while (token->type == CPP_COMMA)
|
||
{
|
||
cp_parameter_declarator *parmdecl;
|
||
tree parm;
|
||
|
||
cp_lexer_consume_token (parser->lexer); /* Eat ','. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
if (token->type == CPP_ELLIPSIS)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '...'. */
|
||
*ellipsisp = true;
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
break;
|
||
}
|
||
|
||
/* TODO: parse attributes for tail parameters. */
|
||
parmdecl = cp_parser_parameter_declaration (parser, false, NULL);
|
||
parm = grokdeclarator (parmdecl->declarator,
|
||
&parmdecl->decl_specifiers,
|
||
PARM, /*initialized=*/0,
|
||
/*attrlist=*/NULL);
|
||
|
||
chainon (params, build_tree_list (NULL_TREE, parm));
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
}
|
||
|
||
/* We allow tail attributes for the method. */
|
||
if (token->keyword == RID_ATTRIBUTE)
|
||
{
|
||
if (*attributes == NULL_TREE)
|
||
{
|
||
*attributes = cp_parser_attributes_opt (parser);
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
|
||
|| cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
return params;
|
||
}
|
||
else
|
||
/* We have an error, but parse the attributes, so that we can
|
||
carry on. */
|
||
*attributes = cp_parser_attributes_opt (parser);
|
||
|
||
cp_parser_error (parser,
|
||
"method attributes must be specified at the end");
|
||
return error_mark_node;
|
||
}
|
||
|
||
return params;
|
||
}
|
||
|
||
/* Parse a linkage specification, a pragma, an extra semicolon or a block. */
|
||
|
||
static void
|
||
cp_parser_objc_interstitial_code (cp_parser* parser)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
/* If the next token is `extern' and the following token is a string
|
||
literal, then we have a linkage specification. */
|
||
if (token->keyword == RID_EXTERN
|
||
&& cp_parser_is_pure_string_literal
|
||
(cp_lexer_peek_nth_token (parser->lexer, 2)))
|
||
cp_parser_linkage_specification (parser);
|
||
/* Handle #pragma, if any. */
|
||
else if (token->type == CPP_PRAGMA)
|
||
cp_parser_pragma (parser, pragma_objc_icode);
|
||
/* Allow stray semicolons. */
|
||
else if (token->type == CPP_SEMICOLON)
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Mark methods as optional or required, when building protocols. */
|
||
else if (token->keyword == RID_AT_OPTIONAL)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
objc_set_method_opt (true);
|
||
}
|
||
else if (token->keyword == RID_AT_REQUIRED)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
objc_set_method_opt (false);
|
||
}
|
||
else if (token->keyword == RID_NAMESPACE)
|
||
cp_parser_namespace_definition (parser);
|
||
/* Other stray characters must generate errors. */
|
||
else if (token->type == CPP_OPEN_BRACE || token->type == CPP_CLOSE_BRACE)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
error ("stray %qs between Objective-C++ methods",
|
||
token->type == CPP_OPEN_BRACE ? "{" : "}");
|
||
}
|
||
/* Finally, try to parse a block-declaration, or a function-definition. */
|
||
else
|
||
cp_parser_block_declaration (parser, /*statement_p=*/false);
|
||
}
|
||
|
||
/* Parse a method signature. */
|
||
|
||
static tree
|
||
cp_parser_objc_method_signature (cp_parser* parser, tree* attributes)
|
||
{
|
||
tree rettype, kwdparms, optparms;
|
||
bool ellipsis = false;
|
||
bool is_class_method;
|
||
|
||
is_class_method = cp_parser_objc_method_type (parser);
|
||
rettype = cp_parser_objc_typename (parser);
|
||
*attributes = NULL_TREE;
|
||
kwdparms = cp_parser_objc_method_keyword_params (parser, attributes);
|
||
if (kwdparms == error_mark_node)
|
||
return error_mark_node;
|
||
optparms = cp_parser_objc_method_tail_params_opt (parser, &ellipsis, attributes);
|
||
if (optparms == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
return objc_build_method_signature (is_class_method, rettype, kwdparms, optparms, ellipsis);
|
||
}
|
||
|
||
static bool
|
||
cp_parser_objc_method_maybe_bad_prefix_attributes (cp_parser* parser)
|
||
{
|
||
tree tattr;
|
||
cp_lexer_save_tokens (parser->lexer);
|
||
tattr = cp_parser_attributes_opt (parser);
|
||
gcc_assert (tattr) ;
|
||
|
||
/* If the attributes are followed by a method introducer, this is not allowed.
|
||
Dump the attributes and flag the situation. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_PLUS)
|
||
|| cp_lexer_next_token_is (parser->lexer, CPP_MINUS))
|
||
return true;
|
||
|
||
/* Otherwise, the attributes introduce some interstitial code, possibly so
|
||
rewind to allow that check. */
|
||
cp_lexer_rollback_tokens (parser->lexer);
|
||
return false;
|
||
}
|
||
|
||
/* Parse an Objective-C method prototype list. */
|
||
|
||
static void
|
||
cp_parser_objc_method_prototype_list (cp_parser* parser)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
while (token->keyword != RID_AT_END && token->type != CPP_EOF)
|
||
{
|
||
if (token->type == CPP_PLUS || token->type == CPP_MINUS)
|
||
{
|
||
tree attributes, sig;
|
||
bool is_class_method;
|
||
if (token->type == CPP_PLUS)
|
||
is_class_method = true;
|
||
else
|
||
is_class_method = false;
|
||
sig = cp_parser_objc_method_signature (parser, &attributes);
|
||
if (sig == error_mark_node)
|
||
{
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
continue;
|
||
}
|
||
objc_add_method_declaration (is_class_method, sig, attributes);
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
}
|
||
else if (token->keyword == RID_AT_PROPERTY)
|
||
cp_parser_objc_at_property_declaration (parser);
|
||
else if (token->keyword == RID_ATTRIBUTE
|
||
&& cp_parser_objc_method_maybe_bad_prefix_attributes(parser))
|
||
warning_at (cp_lexer_peek_token (parser->lexer)->location,
|
||
OPT_Wattributes,
|
||
"prefix attributes are ignored for methods");
|
||
else
|
||
/* Allow for interspersed non-ObjC++ code. */
|
||
cp_parser_objc_interstitial_code (parser);
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
}
|
||
|
||
if (token->type != CPP_EOF)
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '@end'. */
|
||
else
|
||
cp_parser_error (parser, "expected %<@end%>");
|
||
|
||
objc_finish_interface ();
|
||
}
|
||
|
||
/* Parse an Objective-C method definition list. */
|
||
|
||
static void
|
||
cp_parser_objc_method_definition_list (cp_parser* parser)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
while (token->keyword != RID_AT_END && token->type != CPP_EOF)
|
||
{
|
||
tree meth;
|
||
|
||
if (token->type == CPP_PLUS || token->type == CPP_MINUS)
|
||
{
|
||
cp_token *ptk;
|
||
tree sig, attribute;
|
||
bool is_class_method;
|
||
if (token->type == CPP_PLUS)
|
||
is_class_method = true;
|
||
else
|
||
is_class_method = false;
|
||
push_deferring_access_checks (dk_deferred);
|
||
sig = cp_parser_objc_method_signature (parser, &attribute);
|
||
if (sig == error_mark_node)
|
||
{
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
continue;
|
||
}
|
||
objc_start_method_definition (is_class_method, sig, attribute,
|
||
NULL_TREE);
|
||
|
||
/* For historical reasons, we accept an optional semicolon. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
ptk = cp_lexer_peek_token (parser->lexer);
|
||
if (!(ptk->type == CPP_PLUS || ptk->type == CPP_MINUS
|
||
|| ptk->type == CPP_EOF || ptk->keyword == RID_AT_END))
|
||
{
|
||
perform_deferred_access_checks (tf_warning_or_error);
|
||
stop_deferring_access_checks ();
|
||
meth = cp_parser_function_definition_after_declarator (parser,
|
||
false);
|
||
pop_deferring_access_checks ();
|
||
objc_finish_method_definition (meth);
|
||
}
|
||
}
|
||
/* The following case will be removed once @synthesize is
|
||
completely implemented. */
|
||
else if (token->keyword == RID_AT_PROPERTY)
|
||
cp_parser_objc_at_property_declaration (parser);
|
||
else if (token->keyword == RID_AT_SYNTHESIZE)
|
||
cp_parser_objc_at_synthesize_declaration (parser);
|
||
else if (token->keyword == RID_AT_DYNAMIC)
|
||
cp_parser_objc_at_dynamic_declaration (parser);
|
||
else if (token->keyword == RID_ATTRIBUTE
|
||
&& cp_parser_objc_method_maybe_bad_prefix_attributes(parser))
|
||
warning_at (token->location, OPT_Wattributes,
|
||
"prefix attributes are ignored for methods");
|
||
else
|
||
/* Allow for interspersed non-ObjC++ code. */
|
||
cp_parser_objc_interstitial_code (parser);
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
}
|
||
|
||
if (token->type != CPP_EOF)
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '@end'. */
|
||
else
|
||
cp_parser_error (parser, "expected %<@end%>");
|
||
|
||
objc_finish_implementation ();
|
||
}
|
||
|
||
/* Parse Objective-C ivars. */
|
||
|
||
static void
|
||
cp_parser_objc_class_ivars (cp_parser* parser)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
if (token->type != CPP_OPEN_BRACE)
|
||
return; /* No ivars specified. */
|
||
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '{'. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
while (token->type != CPP_CLOSE_BRACE
|
||
&& token->keyword != RID_AT_END && token->type != CPP_EOF)
|
||
{
|
||
cp_decl_specifier_seq declspecs;
|
||
int decl_class_or_enum_p;
|
||
tree prefix_attributes;
|
||
|
||
cp_parser_objc_visibility_spec (parser);
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
|
||
break;
|
||
|
||
cp_parser_decl_specifier_seq (parser,
|
||
CP_PARSER_FLAGS_OPTIONAL,
|
||
&declspecs,
|
||
&decl_class_or_enum_p);
|
||
|
||
/* auto, register, static, extern, mutable. */
|
||
if (declspecs.storage_class != sc_none)
|
||
{
|
||
cp_parser_error (parser, "invalid type for instance variable");
|
||
declspecs.storage_class = sc_none;
|
||
}
|
||
|
||
/* thread_local. */
|
||
if (decl_spec_seq_has_spec_p (&declspecs, ds_thread))
|
||
{
|
||
cp_parser_error (parser, "invalid type for instance variable");
|
||
declspecs.locations[ds_thread] = 0;
|
||
}
|
||
|
||
/* typedef. */
|
||
if (decl_spec_seq_has_spec_p (&declspecs, ds_typedef))
|
||
{
|
||
cp_parser_error (parser, "invalid type for instance variable");
|
||
declspecs.locations[ds_typedef] = 0;
|
||
}
|
||
|
||
prefix_attributes = declspecs.attributes;
|
||
declspecs.attributes = NULL_TREE;
|
||
|
||
/* Keep going until we hit the `;' at the end of the
|
||
declaration. */
|
||
while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
|
||
{
|
||
tree width = NULL_TREE, attributes, first_attribute, decl;
|
||
cp_declarator *declarator = NULL;
|
||
int ctor_dtor_or_conv_p;
|
||
|
||
/* Check for a (possibly unnamed) bitfield declaration. */
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type == CPP_COLON)
|
||
goto eat_colon;
|
||
|
||
if (token->type == CPP_NAME
|
||
&& (cp_lexer_peek_nth_token (parser->lexer, 2)->type
|
||
== CPP_COLON))
|
||
{
|
||
/* Get the name of the bitfield. */
|
||
declarator = make_id_declarator (NULL_TREE,
|
||
cp_parser_identifier (parser),
|
||
sfk_none);
|
||
|
||
eat_colon:
|
||
cp_lexer_consume_token (parser->lexer); /* Eat ':'. */
|
||
/* Get the width of the bitfield. */
|
||
width
|
||
= cp_parser_constant_expression (parser,
|
||
/*allow_non_constant=*/false,
|
||
NULL);
|
||
}
|
||
else
|
||
{
|
||
/* Parse the declarator. */
|
||
declarator
|
||
= cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
|
||
&ctor_dtor_or_conv_p,
|
||
/*parenthesized_p=*/NULL,
|
||
/*member_p=*/false,
|
||
/*friend_p=*/false);
|
||
}
|
||
|
||
/* Look for attributes that apply to the ivar. */
|
||
attributes = cp_parser_attributes_opt (parser);
|
||
/* Remember which attributes are prefix attributes and
|
||
which are not. */
|
||
first_attribute = attributes;
|
||
/* Combine the attributes. */
|
||
attributes = chainon (prefix_attributes, attributes);
|
||
|
||
if (width)
|
||
/* Create the bitfield declaration. */
|
||
decl = grokbitfield (declarator, &declspecs,
|
||
width,
|
||
attributes);
|
||
else
|
||
decl = grokfield (declarator, &declspecs,
|
||
NULL_TREE, /*init_const_expr_p=*/false,
|
||
NULL_TREE, attributes);
|
||
|
||
/* Add the instance variable. */
|
||
if (decl != error_mark_node && decl != NULL_TREE)
|
||
objc_add_instance_variable (decl);
|
||
|
||
/* Reset PREFIX_ATTRIBUTES. */
|
||
while (attributes && TREE_CHAIN (attributes) != first_attribute)
|
||
attributes = TREE_CHAIN (attributes);
|
||
if (attributes)
|
||
TREE_CHAIN (attributes) = NULL_TREE;
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
if (token->type == CPP_COMMA)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer); /* Eat ','. */
|
||
continue;
|
||
}
|
||
break;
|
||
}
|
||
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
}
|
||
|
||
if (token->keyword == RID_AT_END)
|
||
cp_parser_error (parser, "expected %<}%>");
|
||
|
||
/* Do not consume the RID_AT_END, so it will be read again as terminating
|
||
the @interface of @implementation. */
|
||
if (token->keyword != RID_AT_END && token->type != CPP_EOF)
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '}'. */
|
||
|
||
/* For historical reasons, we accept an optional semicolon. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
/* Parse an Objective-C protocol declaration. */
|
||
|
||
static void
|
||
cp_parser_objc_protocol_declaration (cp_parser* parser, tree attributes)
|
||
{
|
||
tree proto, protorefs;
|
||
cp_token *tok;
|
||
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '@protocol'. */
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME))
|
||
{
|
||
tok = cp_lexer_peek_token (parser->lexer);
|
||
error_at (tok->location, "identifier expected after %<@protocol%>");
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
return;
|
||
}
|
||
|
||
/* See if we have a forward declaration or a definition. */
|
||
tok = cp_lexer_peek_nth_token (parser->lexer, 2);
|
||
|
||
/* Try a forward declaration first. */
|
||
if (tok->type == CPP_COMMA || tok->type == CPP_SEMICOLON)
|
||
{
|
||
while (true)
|
||
{
|
||
tree id;
|
||
|
||
id = cp_parser_identifier (parser);
|
||
if (id == error_mark_node)
|
||
break;
|
||
|
||
objc_declare_protocol (id, attributes);
|
||
|
||
if(cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
else
|
||
break;
|
||
}
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
}
|
||
|
||
/* Ok, we got a full-fledged definition (or at least should). */
|
||
else
|
||
{
|
||
proto = cp_parser_identifier (parser);
|
||
protorefs = cp_parser_objc_protocol_refs_opt (parser);
|
||
objc_start_protocol (proto, protorefs, attributes);
|
||
cp_parser_objc_method_prototype_list (parser);
|
||
}
|
||
}
|
||
|
||
/* Parse an Objective-C superclass or category. */
|
||
|
||
static void
|
||
cp_parser_objc_superclass_or_category (cp_parser *parser,
|
||
bool iface_p,
|
||
tree *super,
|
||
tree *categ, bool *is_class_extension)
|
||
{
|
||
cp_token *next = cp_lexer_peek_token (parser->lexer);
|
||
|
||
*super = *categ = NULL_TREE;
|
||
*is_class_extension = false;
|
||
if (next->type == CPP_COLON)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer); /* Eat ':'. */
|
||
*super = cp_parser_identifier (parser);
|
||
}
|
||
else if (next->type == CPP_OPEN_PAREN)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '('. */
|
||
|
||
/* If there is no category name, and this is an @interface, we
|
||
have a class extension. */
|
||
if (iface_p && cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
|
||
{
|
||
*categ = NULL_TREE;
|
||
*is_class_extension = true;
|
||
}
|
||
else
|
||
*categ = cp_parser_identifier (parser);
|
||
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
}
|
||
}
|
||
|
||
/* Parse an Objective-C class interface. */
|
||
|
||
static void
|
||
cp_parser_objc_class_interface (cp_parser* parser, tree attributes)
|
||
{
|
||
tree name, super, categ, protos;
|
||
bool is_class_extension;
|
||
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '@interface'. */
|
||
name = cp_parser_identifier (parser);
|
||
if (name == error_mark_node)
|
||
{
|
||
/* It's hard to recover because even if valid @interface stuff
|
||
is to follow, we can't compile it (or validate it) if we
|
||
don't even know which class it refers to. Let's assume this
|
||
was a stray '@interface' token in the stream and skip it.
|
||
*/
|
||
return;
|
||
}
|
||
cp_parser_objc_superclass_or_category (parser, true, &super, &categ,
|
||
&is_class_extension);
|
||
protos = cp_parser_objc_protocol_refs_opt (parser);
|
||
|
||
/* We have either a class or a category on our hands. */
|
||
if (categ || is_class_extension)
|
||
objc_start_category_interface (name, categ, protos, attributes);
|
||
else
|
||
{
|
||
objc_start_class_interface (name, super, protos, attributes);
|
||
/* Handle instance variable declarations, if any. */
|
||
cp_parser_objc_class_ivars (parser);
|
||
objc_continue_interface ();
|
||
}
|
||
|
||
cp_parser_objc_method_prototype_list (parser);
|
||
}
|
||
|
||
/* Parse an Objective-C class implementation. */
|
||
|
||
static void
|
||
cp_parser_objc_class_implementation (cp_parser* parser)
|
||
{
|
||
tree name, super, categ;
|
||
bool is_class_extension;
|
||
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '@implementation'. */
|
||
name = cp_parser_identifier (parser);
|
||
if (name == error_mark_node)
|
||
{
|
||
/* It's hard to recover because even if valid @implementation
|
||
stuff is to follow, we can't compile it (or validate it) if
|
||
we don't even know which class it refers to. Let's assume
|
||
this was a stray '@implementation' token in the stream and
|
||
skip it.
|
||
*/
|
||
return;
|
||
}
|
||
cp_parser_objc_superclass_or_category (parser, false, &super, &categ,
|
||
&is_class_extension);
|
||
|
||
/* We have either a class or a category on our hands. */
|
||
if (categ)
|
||
objc_start_category_implementation (name, categ);
|
||
else
|
||
{
|
||
objc_start_class_implementation (name, super);
|
||
/* Handle instance variable declarations, if any. */
|
||
cp_parser_objc_class_ivars (parser);
|
||
objc_continue_implementation ();
|
||
}
|
||
|
||
cp_parser_objc_method_definition_list (parser);
|
||
}
|
||
|
||
/* Consume the @end token and finish off the implementation. */
|
||
|
||
static void
|
||
cp_parser_objc_end_implementation (cp_parser* parser)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '@end'. */
|
||
objc_finish_implementation ();
|
||
}
|
||
|
||
/* Parse an Objective-C declaration. */
|
||
|
||
static void
|
||
cp_parser_objc_declaration (cp_parser* parser, tree attributes)
|
||
{
|
||
/* Try to figure out what kind of declaration is present. */
|
||
cp_token *kwd = cp_lexer_peek_token (parser->lexer);
|
||
|
||
if (attributes)
|
||
switch (kwd->keyword)
|
||
{
|
||
case RID_AT_ALIAS:
|
||
case RID_AT_CLASS:
|
||
case RID_AT_END:
|
||
error_at (kwd->location, "attributes may not be specified before"
|
||
" the %<@%D%> Objective-C++ keyword",
|
||
kwd->u.value);
|
||
attributes = NULL;
|
||
break;
|
||
case RID_AT_IMPLEMENTATION:
|
||
warning_at (kwd->location, OPT_Wattributes,
|
||
"prefix attributes are ignored before %<@%D%>",
|
||
kwd->u.value);
|
||
attributes = NULL;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
switch (kwd->keyword)
|
||
{
|
||
case RID_AT_ALIAS:
|
||
cp_parser_objc_alias_declaration (parser);
|
||
break;
|
||
case RID_AT_CLASS:
|
||
cp_parser_objc_class_declaration (parser);
|
||
break;
|
||
case RID_AT_PROTOCOL:
|
||
cp_parser_objc_protocol_declaration (parser, attributes);
|
||
break;
|
||
case RID_AT_INTERFACE:
|
||
cp_parser_objc_class_interface (parser, attributes);
|
||
break;
|
||
case RID_AT_IMPLEMENTATION:
|
||
cp_parser_objc_class_implementation (parser);
|
||
break;
|
||
case RID_AT_END:
|
||
cp_parser_objc_end_implementation (parser);
|
||
break;
|
||
default:
|
||
error_at (kwd->location, "misplaced %<@%D%> Objective-C++ construct",
|
||
kwd->u.value);
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
}
|
||
}
|
||
|
||
/* Parse an Objective-C try-catch-finally statement.
|
||
|
||
objc-try-catch-finally-stmt:
|
||
@try compound-statement objc-catch-clause-seq [opt]
|
||
objc-finally-clause [opt]
|
||
|
||
objc-catch-clause-seq:
|
||
objc-catch-clause objc-catch-clause-seq [opt]
|
||
|
||
objc-catch-clause:
|
||
@catch ( objc-exception-declaration ) compound-statement
|
||
|
||
objc-finally-clause:
|
||
@finally compound-statement
|
||
|
||
objc-exception-declaration:
|
||
parameter-declaration
|
||
'...'
|
||
|
||
where '...' is to be interpreted literally, that is, it means CPP_ELLIPSIS.
|
||
|
||
Returns NULL_TREE.
|
||
|
||
PS: This function is identical to c_parser_objc_try_catch_finally_statement
|
||
for C. Keep them in sync. */
|
||
|
||
static tree
|
||
cp_parser_objc_try_catch_finally_statement (cp_parser *parser)
|
||
{
|
||
location_t location;
|
||
tree stmt;
|
||
|
||
cp_parser_require_keyword (parser, RID_AT_TRY, RT_AT_TRY);
|
||
location = cp_lexer_peek_token (parser->lexer)->location;
|
||
objc_maybe_warn_exceptions (location);
|
||
/* NB: The @try block needs to be wrapped in its own STATEMENT_LIST
|
||
node, lest it get absorbed into the surrounding block. */
|
||
stmt = push_stmt_list ();
|
||
cp_parser_compound_statement (parser, NULL, false, false);
|
||
objc_begin_try_stmt (location, pop_stmt_list (stmt));
|
||
|
||
while (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_CATCH))
|
||
{
|
||
cp_parameter_declarator *parm;
|
||
tree parameter_declaration = error_mark_node;
|
||
bool seen_open_paren = false;
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
seen_open_paren = true;
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
|
||
{
|
||
/* We have "@catch (...)" (where the '...' are literally
|
||
what is in the code). Skip the '...'.
|
||
parameter_declaration is set to NULL_TREE, and
|
||
objc_being_catch_clauses() knows that that means
|
||
'...'. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
parameter_declaration = NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
/* We have "@catch (NSException *exception)" or something
|
||
like that. Parse the parameter declaration. */
|
||
parm = cp_parser_parameter_declaration (parser, false, NULL);
|
||
if (parm == NULL)
|
||
parameter_declaration = error_mark_node;
|
||
else
|
||
parameter_declaration = grokdeclarator (parm->declarator,
|
||
&parm->decl_specifiers,
|
||
PARM, /*initialized=*/0,
|
||
/*attrlist=*/NULL);
|
||
}
|
||
if (seen_open_paren)
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
else
|
||
{
|
||
/* If there was no open parenthesis, we are recovering from
|
||
an error, and we are trying to figure out what mistake
|
||
the user has made. */
|
||
|
||
/* If there is an immediate closing parenthesis, the user
|
||
probably forgot the opening one (ie, they typed "@catch
|
||
NSException *e)". Parse the closing parenthesis and keep
|
||
going. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
/* If these is no immediate closing parenthesis, the user
|
||
probably doesn't know that parenthesis are required at
|
||
all (ie, they typed "@catch NSException *e"). So, just
|
||
forget about the closing parenthesis and keep going. */
|
||
}
|
||
objc_begin_catch_clause (parameter_declaration);
|
||
cp_parser_compound_statement (parser, NULL, false, false);
|
||
objc_finish_catch_clause ();
|
||
}
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_FINALLY))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
location = cp_lexer_peek_token (parser->lexer)->location;
|
||
/* NB: The @finally block needs to be wrapped in its own STATEMENT_LIST
|
||
node, lest it get absorbed into the surrounding block. */
|
||
stmt = push_stmt_list ();
|
||
cp_parser_compound_statement (parser, NULL, false, false);
|
||
objc_build_finally_clause (location, pop_stmt_list (stmt));
|
||
}
|
||
|
||
return objc_finish_try_stmt ();
|
||
}
|
||
|
||
/* Parse an Objective-C synchronized statement.
|
||
|
||
objc-synchronized-stmt:
|
||
@synchronized ( expression ) compound-statement
|
||
|
||
Returns NULL_TREE. */
|
||
|
||
static tree
|
||
cp_parser_objc_synchronized_statement (cp_parser *parser)
|
||
{
|
||
location_t location;
|
||
tree lock, stmt;
|
||
|
||
cp_parser_require_keyword (parser, RID_AT_SYNCHRONIZED, RT_AT_SYNCHRONIZED);
|
||
|
||
location = cp_lexer_peek_token (parser->lexer)->location;
|
||
objc_maybe_warn_exceptions (location);
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
lock = cp_parser_expression (parser, false, NULL);
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
|
||
/* NB: The @synchronized block needs to be wrapped in its own STATEMENT_LIST
|
||
node, lest it get absorbed into the surrounding block. */
|
||
stmt = push_stmt_list ();
|
||
cp_parser_compound_statement (parser, NULL, false, false);
|
||
|
||
return objc_build_synchronized (location, lock, pop_stmt_list (stmt));
|
||
}
|
||
|
||
/* Parse an Objective-C throw statement.
|
||
|
||
objc-throw-stmt:
|
||
@throw assignment-expression [opt] ;
|
||
|
||
Returns a constructed '@throw' statement. */
|
||
|
||
static tree
|
||
cp_parser_objc_throw_statement (cp_parser *parser)
|
||
{
|
||
tree expr = NULL_TREE;
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
cp_parser_require_keyword (parser, RID_AT_THROW, RT_AT_THROW);
|
||
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
|
||
expr = cp_parser_expression (parser, /*cast_p=*/false, NULL);
|
||
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
|
||
return objc_build_throw_stmt (loc, expr);
|
||
}
|
||
|
||
/* Parse an Objective-C statement. */
|
||
|
||
static tree
|
||
cp_parser_objc_statement (cp_parser * parser)
|
||
{
|
||
/* Try to figure out what kind of declaration is present. */
|
||
cp_token *kwd = cp_lexer_peek_token (parser->lexer);
|
||
|
||
switch (kwd->keyword)
|
||
{
|
||
case RID_AT_TRY:
|
||
return cp_parser_objc_try_catch_finally_statement (parser);
|
||
case RID_AT_SYNCHRONIZED:
|
||
return cp_parser_objc_synchronized_statement (parser);
|
||
case RID_AT_THROW:
|
||
return cp_parser_objc_throw_statement (parser);
|
||
default:
|
||
error_at (kwd->location, "misplaced %<@%D%> Objective-C++ construct",
|
||
kwd->u.value);
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
}
|
||
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* If we are compiling ObjC++ and we see an __attribute__ we neeed to
|
||
look ahead to see if an objc keyword follows the attributes. This
|
||
is to detect the use of prefix attributes on ObjC @interface and
|
||
@protocol. */
|
||
|
||
static bool
|
||
cp_parser_objc_valid_prefix_attributes (cp_parser* parser, tree *attrib)
|
||
{
|
||
cp_lexer_save_tokens (parser->lexer);
|
||
*attrib = cp_parser_attributes_opt (parser);
|
||
gcc_assert (*attrib);
|
||
if (OBJC_IS_AT_KEYWORD (cp_lexer_peek_token (parser->lexer)->keyword))
|
||
{
|
||
cp_lexer_commit_tokens (parser->lexer);
|
||
return true;
|
||
}
|
||
cp_lexer_rollback_tokens (parser->lexer);
|
||
return false;
|
||
}
|
||
|
||
/* This routine is a minimal replacement for
|
||
c_parser_struct_declaration () used when parsing the list of
|
||
types/names or ObjC++ properties. For example, when parsing the
|
||
code
|
||
|
||
@property (readonly) int a, b, c;
|
||
|
||
this function is responsible for parsing "int a, int b, int c" and
|
||
returning the declarations as CHAIN of DECLs.
|
||
|
||
TODO: Share this code with cp_parser_objc_class_ivars. It's very
|
||
similar parsing. */
|
||
static tree
|
||
cp_parser_objc_struct_declaration (cp_parser *parser)
|
||
{
|
||
tree decls = NULL_TREE;
|
||
cp_decl_specifier_seq declspecs;
|
||
int decl_class_or_enum_p;
|
||
tree prefix_attributes;
|
||
|
||
cp_parser_decl_specifier_seq (parser,
|
||
CP_PARSER_FLAGS_NONE,
|
||
&declspecs,
|
||
&decl_class_or_enum_p);
|
||
|
||
if (declspecs.type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* auto, register, static, extern, mutable. */
|
||
if (declspecs.storage_class != sc_none)
|
||
{
|
||
cp_parser_error (parser, "invalid type for property");
|
||
declspecs.storage_class = sc_none;
|
||
}
|
||
|
||
/* thread_local. */
|
||
if (decl_spec_seq_has_spec_p (&declspecs, ds_thread))
|
||
{
|
||
cp_parser_error (parser, "invalid type for property");
|
||
declspecs.locations[ds_thread] = 0;
|
||
}
|
||
|
||
/* typedef. */
|
||
if (decl_spec_seq_has_spec_p (&declspecs, ds_typedef))
|
||
{
|
||
cp_parser_error (parser, "invalid type for property");
|
||
declspecs.locations[ds_typedef] = 0;
|
||
}
|
||
|
||
prefix_attributes = declspecs.attributes;
|
||
declspecs.attributes = NULL_TREE;
|
||
|
||
/* Keep going until we hit the `;' at the end of the declaration. */
|
||
while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
|
||
{
|
||
tree attributes, first_attribute, decl;
|
||
cp_declarator *declarator;
|
||
cp_token *token;
|
||
|
||
/* Parse the declarator. */
|
||
declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
|
||
NULL, NULL, false, false);
|
||
|
||
/* Look for attributes that apply to the ivar. */
|
||
attributes = cp_parser_attributes_opt (parser);
|
||
/* Remember which attributes are prefix attributes and
|
||
which are not. */
|
||
first_attribute = attributes;
|
||
/* Combine the attributes. */
|
||
attributes = chainon (prefix_attributes, attributes);
|
||
|
||
decl = grokfield (declarator, &declspecs,
|
||
NULL_TREE, /*init_const_expr_p=*/false,
|
||
NULL_TREE, attributes);
|
||
|
||
if (decl == error_mark_node || decl == NULL_TREE)
|
||
return error_mark_node;
|
||
|
||
/* Reset PREFIX_ATTRIBUTES. */
|
||
while (attributes && TREE_CHAIN (attributes) != first_attribute)
|
||
attributes = TREE_CHAIN (attributes);
|
||
if (attributes)
|
||
TREE_CHAIN (attributes) = NULL_TREE;
|
||
|
||
DECL_CHAIN (decl) = decls;
|
||
decls = decl;
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type == CPP_COMMA)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer); /* Eat ','. */
|
||
continue;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
return decls;
|
||
}
|
||
|
||
/* Parse an Objective-C @property declaration. The syntax is:
|
||
|
||
objc-property-declaration:
|
||
'@property' objc-property-attributes[opt] struct-declaration ;
|
||
|
||
objc-property-attributes:
|
||
'(' objc-property-attribute-list ')'
|
||
|
||
objc-property-attribute-list:
|
||
objc-property-attribute
|
||
objc-property-attribute-list, objc-property-attribute
|
||
|
||
objc-property-attribute
|
||
'getter' = identifier
|
||
'setter' = identifier
|
||
'readonly'
|
||
'readwrite'
|
||
'assign'
|
||
'retain'
|
||
'copy'
|
||
'nonatomic'
|
||
|
||
For example:
|
||
@property NSString *name;
|
||
@property (readonly) id object;
|
||
@property (retain, nonatomic, getter=getTheName) id name;
|
||
@property int a, b, c;
|
||
|
||
PS: This function is identical to
|
||
c_parser_objc_at_property_declaration for C. Keep them in sync. */
|
||
static void
|
||
cp_parser_objc_at_property_declaration (cp_parser *parser)
|
||
{
|
||
/* The following variables hold the attributes of the properties as
|
||
parsed. They are 'false' or 'NULL_TREE' if the attribute was not
|
||
seen. When we see an attribute, we set them to 'true' (if they
|
||
are boolean properties) or to the identifier (if they have an
|
||
argument, ie, for getter and setter). Note that here we only
|
||
parse the list of attributes, check the syntax and accumulate the
|
||
attributes that we find. objc_add_property_declaration() will
|
||
then process the information. */
|
||
bool property_assign = false;
|
||
bool property_copy = false;
|
||
tree property_getter_ident = NULL_TREE;
|
||
bool property_nonatomic = false;
|
||
bool property_readonly = false;
|
||
bool property_readwrite = false;
|
||
bool property_retain = false;
|
||
tree property_setter_ident = NULL_TREE;
|
||
|
||
/* 'properties' is the list of properties that we read. Usually a
|
||
single one, but maybe more (eg, in "@property int a, b, c;" there
|
||
are three). */
|
||
tree properties;
|
||
location_t loc;
|
||
|
||
loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '@property'. */
|
||
|
||
/* Parse the optional attribute list... */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
|
||
{
|
||
/* Eat the '('. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
while (true)
|
||
{
|
||
bool syntax_error = false;
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
enum rid keyword;
|
||
|
||
if (token->type != CPP_NAME)
|
||
{
|
||
cp_parser_error (parser, "expected identifier");
|
||
break;
|
||
}
|
||
keyword = C_RID_CODE (token->u.value);
|
||
cp_lexer_consume_token (parser->lexer);
|
||
switch (keyword)
|
||
{
|
||
case RID_ASSIGN: property_assign = true; break;
|
||
case RID_COPY: property_copy = true; break;
|
||
case RID_NONATOMIC: property_nonatomic = true; break;
|
||
case RID_READONLY: property_readonly = true; break;
|
||
case RID_READWRITE: property_readwrite = true; break;
|
||
case RID_RETAIN: property_retain = true; break;
|
||
|
||
case RID_GETTER:
|
||
case RID_SETTER:
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ))
|
||
{
|
||
if (keyword == RID_GETTER)
|
||
cp_parser_error (parser,
|
||
"missing %<=%> (after %<getter%> attribute)");
|
||
else
|
||
cp_parser_error (parser,
|
||
"missing %<=%> (after %<setter%> attribute)");
|
||
syntax_error = true;
|
||
break;
|
||
}
|
||
cp_lexer_consume_token (parser->lexer); /* eat the = */
|
||
if (!cp_parser_objc_selector_p (cp_lexer_peek_token (parser->lexer)->type))
|
||
{
|
||
cp_parser_error (parser, "expected identifier");
|
||
syntax_error = true;
|
||
break;
|
||
}
|
||
if (keyword == RID_SETTER)
|
||
{
|
||
if (property_setter_ident != NULL_TREE)
|
||
{
|
||
cp_parser_error (parser, "the %<setter%> attribute may only be specified once");
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
else
|
||
property_setter_ident = cp_parser_objc_selector (parser);
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
|
||
cp_parser_error (parser, "setter name must terminate with %<:%>");
|
||
else
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
else
|
||
{
|
||
if (property_getter_ident != NULL_TREE)
|
||
{
|
||
cp_parser_error (parser, "the %<getter%> attribute may only be specified once");
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
else
|
||
property_getter_ident = cp_parser_objc_selector (parser);
|
||
}
|
||
break;
|
||
default:
|
||
cp_parser_error (parser, "unknown property attribute");
|
||
syntax_error = true;
|
||
break;
|
||
}
|
||
|
||
if (syntax_error)
|
||
break;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
else
|
||
break;
|
||
}
|
||
|
||
/* FIXME: "@property (setter, assign);" will generate a spurious
|
||
"error: expected ‘)’ before ‘,’ token". This is because
|
||
cp_parser_require, unlike the C counterpart, will produce an
|
||
error even if we are in error recovery. */
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
{
|
||
cp_parser_skip_to_closing_parenthesis (parser,
|
||
/*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
}
|
||
}
|
||
|
||
/* ... and the property declaration(s). */
|
||
properties = cp_parser_objc_struct_declaration (parser);
|
||
|
||
if (properties == error_mark_node)
|
||
{
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
/* If the next token is now a `;', consume it. */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return;
|
||
}
|
||
|
||
if (properties == NULL_TREE)
|
||
cp_parser_error (parser, "expected identifier");
|
||
else
|
||
{
|
||
/* Comma-separated properties are chained together in
|
||
reverse order; add them one by one. */
|
||
properties = nreverse (properties);
|
||
|
||
for (; properties; properties = TREE_CHAIN (properties))
|
||
objc_add_property_declaration (loc, copy_node (properties),
|
||
property_readonly, property_readwrite,
|
||
property_assign, property_retain,
|
||
property_copy, property_nonatomic,
|
||
property_getter_ident, property_setter_ident);
|
||
}
|
||
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
}
|
||
|
||
/* Parse an Objective-C++ @synthesize declaration. The syntax is:
|
||
|
||
objc-synthesize-declaration:
|
||
@synthesize objc-synthesize-identifier-list ;
|
||
|
||
objc-synthesize-identifier-list:
|
||
objc-synthesize-identifier
|
||
objc-synthesize-identifier-list, objc-synthesize-identifier
|
||
|
||
objc-synthesize-identifier
|
||
identifier
|
||
identifier = identifier
|
||
|
||
For example:
|
||
@synthesize MyProperty;
|
||
@synthesize OneProperty, AnotherProperty=MyIvar, YetAnotherProperty;
|
||
|
||
PS: This function is identical to c_parser_objc_at_synthesize_declaration
|
||
for C. Keep them in sync.
|
||
*/
|
||
static void
|
||
cp_parser_objc_at_synthesize_declaration (cp_parser *parser)
|
||
{
|
||
tree list = NULL_TREE;
|
||
location_t loc;
|
||
loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '@synthesize'. */
|
||
while (true)
|
||
{
|
||
tree property, ivar;
|
||
property = cp_parser_identifier (parser);
|
||
if (property == error_mark_node)
|
||
{
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
return;
|
||
}
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
ivar = cp_parser_identifier (parser);
|
||
if (ivar == error_mark_node)
|
||
{
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
ivar = NULL_TREE;
|
||
list = chainon (list, build_tree_list (ivar, property));
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
else
|
||
break;
|
||
}
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
objc_add_synthesize_declaration (loc, list);
|
||
}
|
||
|
||
/* Parse an Objective-C++ @dynamic declaration. The syntax is:
|
||
|
||
objc-dynamic-declaration:
|
||
@dynamic identifier-list ;
|
||
|
||
For example:
|
||
@dynamic MyProperty;
|
||
@dynamic MyProperty, AnotherProperty;
|
||
|
||
PS: This function is identical to c_parser_objc_at_dynamic_declaration
|
||
for C. Keep them in sync.
|
||
*/
|
||
static void
|
||
cp_parser_objc_at_dynamic_declaration (cp_parser *parser)
|
||
{
|
||
tree list = NULL_TREE;
|
||
location_t loc;
|
||
loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
cp_lexer_consume_token (parser->lexer); /* Eat '@dynamic'. */
|
||
while (true)
|
||
{
|
||
tree property;
|
||
property = cp_parser_identifier (parser);
|
||
if (property == error_mark_node)
|
||
{
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
return;
|
||
}
|
||
list = chainon (list, build_tree_list (NULL, property));
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
else
|
||
break;
|
||
}
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
objc_add_dynamic_declaration (loc, list);
|
||
}
|
||
|
||
|
||
/* OpenMP 2.5 / 3.0 / 3.1 / 4.0 parsing routines. */
|
||
|
||
/* Returns name of the next clause.
|
||
If the clause is not recognized PRAGMA_OMP_CLAUSE_NONE is returned and
|
||
the token is not consumed. Otherwise appropriate pragma_omp_clause is
|
||
returned and the token is consumed. */
|
||
|
||
static pragma_omp_clause
|
||
cp_parser_omp_clause_name (cp_parser *parser)
|
||
{
|
||
pragma_omp_clause result = PRAGMA_OMP_CLAUSE_NONE;
|
||
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_IF))
|
||
result = PRAGMA_OMP_CLAUSE_IF;
|
||
else if (cp_lexer_next_token_is_keyword (parser->lexer, RID_DEFAULT))
|
||
result = PRAGMA_OMP_CLAUSE_DEFAULT;
|
||
else if (cp_lexer_next_token_is_keyword (parser->lexer, RID_PRIVATE))
|
||
result = PRAGMA_OMP_CLAUSE_PRIVATE;
|
||
else if (cp_lexer_next_token_is_keyword (parser->lexer, RID_FOR))
|
||
result = PRAGMA_OMP_CLAUSE_FOR;
|
||
else if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
|
||
switch (p[0])
|
||
{
|
||
case 'a':
|
||
if (!strcmp ("aligned", p))
|
||
result = PRAGMA_OMP_CLAUSE_ALIGNED;
|
||
break;
|
||
case 'c':
|
||
if (!strcmp ("collapse", p))
|
||
result = PRAGMA_OMP_CLAUSE_COLLAPSE;
|
||
else if (!strcmp ("copyin", p))
|
||
result = PRAGMA_OMP_CLAUSE_COPYIN;
|
||
else if (!strcmp ("copyprivate", p))
|
||
result = PRAGMA_OMP_CLAUSE_COPYPRIVATE;
|
||
break;
|
||
case 'd':
|
||
if (!strcmp ("depend", p))
|
||
result = PRAGMA_OMP_CLAUSE_DEPEND;
|
||
else if (!strcmp ("device", p))
|
||
result = PRAGMA_OMP_CLAUSE_DEVICE;
|
||
else if (!strcmp ("dist_schedule", p))
|
||
result = PRAGMA_OMP_CLAUSE_DIST_SCHEDULE;
|
||
break;
|
||
case 'f':
|
||
if (!strcmp ("final", p))
|
||
result = PRAGMA_OMP_CLAUSE_FINAL;
|
||
else if (!strcmp ("firstprivate", p))
|
||
result = PRAGMA_OMP_CLAUSE_FIRSTPRIVATE;
|
||
else if (!strcmp ("from", p))
|
||
result = PRAGMA_OMP_CLAUSE_FROM;
|
||
break;
|
||
case 'i':
|
||
if (!strcmp ("inbranch", p))
|
||
result = PRAGMA_OMP_CLAUSE_INBRANCH;
|
||
break;
|
||
case 'l':
|
||
if (!strcmp ("lastprivate", p))
|
||
result = PRAGMA_OMP_CLAUSE_LASTPRIVATE;
|
||
else if (!strcmp ("linear", p))
|
||
result = PRAGMA_OMP_CLAUSE_LINEAR;
|
||
break;
|
||
case 'm':
|
||
if (!strcmp ("map", p))
|
||
result = PRAGMA_OMP_CLAUSE_MAP;
|
||
else if (!strcmp ("mergeable", p))
|
||
result = PRAGMA_OMP_CLAUSE_MERGEABLE;
|
||
else if (flag_cilkplus && !strcmp ("mask", p))
|
||
result = PRAGMA_CILK_CLAUSE_MASK;
|
||
break;
|
||
case 'n':
|
||
if (!strcmp ("notinbranch", p))
|
||
result = PRAGMA_OMP_CLAUSE_NOTINBRANCH;
|
||
else if (!strcmp ("nowait", p))
|
||
result = PRAGMA_OMP_CLAUSE_NOWAIT;
|
||
else if (flag_cilkplus && !strcmp ("nomask", p))
|
||
result = PRAGMA_CILK_CLAUSE_NOMASK;
|
||
else if (!strcmp ("num_teams", p))
|
||
result = PRAGMA_OMP_CLAUSE_NUM_TEAMS;
|
||
else if (!strcmp ("num_threads", p))
|
||
result = PRAGMA_OMP_CLAUSE_NUM_THREADS;
|
||
break;
|
||
case 'o':
|
||
if (!strcmp ("ordered", p))
|
||
result = PRAGMA_OMP_CLAUSE_ORDERED;
|
||
break;
|
||
case 'p':
|
||
if (!strcmp ("parallel", p))
|
||
result = PRAGMA_OMP_CLAUSE_PARALLEL;
|
||
else if (!strcmp ("proc_bind", p))
|
||
result = PRAGMA_OMP_CLAUSE_PROC_BIND;
|
||
break;
|
||
case 'r':
|
||
if (!strcmp ("reduction", p))
|
||
result = PRAGMA_OMP_CLAUSE_REDUCTION;
|
||
break;
|
||
case 's':
|
||
if (!strcmp ("safelen", p))
|
||
result = PRAGMA_OMP_CLAUSE_SAFELEN;
|
||
else if (!strcmp ("schedule", p))
|
||
result = PRAGMA_OMP_CLAUSE_SCHEDULE;
|
||
else if (!strcmp ("sections", p))
|
||
result = PRAGMA_OMP_CLAUSE_SECTIONS;
|
||
else if (!strcmp ("shared", p))
|
||
result = PRAGMA_OMP_CLAUSE_SHARED;
|
||
else if (!strcmp ("simdlen", p))
|
||
result = PRAGMA_OMP_CLAUSE_SIMDLEN;
|
||
break;
|
||
case 't':
|
||
if (!strcmp ("taskgroup", p))
|
||
result = PRAGMA_OMP_CLAUSE_TASKGROUP;
|
||
else if (!strcmp ("thread_limit", p))
|
||
result = PRAGMA_OMP_CLAUSE_THREAD_LIMIT;
|
||
else if (!strcmp ("to", p))
|
||
result = PRAGMA_OMP_CLAUSE_TO;
|
||
break;
|
||
case 'u':
|
||
if (!strcmp ("uniform", p))
|
||
result = PRAGMA_OMP_CLAUSE_UNIFORM;
|
||
else if (!strcmp ("untied", p))
|
||
result = PRAGMA_OMP_CLAUSE_UNTIED;
|
||
break;
|
||
case 'v':
|
||
if (flag_cilkplus && !strcmp ("vectorlength", p))
|
||
result = PRAGMA_CILK_CLAUSE_VECTORLENGTH;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (result != PRAGMA_OMP_CLAUSE_NONE)
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Validate that a clause of the given type does not already exist. */
|
||
|
||
static void
|
||
check_no_duplicate_clause (tree clauses, enum omp_clause_code code,
|
||
const char *name, location_t location)
|
||
{
|
||
tree c;
|
||
|
||
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
|
||
if (OMP_CLAUSE_CODE (c) == code)
|
||
{
|
||
error_at (location, "too many %qs clauses", name);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
variable-list:
|
||
identifier
|
||
variable-list , identifier
|
||
|
||
In addition, we match a closing parenthesis (or, if COLON is non-NULL,
|
||
colon). An opening parenthesis will have been consumed by the caller.
|
||
|
||
If KIND is nonzero, create the appropriate node and install the decl
|
||
in OMP_CLAUSE_DECL and add the node to the head of the list.
|
||
|
||
If KIND is zero, create a TREE_LIST with the decl in TREE_PURPOSE;
|
||
return the list created.
|
||
|
||
COLON can be NULL if only closing parenthesis should end the list,
|
||
or pointer to bool which will receive false if the list is terminated
|
||
by closing parenthesis or true if the list is terminated by colon. */
|
||
|
||
static tree
|
||
cp_parser_omp_var_list_no_open (cp_parser *parser, enum omp_clause_code kind,
|
||
tree list, bool *colon)
|
||
{
|
||
cp_token *token;
|
||
bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p;
|
||
if (colon)
|
||
{
|
||
parser->colon_corrects_to_scope_p = false;
|
||
*colon = false;
|
||
}
|
||
while (1)
|
||
{
|
||
tree name, decl;
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
name = cp_parser_id_expression (parser, /*template_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
/*template_p=*/NULL,
|
||
/*declarator_p=*/false,
|
||
/*optional_p=*/false);
|
||
if (name == error_mark_node)
|
||
goto skip_comma;
|
||
|
||
decl = cp_parser_lookup_name_simple (parser, name, token->location);
|
||
if (decl == error_mark_node)
|
||
cp_parser_name_lookup_error (parser, name, decl, NLE_NULL,
|
||
token->location);
|
||
else if (kind != 0)
|
||
{
|
||
switch (kind)
|
||
{
|
||
case OMP_CLAUSE_MAP:
|
||
case OMP_CLAUSE_FROM:
|
||
case OMP_CLAUSE_TO:
|
||
case OMP_CLAUSE_DEPEND:
|
||
while (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
|
||
{
|
||
tree low_bound = NULL_TREE, length = NULL_TREE;
|
||
|
||
parser->colon_corrects_to_scope_p = false;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (!cp_lexer_next_token_is (parser->lexer, CPP_COLON))
|
||
low_bound = cp_parser_expression (parser, /*cast_p=*/false,
|
||
NULL);
|
||
if (!colon)
|
||
parser->colon_corrects_to_scope_p
|
||
= saved_colon_corrects_to_scope_p;
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_SQUARE))
|
||
length = integer_one_node;
|
||
else
|
||
{
|
||
/* Look for `:'. */
|
||
if (!cp_parser_require (parser, CPP_COLON, RT_COLON))
|
||
goto skip_comma;
|
||
if (!cp_lexer_next_token_is (parser->lexer,
|
||
CPP_CLOSE_SQUARE))
|
||
length = cp_parser_expression (parser,
|
||
/*cast_p=*/false,
|
||
NULL);
|
||
}
|
||
/* Look for the closing `]'. */
|
||
if (!cp_parser_require (parser, CPP_CLOSE_SQUARE,
|
||
RT_CLOSE_SQUARE))
|
||
goto skip_comma;
|
||
decl = tree_cons (low_bound, length, decl);
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
tree u = build_omp_clause (token->location, kind);
|
||
OMP_CLAUSE_DECL (u) = decl;
|
||
OMP_CLAUSE_CHAIN (u) = list;
|
||
list = u;
|
||
}
|
||
else
|
||
list = tree_cons (decl, NULL_TREE, list);
|
||
|
||
get_comma:
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
|
||
break;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
if (colon)
|
||
parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p;
|
||
|
||
if (colon != NULL && cp_lexer_next_token_is (parser->lexer, CPP_COLON))
|
||
{
|
||
*colon = true;
|
||
cp_parser_require (parser, CPP_COLON, RT_COLON);
|
||
return list;
|
||
}
|
||
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
{
|
||
int ending;
|
||
|
||
/* Try to resync to an unnested comma. Copied from
|
||
cp_parser_parenthesized_expression_list. */
|
||
skip_comma:
|
||
if (colon)
|
||
parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p;
|
||
ending = cp_parser_skip_to_closing_parenthesis (parser,
|
||
/*recovering=*/true,
|
||
/*or_comma=*/true,
|
||
/*consume_paren=*/true);
|
||
if (ending < 0)
|
||
goto get_comma;
|
||
}
|
||
|
||
return list;
|
||
}
|
||
|
||
/* Similarly, but expect leading and trailing parenthesis. This is a very
|
||
common case for omp clauses. */
|
||
|
||
static tree
|
||
cp_parser_omp_var_list (cp_parser *parser, enum omp_clause_code kind, tree list)
|
||
{
|
||
if (cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return cp_parser_omp_var_list_no_open (parser, kind, list, NULL);
|
||
return list;
|
||
}
|
||
|
||
/* OpenMP 3.0:
|
||
collapse ( constant-expression ) */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_collapse (cp_parser *parser, tree list, location_t location)
|
||
{
|
||
tree c, num;
|
||
location_t loc;
|
||
HOST_WIDE_INT n;
|
||
|
||
loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
num = cp_parser_constant_expression (parser, false, NULL);
|
||
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
|
||
if (num == error_mark_node)
|
||
return list;
|
||
num = fold_non_dependent_expr (num);
|
||
if (!INTEGRAL_TYPE_P (TREE_TYPE (num))
|
||
|| !tree_fits_shwi_p (num)
|
||
|| (n = tree_to_shwi (num)) <= 0
|
||
|| (int) n != n)
|
||
{
|
||
error_at (loc, "collapse argument needs positive constant integer expression");
|
||
return list;
|
||
}
|
||
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_COLLAPSE, "collapse", location);
|
||
c = build_omp_clause (loc, OMP_CLAUSE_COLLAPSE);
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
OMP_CLAUSE_COLLAPSE_EXPR (c) = num;
|
||
|
||
return c;
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
default ( shared | none ) */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_default (cp_parser *parser, tree list, location_t location)
|
||
{
|
||
enum omp_clause_default_kind kind = OMP_CLAUSE_DEFAULT_UNSPECIFIED;
|
||
tree c;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
|
||
switch (p[0])
|
||
{
|
||
case 'n':
|
||
if (strcmp ("none", p) != 0)
|
||
goto invalid_kind;
|
||
kind = OMP_CLAUSE_DEFAULT_NONE;
|
||
break;
|
||
|
||
case 's':
|
||
if (strcmp ("shared", p) != 0)
|
||
goto invalid_kind;
|
||
kind = OMP_CLAUSE_DEFAULT_SHARED;
|
||
break;
|
||
|
||
default:
|
||
goto invalid_kind;
|
||
}
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
else
|
||
{
|
||
invalid_kind:
|
||
cp_parser_error (parser, "expected %<none%> or %<shared%>");
|
||
}
|
||
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
|
||
if (kind == OMP_CLAUSE_DEFAULT_UNSPECIFIED)
|
||
return list;
|
||
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_DEFAULT, "default", location);
|
||
c = build_omp_clause (location, OMP_CLAUSE_DEFAULT);
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
OMP_CLAUSE_DEFAULT_KIND (c) = kind;
|
||
|
||
return c;
|
||
}
|
||
|
||
/* OpenMP 3.1:
|
||
final ( expression ) */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_final (cp_parser *parser, tree list, location_t location)
|
||
{
|
||
tree t, c;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
t = cp_parser_condition (parser);
|
||
|
||
if (t == error_mark_node
|
||
|| !cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_FINAL, "final", location);
|
||
|
||
c = build_omp_clause (location, OMP_CLAUSE_FINAL);
|
||
OMP_CLAUSE_FINAL_EXPR (c) = t;
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
|
||
return c;
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
if ( expression ) */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_if (cp_parser *parser, tree list, location_t location)
|
||
{
|
||
tree t, c;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
t = cp_parser_condition (parser);
|
||
|
||
if (t == error_mark_node
|
||
|| !cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_IF, "if", location);
|
||
|
||
c = build_omp_clause (location, OMP_CLAUSE_IF);
|
||
OMP_CLAUSE_IF_EXPR (c) = t;
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
|
||
return c;
|
||
}
|
||
|
||
/* OpenMP 3.1:
|
||
mergeable */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_mergeable (cp_parser * /*parser*/,
|
||
tree list, location_t location)
|
||
{
|
||
tree c;
|
||
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_MERGEABLE, "mergeable",
|
||
location);
|
||
|
||
c = build_omp_clause (location, OMP_CLAUSE_MERGEABLE);
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
return c;
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
nowait */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_nowait (cp_parser * /*parser*/,
|
||
tree list, location_t location)
|
||
{
|
||
tree c;
|
||
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_NOWAIT, "nowait", location);
|
||
|
||
c = build_omp_clause (location, OMP_CLAUSE_NOWAIT);
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
return c;
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
num_threads ( expression ) */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_num_threads (cp_parser *parser, tree list,
|
||
location_t location)
|
||
{
|
||
tree t, c;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
t = cp_parser_expression (parser, false, NULL);
|
||
|
||
if (t == error_mark_node
|
||
|| !cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_NUM_THREADS,
|
||
"num_threads", location);
|
||
|
||
c = build_omp_clause (location, OMP_CLAUSE_NUM_THREADS);
|
||
OMP_CLAUSE_NUM_THREADS_EXPR (c) = t;
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
|
||
return c;
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
ordered */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_ordered (cp_parser * /*parser*/,
|
||
tree list, location_t location)
|
||
{
|
||
tree c;
|
||
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_ORDERED,
|
||
"ordered", location);
|
||
|
||
c = build_omp_clause (location, OMP_CLAUSE_ORDERED);
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
return c;
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
reduction ( reduction-operator : variable-list )
|
||
|
||
reduction-operator:
|
||
One of: + * - & ^ | && ||
|
||
|
||
OpenMP 3.1:
|
||
|
||
reduction-operator:
|
||
One of: + * - & ^ | && || min max
|
||
|
||
OpenMP 4.0:
|
||
|
||
reduction-operator:
|
||
One of: + * - & ^ | && ||
|
||
id-expression */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_reduction (cp_parser *parser, tree list)
|
||
{
|
||
enum tree_code code = ERROR_MARK;
|
||
tree nlist, c, id = NULL_TREE;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
switch (cp_lexer_peek_token (parser->lexer)->type)
|
||
{
|
||
case CPP_PLUS: code = PLUS_EXPR; break;
|
||
case CPP_MULT: code = MULT_EXPR; break;
|
||
case CPP_MINUS: code = MINUS_EXPR; break;
|
||
case CPP_AND: code = BIT_AND_EXPR; break;
|
||
case CPP_XOR: code = BIT_XOR_EXPR; break;
|
||
case CPP_OR: code = BIT_IOR_EXPR; break;
|
||
case CPP_AND_AND: code = TRUTH_ANDIF_EXPR; break;
|
||
case CPP_OR_OR: code = TRUTH_ORIF_EXPR; break;
|
||
default: break;
|
||
}
|
||
|
||
if (code != ERROR_MARK)
|
||
cp_lexer_consume_token (parser->lexer);
|
||
else
|
||
{
|
||
bool saved_colon_corrects_to_scope_p;
|
||
saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p;
|
||
parser->colon_corrects_to_scope_p = false;
|
||
id = cp_parser_id_expression (parser, /*template_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
/*template_p=*/NULL,
|
||
/*declarator_p=*/false,
|
||
/*optional_p=*/false);
|
||
parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p;
|
||
if (identifier_p (id))
|
||
{
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
|
||
if (strcmp (p, "min") == 0)
|
||
code = MIN_EXPR;
|
||
else if (strcmp (p, "max") == 0)
|
||
code = MAX_EXPR;
|
||
else if (id == ansi_opname (PLUS_EXPR))
|
||
code = PLUS_EXPR;
|
||
else if (id == ansi_opname (MULT_EXPR))
|
||
code = MULT_EXPR;
|
||
else if (id == ansi_opname (MINUS_EXPR))
|
||
code = MINUS_EXPR;
|
||
else if (id == ansi_opname (BIT_AND_EXPR))
|
||
code = BIT_AND_EXPR;
|
||
else if (id == ansi_opname (BIT_IOR_EXPR))
|
||
code = BIT_IOR_EXPR;
|
||
else if (id == ansi_opname (BIT_XOR_EXPR))
|
||
code = BIT_XOR_EXPR;
|
||
else if (id == ansi_opname (TRUTH_ANDIF_EXPR))
|
||
code = TRUTH_ANDIF_EXPR;
|
||
else if (id == ansi_opname (TRUTH_ORIF_EXPR))
|
||
code = TRUTH_ORIF_EXPR;
|
||
id = omp_reduction_id (code, id, NULL_TREE);
|
||
tree scope = parser->scope;
|
||
if (scope)
|
||
id = build_qualified_name (NULL_TREE, scope, id, false);
|
||
parser->scope = NULL_TREE;
|
||
parser->qualifying_scope = NULL_TREE;
|
||
parser->object_scope = NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
error ("invalid reduction-identifier");
|
||
resync_fail:
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
return list;
|
||
}
|
||
}
|
||
|
||
if (!cp_parser_require (parser, CPP_COLON, RT_COLON))
|
||
goto resync_fail;
|
||
|
||
nlist = cp_parser_omp_var_list_no_open (parser, OMP_CLAUSE_REDUCTION, list,
|
||
NULL);
|
||
for (c = nlist; c != list; c = OMP_CLAUSE_CHAIN (c))
|
||
{
|
||
OMP_CLAUSE_REDUCTION_CODE (c) = code;
|
||
OMP_CLAUSE_REDUCTION_PLACEHOLDER (c) = id;
|
||
}
|
||
|
||
return nlist;
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
schedule ( schedule-kind )
|
||
schedule ( schedule-kind , expression )
|
||
|
||
schedule-kind:
|
||
static | dynamic | guided | runtime | auto */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_schedule (cp_parser *parser, tree list, location_t location)
|
||
{
|
||
tree c, t;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
c = build_omp_clause (location, OMP_CLAUSE_SCHEDULE);
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
|
||
switch (p[0])
|
||
{
|
||
case 'd':
|
||
if (strcmp ("dynamic", p) != 0)
|
||
goto invalid_kind;
|
||
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_DYNAMIC;
|
||
break;
|
||
|
||
case 'g':
|
||
if (strcmp ("guided", p) != 0)
|
||
goto invalid_kind;
|
||
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_GUIDED;
|
||
break;
|
||
|
||
case 'r':
|
||
if (strcmp ("runtime", p) != 0)
|
||
goto invalid_kind;
|
||
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_RUNTIME;
|
||
break;
|
||
|
||
default:
|
||
goto invalid_kind;
|
||
}
|
||
}
|
||
else if (cp_lexer_next_token_is_keyword (parser->lexer, RID_STATIC))
|
||
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_STATIC;
|
||
else if (cp_lexer_next_token_is_keyword (parser->lexer, RID_AUTO))
|
||
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_AUTO;
|
||
else
|
||
goto invalid_kind;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
|
||
{
|
||
cp_token *token;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
t = cp_parser_assignment_expression (parser, false, NULL);
|
||
|
||
if (t == error_mark_node)
|
||
goto resync_fail;
|
||
else if (OMP_CLAUSE_SCHEDULE_KIND (c) == OMP_CLAUSE_SCHEDULE_RUNTIME)
|
||
error_at (token->location, "schedule %<runtime%> does not take "
|
||
"a %<chunk_size%> parameter");
|
||
else if (OMP_CLAUSE_SCHEDULE_KIND (c) == OMP_CLAUSE_SCHEDULE_AUTO)
|
||
error_at (token->location, "schedule %<auto%> does not take "
|
||
"a %<chunk_size%> parameter");
|
||
else
|
||
OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (c) = t;
|
||
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
goto resync_fail;
|
||
}
|
||
else if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_COMMA_CLOSE_PAREN))
|
||
goto resync_fail;
|
||
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_SCHEDULE, "schedule", location);
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
return c;
|
||
|
||
invalid_kind:
|
||
cp_parser_error (parser, "invalid schedule kind");
|
||
resync_fail:
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
return list;
|
||
}
|
||
|
||
/* OpenMP 3.0:
|
||
untied */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_untied (cp_parser * /*parser*/,
|
||
tree list, location_t location)
|
||
{
|
||
tree c;
|
||
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_UNTIED, "untied", location);
|
||
|
||
c = build_omp_clause (location, OMP_CLAUSE_UNTIED);
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
return c;
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
inbranch
|
||
notinbranch */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_branch (cp_parser * /*parser*/, enum omp_clause_code code,
|
||
tree list, location_t location)
|
||
{
|
||
check_no_duplicate_clause (list, code, omp_clause_code_name[code], location);
|
||
tree c = build_omp_clause (location, code);
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
return c;
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
parallel
|
||
for
|
||
sections
|
||
taskgroup */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_cancelkind (cp_parser * /*parser*/,
|
||
enum omp_clause_code code,
|
||
tree list, location_t location)
|
||
{
|
||
tree c = build_omp_clause (location, code);
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
return c;
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
num_teams ( expression ) */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_num_teams (cp_parser *parser, tree list,
|
||
location_t location)
|
||
{
|
||
tree t, c;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
t = cp_parser_expression (parser, false, NULL);
|
||
|
||
if (t == error_mark_node
|
||
|| !cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_NUM_TEAMS,
|
||
"num_teams", location);
|
||
|
||
c = build_omp_clause (location, OMP_CLAUSE_NUM_TEAMS);
|
||
OMP_CLAUSE_NUM_TEAMS_EXPR (c) = t;
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
|
||
return c;
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
thread_limit ( expression ) */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_thread_limit (cp_parser *parser, tree list,
|
||
location_t location)
|
||
{
|
||
tree t, c;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
t = cp_parser_expression (parser, false, NULL);
|
||
|
||
if (t == error_mark_node
|
||
|| !cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_THREAD_LIMIT,
|
||
"thread_limit", location);
|
||
|
||
c = build_omp_clause (location, OMP_CLAUSE_THREAD_LIMIT);
|
||
OMP_CLAUSE_THREAD_LIMIT_EXPR (c) = t;
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
|
||
return c;
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
aligned ( variable-list )
|
||
aligned ( variable-list : constant-expression ) */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_aligned (cp_parser *parser, tree list)
|
||
{
|
||
tree nlist, c, alignment = NULL_TREE;
|
||
bool colon;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
nlist = cp_parser_omp_var_list_no_open (parser, OMP_CLAUSE_ALIGNED, list,
|
||
&colon);
|
||
|
||
if (colon)
|
||
{
|
||
alignment = cp_parser_constant_expression (parser, false, NULL);
|
||
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
|
||
if (alignment == error_mark_node)
|
||
alignment = NULL_TREE;
|
||
}
|
||
|
||
for (c = nlist; c != list; c = OMP_CLAUSE_CHAIN (c))
|
||
OMP_CLAUSE_ALIGNED_ALIGNMENT (c) = alignment;
|
||
|
||
return nlist;
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
linear ( variable-list )
|
||
linear ( variable-list : expression ) */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_linear (cp_parser *parser, tree list,
|
||
bool is_cilk_simd_fn)
|
||
{
|
||
tree nlist, c, step = integer_one_node;
|
||
bool colon;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
nlist = cp_parser_omp_var_list_no_open (parser, OMP_CLAUSE_LINEAR, list,
|
||
&colon);
|
||
|
||
if (colon)
|
||
{
|
||
step = cp_parser_expression (parser, false, NULL);
|
||
|
||
if (is_cilk_simd_fn && TREE_CODE (step) == PARM_DECL)
|
||
{
|
||
sorry ("using parameters for %<linear%> step is not supported yet");
|
||
step = integer_one_node;
|
||
}
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
|
||
if (step == error_mark_node)
|
||
return list;
|
||
}
|
||
|
||
for (c = nlist; c != list; c = OMP_CLAUSE_CHAIN (c))
|
||
OMP_CLAUSE_LINEAR_STEP (c) = step;
|
||
|
||
return nlist;
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
safelen ( constant-expression ) */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_safelen (cp_parser *parser, tree list,
|
||
location_t location)
|
||
{
|
||
tree t, c;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
t = cp_parser_constant_expression (parser, false, NULL);
|
||
|
||
if (t == error_mark_node
|
||
|| !cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_SAFELEN, "safelen", location);
|
||
|
||
c = build_omp_clause (location, OMP_CLAUSE_SAFELEN);
|
||
OMP_CLAUSE_SAFELEN_EXPR (c) = t;
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
|
||
return c;
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
simdlen ( constant-expression ) */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_simdlen (cp_parser *parser, tree list,
|
||
location_t location)
|
||
{
|
||
tree t, c;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
t = cp_parser_constant_expression (parser, false, NULL);
|
||
|
||
if (t == error_mark_node
|
||
|| !cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_SIMDLEN, "simdlen", location);
|
||
|
||
c = build_omp_clause (location, OMP_CLAUSE_SIMDLEN);
|
||
OMP_CLAUSE_SIMDLEN_EXPR (c) = t;
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
|
||
return c;
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
depend ( depend-kind : variable-list )
|
||
|
||
depend-kind:
|
||
in | out | inout */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_depend (cp_parser *parser, tree list)
|
||
{
|
||
tree nlist, c;
|
||
enum omp_clause_depend_kind kind = OMP_CLAUSE_DEPEND_INOUT;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
|
||
if (strcmp ("in", p) == 0)
|
||
kind = OMP_CLAUSE_DEPEND_IN;
|
||
else if (strcmp ("inout", p) == 0)
|
||
kind = OMP_CLAUSE_DEPEND_INOUT;
|
||
else if (strcmp ("out", p) == 0)
|
||
kind = OMP_CLAUSE_DEPEND_OUT;
|
||
else
|
||
goto invalid_kind;
|
||
}
|
||
else
|
||
goto invalid_kind;
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (!cp_parser_require (parser, CPP_COLON, RT_COLON))
|
||
goto resync_fail;
|
||
|
||
nlist = cp_parser_omp_var_list_no_open (parser, OMP_CLAUSE_DEPEND, list,
|
||
NULL);
|
||
|
||
for (c = nlist; c != list; c = OMP_CLAUSE_CHAIN (c))
|
||
OMP_CLAUSE_DEPEND_KIND (c) = kind;
|
||
|
||
return nlist;
|
||
|
||
invalid_kind:
|
||
cp_parser_error (parser, "invalid depend kind");
|
||
resync_fail:
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
return list;
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
map ( map-kind : variable-list )
|
||
map ( variable-list )
|
||
|
||
map-kind:
|
||
alloc | to | from | tofrom */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_map (cp_parser *parser, tree list)
|
||
{
|
||
tree nlist, c;
|
||
enum omp_clause_map_kind kind = OMP_CLAUSE_MAP_TOFROM;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_COLON)
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
|
||
if (strcmp ("alloc", p) == 0)
|
||
kind = OMP_CLAUSE_MAP_ALLOC;
|
||
else if (strcmp ("to", p) == 0)
|
||
kind = OMP_CLAUSE_MAP_TO;
|
||
else if (strcmp ("from", p) == 0)
|
||
kind = OMP_CLAUSE_MAP_FROM;
|
||
else if (strcmp ("tofrom", p) == 0)
|
||
kind = OMP_CLAUSE_MAP_TOFROM;
|
||
else
|
||
{
|
||
cp_parser_error (parser, "invalid map kind");
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
return list;
|
||
}
|
||
cp_lexer_consume_token (parser->lexer);
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
|
||
nlist = cp_parser_omp_var_list_no_open (parser, OMP_CLAUSE_MAP, list,
|
||
NULL);
|
||
|
||
for (c = nlist; c != list; c = OMP_CLAUSE_CHAIN (c))
|
||
OMP_CLAUSE_MAP_KIND (c) = kind;
|
||
|
||
return nlist;
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
device ( expression ) */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_device (cp_parser *parser, tree list,
|
||
location_t location)
|
||
{
|
||
tree t, c;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
t = cp_parser_expression (parser, false, NULL);
|
||
|
||
if (t == error_mark_node
|
||
|| !cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_DEVICE,
|
||
"device", location);
|
||
|
||
c = build_omp_clause (location, OMP_CLAUSE_DEVICE);
|
||
OMP_CLAUSE_DEVICE_ID (c) = t;
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
|
||
return c;
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
dist_schedule ( static )
|
||
dist_schedule ( static , expression ) */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_dist_schedule (cp_parser *parser, tree list,
|
||
location_t location)
|
||
{
|
||
tree c, t;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
c = build_omp_clause (location, OMP_CLAUSE_DIST_SCHEDULE);
|
||
|
||
if (!cp_lexer_next_token_is_keyword (parser->lexer, RID_STATIC))
|
||
goto invalid_kind;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
t = cp_parser_assignment_expression (parser, false, NULL);
|
||
|
||
if (t == error_mark_node)
|
||
goto resync_fail;
|
||
OMP_CLAUSE_DIST_SCHEDULE_CHUNK_EXPR (c) = t;
|
||
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
goto resync_fail;
|
||
}
|
||
else if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_COMMA_CLOSE_PAREN))
|
||
goto resync_fail;
|
||
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_DIST_SCHEDULE, "dist_schedule",
|
||
location);
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
return c;
|
||
|
||
invalid_kind:
|
||
cp_parser_error (parser, "invalid dist_schedule kind");
|
||
resync_fail:
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
return list;
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
proc_bind ( proc-bind-kind )
|
||
|
||
proc-bind-kind:
|
||
master | close | spread */
|
||
|
||
static tree
|
||
cp_parser_omp_clause_proc_bind (cp_parser *parser, tree list,
|
||
location_t location)
|
||
{
|
||
tree c;
|
||
enum omp_clause_proc_bind_kind kind;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return list;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
|
||
if (strcmp ("master", p) == 0)
|
||
kind = OMP_CLAUSE_PROC_BIND_MASTER;
|
||
else if (strcmp ("close", p) == 0)
|
||
kind = OMP_CLAUSE_PROC_BIND_CLOSE;
|
||
else if (strcmp ("spread", p) == 0)
|
||
kind = OMP_CLAUSE_PROC_BIND_SPREAD;
|
||
else
|
||
goto invalid_kind;
|
||
}
|
||
else
|
||
goto invalid_kind;
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_COMMA_CLOSE_PAREN))
|
||
goto resync_fail;
|
||
|
||
c = build_omp_clause (location, OMP_CLAUSE_PROC_BIND);
|
||
check_no_duplicate_clause (list, OMP_CLAUSE_PROC_BIND, "proc_bind",
|
||
location);
|
||
OMP_CLAUSE_PROC_BIND_KIND (c) = kind;
|
||
OMP_CLAUSE_CHAIN (c) = list;
|
||
return c;
|
||
|
||
invalid_kind:
|
||
cp_parser_error (parser, "invalid depend kind");
|
||
resync_fail:
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
return list;
|
||
}
|
||
|
||
/* Parse all OpenMP clauses. The set clauses allowed by the directive
|
||
is a bitmask in MASK. Return the list of clauses found; the result
|
||
of clause default goes in *pdefault. */
|
||
|
||
static tree
|
||
cp_parser_omp_all_clauses (cp_parser *parser, omp_clause_mask mask,
|
||
const char *where, cp_token *pragma_tok,
|
||
bool finish_p = true)
|
||
{
|
||
tree clauses = NULL;
|
||
bool first = true;
|
||
cp_token *token = NULL;
|
||
bool cilk_simd_fn = false;
|
||
|
||
while (cp_lexer_next_token_is_not (parser->lexer, CPP_PRAGMA_EOL))
|
||
{
|
||
pragma_omp_clause c_kind;
|
||
const char *c_name;
|
||
tree prev = clauses;
|
||
|
||
if (!first && cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
c_kind = cp_parser_omp_clause_name (parser);
|
||
|
||
switch (c_kind)
|
||
{
|
||
case PRAGMA_OMP_CLAUSE_COLLAPSE:
|
||
clauses = cp_parser_omp_clause_collapse (parser, clauses,
|
||
token->location);
|
||
c_name = "collapse";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_COPYIN:
|
||
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_COPYIN, clauses);
|
||
c_name = "copyin";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_COPYPRIVATE:
|
||
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_COPYPRIVATE,
|
||
clauses);
|
||
c_name = "copyprivate";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_DEFAULT:
|
||
clauses = cp_parser_omp_clause_default (parser, clauses,
|
||
token->location);
|
||
c_name = "default";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_FINAL:
|
||
clauses = cp_parser_omp_clause_final (parser, clauses, token->location);
|
||
c_name = "final";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_FIRSTPRIVATE:
|
||
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_FIRSTPRIVATE,
|
||
clauses);
|
||
c_name = "firstprivate";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_IF:
|
||
clauses = cp_parser_omp_clause_if (parser, clauses, token->location);
|
||
c_name = "if";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_LASTPRIVATE:
|
||
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_LASTPRIVATE,
|
||
clauses);
|
||
c_name = "lastprivate";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_MERGEABLE:
|
||
clauses = cp_parser_omp_clause_mergeable (parser, clauses,
|
||
token->location);
|
||
c_name = "mergeable";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_NOWAIT:
|
||
clauses = cp_parser_omp_clause_nowait (parser, clauses, token->location);
|
||
c_name = "nowait";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_NUM_THREADS:
|
||
clauses = cp_parser_omp_clause_num_threads (parser, clauses,
|
||
token->location);
|
||
c_name = "num_threads";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_ORDERED:
|
||
clauses = cp_parser_omp_clause_ordered (parser, clauses,
|
||
token->location);
|
||
c_name = "ordered";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_PRIVATE:
|
||
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_PRIVATE,
|
||
clauses);
|
||
c_name = "private";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_REDUCTION:
|
||
clauses = cp_parser_omp_clause_reduction (parser, clauses);
|
||
c_name = "reduction";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_SCHEDULE:
|
||
clauses = cp_parser_omp_clause_schedule (parser, clauses,
|
||
token->location);
|
||
c_name = "schedule";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_SHARED:
|
||
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_SHARED,
|
||
clauses);
|
||
c_name = "shared";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_UNTIED:
|
||
clauses = cp_parser_omp_clause_untied (parser, clauses,
|
||
token->location);
|
||
c_name = "untied";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_INBRANCH:
|
||
case PRAGMA_CILK_CLAUSE_MASK:
|
||
clauses = cp_parser_omp_clause_branch (parser, OMP_CLAUSE_INBRANCH,
|
||
clauses, token->location);
|
||
c_name = "inbranch";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_NOTINBRANCH:
|
||
case PRAGMA_CILK_CLAUSE_NOMASK:
|
||
clauses = cp_parser_omp_clause_branch (parser,
|
||
OMP_CLAUSE_NOTINBRANCH,
|
||
clauses, token->location);
|
||
c_name = "notinbranch";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_PARALLEL:
|
||
clauses = cp_parser_omp_clause_cancelkind (parser, OMP_CLAUSE_PARALLEL,
|
||
clauses, token->location);
|
||
c_name = "parallel";
|
||
if (!first)
|
||
{
|
||
clause_not_first:
|
||
error_at (token->location, "%qs must be the first clause of %qs",
|
||
c_name, where);
|
||
clauses = prev;
|
||
}
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_FOR:
|
||
clauses = cp_parser_omp_clause_cancelkind (parser, OMP_CLAUSE_FOR,
|
||
clauses, token->location);
|
||
c_name = "for";
|
||
if (!first)
|
||
goto clause_not_first;
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_SECTIONS:
|
||
clauses = cp_parser_omp_clause_cancelkind (parser, OMP_CLAUSE_SECTIONS,
|
||
clauses, token->location);
|
||
c_name = "sections";
|
||
if (!first)
|
||
goto clause_not_first;
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_TASKGROUP:
|
||
clauses = cp_parser_omp_clause_cancelkind (parser, OMP_CLAUSE_TASKGROUP,
|
||
clauses, token->location);
|
||
c_name = "taskgroup";
|
||
if (!first)
|
||
goto clause_not_first;
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_TO:
|
||
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_TO,
|
||
clauses);
|
||
c_name = "to";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_FROM:
|
||
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_FROM,
|
||
clauses);
|
||
c_name = "from";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_UNIFORM:
|
||
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_UNIFORM,
|
||
clauses);
|
||
c_name = "uniform";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_NUM_TEAMS:
|
||
clauses = cp_parser_omp_clause_num_teams (parser, clauses,
|
||
token->location);
|
||
c_name = "num_teams";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_THREAD_LIMIT:
|
||
clauses = cp_parser_omp_clause_thread_limit (parser, clauses,
|
||
token->location);
|
||
c_name = "thread_limit";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_ALIGNED:
|
||
clauses = cp_parser_omp_clause_aligned (parser, clauses);
|
||
c_name = "aligned";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_LINEAR:
|
||
if (((mask >> PRAGMA_CILK_CLAUSE_VECTORLENGTH) & 1) != 0)
|
||
cilk_simd_fn = true;
|
||
clauses = cp_parser_omp_clause_linear (parser, clauses, cilk_simd_fn);
|
||
c_name = "linear";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_DEPEND:
|
||
clauses = cp_parser_omp_clause_depend (parser, clauses);
|
||
c_name = "depend";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_MAP:
|
||
clauses = cp_parser_omp_clause_map (parser, clauses);
|
||
c_name = "map";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_DEVICE:
|
||
clauses = cp_parser_omp_clause_device (parser, clauses,
|
||
token->location);
|
||
c_name = "device";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_DIST_SCHEDULE:
|
||
clauses = cp_parser_omp_clause_dist_schedule (parser, clauses,
|
||
token->location);
|
||
c_name = "dist_schedule";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_PROC_BIND:
|
||
clauses = cp_parser_omp_clause_proc_bind (parser, clauses,
|
||
token->location);
|
||
c_name = "proc_bind";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_SAFELEN:
|
||
clauses = cp_parser_omp_clause_safelen (parser, clauses,
|
||
token->location);
|
||
c_name = "safelen";
|
||
break;
|
||
case PRAGMA_OMP_CLAUSE_SIMDLEN:
|
||
clauses = cp_parser_omp_clause_simdlen (parser, clauses,
|
||
token->location);
|
||
c_name = "simdlen";
|
||
break;
|
||
case PRAGMA_CILK_CLAUSE_VECTORLENGTH:
|
||
clauses = cp_parser_cilk_simd_vectorlength (parser, clauses, true);
|
||
c_name = "simdlen";
|
||
break;
|
||
default:
|
||
cp_parser_error (parser, "expected %<#pragma omp%> clause");
|
||
goto saw_error;
|
||
}
|
||
|
||
first = false;
|
||
|
||
if (((mask >> c_kind) & 1) == 0)
|
||
{
|
||
/* Remove the invalid clause(s) from the list to avoid
|
||
confusing the rest of the compiler. */
|
||
clauses = prev;
|
||
error_at (token->location, "%qs is not valid for %qs", c_name, where);
|
||
}
|
||
}
|
||
saw_error:
|
||
/* In Cilk Plus SIMD enabled functions there is no pragma_token, so
|
||
no reason to skip to the end. */
|
||
if (!(flag_cilkplus && pragma_tok == NULL))
|
||
cp_parser_skip_to_pragma_eol (parser, pragma_tok);
|
||
if (finish_p)
|
||
return finish_omp_clauses (clauses);
|
||
return clauses;
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
structured-block:
|
||
statement
|
||
|
||
In practice, we're also interested in adding the statement to an
|
||
outer node. So it is convenient if we work around the fact that
|
||
cp_parser_statement calls add_stmt. */
|
||
|
||
static unsigned
|
||
cp_parser_begin_omp_structured_block (cp_parser *parser)
|
||
{
|
||
unsigned save = parser->in_statement;
|
||
|
||
/* Only move the values to IN_OMP_BLOCK if they weren't false.
|
||
This preserves the "not within loop or switch" style error messages
|
||
for nonsense cases like
|
||
void foo() {
|
||
#pragma omp single
|
||
break;
|
||
}
|
||
*/
|
||
if (parser->in_statement)
|
||
parser->in_statement = IN_OMP_BLOCK;
|
||
|
||
return save;
|
||
}
|
||
|
||
static void
|
||
cp_parser_end_omp_structured_block (cp_parser *parser, unsigned save)
|
||
{
|
||
parser->in_statement = save;
|
||
}
|
||
|
||
static tree
|
||
cp_parser_omp_structured_block (cp_parser *parser)
|
||
{
|
||
tree stmt = begin_omp_structured_block ();
|
||
unsigned int save = cp_parser_begin_omp_structured_block (parser);
|
||
|
||
cp_parser_statement (parser, NULL_TREE, false, NULL);
|
||
|
||
cp_parser_end_omp_structured_block (parser, save);
|
||
return finish_omp_structured_block (stmt);
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
# pragma omp atomic new-line
|
||
expression-stmt
|
||
|
||
expression-stmt:
|
||
x binop= expr | x++ | ++x | x-- | --x
|
||
binop:
|
||
+, *, -, /, &, ^, |, <<, >>
|
||
|
||
where x is an lvalue expression with scalar type.
|
||
|
||
OpenMP 3.1:
|
||
# pragma omp atomic new-line
|
||
update-stmt
|
||
|
||
# pragma omp atomic read new-line
|
||
read-stmt
|
||
|
||
# pragma omp atomic write new-line
|
||
write-stmt
|
||
|
||
# pragma omp atomic update new-line
|
||
update-stmt
|
||
|
||
# pragma omp atomic capture new-line
|
||
capture-stmt
|
||
|
||
# pragma omp atomic capture new-line
|
||
capture-block
|
||
|
||
read-stmt:
|
||
v = x
|
||
write-stmt:
|
||
x = expr
|
||
update-stmt:
|
||
expression-stmt | x = x binop expr
|
||
capture-stmt:
|
||
v = expression-stmt
|
||
capture-block:
|
||
{ v = x; update-stmt; } | { update-stmt; v = x; }
|
||
|
||
OpenMP 4.0:
|
||
update-stmt:
|
||
expression-stmt | x = x binop expr | x = expr binop x
|
||
capture-stmt:
|
||
v = update-stmt
|
||
capture-block:
|
||
{ v = x; update-stmt; } | { update-stmt; v = x; } | { v = x; x = expr; }
|
||
|
||
where x and v are lvalue expressions with scalar type. */
|
||
|
||
static void
|
||
cp_parser_omp_atomic (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
tree lhs = NULL_TREE, rhs = NULL_TREE, v = NULL_TREE, lhs1 = NULL_TREE;
|
||
tree rhs1 = NULL_TREE, orig_lhs;
|
||
enum tree_code code = OMP_ATOMIC, opcode = NOP_EXPR;
|
||
bool structured_block = false;
|
||
bool seq_cst = false;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
|
||
if (!strcmp (p, "seq_cst"))
|
||
{
|
||
seq_cst = true;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA)
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_NAME)
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
}
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
|
||
if (!strcmp (p, "read"))
|
||
code = OMP_ATOMIC_READ;
|
||
else if (!strcmp (p, "write"))
|
||
code = NOP_EXPR;
|
||
else if (!strcmp (p, "update"))
|
||
code = OMP_ATOMIC;
|
||
else if (!strcmp (p, "capture"))
|
||
code = OMP_ATOMIC_CAPTURE_NEW;
|
||
else
|
||
p = NULL;
|
||
if (p)
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
if (!seq_cst)
|
||
{
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA)
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_NAME)
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
|
||
if (!strcmp (p, "seq_cst"))
|
||
{
|
||
seq_cst = true;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
}
|
||
}
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
|
||
switch (code)
|
||
{
|
||
case OMP_ATOMIC_READ:
|
||
case NOP_EXPR: /* atomic write */
|
||
v = cp_parser_unary_expression (parser, /*address_p=*/false,
|
||
/*cast_p=*/false, NULL);
|
||
if (v == error_mark_node)
|
||
goto saw_error;
|
||
if (!cp_parser_require (parser, CPP_EQ, RT_EQ))
|
||
goto saw_error;
|
||
if (code == NOP_EXPR)
|
||
lhs = cp_parser_expression (parser, /*cast_p=*/false, NULL);
|
||
else
|
||
lhs = cp_parser_unary_expression (parser, /*address_p=*/false,
|
||
/*cast_p=*/false, NULL);
|
||
if (lhs == error_mark_node)
|
||
goto saw_error;
|
||
if (code == NOP_EXPR)
|
||
{
|
||
/* atomic write is represented by OMP_ATOMIC with NOP_EXPR
|
||
opcode. */
|
||
code = OMP_ATOMIC;
|
||
rhs = lhs;
|
||
lhs = v;
|
||
v = NULL_TREE;
|
||
}
|
||
goto done;
|
||
case OMP_ATOMIC_CAPTURE_NEW:
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
structured_block = true;
|
||
}
|
||
else
|
||
{
|
||
v = cp_parser_unary_expression (parser, /*address_p=*/false,
|
||
/*cast_p=*/false, NULL);
|
||
if (v == error_mark_node)
|
||
goto saw_error;
|
||
if (!cp_parser_require (parser, CPP_EQ, RT_EQ))
|
||
goto saw_error;
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
|
||
restart:
|
||
lhs = cp_parser_unary_expression (parser, /*address_p=*/false,
|
||
/*cast_p=*/false, NULL);
|
||
orig_lhs = lhs;
|
||
switch (TREE_CODE (lhs))
|
||
{
|
||
case ERROR_MARK:
|
||
goto saw_error;
|
||
|
||
case POSTINCREMENT_EXPR:
|
||
if (code == OMP_ATOMIC_CAPTURE_NEW && !structured_block)
|
||
code = OMP_ATOMIC_CAPTURE_OLD;
|
||
/* FALLTHROUGH */
|
||
case PREINCREMENT_EXPR:
|
||
lhs = TREE_OPERAND (lhs, 0);
|
||
opcode = PLUS_EXPR;
|
||
rhs = integer_one_node;
|
||
break;
|
||
|
||
case POSTDECREMENT_EXPR:
|
||
if (code == OMP_ATOMIC_CAPTURE_NEW && !structured_block)
|
||
code = OMP_ATOMIC_CAPTURE_OLD;
|
||
/* FALLTHROUGH */
|
||
case PREDECREMENT_EXPR:
|
||
lhs = TREE_OPERAND (lhs, 0);
|
||
opcode = MINUS_EXPR;
|
||
rhs = integer_one_node;
|
||
break;
|
||
|
||
case COMPOUND_EXPR:
|
||
if (TREE_CODE (TREE_OPERAND (lhs, 0)) == SAVE_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (lhs, 1)) == COMPOUND_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (lhs, 1), 0)) == MODIFY_EXPR
|
||
&& TREE_OPERAND (TREE_OPERAND (lhs, 1), 1) == TREE_OPERAND (lhs, 0)
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (TREE_OPERAND
|
||
(TREE_OPERAND (lhs, 1), 0), 0)))
|
||
== BOOLEAN_TYPE)
|
||
/* Undo effects of boolean_increment for post {in,de}crement. */
|
||
lhs = TREE_OPERAND (TREE_OPERAND (lhs, 1), 0);
|
||
/* FALLTHRU */
|
||
case MODIFY_EXPR:
|
||
if (TREE_CODE (lhs) == MODIFY_EXPR
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (lhs, 0))) == BOOLEAN_TYPE)
|
||
{
|
||
/* Undo effects of boolean_increment. */
|
||
if (integer_onep (TREE_OPERAND (lhs, 1)))
|
||
{
|
||
/* This is pre or post increment. */
|
||
rhs = TREE_OPERAND (lhs, 1);
|
||
lhs = TREE_OPERAND (lhs, 0);
|
||
opcode = NOP_EXPR;
|
||
if (code == OMP_ATOMIC_CAPTURE_NEW
|
||
&& !structured_block
|
||
&& TREE_CODE (orig_lhs) == COMPOUND_EXPR)
|
||
code = OMP_ATOMIC_CAPTURE_OLD;
|
||
break;
|
||
}
|
||
}
|
||
/* FALLTHRU */
|
||
default:
|
||
switch (cp_lexer_peek_token (parser->lexer)->type)
|
||
{
|
||
case CPP_MULT_EQ:
|
||
opcode = MULT_EXPR;
|
||
break;
|
||
case CPP_DIV_EQ:
|
||
opcode = TRUNC_DIV_EXPR;
|
||
break;
|
||
case CPP_PLUS_EQ:
|
||
opcode = PLUS_EXPR;
|
||
break;
|
||
case CPP_MINUS_EQ:
|
||
opcode = MINUS_EXPR;
|
||
break;
|
||
case CPP_LSHIFT_EQ:
|
||
opcode = LSHIFT_EXPR;
|
||
break;
|
||
case CPP_RSHIFT_EQ:
|
||
opcode = RSHIFT_EXPR;
|
||
break;
|
||
case CPP_AND_EQ:
|
||
opcode = BIT_AND_EXPR;
|
||
break;
|
||
case CPP_OR_EQ:
|
||
opcode = BIT_IOR_EXPR;
|
||
break;
|
||
case CPP_XOR_EQ:
|
||
opcode = BIT_XOR_EXPR;
|
||
break;
|
||
case CPP_EQ:
|
||
enum cp_parser_prec oprec;
|
||
cp_token *token;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
cp_parser_parse_tentatively (parser);
|
||
rhs1 = cp_parser_simple_cast_expression (parser);
|
||
if (rhs1 == error_mark_node)
|
||
{
|
||
cp_parser_abort_tentative_parse (parser);
|
||
cp_parser_simple_cast_expression (parser);
|
||
goto saw_error;
|
||
}
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type != CPP_SEMICOLON && !cp_tree_equal (lhs, rhs1))
|
||
{
|
||
cp_parser_abort_tentative_parse (parser);
|
||
cp_parser_parse_tentatively (parser);
|
||
rhs = cp_parser_binary_expression (parser, false, true,
|
||
PREC_NOT_OPERATOR, NULL);
|
||
if (rhs == error_mark_node)
|
||
{
|
||
cp_parser_abort_tentative_parse (parser);
|
||
cp_parser_binary_expression (parser, false, true,
|
||
PREC_NOT_OPERATOR, NULL);
|
||
goto saw_error;
|
||
}
|
||
switch (TREE_CODE (rhs))
|
||
{
|
||
case MULT_EXPR:
|
||
case TRUNC_DIV_EXPR:
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
case LSHIFT_EXPR:
|
||
case RSHIFT_EXPR:
|
||
case BIT_AND_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
if (cp_tree_equal (lhs, TREE_OPERAND (rhs, 1)))
|
||
{
|
||
if (cp_parser_parse_definitely (parser))
|
||
{
|
||
opcode = TREE_CODE (rhs);
|
||
rhs1 = TREE_OPERAND (rhs, 0);
|
||
rhs = TREE_OPERAND (rhs, 1);
|
||
goto stmt_done;
|
||
}
|
||
else
|
||
goto saw_error;
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
cp_parser_abort_tentative_parse (parser);
|
||
if (structured_block && code == OMP_ATOMIC_CAPTURE_OLD)
|
||
{
|
||
rhs = cp_parser_expression (parser, /*cast_p=*/false, NULL);
|
||
if (rhs == error_mark_node)
|
||
goto saw_error;
|
||
opcode = NOP_EXPR;
|
||
rhs1 = NULL_TREE;
|
||
goto stmt_done;
|
||
}
|
||
cp_parser_error (parser,
|
||
"invalid form of %<#pragma omp atomic%>");
|
||
goto saw_error;
|
||
}
|
||
if (!cp_parser_parse_definitely (parser))
|
||
goto saw_error;
|
||
switch (token->type)
|
||
{
|
||
case CPP_SEMICOLON:
|
||
if (structured_block && code == OMP_ATOMIC_CAPTURE_NEW)
|
||
{
|
||
code = OMP_ATOMIC_CAPTURE_OLD;
|
||
v = lhs;
|
||
lhs = NULL_TREE;
|
||
lhs1 = rhs1;
|
||
rhs1 = NULL_TREE;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
goto restart;
|
||
}
|
||
else if (structured_block)
|
||
{
|
||
opcode = NOP_EXPR;
|
||
rhs = rhs1;
|
||
rhs1 = NULL_TREE;
|
||
goto stmt_done;
|
||
}
|
||
cp_parser_error (parser,
|
||
"invalid form of %<#pragma omp atomic%>");
|
||
goto saw_error;
|
||
case CPP_MULT:
|
||
opcode = MULT_EXPR;
|
||
break;
|
||
case CPP_DIV:
|
||
opcode = TRUNC_DIV_EXPR;
|
||
break;
|
||
case CPP_PLUS:
|
||
opcode = PLUS_EXPR;
|
||
break;
|
||
case CPP_MINUS:
|
||
opcode = MINUS_EXPR;
|
||
break;
|
||
case CPP_LSHIFT:
|
||
opcode = LSHIFT_EXPR;
|
||
break;
|
||
case CPP_RSHIFT:
|
||
opcode = RSHIFT_EXPR;
|
||
break;
|
||
case CPP_AND:
|
||
opcode = BIT_AND_EXPR;
|
||
break;
|
||
case CPP_OR:
|
||
opcode = BIT_IOR_EXPR;
|
||
break;
|
||
case CPP_XOR:
|
||
opcode = BIT_XOR_EXPR;
|
||
break;
|
||
default:
|
||
cp_parser_error (parser,
|
||
"invalid operator for %<#pragma omp atomic%>");
|
||
goto saw_error;
|
||
}
|
||
oprec = TOKEN_PRECEDENCE (token);
|
||
gcc_assert (oprec != PREC_NOT_OPERATOR);
|
||
if (commutative_tree_code (opcode))
|
||
oprec = (enum cp_parser_prec) (oprec - 1);
|
||
cp_lexer_consume_token (parser->lexer);
|
||
rhs = cp_parser_binary_expression (parser, false, false,
|
||
oprec, NULL);
|
||
if (rhs == error_mark_node)
|
||
goto saw_error;
|
||
goto stmt_done;
|
||
/* FALLTHROUGH */
|
||
default:
|
||
cp_parser_error (parser,
|
||
"invalid operator for %<#pragma omp atomic%>");
|
||
goto saw_error;
|
||
}
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
rhs = cp_parser_expression (parser, false, NULL);
|
||
if (rhs == error_mark_node)
|
||
goto saw_error;
|
||
break;
|
||
}
|
||
stmt_done:
|
||
if (structured_block && code == OMP_ATOMIC_CAPTURE_NEW)
|
||
{
|
||
if (!cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON))
|
||
goto saw_error;
|
||
v = cp_parser_unary_expression (parser, /*address_p=*/false,
|
||
/*cast_p=*/false, NULL);
|
||
if (v == error_mark_node)
|
||
goto saw_error;
|
||
if (!cp_parser_require (parser, CPP_EQ, RT_EQ))
|
||
goto saw_error;
|
||
lhs1 = cp_parser_unary_expression (parser, /*address_p=*/false,
|
||
/*cast_p=*/false, NULL);
|
||
if (lhs1 == error_mark_node)
|
||
goto saw_error;
|
||
}
|
||
if (structured_block)
|
||
{
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE);
|
||
}
|
||
done:
|
||
finish_omp_atomic (code, opcode, lhs, rhs, v, lhs1, rhs1, seq_cst);
|
||
if (!structured_block)
|
||
cp_parser_consume_semicolon_at_end_of_statement (parser);
|
||
return;
|
||
|
||
saw_error:
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
if (structured_block)
|
||
{
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
else if (code == OMP_ATOMIC_CAPTURE_NEW)
|
||
{
|
||
cp_parser_skip_to_end_of_block_or_statement (parser);
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* OpenMP 2.5:
|
||
# pragma omp barrier new-line */
|
||
|
||
static void
|
||
cp_parser_omp_barrier (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
finish_omp_barrier ();
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
# pragma omp critical [(name)] new-line
|
||
structured-block */
|
||
|
||
static tree
|
||
cp_parser_omp_critical (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
tree stmt, name = NULL;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
name = cp_parser_identifier (parser);
|
||
|
||
if (name == error_mark_node
|
||
|| !cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
if (name == error_mark_node)
|
||
name = NULL;
|
||
}
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
|
||
stmt = cp_parser_omp_structured_block (parser);
|
||
return c_finish_omp_critical (input_location, stmt, name);
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
# pragma omp flush flush-vars[opt] new-line
|
||
|
||
flush-vars:
|
||
( variable-list ) */
|
||
|
||
static void
|
||
cp_parser_omp_flush (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
|
||
(void) cp_parser_omp_var_list (parser, OMP_CLAUSE_ERROR, NULL);
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
|
||
finish_omp_flush ();
|
||
}
|
||
|
||
/* Helper function, to parse omp for increment expression. */
|
||
|
||
static tree
|
||
cp_parser_omp_for_cond (cp_parser *parser, tree decl, enum tree_code code)
|
||
{
|
||
tree cond = cp_parser_binary_expression (parser, false, true,
|
||
PREC_NOT_OPERATOR, NULL);
|
||
if (cond == error_mark_node
|
||
|| cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
|
||
{
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
return error_mark_node;
|
||
}
|
||
|
||
switch (TREE_CODE (cond))
|
||
{
|
||
case GT_EXPR:
|
||
case GE_EXPR:
|
||
case LT_EXPR:
|
||
case LE_EXPR:
|
||
break;
|
||
case NE_EXPR:
|
||
if (code == CILK_SIMD)
|
||
break;
|
||
/* Fall through: OpenMP disallows NE_EXPR. */
|
||
default:
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* If decl is an iterator, preserve LHS and RHS of the relational
|
||
expr until finish_omp_for. */
|
||
if (decl
|
||
&& (type_dependent_expression_p (decl)
|
||
|| CLASS_TYPE_P (TREE_TYPE (decl))))
|
||
return cond;
|
||
|
||
return build_x_binary_op (input_location, TREE_CODE (cond),
|
||
TREE_OPERAND (cond, 0), ERROR_MARK,
|
||
TREE_OPERAND (cond, 1), ERROR_MARK,
|
||
/*overload=*/NULL, tf_warning_or_error);
|
||
}
|
||
|
||
/* Helper function, to parse omp for increment expression. */
|
||
|
||
static tree
|
||
cp_parser_omp_for_incr (cp_parser *parser, tree decl)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
enum tree_code op;
|
||
tree lhs, rhs;
|
||
cp_id_kind idk;
|
||
bool decl_first;
|
||
|
||
if (token->type == CPP_PLUS_PLUS || token->type == CPP_MINUS_MINUS)
|
||
{
|
||
op = (token->type == CPP_PLUS_PLUS
|
||
? PREINCREMENT_EXPR : PREDECREMENT_EXPR);
|
||
cp_lexer_consume_token (parser->lexer);
|
||
lhs = cp_parser_simple_cast_expression (parser);
|
||
if (lhs != decl)
|
||
return error_mark_node;
|
||
return build2 (op, TREE_TYPE (decl), decl, NULL_TREE);
|
||
}
|
||
|
||
lhs = cp_parser_primary_expression (parser, false, false, false, &idk);
|
||
if (lhs != decl)
|
||
return error_mark_node;
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type == CPP_PLUS_PLUS || token->type == CPP_MINUS_MINUS)
|
||
{
|
||
op = (token->type == CPP_PLUS_PLUS
|
||
? POSTINCREMENT_EXPR : POSTDECREMENT_EXPR);
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return build2 (op, TREE_TYPE (decl), decl, NULL_TREE);
|
||
}
|
||
|
||
op = cp_parser_assignment_operator_opt (parser);
|
||
if (op == ERROR_MARK)
|
||
return error_mark_node;
|
||
|
||
if (op != NOP_EXPR)
|
||
{
|
||
rhs = cp_parser_assignment_expression (parser, false, NULL);
|
||
rhs = build2 (op, TREE_TYPE (decl), decl, rhs);
|
||
return build2 (MODIFY_EXPR, TREE_TYPE (decl), decl, rhs);
|
||
}
|
||
|
||
lhs = cp_parser_binary_expression (parser, false, false,
|
||
PREC_ADDITIVE_EXPRESSION, NULL);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
decl_first = lhs == decl;
|
||
if (decl_first)
|
||
lhs = NULL_TREE;
|
||
if (token->type != CPP_PLUS
|
||
&& token->type != CPP_MINUS)
|
||
return error_mark_node;
|
||
|
||
do
|
||
{
|
||
op = token->type == CPP_PLUS ? PLUS_EXPR : MINUS_EXPR;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
rhs = cp_parser_binary_expression (parser, false, false,
|
||
PREC_ADDITIVE_EXPRESSION, NULL);
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type == CPP_PLUS || token->type == CPP_MINUS || decl_first)
|
||
{
|
||
if (lhs == NULL_TREE)
|
||
{
|
||
if (op == PLUS_EXPR)
|
||
lhs = rhs;
|
||
else
|
||
lhs = build_x_unary_op (input_location, NEGATE_EXPR, rhs,
|
||
tf_warning_or_error);
|
||
}
|
||
else
|
||
lhs = build_x_binary_op (input_location, op, lhs, ERROR_MARK, rhs,
|
||
ERROR_MARK, NULL, tf_warning_or_error);
|
||
}
|
||
}
|
||
while (token->type == CPP_PLUS || token->type == CPP_MINUS);
|
||
|
||
if (!decl_first)
|
||
{
|
||
if (rhs != decl || op == MINUS_EXPR)
|
||
return error_mark_node;
|
||
rhs = build2 (op, TREE_TYPE (decl), lhs, decl);
|
||
}
|
||
else
|
||
rhs = build2 (PLUS_EXPR, TREE_TYPE (decl), decl, lhs);
|
||
|
||
return build2 (MODIFY_EXPR, TREE_TYPE (decl), decl, rhs);
|
||
}
|
||
|
||
/* Parse the initialization statement of either an OpenMP for loop or
|
||
a Cilk Plus for loop.
|
||
|
||
PARSING_OPENMP is true if parsing OpenMP, or false if parsing Cilk
|
||
Plus.
|
||
|
||
Return true if the resulting construct should have an
|
||
OMP_CLAUSE_PRIVATE added to it. */
|
||
|
||
static bool
|
||
cp_parser_omp_for_loop_init (cp_parser *parser,
|
||
bool parsing_openmp,
|
||
tree &this_pre_body,
|
||
vec<tree, va_gc> *for_block,
|
||
tree &init,
|
||
tree &decl,
|
||
tree &real_decl)
|
||
{
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
|
||
return false;
|
||
|
||
bool add_private_clause = false;
|
||
|
||
/* See 2.5.1 (in OpenMP 3.0, similar wording is in 2.5 standard too):
|
||
|
||
init-expr:
|
||
var = lb
|
||
integer-type var = lb
|
||
random-access-iterator-type var = lb
|
||
pointer-type var = lb
|
||
*/
|
||
cp_decl_specifier_seq type_specifiers;
|
||
|
||
/* First, try to parse as an initialized declaration. See
|
||
cp_parser_condition, from whence the bulk of this is copied. */
|
||
|
||
cp_parser_parse_tentatively (parser);
|
||
cp_parser_type_specifier_seq (parser, /*is_declaration=*/true,
|
||
/*is_trailing_return=*/false,
|
||
&type_specifiers);
|
||
if (cp_parser_parse_definitely (parser))
|
||
{
|
||
/* If parsing a type specifier seq succeeded, then this
|
||
MUST be a initialized declaration. */
|
||
tree asm_specification, attributes;
|
||
cp_declarator *declarator;
|
||
|
||
declarator = cp_parser_declarator (parser,
|
||
CP_PARSER_DECLARATOR_NAMED,
|
||
/*ctor_dtor_or_conv_p=*/NULL,
|
||
/*parenthesized_p=*/NULL,
|
||
/*member_p=*/false,
|
||
/*friend_p=*/false);
|
||
attributes = cp_parser_attributes_opt (parser);
|
||
asm_specification = cp_parser_asm_specification_opt (parser);
|
||
|
||
if (declarator == cp_error_declarator)
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
|
||
else
|
||
{
|
||
tree pushed_scope, auto_node;
|
||
|
||
decl = start_decl (declarator, &type_specifiers,
|
||
SD_INITIALIZED, attributes,
|
||
/*prefix_attributes=*/NULL_TREE,
|
||
&pushed_scope);
|
||
|
||
auto_node = type_uses_auto (TREE_TYPE (decl));
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ))
|
||
{
|
||
if (cp_lexer_next_token_is (parser->lexer,
|
||
CPP_OPEN_PAREN))
|
||
{
|
||
if (parsing_openmp)
|
||
error ("parenthesized initialization is not allowed in "
|
||
"OpenMP %<for%> loop");
|
||
else
|
||
error ("parenthesized initialization is "
|
||
"not allowed in for-loop");
|
||
}
|
||
else
|
||
/* Trigger an error. */
|
||
cp_parser_require (parser, CPP_EQ, RT_EQ);
|
||
|
||
init = error_mark_node;
|
||
cp_parser_skip_to_end_of_statement (parser);
|
||
}
|
||
else if (CLASS_TYPE_P (TREE_TYPE (decl))
|
||
|| type_dependent_expression_p (decl)
|
||
|| auto_node)
|
||
{
|
||
bool is_direct_init, is_non_constant_init;
|
||
|
||
init = cp_parser_initializer (parser,
|
||
&is_direct_init,
|
||
&is_non_constant_init);
|
||
|
||
if (auto_node)
|
||
{
|
||
TREE_TYPE (decl)
|
||
= do_auto_deduction (TREE_TYPE (decl), init,
|
||
auto_node);
|
||
|
||
if (!CLASS_TYPE_P (TREE_TYPE (decl))
|
||
&& !type_dependent_expression_p (decl))
|
||
goto non_class;
|
||
}
|
||
|
||
cp_finish_decl (decl, init, !is_non_constant_init,
|
||
asm_specification,
|
||
LOOKUP_ONLYCONVERTING);
|
||
if (CLASS_TYPE_P (TREE_TYPE (decl)))
|
||
{
|
||
vec_safe_push (for_block, this_pre_body);
|
||
init = NULL_TREE;
|
||
}
|
||
else
|
||
init = pop_stmt_list (this_pre_body);
|
||
this_pre_body = NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
/* Consume '='. */
|
||
cp_lexer_consume_token (parser->lexer);
|
||
init = cp_parser_assignment_expression (parser, false, NULL);
|
||
|
||
non_class:
|
||
if (TREE_CODE (TREE_TYPE (decl)) == REFERENCE_TYPE)
|
||
init = error_mark_node;
|
||
else
|
||
cp_finish_decl (decl, NULL_TREE,
|
||
/*init_const_expr_p=*/false,
|
||
asm_specification,
|
||
LOOKUP_ONLYCONVERTING);
|
||
}
|
||
|
||
if (pushed_scope)
|
||
pop_scope (pushed_scope);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
cp_id_kind idk;
|
||
/* If parsing a type specifier sequence failed, then
|
||
this MUST be a simple expression. */
|
||
cp_parser_parse_tentatively (parser);
|
||
decl = cp_parser_primary_expression (parser, false, false,
|
||
false, &idk);
|
||
if (!cp_parser_error_occurred (parser)
|
||
&& decl
|
||
&& DECL_P (decl)
|
||
&& CLASS_TYPE_P (TREE_TYPE (decl)))
|
||
{
|
||
tree rhs;
|
||
|
||
cp_parser_parse_definitely (parser);
|
||
cp_parser_require (parser, CPP_EQ, RT_EQ);
|
||
rhs = cp_parser_assignment_expression (parser, false, NULL);
|
||
finish_expr_stmt (build_x_modify_expr (EXPR_LOCATION (rhs),
|
||
decl, NOP_EXPR,
|
||
rhs,
|
||
tf_warning_or_error));
|
||
add_private_clause = true;
|
||
}
|
||
else
|
||
{
|
||
decl = NULL;
|
||
cp_parser_abort_tentative_parse (parser);
|
||
init = cp_parser_expression (parser, false, NULL);
|
||
if (init)
|
||
{
|
||
if (TREE_CODE (init) == MODIFY_EXPR
|
||
|| TREE_CODE (init) == MODOP_EXPR)
|
||
real_decl = TREE_OPERAND (init, 0);
|
||
}
|
||
}
|
||
}
|
||
return add_private_clause;
|
||
}
|
||
|
||
/* Parse the restricted form of the for statement allowed by OpenMP. */
|
||
|
||
static tree
|
||
cp_parser_omp_for_loop (cp_parser *parser, enum tree_code code, tree clauses,
|
||
tree *cclauses)
|
||
{
|
||
tree init, cond, incr, body, decl, pre_body = NULL_TREE, ret;
|
||
tree real_decl, initv, condv, incrv, declv;
|
||
tree this_pre_body, cl;
|
||
location_t loc_first;
|
||
bool collapse_err = false;
|
||
int i, collapse = 1, nbraces = 0;
|
||
vec<tree, va_gc> *for_block = make_tree_vector ();
|
||
|
||
for (cl = clauses; cl; cl = OMP_CLAUSE_CHAIN (cl))
|
||
if (OMP_CLAUSE_CODE (cl) == OMP_CLAUSE_COLLAPSE)
|
||
collapse = tree_to_shwi (OMP_CLAUSE_COLLAPSE_EXPR (cl));
|
||
|
||
gcc_assert (collapse >= 1);
|
||
|
||
declv = make_tree_vec (collapse);
|
||
initv = make_tree_vec (collapse);
|
||
condv = make_tree_vec (collapse);
|
||
incrv = make_tree_vec (collapse);
|
||
|
||
loc_first = cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
for (i = 0; i < collapse; i++)
|
||
{
|
||
int bracecount = 0;
|
||
bool add_private_clause = false;
|
||
location_t loc;
|
||
|
||
if (!cp_lexer_next_token_is_keyword (parser->lexer, RID_FOR))
|
||
{
|
||
cp_parser_error (parser, "for statement expected");
|
||
return NULL;
|
||
}
|
||
loc = cp_lexer_consume_token (parser->lexer)->location;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return NULL;
|
||
|
||
init = decl = real_decl = NULL;
|
||
this_pre_body = push_stmt_list ();
|
||
|
||
add_private_clause
|
||
|= cp_parser_omp_for_loop_init (parser,
|
||
/*parsing_openmp=*/code != CILK_SIMD,
|
||
this_pre_body, for_block,
|
||
init, decl, real_decl);
|
||
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
if (this_pre_body)
|
||
{
|
||
this_pre_body = pop_stmt_list (this_pre_body);
|
||
if (pre_body)
|
||
{
|
||
tree t = pre_body;
|
||
pre_body = push_stmt_list ();
|
||
add_stmt (t);
|
||
add_stmt (this_pre_body);
|
||
pre_body = pop_stmt_list (pre_body);
|
||
}
|
||
else
|
||
pre_body = this_pre_body;
|
||
}
|
||
|
||
if (decl)
|
||
real_decl = decl;
|
||
if (cclauses != NULL
|
||
&& cclauses[C_OMP_CLAUSE_SPLIT_PARALLEL] != NULL
|
||
&& real_decl != NULL_TREE)
|
||
{
|
||
tree *c;
|
||
for (c = &cclauses[C_OMP_CLAUSE_SPLIT_PARALLEL]; *c ; )
|
||
if (OMP_CLAUSE_CODE (*c) == OMP_CLAUSE_FIRSTPRIVATE
|
||
&& OMP_CLAUSE_DECL (*c) == real_decl)
|
||
{
|
||
error_at (loc, "iteration variable %qD"
|
||
" should not be firstprivate", real_decl);
|
||
*c = OMP_CLAUSE_CHAIN (*c);
|
||
}
|
||
else if (OMP_CLAUSE_CODE (*c) == OMP_CLAUSE_LASTPRIVATE
|
||
&& OMP_CLAUSE_DECL (*c) == real_decl)
|
||
{
|
||
/* Add lastprivate (decl) clause to OMP_FOR_CLAUSES,
|
||
change it to shared (decl) in OMP_PARALLEL_CLAUSES. */
|
||
tree l = build_omp_clause (loc, OMP_CLAUSE_LASTPRIVATE);
|
||
OMP_CLAUSE_DECL (l) = real_decl;
|
||
CP_OMP_CLAUSE_INFO (l) = CP_OMP_CLAUSE_INFO (*c);
|
||
if (code == OMP_SIMD)
|
||
{
|
||
OMP_CLAUSE_CHAIN (l) = cclauses[C_OMP_CLAUSE_SPLIT_FOR];
|
||
cclauses[C_OMP_CLAUSE_SPLIT_FOR] = l;
|
||
}
|
||
else
|
||
{
|
||
OMP_CLAUSE_CHAIN (l) = clauses;
|
||
clauses = l;
|
||
}
|
||
OMP_CLAUSE_SET_CODE (*c, OMP_CLAUSE_SHARED);
|
||
CP_OMP_CLAUSE_INFO (*c) = NULL;
|
||
add_private_clause = false;
|
||
}
|
||
else
|
||
{
|
||
if (OMP_CLAUSE_CODE (*c) == OMP_CLAUSE_PRIVATE
|
||
&& OMP_CLAUSE_DECL (*c) == real_decl)
|
||
add_private_clause = false;
|
||
c = &OMP_CLAUSE_CHAIN (*c);
|
||
}
|
||
}
|
||
|
||
if (add_private_clause)
|
||
{
|
||
tree c;
|
||
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
|
||
{
|
||
if ((OMP_CLAUSE_CODE (c) == OMP_CLAUSE_PRIVATE
|
||
|| OMP_CLAUSE_CODE (c) == OMP_CLAUSE_LASTPRIVATE)
|
||
&& OMP_CLAUSE_DECL (c) == decl)
|
||
break;
|
||
else if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_FIRSTPRIVATE
|
||
&& OMP_CLAUSE_DECL (c) == decl)
|
||
error_at (loc, "iteration variable %qD "
|
||
"should not be firstprivate",
|
||
decl);
|
||
else if (OMP_CLAUSE_CODE (c) == OMP_CLAUSE_REDUCTION
|
||
&& OMP_CLAUSE_DECL (c) == decl)
|
||
error_at (loc, "iteration variable %qD should not be reduction",
|
||
decl);
|
||
}
|
||
if (c == NULL)
|
||
{
|
||
c = build_omp_clause (loc, OMP_CLAUSE_PRIVATE);
|
||
OMP_CLAUSE_DECL (c) = decl;
|
||
c = finish_omp_clauses (c);
|
||
if (c)
|
||
{
|
||
OMP_CLAUSE_CHAIN (c) = clauses;
|
||
clauses = c;
|
||
}
|
||
}
|
||
}
|
||
|
||
cond = NULL;
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
|
||
cond = cp_parser_omp_for_cond (parser, decl, code);
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
|
||
incr = NULL;
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
|
||
{
|
||
/* If decl is an iterator, preserve the operator on decl
|
||
until finish_omp_for. */
|
||
if (real_decl
|
||
&& ((processing_template_decl
|
||
&& !POINTER_TYPE_P (TREE_TYPE (real_decl)))
|
||
|| CLASS_TYPE_P (TREE_TYPE (real_decl))))
|
||
incr = cp_parser_omp_for_incr (parser, real_decl);
|
||
else
|
||
incr = cp_parser_expression (parser, false, NULL);
|
||
if (CAN_HAVE_LOCATION_P (incr) && !EXPR_HAS_LOCATION (incr))
|
||
SET_EXPR_LOCATION (incr, input_location);
|
||
}
|
||
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
cp_parser_skip_to_closing_parenthesis (parser, /*recovering=*/true,
|
||
/*or_comma=*/false,
|
||
/*consume_paren=*/true);
|
||
|
||
TREE_VEC_ELT (declv, i) = decl;
|
||
TREE_VEC_ELT (initv, i) = init;
|
||
TREE_VEC_ELT (condv, i) = cond;
|
||
TREE_VEC_ELT (incrv, i) = incr;
|
||
|
||
if (i == collapse - 1)
|
||
break;
|
||
|
||
/* FIXME: OpenMP 3.0 draft isn't very clear on what exactly is allowed
|
||
in between the collapsed for loops to be still considered perfectly
|
||
nested. Hopefully the final version clarifies this.
|
||
For now handle (multiple) {'s and empty statements. */
|
||
cp_parser_parse_tentatively (parser);
|
||
do
|
||
{
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_FOR))
|
||
break;
|
||
else if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
bracecount++;
|
||
}
|
||
else if (bracecount
|
||
&& cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
else
|
||
{
|
||
loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
error_at (loc, "not enough collapsed for loops");
|
||
collapse_err = true;
|
||
cp_parser_abort_tentative_parse (parser);
|
||
declv = NULL_TREE;
|
||
break;
|
||
}
|
||
}
|
||
while (1);
|
||
|
||
if (declv)
|
||
{
|
||
cp_parser_parse_definitely (parser);
|
||
nbraces += bracecount;
|
||
}
|
||
}
|
||
|
||
/* Note that we saved the original contents of this flag when we entered
|
||
the structured block, and so we don't need to re-save it here. */
|
||
if (code == CILK_SIMD)
|
||
parser->in_statement = IN_CILK_SIMD_FOR;
|
||
else
|
||
parser->in_statement = IN_OMP_FOR;
|
||
|
||
/* Note that the grammar doesn't call for a structured block here,
|
||
though the loop as a whole is a structured block. */
|
||
body = push_stmt_list ();
|
||
cp_parser_statement (parser, NULL_TREE, false, NULL);
|
||
body = pop_stmt_list (body);
|
||
|
||
if (declv == NULL_TREE)
|
||
ret = NULL_TREE;
|
||
else
|
||
ret = finish_omp_for (loc_first, code, declv, initv, condv, incrv, body,
|
||
pre_body, clauses);
|
||
|
||
while (nbraces)
|
||
{
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
nbraces--;
|
||
}
|
||
else if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
else
|
||
{
|
||
if (!collapse_err)
|
||
{
|
||
error_at (cp_lexer_peek_token (parser->lexer)->location,
|
||
"collapsed loops not perfectly nested");
|
||
}
|
||
collapse_err = true;
|
||
cp_parser_statement_seq_opt (parser, NULL);
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
|
||
break;
|
||
}
|
||
}
|
||
|
||
while (!for_block->is_empty ())
|
||
add_stmt (pop_stmt_list (for_block->pop ()));
|
||
release_tree_vector (for_block);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Helper function for OpenMP parsing, split clauses and call
|
||
finish_omp_clauses on each of the set of clauses afterwards. */
|
||
|
||
static void
|
||
cp_omp_split_clauses (location_t loc, enum tree_code code,
|
||
omp_clause_mask mask, tree clauses, tree *cclauses)
|
||
{
|
||
int i;
|
||
c_omp_split_clauses (loc, code, mask, clauses, cclauses);
|
||
for (i = 0; i < C_OMP_CLAUSE_SPLIT_COUNT; i++)
|
||
if (cclauses[i])
|
||
cclauses[i] = finish_omp_clauses (cclauses[i]);
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
#pragma omp simd simd-clause[optseq] new-line
|
||
for-loop */
|
||
|
||
#define OMP_SIMD_CLAUSE_MASK \
|
||
( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SAFELEN) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_LINEAR) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_ALIGNED) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_LASTPRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_REDUCTION) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_COLLAPSE))
|
||
|
||
static tree
|
||
cp_parser_omp_simd (cp_parser *parser, cp_token *pragma_tok,
|
||
char *p_name, omp_clause_mask mask, tree *cclauses)
|
||
{
|
||
tree clauses, sb, ret;
|
||
unsigned int save;
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
strcat (p_name, " simd");
|
||
mask |= OMP_SIMD_CLAUSE_MASK;
|
||
mask &= ~(OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_ORDERED);
|
||
|
||
clauses = cp_parser_omp_all_clauses (parser, mask, p_name, pragma_tok,
|
||
cclauses == NULL);
|
||
if (cclauses)
|
||
{
|
||
cp_omp_split_clauses (loc, OMP_SIMD, mask, clauses, cclauses);
|
||
clauses = cclauses[C_OMP_CLAUSE_SPLIT_SIMD];
|
||
}
|
||
|
||
sb = begin_omp_structured_block ();
|
||
save = cp_parser_begin_omp_structured_block (parser);
|
||
|
||
ret = cp_parser_omp_for_loop (parser, OMP_SIMD, clauses, cclauses);
|
||
|
||
cp_parser_end_omp_structured_block (parser, save);
|
||
add_stmt (finish_omp_structured_block (sb));
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
#pragma omp for for-clause[optseq] new-line
|
||
for-loop
|
||
|
||
OpenMP 4.0:
|
||
#pragma omp for simd for-simd-clause[optseq] new-line
|
||
for-loop */
|
||
|
||
#define OMP_FOR_CLAUSE_MASK \
|
||
( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_LASTPRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_REDUCTION) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_ORDERED) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SCHEDULE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOWAIT) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_COLLAPSE))
|
||
|
||
static tree
|
||
cp_parser_omp_for (cp_parser *parser, cp_token *pragma_tok,
|
||
char *p_name, omp_clause_mask mask, tree *cclauses)
|
||
{
|
||
tree clauses, sb, ret;
|
||
unsigned int save;
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
strcat (p_name, " for");
|
||
mask |= OMP_FOR_CLAUSE_MASK;
|
||
if (cclauses)
|
||
mask &= ~(OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOWAIT);
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
|
||
if (strcmp (p, "simd") == 0)
|
||
{
|
||
tree cclauses_buf[C_OMP_CLAUSE_SPLIT_COUNT];
|
||
if (cclauses == NULL)
|
||
cclauses = cclauses_buf;
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (!flag_openmp) /* flag_openmp_simd */
|
||
return cp_parser_omp_simd (parser, pragma_tok, p_name, mask,
|
||
cclauses);
|
||
sb = begin_omp_structured_block ();
|
||
save = cp_parser_begin_omp_structured_block (parser);
|
||
ret = cp_parser_omp_simd (parser, pragma_tok, p_name, mask,
|
||
cclauses);
|
||
cp_parser_end_omp_structured_block (parser, save);
|
||
tree body = finish_omp_structured_block (sb);
|
||
if (ret == NULL)
|
||
return ret;
|
||
ret = make_node (OMP_FOR);
|
||
TREE_TYPE (ret) = void_type_node;
|
||
OMP_FOR_BODY (ret) = body;
|
||
OMP_FOR_CLAUSES (ret) = cclauses[C_OMP_CLAUSE_SPLIT_FOR];
|
||
SET_EXPR_LOCATION (ret, loc);
|
||
add_stmt (ret);
|
||
return ret;
|
||
}
|
||
}
|
||
if (!flag_openmp) /* flag_openmp_simd */
|
||
{
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
clauses = cp_parser_omp_all_clauses (parser, mask, p_name, pragma_tok,
|
||
cclauses == NULL);
|
||
if (cclauses)
|
||
{
|
||
cp_omp_split_clauses (loc, OMP_FOR, mask, clauses, cclauses);
|
||
clauses = cclauses[C_OMP_CLAUSE_SPLIT_FOR];
|
||
}
|
||
|
||
sb = begin_omp_structured_block ();
|
||
save = cp_parser_begin_omp_structured_block (parser);
|
||
|
||
ret = cp_parser_omp_for_loop (parser, OMP_FOR, clauses, cclauses);
|
||
|
||
cp_parser_end_omp_structured_block (parser, save);
|
||
add_stmt (finish_omp_structured_block (sb));
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
# pragma omp master new-line
|
||
structured-block */
|
||
|
||
static tree
|
||
cp_parser_omp_master (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
return c_finish_omp_master (input_location,
|
||
cp_parser_omp_structured_block (parser));
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
# pragma omp ordered new-line
|
||
structured-block */
|
||
|
||
static tree
|
||
cp_parser_omp_ordered (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
return c_finish_omp_ordered (loc, cp_parser_omp_structured_block (parser));
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
|
||
section-scope:
|
||
{ section-sequence }
|
||
|
||
section-sequence:
|
||
section-directive[opt] structured-block
|
||
section-sequence section-directive structured-block */
|
||
|
||
static tree
|
||
cp_parser_omp_sections_scope (cp_parser *parser)
|
||
{
|
||
tree stmt, substmt;
|
||
bool error_suppress = false;
|
||
cp_token *tok;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_BRACE, RT_OPEN_BRACE))
|
||
return NULL_TREE;
|
||
|
||
stmt = push_stmt_list ();
|
||
|
||
if (cp_lexer_peek_token (parser->lexer)->pragma_kind != PRAGMA_OMP_SECTION)
|
||
{
|
||
substmt = cp_parser_omp_structured_block (parser);
|
||
substmt = build1 (OMP_SECTION, void_type_node, substmt);
|
||
add_stmt (substmt);
|
||
}
|
||
|
||
while (1)
|
||
{
|
||
tok = cp_lexer_peek_token (parser->lexer);
|
||
if (tok->type == CPP_CLOSE_BRACE)
|
||
break;
|
||
if (tok->type == CPP_EOF)
|
||
break;
|
||
|
||
if (tok->pragma_kind == PRAGMA_OMP_SECTION)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
cp_parser_require_pragma_eol (parser, tok);
|
||
error_suppress = false;
|
||
}
|
||
else if (!error_suppress)
|
||
{
|
||
cp_parser_error (parser, "expected %<#pragma omp section%> or %<}%>");
|
||
error_suppress = true;
|
||
}
|
||
|
||
substmt = cp_parser_omp_structured_block (parser);
|
||
substmt = build1 (OMP_SECTION, void_type_node, substmt);
|
||
add_stmt (substmt);
|
||
}
|
||
cp_parser_require (parser, CPP_CLOSE_BRACE, RT_CLOSE_BRACE);
|
||
|
||
substmt = pop_stmt_list (stmt);
|
||
|
||
stmt = make_node (OMP_SECTIONS);
|
||
TREE_TYPE (stmt) = void_type_node;
|
||
OMP_SECTIONS_BODY (stmt) = substmt;
|
||
|
||
add_stmt (stmt);
|
||
return stmt;
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
# pragma omp sections sections-clause[optseq] newline
|
||
sections-scope */
|
||
|
||
#define OMP_SECTIONS_CLAUSE_MASK \
|
||
( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_LASTPRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_REDUCTION) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOWAIT))
|
||
|
||
static tree
|
||
cp_parser_omp_sections (cp_parser *parser, cp_token *pragma_tok,
|
||
char *p_name, omp_clause_mask mask, tree *cclauses)
|
||
{
|
||
tree clauses, ret;
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
strcat (p_name, " sections");
|
||
mask |= OMP_SECTIONS_CLAUSE_MASK;
|
||
if (cclauses)
|
||
mask &= ~(OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOWAIT);
|
||
|
||
clauses = cp_parser_omp_all_clauses (parser, mask, p_name, pragma_tok,
|
||
cclauses == NULL);
|
||
if (cclauses)
|
||
{
|
||
cp_omp_split_clauses (loc, OMP_SECTIONS, mask, clauses, cclauses);
|
||
clauses = cclauses[C_OMP_CLAUSE_SPLIT_SECTIONS];
|
||
}
|
||
|
||
ret = cp_parser_omp_sections_scope (parser);
|
||
if (ret)
|
||
OMP_SECTIONS_CLAUSES (ret) = clauses;
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
# pragma omp parallel parallel-clause[optseq] new-line
|
||
structured-block
|
||
# pragma omp parallel for parallel-for-clause[optseq] new-line
|
||
structured-block
|
||
# pragma omp parallel sections parallel-sections-clause[optseq] new-line
|
||
structured-block
|
||
|
||
OpenMP 4.0:
|
||
# pragma omp parallel for simd parallel-for-simd-clause[optseq] new-line
|
||
structured-block */
|
||
|
||
#define OMP_PARALLEL_CLAUSE_MASK \
|
||
( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IF) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEFAULT) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SHARED) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_COPYIN) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_REDUCTION) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NUM_THREADS) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PROC_BIND))
|
||
|
||
static tree
|
||
cp_parser_omp_parallel (cp_parser *parser, cp_token *pragma_tok,
|
||
char *p_name, omp_clause_mask mask, tree *cclauses)
|
||
{
|
||
tree stmt, clauses, block;
|
||
unsigned int save;
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
strcat (p_name, " parallel");
|
||
mask |= OMP_PARALLEL_CLAUSE_MASK;
|
||
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_FOR))
|
||
{
|
||
tree cclauses_buf[C_OMP_CLAUSE_SPLIT_COUNT];
|
||
if (cclauses == NULL)
|
||
cclauses = cclauses_buf;
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (!flag_openmp) /* flag_openmp_simd */
|
||
return cp_parser_omp_for (parser, pragma_tok, p_name, mask, cclauses);
|
||
block = begin_omp_parallel ();
|
||
save = cp_parser_begin_omp_structured_block (parser);
|
||
tree ret = cp_parser_omp_for (parser, pragma_tok, p_name, mask, cclauses);
|
||
cp_parser_end_omp_structured_block (parser, save);
|
||
stmt = finish_omp_parallel (cclauses[C_OMP_CLAUSE_SPLIT_PARALLEL],
|
||
block);
|
||
if (ret == NULL_TREE)
|
||
return ret;
|
||
OMP_PARALLEL_COMBINED (stmt) = 1;
|
||
return stmt;
|
||
}
|
||
else if (cclauses)
|
||
{
|
||
error_at (loc, "expected %<for%> after %qs", p_name);
|
||
cp_parser_skip_to_pragma_eol (parser, pragma_tok);
|
||
return NULL_TREE;
|
||
}
|
||
else if (!flag_openmp) /* flag_openmp_simd */
|
||
{
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
return NULL_TREE;
|
||
}
|
||
else if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
if (strcmp (p, "sections") == 0)
|
||
{
|
||
tree cclauses_buf[C_OMP_CLAUSE_SPLIT_COUNT];
|
||
cclauses = cclauses_buf;
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
block = begin_omp_parallel ();
|
||
save = cp_parser_begin_omp_structured_block (parser);
|
||
cp_parser_omp_sections (parser, pragma_tok, p_name, mask, cclauses);
|
||
cp_parser_end_omp_structured_block (parser, save);
|
||
stmt = finish_omp_parallel (cclauses[C_OMP_CLAUSE_SPLIT_PARALLEL],
|
||
block);
|
||
OMP_PARALLEL_COMBINED (stmt) = 1;
|
||
return stmt;
|
||
}
|
||
}
|
||
|
||
clauses = cp_parser_omp_all_clauses (parser, mask, p_name, pragma_tok);
|
||
|
||
block = begin_omp_parallel ();
|
||
save = cp_parser_begin_omp_structured_block (parser);
|
||
cp_parser_statement (parser, NULL_TREE, false, NULL);
|
||
cp_parser_end_omp_structured_block (parser, save);
|
||
stmt = finish_omp_parallel (clauses, block);
|
||
return stmt;
|
||
}
|
||
|
||
/* OpenMP 2.5:
|
||
# pragma omp single single-clause[optseq] new-line
|
||
structured-block */
|
||
|
||
#define OMP_SINGLE_CLAUSE_MASK \
|
||
( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_COPYPRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOWAIT))
|
||
|
||
static tree
|
||
cp_parser_omp_single (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
tree stmt = make_node (OMP_SINGLE);
|
||
TREE_TYPE (stmt) = void_type_node;
|
||
|
||
OMP_SINGLE_CLAUSES (stmt)
|
||
= cp_parser_omp_all_clauses (parser, OMP_SINGLE_CLAUSE_MASK,
|
||
"#pragma omp single", pragma_tok);
|
||
OMP_SINGLE_BODY (stmt) = cp_parser_omp_structured_block (parser);
|
||
|
||
return add_stmt (stmt);
|
||
}
|
||
|
||
/* OpenMP 3.0:
|
||
# pragma omp task task-clause[optseq] new-line
|
||
structured-block */
|
||
|
||
#define OMP_TASK_CLAUSE_MASK \
|
||
( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IF) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_UNTIED) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEFAULT) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SHARED) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FINAL) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_MERGEABLE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEPEND))
|
||
|
||
static tree
|
||
cp_parser_omp_task (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
tree clauses, block;
|
||
unsigned int save;
|
||
|
||
clauses = cp_parser_omp_all_clauses (parser, OMP_TASK_CLAUSE_MASK,
|
||
"#pragma omp task", pragma_tok);
|
||
block = begin_omp_task ();
|
||
save = cp_parser_begin_omp_structured_block (parser);
|
||
cp_parser_statement (parser, NULL_TREE, false, NULL);
|
||
cp_parser_end_omp_structured_block (parser, save);
|
||
return finish_omp_task (clauses, block);
|
||
}
|
||
|
||
/* OpenMP 3.0:
|
||
# pragma omp taskwait new-line */
|
||
|
||
static void
|
||
cp_parser_omp_taskwait (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
finish_omp_taskwait ();
|
||
}
|
||
|
||
/* OpenMP 3.1:
|
||
# pragma omp taskyield new-line */
|
||
|
||
static void
|
||
cp_parser_omp_taskyield (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
finish_omp_taskyield ();
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
# pragma omp taskgroup new-line
|
||
structured-block */
|
||
|
||
static tree
|
||
cp_parser_omp_taskgroup (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
return c_finish_omp_taskgroup (input_location,
|
||
cp_parser_omp_structured_block (parser));
|
||
}
|
||
|
||
|
||
/* OpenMP 2.5:
|
||
# pragma omp threadprivate (variable-list) */
|
||
|
||
static void
|
||
cp_parser_omp_threadprivate (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
tree vars;
|
||
|
||
vars = cp_parser_omp_var_list (parser, OMP_CLAUSE_ERROR, NULL);
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
|
||
finish_omp_threadprivate (vars);
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
# pragma omp cancel cancel-clause[optseq] new-line */
|
||
|
||
#define OMP_CANCEL_CLAUSE_MASK \
|
||
( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PARALLEL) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FOR) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SECTIONS) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_TASKGROUP) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IF))
|
||
|
||
static void
|
||
cp_parser_omp_cancel (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
tree clauses = cp_parser_omp_all_clauses (parser, OMP_CANCEL_CLAUSE_MASK,
|
||
"#pragma omp cancel", pragma_tok);
|
||
finish_omp_cancel (clauses);
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
# pragma omp cancellation point cancelpt-clause[optseq] new-line */
|
||
|
||
#define OMP_CANCELLATION_POINT_CLAUSE_MASK \
|
||
( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PARALLEL) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FOR) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SECTIONS) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_TASKGROUP))
|
||
|
||
static void
|
||
cp_parser_omp_cancellation_point (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
tree clauses;
|
||
bool point_seen = false;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
|
||
if (strcmp (p, "point") == 0)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
point_seen = true;
|
||
}
|
||
}
|
||
if (!point_seen)
|
||
{
|
||
cp_parser_error (parser, "expected %<point%>");
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
return;
|
||
}
|
||
|
||
clauses = cp_parser_omp_all_clauses (parser,
|
||
OMP_CANCELLATION_POINT_CLAUSE_MASK,
|
||
"#pragma omp cancellation point",
|
||
pragma_tok);
|
||
finish_omp_cancellation_point (clauses);
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
#pragma omp distribute distribute-clause[optseq] new-line
|
||
for-loop */
|
||
|
||
#define OMP_DISTRIBUTE_CLAUSE_MASK \
|
||
( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DIST_SCHEDULE)\
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_COLLAPSE))
|
||
|
||
static tree
|
||
cp_parser_omp_distribute (cp_parser *parser, cp_token *pragma_tok,
|
||
char *p_name, omp_clause_mask mask, tree *cclauses)
|
||
{
|
||
tree clauses, sb, ret;
|
||
unsigned int save;
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
strcat (p_name, " distribute");
|
||
mask |= OMP_DISTRIBUTE_CLAUSE_MASK;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
bool simd = false;
|
||
bool parallel = false;
|
||
|
||
if (strcmp (p, "simd") == 0)
|
||
simd = true;
|
||
else
|
||
parallel = strcmp (p, "parallel") == 0;
|
||
if (parallel || simd)
|
||
{
|
||
tree cclauses_buf[C_OMP_CLAUSE_SPLIT_COUNT];
|
||
if (cclauses == NULL)
|
||
cclauses = cclauses_buf;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (!flag_openmp) /* flag_openmp_simd */
|
||
{
|
||
if (simd)
|
||
return cp_parser_omp_simd (parser, pragma_tok, p_name, mask,
|
||
cclauses);
|
||
else
|
||
return cp_parser_omp_parallel (parser, pragma_tok, p_name, mask,
|
||
cclauses);
|
||
}
|
||
sb = begin_omp_structured_block ();
|
||
save = cp_parser_begin_omp_structured_block (parser);
|
||
if (simd)
|
||
ret = cp_parser_omp_simd (parser, pragma_tok, p_name, mask,
|
||
cclauses);
|
||
else
|
||
ret = cp_parser_omp_parallel (parser, pragma_tok, p_name, mask,
|
||
cclauses);
|
||
cp_parser_end_omp_structured_block (parser, save);
|
||
tree body = finish_omp_structured_block (sb);
|
||
if (ret == NULL)
|
||
return ret;
|
||
ret = make_node (OMP_DISTRIBUTE);
|
||
TREE_TYPE (ret) = void_type_node;
|
||
OMP_FOR_BODY (ret) = body;
|
||
OMP_FOR_CLAUSES (ret) = cclauses[C_OMP_CLAUSE_SPLIT_DISTRIBUTE];
|
||
SET_EXPR_LOCATION (ret, loc);
|
||
add_stmt (ret);
|
||
return ret;
|
||
}
|
||
}
|
||
if (!flag_openmp) /* flag_openmp_simd */
|
||
{
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
clauses = cp_parser_omp_all_clauses (parser, mask, p_name, pragma_tok,
|
||
cclauses == NULL);
|
||
if (cclauses)
|
||
{
|
||
cp_omp_split_clauses (loc, OMP_DISTRIBUTE, mask, clauses, cclauses);
|
||
clauses = cclauses[C_OMP_CLAUSE_SPLIT_DISTRIBUTE];
|
||
}
|
||
|
||
sb = begin_omp_structured_block ();
|
||
save = cp_parser_begin_omp_structured_block (parser);
|
||
|
||
ret = cp_parser_omp_for_loop (parser, OMP_DISTRIBUTE, clauses, NULL);
|
||
|
||
cp_parser_end_omp_structured_block (parser, save);
|
||
add_stmt (finish_omp_structured_block (sb));
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
# pragma omp teams teams-clause[optseq] new-line
|
||
structured-block */
|
||
|
||
#define OMP_TEAMS_CLAUSE_MASK \
|
||
( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_PRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SHARED) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_REDUCTION) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NUM_TEAMS) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_THREAD_LIMIT) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEFAULT))
|
||
|
||
static tree
|
||
cp_parser_omp_teams (cp_parser *parser, cp_token *pragma_tok,
|
||
char *p_name, omp_clause_mask mask, tree *cclauses)
|
||
{
|
||
tree clauses, sb, ret;
|
||
unsigned int save;
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
strcat (p_name, " teams");
|
||
mask |= OMP_TEAMS_CLAUSE_MASK;
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
if (strcmp (p, "distribute") == 0)
|
||
{
|
||
tree cclauses_buf[C_OMP_CLAUSE_SPLIT_COUNT];
|
||
if (cclauses == NULL)
|
||
cclauses = cclauses_buf;
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (!flag_openmp) /* flag_openmp_simd */
|
||
return cp_parser_omp_distribute (parser, pragma_tok, p_name, mask,
|
||
cclauses);
|
||
sb = begin_omp_structured_block ();
|
||
save = cp_parser_begin_omp_structured_block (parser);
|
||
ret = cp_parser_omp_distribute (parser, pragma_tok, p_name, mask,
|
||
cclauses);
|
||
cp_parser_end_omp_structured_block (parser, save);
|
||
tree body = finish_omp_structured_block (sb);
|
||
if (ret == NULL)
|
||
return ret;
|
||
clauses = cclauses[C_OMP_CLAUSE_SPLIT_TEAMS];
|
||
ret = make_node (OMP_TEAMS);
|
||
TREE_TYPE (ret) = void_type_node;
|
||
OMP_TEAMS_CLAUSES (ret) = clauses;
|
||
OMP_TEAMS_BODY (ret) = body;
|
||
return add_stmt (ret);
|
||
}
|
||
}
|
||
if (!flag_openmp) /* flag_openmp_simd */
|
||
{
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
clauses = cp_parser_omp_all_clauses (parser, mask, p_name, pragma_tok,
|
||
cclauses == NULL);
|
||
if (cclauses)
|
||
{
|
||
cp_omp_split_clauses (loc, OMP_TEAMS, mask, clauses, cclauses);
|
||
clauses = cclauses[C_OMP_CLAUSE_SPLIT_TEAMS];
|
||
}
|
||
|
||
tree stmt = make_node (OMP_TEAMS);
|
||
TREE_TYPE (stmt) = void_type_node;
|
||
OMP_TEAMS_CLAUSES (stmt) = clauses;
|
||
OMP_TEAMS_BODY (stmt) = cp_parser_omp_structured_block (parser);
|
||
|
||
return add_stmt (stmt);
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
# pragma omp target data target-data-clause[optseq] new-line
|
||
structured-block */
|
||
|
||
#define OMP_TARGET_DATA_CLAUSE_MASK \
|
||
( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEVICE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_MAP) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IF))
|
||
|
||
static tree
|
||
cp_parser_omp_target_data (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
tree stmt = make_node (OMP_TARGET_DATA);
|
||
TREE_TYPE (stmt) = void_type_node;
|
||
|
||
OMP_TARGET_DATA_CLAUSES (stmt)
|
||
= cp_parser_omp_all_clauses (parser, OMP_TARGET_DATA_CLAUSE_MASK,
|
||
"#pragma omp target data", pragma_tok);
|
||
keep_next_level (true);
|
||
OMP_TARGET_DATA_BODY (stmt) = cp_parser_omp_structured_block (parser);
|
||
|
||
SET_EXPR_LOCATION (stmt, pragma_tok->location);
|
||
return add_stmt (stmt);
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
# pragma omp target update target-update-clause[optseq] new-line */
|
||
|
||
#define OMP_TARGET_UPDATE_CLAUSE_MASK \
|
||
( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_FROM) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_TO) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEVICE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IF))
|
||
|
||
static bool
|
||
cp_parser_omp_target_update (cp_parser *parser, cp_token *pragma_tok,
|
||
enum pragma_context context)
|
||
{
|
||
if (context == pragma_stmt)
|
||
{
|
||
error_at (pragma_tok->location,
|
||
"%<#pragma omp target update%> may only be "
|
||
"used in compound statements");
|
||
cp_parser_skip_to_pragma_eol (parser, pragma_tok);
|
||
return false;
|
||
}
|
||
|
||
tree clauses
|
||
= cp_parser_omp_all_clauses (parser, OMP_TARGET_UPDATE_CLAUSE_MASK,
|
||
"#pragma omp target update", pragma_tok);
|
||
if (find_omp_clause (clauses, OMP_CLAUSE_TO) == NULL_TREE
|
||
&& find_omp_clause (clauses, OMP_CLAUSE_FROM) == NULL_TREE)
|
||
{
|
||
error_at (pragma_tok->location,
|
||
"%<#pragma omp target update must contain at least one "
|
||
"%<from%> or %<to%> clauses");
|
||
return false;
|
||
}
|
||
|
||
tree stmt = make_node (OMP_TARGET_UPDATE);
|
||
TREE_TYPE (stmt) = void_type_node;
|
||
OMP_TARGET_UPDATE_CLAUSES (stmt) = clauses;
|
||
SET_EXPR_LOCATION (stmt, pragma_tok->location);
|
||
add_stmt (stmt);
|
||
return false;
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
# pragma omp target target-clause[optseq] new-line
|
||
structured-block */
|
||
|
||
#define OMP_TARGET_CLAUSE_MASK \
|
||
( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_DEVICE) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_MAP) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_IF))
|
||
|
||
static bool
|
||
cp_parser_omp_target (cp_parser *parser, cp_token *pragma_tok,
|
||
enum pragma_context context)
|
||
{
|
||
if (context != pragma_stmt && context != pragma_compound)
|
||
{
|
||
cp_parser_error (parser, "expected declaration specifiers");
|
||
cp_parser_skip_to_pragma_eol (parser, pragma_tok);
|
||
return false;
|
||
}
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
|
||
if (strcmp (p, "teams") == 0)
|
||
{
|
||
tree cclauses[C_OMP_CLAUSE_SPLIT_COUNT];
|
||
char p_name[sizeof ("#pragma omp target teams distribute "
|
||
"parallel for simd")];
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
strcpy (p_name, "#pragma omp target");
|
||
if (!flag_openmp) /* flag_openmp_simd */
|
||
{
|
||
tree stmt = cp_parser_omp_teams (parser, pragma_tok, p_name,
|
||
OMP_TARGET_CLAUSE_MASK,
|
||
cclauses);
|
||
return stmt != NULL_TREE;
|
||
}
|
||
keep_next_level (true);
|
||
tree sb = begin_omp_structured_block ();
|
||
unsigned save = cp_parser_begin_omp_structured_block (parser);
|
||
tree ret = cp_parser_omp_teams (parser, pragma_tok, p_name,
|
||
OMP_TARGET_CLAUSE_MASK, cclauses);
|
||
cp_parser_end_omp_structured_block (parser, save);
|
||
tree body = finish_omp_structured_block (sb);
|
||
if (ret == NULL_TREE)
|
||
return false;
|
||
tree stmt = make_node (OMP_TARGET);
|
||
TREE_TYPE (stmt) = void_type_node;
|
||
OMP_TARGET_CLAUSES (stmt) = cclauses[C_OMP_CLAUSE_SPLIT_TARGET];
|
||
OMP_TARGET_BODY (stmt) = body;
|
||
add_stmt (stmt);
|
||
return true;
|
||
}
|
||
else if (!flag_openmp) /* flag_openmp_simd */
|
||
{
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
return false;
|
||
}
|
||
else if (strcmp (p, "data") == 0)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
cp_parser_omp_target_data (parser, pragma_tok);
|
||
return true;
|
||
}
|
||
else if (strcmp (p, "update") == 0)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return cp_parser_omp_target_update (parser, pragma_tok, context);
|
||
}
|
||
}
|
||
|
||
tree stmt = make_node (OMP_TARGET);
|
||
TREE_TYPE (stmt) = void_type_node;
|
||
|
||
OMP_TARGET_CLAUSES (stmt)
|
||
= cp_parser_omp_all_clauses (parser, OMP_TARGET_CLAUSE_MASK,
|
||
"#pragma omp target", pragma_tok);
|
||
keep_next_level (true);
|
||
OMP_TARGET_BODY (stmt) = cp_parser_omp_structured_block (parser);
|
||
|
||
SET_EXPR_LOCATION (stmt, pragma_tok->location);
|
||
add_stmt (stmt);
|
||
return true;
|
||
}
|
||
|
||
/* OpenMP 4.0:
|
||
# pragma omp declare simd declare-simd-clauses[optseq] new-line */
|
||
|
||
#define OMP_DECLARE_SIMD_CLAUSE_MASK \
|
||
( (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_SIMDLEN) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_LINEAR) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_ALIGNED) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_UNIFORM) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_INBRANCH) \
|
||
| (OMP_CLAUSE_MASK_1 << PRAGMA_OMP_CLAUSE_NOTINBRANCH))
|
||
|
||
static void
|
||
cp_parser_omp_declare_simd (cp_parser *parser, cp_token *pragma_tok,
|
||
enum pragma_context context)
|
||
{
|
||
bool first_p = parser->omp_declare_simd == NULL;
|
||
cp_omp_declare_simd_data data;
|
||
if (first_p)
|
||
{
|
||
data.error_seen = false;
|
||
data.fndecl_seen = false;
|
||
data.tokens = vNULL;
|
||
parser->omp_declare_simd = &data;
|
||
}
|
||
while (cp_lexer_next_token_is_not (parser->lexer, CPP_PRAGMA_EOL)
|
||
&& cp_lexer_next_token_is_not (parser->lexer, CPP_EOF))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_PRAGMA_EOL))
|
||
parser->omp_declare_simd->error_seen = true;
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
struct cp_token_cache *cp
|
||
= cp_token_cache_new (pragma_tok, cp_lexer_peek_token (parser->lexer));
|
||
parser->omp_declare_simd->tokens.safe_push (cp);
|
||
if (first_p)
|
||
{
|
||
while (cp_lexer_next_token_is (parser->lexer, CPP_PRAGMA))
|
||
cp_parser_pragma (parser, context);
|
||
switch (context)
|
||
{
|
||
case pragma_external:
|
||
cp_parser_declaration (parser);
|
||
break;
|
||
case pragma_member:
|
||
cp_parser_member_declaration (parser);
|
||
break;
|
||
case pragma_objc_icode:
|
||
cp_parser_block_declaration (parser, /*statement_p=*/false);
|
||
break;
|
||
default:
|
||
cp_parser_declaration_statement (parser);
|
||
break;
|
||
}
|
||
if (parser->omp_declare_simd
|
||
&& !parser->omp_declare_simd->error_seen
|
||
&& !parser->omp_declare_simd->fndecl_seen)
|
||
error_at (pragma_tok->location,
|
||
"%<#pragma omp declare simd%> not immediately followed by "
|
||
"function declaration or definition");
|
||
data.tokens.release ();
|
||
parser->omp_declare_simd = NULL;
|
||
}
|
||
}
|
||
|
||
/* Handles the delayed parsing of the Cilk Plus SIMD-enabled function.
|
||
This function is modelled similar to the late parsing of omp declare
|
||
simd. */
|
||
|
||
static tree
|
||
cp_parser_late_parsing_cilk_simd_fn_info (cp_parser *parser, tree attrs)
|
||
{
|
||
struct cp_token_cache *ce;
|
||
cp_omp_declare_simd_data *info = parser->cilk_simd_fn_info;
|
||
int ii = 0;
|
||
|
||
if (parser->omp_declare_simd != NULL)
|
||
{
|
||
error ("%<#pragma omp declare simd%> cannot be used in the same function"
|
||
" marked as a Cilk Plus SIMD-enabled function");
|
||
XDELETE (parser->cilk_simd_fn_info);
|
||
parser->cilk_simd_fn_info = NULL;
|
||
return attrs;
|
||
}
|
||
if (!info->error_seen && info->fndecl_seen)
|
||
{
|
||
error ("vector attribute not immediately followed by a single function"
|
||
" declaration or definition");
|
||
info->error_seen = true;
|
||
}
|
||
if (info->error_seen)
|
||
return attrs;
|
||
|
||
FOR_EACH_VEC_ELT (info->tokens, ii, ce)
|
||
{
|
||
tree c, cl;
|
||
|
||
cp_parser_push_lexer_for_tokens (parser, ce);
|
||
parser->lexer->in_pragma = true;
|
||
cl = cp_parser_omp_all_clauses (parser, CILK_SIMD_FN_CLAUSE_MASK,
|
||
"SIMD-enabled functions attribute",
|
||
NULL);
|
||
cp_parser_pop_lexer (parser);
|
||
if (cl)
|
||
cl = tree_cons (NULL_TREE, cl, NULL_TREE);
|
||
|
||
c = build_tree_list (get_identifier ("cilk simd function"), NULL_TREE);
|
||
TREE_CHAIN (c) = attrs;
|
||
attrs = c;
|
||
|
||
c = build_tree_list (get_identifier ("omp declare simd"), cl);
|
||
TREE_CHAIN (c) = attrs;
|
||
if (processing_template_decl)
|
||
ATTR_IS_DEPENDENT (c) = 1;
|
||
attrs = c;
|
||
}
|
||
info->fndecl_seen = true;
|
||
XDELETE (parser->cilk_simd_fn_info);
|
||
parser->cilk_simd_fn_info = NULL;
|
||
return attrs;
|
||
}
|
||
|
||
/* Finalize #pragma omp declare simd clauses after direct declarator has
|
||
been parsed, and put that into "omp declare simd" attribute. */
|
||
|
||
static tree
|
||
cp_parser_late_parsing_omp_declare_simd (cp_parser *parser, tree attrs)
|
||
{
|
||
struct cp_token_cache *ce;
|
||
cp_omp_declare_simd_data *data = parser->omp_declare_simd;
|
||
int i;
|
||
|
||
if (!data->error_seen && data->fndecl_seen)
|
||
{
|
||
error ("%<#pragma omp declare simd%> not immediately followed by "
|
||
"a single function declaration or definition");
|
||
data->error_seen = true;
|
||
return attrs;
|
||
}
|
||
if (data->error_seen)
|
||
return attrs;
|
||
|
||
FOR_EACH_VEC_ELT (data->tokens, i, ce)
|
||
{
|
||
tree c, cl;
|
||
|
||
cp_parser_push_lexer_for_tokens (parser, ce);
|
||
parser->lexer->in_pragma = true;
|
||
gcc_assert (cp_lexer_peek_token (parser->lexer)->type == CPP_PRAGMA);
|
||
cp_token *pragma_tok = cp_lexer_consume_token (parser->lexer);
|
||
cp_lexer_consume_token (parser->lexer);
|
||
cl = cp_parser_omp_all_clauses (parser, OMP_DECLARE_SIMD_CLAUSE_MASK,
|
||
"#pragma omp declare simd", pragma_tok);
|
||
cp_parser_pop_lexer (parser);
|
||
if (cl)
|
||
cl = tree_cons (NULL_TREE, cl, NULL_TREE);
|
||
c = build_tree_list (get_identifier ("omp declare simd"), cl);
|
||
TREE_CHAIN (c) = attrs;
|
||
if (processing_template_decl)
|
||
ATTR_IS_DEPENDENT (c) = 1;
|
||
attrs = c;
|
||
}
|
||
|
||
data->fndecl_seen = true;
|
||
return attrs;
|
||
}
|
||
|
||
|
||
/* OpenMP 4.0:
|
||
# pragma omp declare target new-line
|
||
declarations and definitions
|
||
# pragma omp end declare target new-line */
|
||
|
||
static void
|
||
cp_parser_omp_declare_target (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
cp_parser_skip_to_pragma_eol (parser, pragma_tok);
|
||
scope_chain->omp_declare_target_attribute++;
|
||
}
|
||
|
||
static void
|
||
cp_parser_omp_end_declare_target (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
const char *p = "";
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
p = IDENTIFIER_POINTER (id);
|
||
}
|
||
if (strcmp (p, "declare") == 0)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
p = "";
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
p = IDENTIFIER_POINTER (id);
|
||
}
|
||
if (strcmp (p, "target") == 0)
|
||
cp_lexer_consume_token (parser->lexer);
|
||
else
|
||
{
|
||
cp_parser_error (parser, "expected %<target%>");
|
||
cp_parser_skip_to_pragma_eol (parser, pragma_tok);
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
cp_parser_error (parser, "expected %<declare%>");
|
||
cp_parser_skip_to_pragma_eol (parser, pragma_tok);
|
||
return;
|
||
}
|
||
cp_parser_skip_to_pragma_eol (parser, pragma_tok);
|
||
if (!scope_chain->omp_declare_target_attribute)
|
||
error_at (pragma_tok->location,
|
||
"%<#pragma omp end declare target%> without corresponding "
|
||
"%<#pragma omp declare target%>");
|
||
else
|
||
scope_chain->omp_declare_target_attribute--;
|
||
}
|
||
|
||
/* Helper function of cp_parser_omp_declare_reduction. Parse the combiner
|
||
expression and optional initializer clause of
|
||
#pragma omp declare reduction. We store the expression(s) as
|
||
either 3, 6 or 7 special statements inside of the artificial function's
|
||
body. The first two statements are DECL_EXPRs for the artificial
|
||
OMP_OUT resp. OMP_IN variables, followed by a statement with the combiner
|
||
expression that uses those variables.
|
||
If there was any INITIALIZER clause, this is followed by further statements,
|
||
the fourth and fifth statements are DECL_EXPRs for the artificial
|
||
OMP_PRIV resp. OMP_ORIG variables. If the INITIALIZER clause wasn't the
|
||
constructor variant (first token after open paren is not omp_priv),
|
||
then the sixth statement is a statement with the function call expression
|
||
that uses the OMP_PRIV and optionally OMP_ORIG variable.
|
||
Otherwise, the sixth statement is whatever statement cp_finish_decl emits
|
||
to initialize the OMP_PRIV artificial variable and there is seventh
|
||
statement, a DECL_EXPR of the OMP_PRIV statement again. */
|
||
|
||
static bool
|
||
cp_parser_omp_declare_reduction_exprs (tree fndecl, cp_parser *parser)
|
||
{
|
||
tree type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
|
||
gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
|
||
type = TREE_TYPE (type);
|
||
tree omp_out = build_lang_decl (VAR_DECL, get_identifier ("omp_out"), type);
|
||
DECL_ARTIFICIAL (omp_out) = 1;
|
||
pushdecl (omp_out);
|
||
add_decl_expr (omp_out);
|
||
tree omp_in = build_lang_decl (VAR_DECL, get_identifier ("omp_in"), type);
|
||
DECL_ARTIFICIAL (omp_in) = 1;
|
||
pushdecl (omp_in);
|
||
add_decl_expr (omp_in);
|
||
tree combiner;
|
||
tree omp_priv = NULL_TREE, omp_orig = NULL_TREE, initializer = NULL_TREE;
|
||
|
||
keep_next_level (true);
|
||
tree block = begin_omp_structured_block ();
|
||
combiner = cp_parser_expression (parser, false, NULL);
|
||
finish_expr_stmt (combiner);
|
||
block = finish_omp_structured_block (block);
|
||
add_stmt (block);
|
||
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
return false;
|
||
|
||
const char *p = "";
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
p = IDENTIFIER_POINTER (id);
|
||
}
|
||
|
||
if (strcmp (p, "initializer") == 0)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return false;
|
||
|
||
p = "";
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
p = IDENTIFIER_POINTER (id);
|
||
}
|
||
|
||
omp_priv = build_lang_decl (VAR_DECL, get_identifier ("omp_priv"), type);
|
||
DECL_ARTIFICIAL (omp_priv) = 1;
|
||
pushdecl (omp_priv);
|
||
add_decl_expr (omp_priv);
|
||
omp_orig = build_lang_decl (VAR_DECL, get_identifier ("omp_orig"), type);
|
||
DECL_ARTIFICIAL (omp_orig) = 1;
|
||
pushdecl (omp_orig);
|
||
add_decl_expr (omp_orig);
|
||
|
||
keep_next_level (true);
|
||
block = begin_omp_structured_block ();
|
||
|
||
bool ctor = false;
|
||
if (strcmp (p, "omp_priv") == 0)
|
||
{
|
||
bool is_direct_init, is_non_constant_init;
|
||
ctor = true;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
/* Reject initializer (omp_priv) and initializer (omp_priv ()). */
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)
|
||
|| (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 2)->type
|
||
== CPP_CLOSE_PAREN
|
||
&& cp_lexer_peek_nth_token (parser->lexer, 3)->type
|
||
== CPP_CLOSE_PAREN))
|
||
{
|
||
finish_omp_structured_block (block);
|
||
error ("invalid initializer clause");
|
||
return false;
|
||
}
|
||
initializer = cp_parser_initializer (parser, &is_direct_init,
|
||
&is_non_constant_init);
|
||
cp_finish_decl (omp_priv, initializer, !is_non_constant_init,
|
||
NULL_TREE, LOOKUP_ONLYCONVERTING);
|
||
}
|
||
else
|
||
{
|
||
cp_parser_parse_tentatively (parser);
|
||
tree fn_name = cp_parser_id_expression (parser, /*template_p=*/false,
|
||
/*check_dependency_p=*/true,
|
||
/*template_p=*/NULL,
|
||
/*declarator_p=*/false,
|
||
/*optional_p=*/false);
|
||
vec<tree, va_gc> *args;
|
||
if (fn_name == error_mark_node
|
||
|| cp_parser_error_occurred (parser)
|
||
|| !cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN)
|
||
|| ((args = cp_parser_parenthesized_expression_list
|
||
(parser, non_attr, /*cast_p=*/false,
|
||
/*allow_expansion_p=*/true,
|
||
/*non_constant_p=*/NULL)),
|
||
cp_parser_error_occurred (parser)))
|
||
{
|
||
finish_omp_structured_block (block);
|
||
cp_parser_abort_tentative_parse (parser);
|
||
cp_parser_error (parser, "expected id-expression (arguments)");
|
||
return false;
|
||
}
|
||
unsigned int i;
|
||
tree arg;
|
||
FOR_EACH_VEC_SAFE_ELT (args, i, arg)
|
||
if (arg == omp_priv
|
||
|| (TREE_CODE (arg) == ADDR_EXPR
|
||
&& TREE_OPERAND (arg, 0) == omp_priv))
|
||
break;
|
||
cp_parser_abort_tentative_parse (parser);
|
||
if (arg == NULL_TREE)
|
||
error ("one of the initializer call arguments should be %<omp_priv%>"
|
||
" or %<&omp_priv%>");
|
||
initializer = cp_parser_postfix_expression (parser, false, false, false,
|
||
false, NULL);
|
||
finish_expr_stmt (initializer);
|
||
}
|
||
|
||
block = finish_omp_structured_block (block);
|
||
cp_walk_tree (&block, cp_remove_omp_priv_cleanup_stmt, omp_priv, NULL);
|
||
finish_expr_stmt (block);
|
||
|
||
if (ctor)
|
||
add_decl_expr (omp_orig);
|
||
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
return false;
|
||
}
|
||
|
||
if (!cp_lexer_next_token_is (parser->lexer, CPP_PRAGMA_EOL))
|
||
cp_parser_required_error (parser, RT_PRAGMA_EOL, /*keyword=*/false);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* OpenMP 4.0
|
||
#pragma omp declare reduction (reduction-id : typename-list : expression) \
|
||
initializer-clause[opt] new-line
|
||
|
||
initializer-clause:
|
||
initializer (omp_priv initializer)
|
||
initializer (function-name (argument-list)) */
|
||
|
||
static void
|
||
cp_parser_omp_declare_reduction (cp_parser *parser, cp_token *pragma_tok,
|
||
enum pragma_context)
|
||
{
|
||
auto_vec<tree> types;
|
||
enum tree_code reduc_code = ERROR_MARK;
|
||
tree reduc_id = NULL_TREE, orig_reduc_id = NULL_TREE, type;
|
||
unsigned int i;
|
||
cp_token *first_token;
|
||
cp_token_cache *cp;
|
||
int errs;
|
||
void *p;
|
||
|
||
/* Get the high-water mark for the DECLARATOR_OBSTACK. */
|
||
p = obstack_alloc (&declarator_obstack, 0);
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
goto fail;
|
||
|
||
switch (cp_lexer_peek_token (parser->lexer)->type)
|
||
{
|
||
case CPP_PLUS:
|
||
reduc_code = PLUS_EXPR;
|
||
break;
|
||
case CPP_MULT:
|
||
reduc_code = MULT_EXPR;
|
||
break;
|
||
case CPP_MINUS:
|
||
reduc_code = MINUS_EXPR;
|
||
break;
|
||
case CPP_AND:
|
||
reduc_code = BIT_AND_EXPR;
|
||
break;
|
||
case CPP_XOR:
|
||
reduc_code = BIT_XOR_EXPR;
|
||
break;
|
||
case CPP_OR:
|
||
reduc_code = BIT_IOR_EXPR;
|
||
break;
|
||
case CPP_AND_AND:
|
||
reduc_code = TRUTH_ANDIF_EXPR;
|
||
break;
|
||
case CPP_OR_OR:
|
||
reduc_code = TRUTH_ORIF_EXPR;
|
||
break;
|
||
case CPP_NAME:
|
||
reduc_id = orig_reduc_id = cp_parser_identifier (parser);
|
||
break;
|
||
default:
|
||
cp_parser_error (parser, "expected %<+%>, %<*%>, %<-%>, %<&%>, %<^%>, "
|
||
"%<|%>, %<&&%>, %<||%> or identifier");
|
||
goto fail;
|
||
}
|
||
|
||
if (reduc_code != ERROR_MARK)
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
reduc_id = omp_reduction_id (reduc_code, reduc_id, NULL_TREE);
|
||
if (reduc_id == error_mark_node)
|
||
goto fail;
|
||
|
||
if (!cp_parser_require (parser, CPP_COLON, RT_COLON))
|
||
goto fail;
|
||
|
||
/* Types may not be defined in declare reduction type list. */
|
||
const char *saved_message;
|
||
saved_message = parser->type_definition_forbidden_message;
|
||
parser->type_definition_forbidden_message
|
||
= G_("types may not be defined in declare reduction type list");
|
||
bool saved_colon_corrects_to_scope_p;
|
||
saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p;
|
||
parser->colon_corrects_to_scope_p = false;
|
||
bool saved_colon_doesnt_start_class_def_p;
|
||
saved_colon_doesnt_start_class_def_p
|
||
= parser->colon_doesnt_start_class_def_p;
|
||
parser->colon_doesnt_start_class_def_p = true;
|
||
|
||
while (true)
|
||
{
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
type = cp_parser_type_id (parser);
|
||
if (type == error_mark_node)
|
||
;
|
||
else if (ARITHMETIC_TYPE_P (type)
|
||
&& (orig_reduc_id == NULL_TREE
|
||
|| (TREE_CODE (type) != COMPLEX_TYPE
|
||
&& (strcmp (IDENTIFIER_POINTER (orig_reduc_id),
|
||
"min") == 0
|
||
|| strcmp (IDENTIFIER_POINTER (orig_reduc_id),
|
||
"max") == 0))))
|
||
error_at (loc, "predeclared arithmetic type %qT in "
|
||
"%<#pragma omp declare reduction%>", type);
|
||
else if (TREE_CODE (type) == FUNCTION_TYPE
|
||
|| TREE_CODE (type) == METHOD_TYPE
|
||
|| TREE_CODE (type) == ARRAY_TYPE)
|
||
error_at (loc, "function or array type %qT in "
|
||
"%<#pragma omp declare reduction%>", type);
|
||
else if (TREE_CODE (type) == REFERENCE_TYPE)
|
||
error_at (loc, "reference type %qT in "
|
||
"%<#pragma omp declare reduction%>", type);
|
||
else if (TYPE_QUALS_NO_ADDR_SPACE (type))
|
||
error_at (loc, "const, volatile or __restrict qualified type %qT in "
|
||
"%<#pragma omp declare reduction%>", type);
|
||
else
|
||
types.safe_push (type);
|
||
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
else
|
||
break;
|
||
}
|
||
|
||
/* Restore the saved message. */
|
||
parser->type_definition_forbidden_message = saved_message;
|
||
parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p;
|
||
parser->colon_doesnt_start_class_def_p
|
||
= saved_colon_doesnt_start_class_def_p;
|
||
|
||
if (!cp_parser_require (parser, CPP_COLON, RT_COLON)
|
||
|| types.is_empty ())
|
||
{
|
||
fail:
|
||
cp_parser_skip_to_pragma_eol (parser, pragma_tok);
|
||
goto done;
|
||
}
|
||
|
||
first_token = cp_lexer_peek_token (parser->lexer);
|
||
cp = NULL;
|
||
errs = errorcount;
|
||
FOR_EACH_VEC_ELT (types, i, type)
|
||
{
|
||
tree fntype
|
||
= build_function_type_list (void_type_node,
|
||
cp_build_reference_type (type, false),
|
||
NULL_TREE);
|
||
tree this_reduc_id = reduc_id;
|
||
if (!dependent_type_p (type))
|
||
this_reduc_id = omp_reduction_id (ERROR_MARK, reduc_id, type);
|
||
tree fndecl = build_lang_decl (FUNCTION_DECL, this_reduc_id, fntype);
|
||
DECL_SOURCE_LOCATION (fndecl) = pragma_tok->location;
|
||
DECL_ARTIFICIAL (fndecl) = 1;
|
||
DECL_EXTERNAL (fndecl) = 1;
|
||
DECL_DECLARED_INLINE_P (fndecl) = 1;
|
||
DECL_IGNORED_P (fndecl) = 1;
|
||
DECL_OMP_DECLARE_REDUCTION_P (fndecl) = 1;
|
||
DECL_ATTRIBUTES (fndecl)
|
||
= tree_cons (get_identifier ("gnu_inline"), NULL_TREE,
|
||
DECL_ATTRIBUTES (fndecl));
|
||
if (processing_template_decl)
|
||
fndecl = push_template_decl (fndecl);
|
||
bool block_scope = false;
|
||
tree block = NULL_TREE;
|
||
if (current_function_decl)
|
||
{
|
||
block_scope = true;
|
||
DECL_CONTEXT (fndecl) = global_namespace;
|
||
if (!processing_template_decl)
|
||
pushdecl (fndecl);
|
||
}
|
||
else if (current_class_type)
|
||
{
|
||
if (cp == NULL)
|
||
{
|
||
while (cp_lexer_next_token_is_not (parser->lexer, CPP_PRAGMA_EOL)
|
||
&& cp_lexer_next_token_is_not (parser->lexer, CPP_EOF))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_PRAGMA_EOL))
|
||
goto fail;
|
||
cp = cp_token_cache_new (first_token,
|
||
cp_lexer_peek_nth_token (parser->lexer,
|
||
2));
|
||
}
|
||
DECL_STATIC_FUNCTION_P (fndecl) = 1;
|
||
finish_member_declaration (fndecl);
|
||
DECL_PENDING_INLINE_INFO (fndecl) = cp;
|
||
DECL_PENDING_INLINE_P (fndecl) = 1;
|
||
vec_safe_push (unparsed_funs_with_definitions, fndecl);
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
DECL_CONTEXT (fndecl) = current_namespace;
|
||
pushdecl (fndecl);
|
||
}
|
||
if (!block_scope)
|
||
start_preparsed_function (fndecl, NULL_TREE, SF_PRE_PARSED);
|
||
else
|
||
block = begin_omp_structured_block ();
|
||
if (cp)
|
||
{
|
||
cp_parser_push_lexer_for_tokens (parser, cp);
|
||
parser->lexer->in_pragma = true;
|
||
}
|
||
if (!cp_parser_omp_declare_reduction_exprs (fndecl, parser))
|
||
{
|
||
if (!block_scope)
|
||
finish_function (0);
|
||
else
|
||
DECL_CONTEXT (fndecl) = current_function_decl;
|
||
if (cp)
|
||
cp_parser_pop_lexer (parser);
|
||
goto fail;
|
||
}
|
||
if (cp)
|
||
cp_parser_pop_lexer (parser);
|
||
if (!block_scope)
|
||
finish_function (0);
|
||
else
|
||
{
|
||
DECL_CONTEXT (fndecl) = current_function_decl;
|
||
block = finish_omp_structured_block (block);
|
||
if (TREE_CODE (block) == BIND_EXPR)
|
||
DECL_SAVED_TREE (fndecl) = BIND_EXPR_BODY (block);
|
||
else if (TREE_CODE (block) == STATEMENT_LIST)
|
||
DECL_SAVED_TREE (fndecl) = block;
|
||
if (processing_template_decl)
|
||
add_decl_expr (fndecl);
|
||
}
|
||
cp_check_omp_declare_reduction (fndecl);
|
||
if (cp == NULL && types.length () > 1)
|
||
cp = cp_token_cache_new (first_token,
|
||
cp_lexer_peek_nth_token (parser->lexer, 2));
|
||
if (errs != errorcount)
|
||
break;
|
||
}
|
||
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
|
||
done:
|
||
/* Free any declarators allocated. */
|
||
obstack_free (&declarator_obstack, p);
|
||
}
|
||
|
||
/* OpenMP 4.0
|
||
#pragma omp declare simd declare-simd-clauses[optseq] new-line
|
||
#pragma omp declare reduction (reduction-id : typename-list : expression) \
|
||
initializer-clause[opt] new-line
|
||
#pragma omp declare target new-line */
|
||
|
||
static void
|
||
cp_parser_omp_declare (cp_parser *parser, cp_token *pragma_tok,
|
||
enum pragma_context context)
|
||
{
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
|
||
{
|
||
tree id = cp_lexer_peek_token (parser->lexer)->u.value;
|
||
const char *p = IDENTIFIER_POINTER (id);
|
||
|
||
if (strcmp (p, "simd") == 0)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
cp_parser_omp_declare_simd (parser, pragma_tok,
|
||
context);
|
||
return;
|
||
}
|
||
cp_ensure_no_omp_declare_simd (parser);
|
||
if (strcmp (p, "reduction") == 0)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
cp_parser_omp_declare_reduction (parser, pragma_tok,
|
||
context);
|
||
return;
|
||
}
|
||
if (!flag_openmp) /* flag_openmp_simd */
|
||
{
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
return;
|
||
}
|
||
if (strcmp (p, "target") == 0)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
cp_parser_omp_declare_target (parser, pragma_tok);
|
||
return;
|
||
}
|
||
}
|
||
cp_parser_error (parser, "expected %<simd%> or %<reduction%> "
|
||
"or %<target%>");
|
||
cp_parser_require_pragma_eol (parser, pragma_tok);
|
||
}
|
||
|
||
/* Main entry point to OpenMP statement pragmas. */
|
||
|
||
static void
|
||
cp_parser_omp_construct (cp_parser *parser, cp_token *pragma_tok)
|
||
{
|
||
tree stmt;
|
||
char p_name[sizeof "#pragma omp teams distribute parallel for simd"];
|
||
omp_clause_mask mask (0);
|
||
|
||
switch (pragma_tok->pragma_kind)
|
||
{
|
||
case PRAGMA_OMP_ATOMIC:
|
||
cp_parser_omp_atomic (parser, pragma_tok);
|
||
return;
|
||
case PRAGMA_OMP_CRITICAL:
|
||
stmt = cp_parser_omp_critical (parser, pragma_tok);
|
||
break;
|
||
case PRAGMA_OMP_DISTRIBUTE:
|
||
strcpy (p_name, "#pragma omp");
|
||
stmt = cp_parser_omp_distribute (parser, pragma_tok, p_name, mask, NULL);
|
||
break;
|
||
case PRAGMA_OMP_FOR:
|
||
strcpy (p_name, "#pragma omp");
|
||
stmt = cp_parser_omp_for (parser, pragma_tok, p_name, mask, NULL);
|
||
break;
|
||
case PRAGMA_OMP_MASTER:
|
||
stmt = cp_parser_omp_master (parser, pragma_tok);
|
||
break;
|
||
case PRAGMA_OMP_ORDERED:
|
||
stmt = cp_parser_omp_ordered (parser, pragma_tok);
|
||
break;
|
||
case PRAGMA_OMP_PARALLEL:
|
||
strcpy (p_name, "#pragma omp");
|
||
stmt = cp_parser_omp_parallel (parser, pragma_tok, p_name, mask, NULL);
|
||
break;
|
||
case PRAGMA_OMP_SECTIONS:
|
||
strcpy (p_name, "#pragma omp");
|
||
stmt = cp_parser_omp_sections (parser, pragma_tok, p_name, mask, NULL);
|
||
break;
|
||
case PRAGMA_OMP_SIMD:
|
||
strcpy (p_name, "#pragma omp");
|
||
stmt = cp_parser_omp_simd (parser, pragma_tok, p_name, mask, NULL);
|
||
break;
|
||
case PRAGMA_OMP_SINGLE:
|
||
stmt = cp_parser_omp_single (parser, pragma_tok);
|
||
break;
|
||
case PRAGMA_OMP_TASK:
|
||
stmt = cp_parser_omp_task (parser, pragma_tok);
|
||
break;
|
||
case PRAGMA_OMP_TASKGROUP:
|
||
stmt = cp_parser_omp_taskgroup (parser, pragma_tok);
|
||
break;
|
||
case PRAGMA_OMP_TEAMS:
|
||
strcpy (p_name, "#pragma omp");
|
||
stmt = cp_parser_omp_teams (parser, pragma_tok, p_name, mask, NULL);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (stmt)
|
||
SET_EXPR_LOCATION (stmt, pragma_tok->location);
|
||
}
|
||
|
||
/* Transactional Memory parsing routines. */
|
||
|
||
/* Parse a transaction attribute.
|
||
|
||
txn-attribute:
|
||
attribute
|
||
[ [ identifier ] ]
|
||
|
||
??? Simplify this when C++0x bracket attributes are
|
||
implemented properly. */
|
||
|
||
static tree
|
||
cp_parser_txn_attribute_opt (cp_parser *parser)
|
||
{
|
||
cp_token *token;
|
||
tree attr_name, attr = NULL;
|
||
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE))
|
||
return cp_parser_attributes_opt (parser);
|
||
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE))
|
||
return NULL_TREE;
|
||
cp_lexer_consume_token (parser->lexer);
|
||
if (!cp_parser_require (parser, CPP_OPEN_SQUARE, RT_OPEN_SQUARE))
|
||
goto error1;
|
||
|
||
token = cp_lexer_peek_token (parser->lexer);
|
||
if (token->type == CPP_NAME || token->type == CPP_KEYWORD)
|
||
{
|
||
token = cp_lexer_consume_token (parser->lexer);
|
||
|
||
attr_name = (token->type == CPP_KEYWORD
|
||
/* For keywords, use the canonical spelling,
|
||
not the parsed identifier. */
|
||
? ridpointers[(int) token->keyword]
|
||
: token->u.value);
|
||
attr = build_tree_list (attr_name, NULL_TREE);
|
||
}
|
||
else
|
||
cp_parser_error (parser, "expected identifier");
|
||
|
||
cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
|
||
error1:
|
||
cp_parser_require (parser, CPP_CLOSE_SQUARE, RT_CLOSE_SQUARE);
|
||
return attr;
|
||
}
|
||
|
||
/* Parse a __transaction_atomic or __transaction_relaxed statement.
|
||
|
||
transaction-statement:
|
||
__transaction_atomic txn-attribute[opt] txn-noexcept-spec[opt]
|
||
compound-statement
|
||
__transaction_relaxed txn-noexcept-spec[opt] compound-statement
|
||
*/
|
||
|
||
static tree
|
||
cp_parser_transaction (cp_parser *parser, enum rid keyword)
|
||
{
|
||
unsigned char old_in = parser->in_transaction;
|
||
unsigned char this_in = 1, new_in;
|
||
cp_token *token;
|
||
tree stmt, attrs, noex;
|
||
|
||
gcc_assert (keyword == RID_TRANSACTION_ATOMIC
|
||
|| keyword == RID_TRANSACTION_RELAXED);
|
||
token = cp_parser_require_keyword (parser, keyword,
|
||
(keyword == RID_TRANSACTION_ATOMIC ? RT_TRANSACTION_ATOMIC
|
||
: RT_TRANSACTION_RELAXED));
|
||
gcc_assert (token != NULL);
|
||
|
||
if (keyword == RID_TRANSACTION_RELAXED)
|
||
this_in |= TM_STMT_ATTR_RELAXED;
|
||
else
|
||
{
|
||
attrs = cp_parser_txn_attribute_opt (parser);
|
||
if (attrs)
|
||
this_in |= parse_tm_stmt_attr (attrs, TM_STMT_ATTR_OUTER);
|
||
}
|
||
|
||
/* Parse a noexcept specification. */
|
||
noex = cp_parser_noexcept_specification_opt (parser, true, NULL, true);
|
||
|
||
/* Keep track if we're in the lexical scope of an outer transaction. */
|
||
new_in = this_in | (old_in & TM_STMT_ATTR_OUTER);
|
||
|
||
stmt = begin_transaction_stmt (token->location, NULL, this_in);
|
||
|
||
parser->in_transaction = new_in;
|
||
cp_parser_compound_statement (parser, NULL, false, false);
|
||
parser->in_transaction = old_in;
|
||
|
||
finish_transaction_stmt (stmt, NULL, this_in, noex);
|
||
|
||
return stmt;
|
||
}
|
||
|
||
/* Parse a __transaction_atomic or __transaction_relaxed expression.
|
||
|
||
transaction-expression:
|
||
__transaction_atomic txn-noexcept-spec[opt] ( expression )
|
||
__transaction_relaxed txn-noexcept-spec[opt] ( expression )
|
||
*/
|
||
|
||
static tree
|
||
cp_parser_transaction_expression (cp_parser *parser, enum rid keyword)
|
||
{
|
||
unsigned char old_in = parser->in_transaction;
|
||
unsigned char this_in = 1;
|
||
cp_token *token;
|
||
tree expr, noex;
|
||
bool noex_expr;
|
||
|
||
gcc_assert (keyword == RID_TRANSACTION_ATOMIC
|
||
|| keyword == RID_TRANSACTION_RELAXED);
|
||
|
||
if (!flag_tm)
|
||
error (keyword == RID_TRANSACTION_RELAXED
|
||
? G_("%<__transaction_relaxed%> without transactional memory "
|
||
"support enabled")
|
||
: G_("%<__transaction_atomic%> without transactional memory "
|
||
"support enabled"));
|
||
|
||
token = cp_parser_require_keyword (parser, keyword,
|
||
(keyword == RID_TRANSACTION_ATOMIC ? RT_TRANSACTION_ATOMIC
|
||
: RT_TRANSACTION_RELAXED));
|
||
gcc_assert (token != NULL);
|
||
|
||
if (keyword == RID_TRANSACTION_RELAXED)
|
||
this_in |= TM_STMT_ATTR_RELAXED;
|
||
|
||
/* Set this early. This might mean that we allow transaction_cancel in
|
||
an expression that we find out later actually has to be a constexpr.
|
||
However, we expect that cxx_constant_value will be able to deal with
|
||
this; also, if the noexcept has no constexpr, then what we parse next
|
||
really is a transaction's body. */
|
||
parser->in_transaction = this_in;
|
||
|
||
/* Parse a noexcept specification. */
|
||
noex = cp_parser_noexcept_specification_opt (parser, false, &noex_expr,
|
||
true);
|
||
|
||
if (!noex || !noex_expr
|
||
|| cp_lexer_peek_token (parser->lexer)->type == CPP_OPEN_PAREN)
|
||
{
|
||
cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN);
|
||
|
||
expr = cp_parser_expression (parser, /*cast_p=*/false, NULL);
|
||
expr = finish_parenthesized_expr (expr);
|
||
|
||
cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN);
|
||
}
|
||
else
|
||
{
|
||
/* The only expression that is available got parsed for the noexcept
|
||
already. noexcept is true then. */
|
||
expr = noex;
|
||
noex = boolean_true_node;
|
||
}
|
||
|
||
expr = build_transaction_expr (token->location, expr, this_in, noex);
|
||
parser->in_transaction = old_in;
|
||
|
||
if (cp_parser_non_integral_constant_expression (parser, NIC_TRANSACTION))
|
||
return error_mark_node;
|
||
|
||
return (flag_tm ? expr : error_mark_node);
|
||
}
|
||
|
||
/* Parse a function-transaction-block.
|
||
|
||
function-transaction-block:
|
||
__transaction_atomic txn-attribute[opt] ctor-initializer[opt]
|
||
function-body
|
||
__transaction_atomic txn-attribute[opt] function-try-block
|
||
__transaction_relaxed ctor-initializer[opt] function-body
|
||
__transaction_relaxed function-try-block
|
||
*/
|
||
|
||
static bool
|
||
cp_parser_function_transaction (cp_parser *parser, enum rid keyword)
|
||
{
|
||
unsigned char old_in = parser->in_transaction;
|
||
unsigned char new_in = 1;
|
||
tree compound_stmt, stmt, attrs;
|
||
bool ctor_initializer_p;
|
||
cp_token *token;
|
||
|
||
gcc_assert (keyword == RID_TRANSACTION_ATOMIC
|
||
|| keyword == RID_TRANSACTION_RELAXED);
|
||
token = cp_parser_require_keyword (parser, keyword,
|
||
(keyword == RID_TRANSACTION_ATOMIC ? RT_TRANSACTION_ATOMIC
|
||
: RT_TRANSACTION_RELAXED));
|
||
gcc_assert (token != NULL);
|
||
|
||
if (keyword == RID_TRANSACTION_RELAXED)
|
||
new_in |= TM_STMT_ATTR_RELAXED;
|
||
else
|
||
{
|
||
attrs = cp_parser_txn_attribute_opt (parser);
|
||
if (attrs)
|
||
new_in |= parse_tm_stmt_attr (attrs, TM_STMT_ATTR_OUTER);
|
||
}
|
||
|
||
stmt = begin_transaction_stmt (token->location, &compound_stmt, new_in);
|
||
|
||
parser->in_transaction = new_in;
|
||
|
||
if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY))
|
||
ctor_initializer_p = cp_parser_function_try_block (parser);
|
||
else
|
||
ctor_initializer_p = cp_parser_ctor_initializer_opt_and_function_body
|
||
(parser, /*in_function_try_block=*/false);
|
||
|
||
parser->in_transaction = old_in;
|
||
|
||
finish_transaction_stmt (stmt, compound_stmt, new_in, NULL_TREE);
|
||
|
||
return ctor_initializer_p;
|
||
}
|
||
|
||
/* Parse a __transaction_cancel statement.
|
||
|
||
cancel-statement:
|
||
__transaction_cancel txn-attribute[opt] ;
|
||
__transaction_cancel txn-attribute[opt] throw-expression ;
|
||
|
||
??? Cancel and throw is not yet implemented. */
|
||
|
||
static tree
|
||
cp_parser_transaction_cancel (cp_parser *parser)
|
||
{
|
||
cp_token *token;
|
||
bool is_outer = false;
|
||
tree stmt, attrs;
|
||
|
||
token = cp_parser_require_keyword (parser, RID_TRANSACTION_CANCEL,
|
||
RT_TRANSACTION_CANCEL);
|
||
gcc_assert (token != NULL);
|
||
|
||
attrs = cp_parser_txn_attribute_opt (parser);
|
||
if (attrs)
|
||
is_outer = (parse_tm_stmt_attr (attrs, TM_STMT_ATTR_OUTER) != 0);
|
||
|
||
/* ??? Parse cancel-and-throw here. */
|
||
|
||
cp_parser_require (parser, CPP_SEMICOLON, RT_SEMICOLON);
|
||
|
||
if (!flag_tm)
|
||
{
|
||
error_at (token->location, "%<__transaction_cancel%> without "
|
||
"transactional memory support enabled");
|
||
return error_mark_node;
|
||
}
|
||
else if (parser->in_transaction & TM_STMT_ATTR_RELAXED)
|
||
{
|
||
error_at (token->location, "%<__transaction_cancel%> within a "
|
||
"%<__transaction_relaxed%>");
|
||
return error_mark_node;
|
||
}
|
||
else if (is_outer)
|
||
{
|
||
if ((parser->in_transaction & TM_STMT_ATTR_OUTER) == 0
|
||
&& !is_tm_may_cancel_outer (current_function_decl))
|
||
{
|
||
error_at (token->location, "outer %<__transaction_cancel%> not "
|
||
"within outer %<__transaction_atomic%>");
|
||
error_at (token->location,
|
||
" or a %<transaction_may_cancel_outer%> function");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
else if (parser->in_transaction == 0)
|
||
{
|
||
error_at (token->location, "%<__transaction_cancel%> not within "
|
||
"%<__transaction_atomic%>");
|
||
return error_mark_node;
|
||
}
|
||
|
||
stmt = build_tm_abort_call (token->location, is_outer);
|
||
add_stmt (stmt);
|
||
|
||
return stmt;
|
||
}
|
||
|
||
/* The parser. */
|
||
|
||
static GTY (()) cp_parser *the_parser;
|
||
|
||
|
||
/* Special handling for the first token or line in the file. The first
|
||
thing in the file might be #pragma GCC pch_preprocess, which loads a
|
||
PCH file, which is a GC collection point. So we need to handle this
|
||
first pragma without benefit of an existing lexer structure.
|
||
|
||
Always returns one token to the caller in *FIRST_TOKEN. This is
|
||
either the true first token of the file, or the first token after
|
||
the initial pragma. */
|
||
|
||
static void
|
||
cp_parser_initial_pragma (cp_token *first_token)
|
||
{
|
||
tree name = NULL;
|
||
|
||
cp_lexer_get_preprocessor_token (NULL, first_token);
|
||
if (first_token->pragma_kind != PRAGMA_GCC_PCH_PREPROCESS)
|
||
return;
|
||
|
||
cp_lexer_get_preprocessor_token (NULL, first_token);
|
||
if (first_token->type == CPP_STRING)
|
||
{
|
||
name = first_token->u.value;
|
||
|
||
cp_lexer_get_preprocessor_token (NULL, first_token);
|
||
if (first_token->type != CPP_PRAGMA_EOL)
|
||
error_at (first_token->location,
|
||
"junk at end of %<#pragma GCC pch_preprocess%>");
|
||
}
|
||
else
|
||
error_at (first_token->location, "expected string literal");
|
||
|
||
/* Skip to the end of the pragma. */
|
||
while (first_token->type != CPP_PRAGMA_EOL && first_token->type != CPP_EOF)
|
||
cp_lexer_get_preprocessor_token (NULL, first_token);
|
||
|
||
/* Now actually load the PCH file. */
|
||
if (name)
|
||
c_common_pch_pragma (parse_in, TREE_STRING_POINTER (name));
|
||
|
||
/* Read one more token to return to our caller. We have to do this
|
||
after reading the PCH file in, since its pointers have to be
|
||
live. */
|
||
cp_lexer_get_preprocessor_token (NULL, first_token);
|
||
}
|
||
|
||
/* Normal parsing of a pragma token. Here we can (and must) use the
|
||
regular lexer. */
|
||
|
||
static bool
|
||
cp_parser_pragma (cp_parser *parser, enum pragma_context context)
|
||
{
|
||
cp_token *pragma_tok;
|
||
unsigned int id;
|
||
|
||
pragma_tok = cp_lexer_consume_token (parser->lexer);
|
||
gcc_assert (pragma_tok->type == CPP_PRAGMA);
|
||
parser->lexer->in_pragma = true;
|
||
|
||
id = pragma_tok->pragma_kind;
|
||
if (id != PRAGMA_OMP_DECLARE_REDUCTION)
|
||
cp_ensure_no_omp_declare_simd (parser);
|
||
switch (id)
|
||
{
|
||
case PRAGMA_GCC_PCH_PREPROCESS:
|
||
error_at (pragma_tok->location,
|
||
"%<#pragma GCC pch_preprocess%> must be first");
|
||
break;
|
||
|
||
case PRAGMA_OMP_BARRIER:
|
||
switch (context)
|
||
{
|
||
case pragma_compound:
|
||
cp_parser_omp_barrier (parser, pragma_tok);
|
||
return false;
|
||
case pragma_stmt:
|
||
error_at (pragma_tok->location, "%<#pragma omp barrier%> may only be "
|
||
"used in compound statements");
|
||
break;
|
||
default:
|
||
goto bad_stmt;
|
||
}
|
||
break;
|
||
|
||
case PRAGMA_OMP_FLUSH:
|
||
switch (context)
|
||
{
|
||
case pragma_compound:
|
||
cp_parser_omp_flush (parser, pragma_tok);
|
||
return false;
|
||
case pragma_stmt:
|
||
error_at (pragma_tok->location, "%<#pragma omp flush%> may only be "
|
||
"used in compound statements");
|
||
break;
|
||
default:
|
||
goto bad_stmt;
|
||
}
|
||
break;
|
||
|
||
case PRAGMA_OMP_TASKWAIT:
|
||
switch (context)
|
||
{
|
||
case pragma_compound:
|
||
cp_parser_omp_taskwait (parser, pragma_tok);
|
||
return false;
|
||
case pragma_stmt:
|
||
error_at (pragma_tok->location,
|
||
"%<#pragma omp taskwait%> may only be "
|
||
"used in compound statements");
|
||
break;
|
||
default:
|
||
goto bad_stmt;
|
||
}
|
||
break;
|
||
|
||
case PRAGMA_OMP_TASKYIELD:
|
||
switch (context)
|
||
{
|
||
case pragma_compound:
|
||
cp_parser_omp_taskyield (parser, pragma_tok);
|
||
return false;
|
||
case pragma_stmt:
|
||
error_at (pragma_tok->location,
|
||
"%<#pragma omp taskyield%> may only be "
|
||
"used in compound statements");
|
||
break;
|
||
default:
|
||
goto bad_stmt;
|
||
}
|
||
break;
|
||
|
||
case PRAGMA_OMP_CANCEL:
|
||
switch (context)
|
||
{
|
||
case pragma_compound:
|
||
cp_parser_omp_cancel (parser, pragma_tok);
|
||
return false;
|
||
case pragma_stmt:
|
||
error_at (pragma_tok->location,
|
||
"%<#pragma omp cancel%> may only be "
|
||
"used in compound statements");
|
||
break;
|
||
default:
|
||
goto bad_stmt;
|
||
}
|
||
break;
|
||
|
||
case PRAGMA_OMP_CANCELLATION_POINT:
|
||
switch (context)
|
||
{
|
||
case pragma_compound:
|
||
cp_parser_omp_cancellation_point (parser, pragma_tok);
|
||
return false;
|
||
case pragma_stmt:
|
||
error_at (pragma_tok->location,
|
||
"%<#pragma omp cancellation point%> may only be "
|
||
"used in compound statements");
|
||
break;
|
||
default:
|
||
goto bad_stmt;
|
||
}
|
||
break;
|
||
|
||
case PRAGMA_OMP_THREADPRIVATE:
|
||
cp_parser_omp_threadprivate (parser, pragma_tok);
|
||
return false;
|
||
|
||
case PRAGMA_OMP_DECLARE_REDUCTION:
|
||
cp_parser_omp_declare (parser, pragma_tok, context);
|
||
return false;
|
||
|
||
case PRAGMA_OMP_ATOMIC:
|
||
case PRAGMA_OMP_CRITICAL:
|
||
case PRAGMA_OMP_DISTRIBUTE:
|
||
case PRAGMA_OMP_FOR:
|
||
case PRAGMA_OMP_MASTER:
|
||
case PRAGMA_OMP_ORDERED:
|
||
case PRAGMA_OMP_PARALLEL:
|
||
case PRAGMA_OMP_SECTIONS:
|
||
case PRAGMA_OMP_SIMD:
|
||
case PRAGMA_OMP_SINGLE:
|
||
case PRAGMA_OMP_TASK:
|
||
case PRAGMA_OMP_TASKGROUP:
|
||
case PRAGMA_OMP_TEAMS:
|
||
if (context != pragma_stmt && context != pragma_compound)
|
||
goto bad_stmt;
|
||
cp_parser_omp_construct (parser, pragma_tok);
|
||
return true;
|
||
|
||
case PRAGMA_OMP_TARGET:
|
||
return cp_parser_omp_target (parser, pragma_tok, context);
|
||
|
||
case PRAGMA_OMP_END_DECLARE_TARGET:
|
||
cp_parser_omp_end_declare_target (parser, pragma_tok);
|
||
return false;
|
||
|
||
case PRAGMA_OMP_SECTION:
|
||
error_at (pragma_tok->location,
|
||
"%<#pragma omp section%> may only be used in "
|
||
"%<#pragma omp sections%> construct");
|
||
break;
|
||
|
||
case PRAGMA_IVDEP:
|
||
{
|
||
cp_parser_skip_to_pragma_eol (parser, pragma_tok);
|
||
cp_token *tok;
|
||
tok = cp_lexer_peek_token (the_parser->lexer);
|
||
if (tok->type != CPP_KEYWORD
|
||
|| (tok->keyword != RID_FOR && tok->keyword != RID_WHILE
|
||
&& tok->keyword != RID_DO))
|
||
{
|
||
cp_parser_error (parser, "for, while or do statement expected");
|
||
return false;
|
||
}
|
||
cp_parser_iteration_statement (parser, true);
|
||
return true;
|
||
}
|
||
|
||
case PRAGMA_CILK_SIMD:
|
||
if (context == pragma_external)
|
||
{
|
||
error_at (pragma_tok->location,
|
||
"%<#pragma simd%> must be inside a function");
|
||
break;
|
||
}
|
||
cp_parser_cilk_simd (parser, pragma_tok);
|
||
return true;
|
||
|
||
default:
|
||
gcc_assert (id >= PRAGMA_FIRST_EXTERNAL);
|
||
c_invoke_pragma_handler (id);
|
||
break;
|
||
|
||
bad_stmt:
|
||
cp_parser_error (parser, "expected declaration specifiers");
|
||
break;
|
||
}
|
||
|
||
cp_parser_skip_to_pragma_eol (parser, pragma_tok);
|
||
return false;
|
||
}
|
||
|
||
/* The interface the pragma parsers have to the lexer. */
|
||
|
||
enum cpp_ttype
|
||
pragma_lex (tree *value)
|
||
{
|
||
cp_token *tok;
|
||
enum cpp_ttype ret;
|
||
|
||
tok = cp_lexer_peek_token (the_parser->lexer);
|
||
|
||
ret = tok->type;
|
||
*value = tok->u.value;
|
||
|
||
if (ret == CPP_PRAGMA_EOL || ret == CPP_EOF)
|
||
ret = CPP_EOF;
|
||
else if (ret == CPP_STRING)
|
||
*value = cp_parser_string_literal (the_parser, false, false);
|
||
else
|
||
{
|
||
cp_lexer_consume_token (the_parser->lexer);
|
||
if (ret == CPP_KEYWORD)
|
||
ret = CPP_NAME;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
|
||
/* External interface. */
|
||
|
||
/* Parse one entire translation unit. */
|
||
|
||
void
|
||
c_parse_file (void)
|
||
{
|
||
static bool already_called = false;
|
||
|
||
if (already_called)
|
||
{
|
||
sorry ("inter-module optimizations not implemented for C++");
|
||
return;
|
||
}
|
||
already_called = true;
|
||
|
||
the_parser = cp_parser_new ();
|
||
push_deferring_access_checks (flag_access_control
|
||
? dk_no_deferred : dk_no_check);
|
||
cp_parser_translation_unit (the_parser);
|
||
the_parser = NULL;
|
||
}
|
||
|
||
/* Parses the Cilk Plus #pragma simd and SIMD-enabled function attribute's
|
||
vectorlength clause:
|
||
Syntax:
|
||
vectorlength ( constant-expression ) */
|
||
|
||
static tree
|
||
cp_parser_cilk_simd_vectorlength (cp_parser *parser, tree clauses,
|
||
bool is_simd_fn)
|
||
{
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
tree expr;
|
||
/* The vectorlength clause in #pragma simd behaves exactly like OpenMP's
|
||
safelen clause. Thus, vectorlength is represented as OMP 4.0
|
||
safelen. For SIMD-enabled function it is represented by OMP 4.0
|
||
simdlen. */
|
||
if (!is_simd_fn)
|
||
check_no_duplicate_clause (clauses, OMP_CLAUSE_SAFELEN, "vectorlength",
|
||
loc);
|
||
else
|
||
check_no_duplicate_clause (clauses, OMP_CLAUSE_SIMDLEN, "vectorlength",
|
||
loc);
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return error_mark_node;
|
||
|
||
expr = cp_parser_constant_expression (parser, false, NULL);
|
||
expr = maybe_constant_value (expr);
|
||
|
||
/* If expr == error_mark_node, then don't emit any errors nor
|
||
create a clause. if any of the above functions returns
|
||
error mark node then they would have emitted an error message. */
|
||
if (expr == error_mark_node)
|
||
;
|
||
else if (!TREE_TYPE (expr)
|
||
|| !TREE_CONSTANT (expr)
|
||
|| !INTEGRAL_TYPE_P (TREE_TYPE (expr)))
|
||
error_at (loc, "vectorlength must be an integer constant");
|
||
else if (TREE_CONSTANT (expr)
|
||
&& exact_log2 (TREE_INT_CST_LOW (expr)) == -1)
|
||
error_at (loc, "vectorlength must be a power of 2");
|
||
else
|
||
{
|
||
tree c;
|
||
if (!is_simd_fn)
|
||
{
|
||
c = build_omp_clause (loc, OMP_CLAUSE_SAFELEN);
|
||
OMP_CLAUSE_SAFELEN_EXPR (c) = expr;
|
||
OMP_CLAUSE_CHAIN (c) = clauses;
|
||
clauses = c;
|
||
}
|
||
else
|
||
{
|
||
c = build_omp_clause (loc, OMP_CLAUSE_SIMDLEN);
|
||
OMP_CLAUSE_SIMDLEN_EXPR (c) = expr;
|
||
OMP_CLAUSE_CHAIN (c) = clauses;
|
||
clauses = c;
|
||
}
|
||
}
|
||
|
||
if (!cp_parser_require (parser, CPP_CLOSE_PAREN, RT_CLOSE_PAREN))
|
||
return error_mark_node;
|
||
return clauses;
|
||
}
|
||
|
||
/* Handles the Cilk Plus #pragma simd linear clause.
|
||
Syntax:
|
||
linear ( simd-linear-variable-list )
|
||
|
||
simd-linear-variable-list:
|
||
simd-linear-variable
|
||
simd-linear-variable-list , simd-linear-variable
|
||
|
||
simd-linear-variable:
|
||
id-expression
|
||
id-expression : simd-linear-step
|
||
|
||
simd-linear-step:
|
||
conditional-expression */
|
||
|
||
static tree
|
||
cp_parser_cilk_simd_linear (cp_parser *parser, tree clauses)
|
||
{
|
||
location_t loc = cp_lexer_peek_token (parser->lexer)->location;
|
||
|
||
if (!cp_parser_require (parser, CPP_OPEN_PAREN, RT_OPEN_PAREN))
|
||
return clauses;
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME))
|
||
{
|
||
cp_parser_error (parser, "expected identifier");
|
||
cp_parser_skip_to_closing_parenthesis (parser, false, false, true);
|
||
return error_mark_node;
|
||
}
|
||
|
||
bool saved_colon_corrects_to_scope_p = parser->colon_corrects_to_scope_p;
|
||
parser->colon_corrects_to_scope_p = false;
|
||
while (1)
|
||
{
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME))
|
||
{
|
||
cp_parser_error (parser, "expected variable-name");
|
||
clauses = error_mark_node;
|
||
break;
|
||
}
|
||
|
||
tree var_name = cp_parser_id_expression (parser, false, true, NULL,
|
||
false, false);
|
||
tree decl = cp_parser_lookup_name_simple (parser, var_name,
|
||
token->location);
|
||
if (decl == error_mark_node)
|
||
{
|
||
cp_parser_name_lookup_error (parser, var_name, decl, NLE_NULL,
|
||
token->location);
|
||
clauses = error_mark_node;
|
||
}
|
||
else
|
||
{
|
||
tree e = NULL_TREE;
|
||
tree step_size = integer_one_node;
|
||
|
||
/* If present, parse the linear step. Otherwise, assume the default
|
||
value of 1. */
|
||
if (cp_lexer_peek_token (parser->lexer)->type == CPP_COLON)
|
||
{
|
||
cp_lexer_consume_token (parser->lexer);
|
||
|
||
e = cp_parser_assignment_expression (parser, false, NULL);
|
||
e = maybe_constant_value (e);
|
||
|
||
if (e == error_mark_node)
|
||
{
|
||
/* If an error has occurred, then the whole pragma is
|
||
considered ill-formed. Thus, no reason to keep
|
||
parsing. */
|
||
clauses = error_mark_node;
|
||
break;
|
||
}
|
||
else if (type_dependent_expression_p (e)
|
||
|| value_dependent_expression_p (e)
|
||
|| (TREE_TYPE (e)
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (e))
|
||
&& (TREE_CONSTANT (e)
|
||
|| DECL_P (e))))
|
||
step_size = e;
|
||
else
|
||
cp_parser_error (parser,
|
||
"step size must be an integer constant "
|
||
"expression or an integer variable");
|
||
}
|
||
|
||
/* Use the OMP_CLAUSE_LINEAR, which has the same semantics. */
|
||
tree l = build_omp_clause (loc, OMP_CLAUSE_LINEAR);
|
||
OMP_CLAUSE_DECL (l) = decl;
|
||
OMP_CLAUSE_LINEAR_STEP (l) = step_size;
|
||
OMP_CLAUSE_CHAIN (l) = clauses;
|
||
clauses = l;
|
||
}
|
||
if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
|
||
cp_lexer_consume_token (parser->lexer);
|
||
else if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
|
||
break;
|
||
else
|
||
{
|
||
error_at (cp_lexer_peek_token (parser->lexer)->location,
|
||
"expected %<,%> or %<)%> after %qE", decl);
|
||
clauses = error_mark_node;
|
||
break;
|
||
}
|
||
}
|
||
parser->colon_corrects_to_scope_p = saved_colon_corrects_to_scope_p;
|
||
cp_parser_skip_to_closing_parenthesis (parser, false, false, true);
|
||
return clauses;
|
||
}
|
||
|
||
/* Returns the name of the next clause. If the clause is not
|
||
recognized, then PRAGMA_CILK_CLAUSE_NONE is returned and the next
|
||
token is not consumed. Otherwise, the appropriate enum from the
|
||
pragma_simd_clause is returned and the token is consumed. */
|
||
|
||
static pragma_omp_clause
|
||
cp_parser_cilk_simd_clause_name (cp_parser *parser)
|
||
{
|
||
pragma_omp_clause clause_type;
|
||
cp_token *token = cp_lexer_peek_token (parser->lexer);
|
||
|
||
if (token->keyword == RID_PRIVATE)
|
||
clause_type = PRAGMA_CILK_CLAUSE_PRIVATE;
|
||
else if (!token->u.value || token->type != CPP_NAME)
|
||
return PRAGMA_CILK_CLAUSE_NONE;
|
||
else if (!strcmp (IDENTIFIER_POINTER (token->u.value), "vectorlength"))
|
||
clause_type = PRAGMA_CILK_CLAUSE_VECTORLENGTH;
|
||
else if (!strcmp (IDENTIFIER_POINTER (token->u.value), "linear"))
|
||
clause_type = PRAGMA_CILK_CLAUSE_LINEAR;
|
||
else if (!strcmp (IDENTIFIER_POINTER (token->u.value), "firstprivate"))
|
||
clause_type = PRAGMA_CILK_CLAUSE_FIRSTPRIVATE;
|
||
else if (!strcmp (IDENTIFIER_POINTER (token->u.value), "lastprivate"))
|
||
clause_type = PRAGMA_CILK_CLAUSE_LASTPRIVATE;
|
||
else if (!strcmp (IDENTIFIER_POINTER (token->u.value), "reduction"))
|
||
clause_type = PRAGMA_CILK_CLAUSE_REDUCTION;
|
||
else
|
||
return PRAGMA_CILK_CLAUSE_NONE;
|
||
|
||
cp_lexer_consume_token (parser->lexer);
|
||
return clause_type;
|
||
}
|
||
|
||
/* Parses all the #pragma simd clauses. Returns a list of clauses found. */
|
||
|
||
static tree
|
||
cp_parser_cilk_simd_all_clauses (cp_parser *parser, cp_token *pragma_token)
|
||
{
|
||
tree clauses = NULL_TREE;
|
||
|
||
while (cp_lexer_next_token_is_not (parser->lexer, CPP_PRAGMA_EOL)
|
||
&& clauses != error_mark_node)
|
||
{
|
||
pragma_omp_clause c_kind;
|
||
c_kind = cp_parser_cilk_simd_clause_name (parser);
|
||
if (c_kind == PRAGMA_CILK_CLAUSE_VECTORLENGTH)
|
||
clauses = cp_parser_cilk_simd_vectorlength (parser, clauses, false);
|
||
else if (c_kind == PRAGMA_CILK_CLAUSE_LINEAR)
|
||
clauses = cp_parser_cilk_simd_linear (parser, clauses);
|
||
else if (c_kind == PRAGMA_CILK_CLAUSE_PRIVATE)
|
||
/* Use the OpenMP 4.0 equivalent function. */
|
||
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_PRIVATE, clauses);
|
||
else if (c_kind == PRAGMA_CILK_CLAUSE_FIRSTPRIVATE)
|
||
/* Use the OpenMP 4.0 equivalent function. */
|
||
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_FIRSTPRIVATE,
|
||
clauses);
|
||
else if (c_kind == PRAGMA_CILK_CLAUSE_LASTPRIVATE)
|
||
/* Use the OMP 4.0 equivalent function. */
|
||
clauses = cp_parser_omp_var_list (parser, OMP_CLAUSE_LASTPRIVATE,
|
||
clauses);
|
||
else if (c_kind == PRAGMA_CILK_CLAUSE_REDUCTION)
|
||
/* Use the OMP 4.0 equivalent function. */
|
||
clauses = cp_parser_omp_clause_reduction (parser, clauses);
|
||
else
|
||
{
|
||
clauses = error_mark_node;
|
||
cp_parser_error (parser, "expected %<#pragma simd%> clause");
|
||
break;
|
||
}
|
||
}
|
||
|
||
cp_parser_skip_to_pragma_eol (parser, pragma_token);
|
||
|
||
if (clauses == error_mark_node)
|
||
return error_mark_node;
|
||
else
|
||
return c_finish_cilk_clauses (clauses);
|
||
}
|
||
|
||
/* Main entry-point for parsing Cilk Plus <#pragma simd> for loops. */
|
||
|
||
static void
|
||
cp_parser_cilk_simd (cp_parser *parser, cp_token *pragma_token)
|
||
{
|
||
tree clauses = cp_parser_cilk_simd_all_clauses (parser, pragma_token);
|
||
|
||
if (clauses == error_mark_node)
|
||
return;
|
||
|
||
if (cp_lexer_next_token_is_not_keyword (parser->lexer, RID_FOR))
|
||
{
|
||
error_at (cp_lexer_peek_token (parser->lexer)->location,
|
||
"for statement expected");
|
||
return;
|
||
}
|
||
|
||
tree sb = begin_omp_structured_block ();
|
||
int save = cp_parser_begin_omp_structured_block (parser);
|
||
tree ret = cp_parser_omp_for_loop (parser, CILK_SIMD, clauses, NULL);
|
||
if (ret)
|
||
cpp_validate_cilk_plus_loop (OMP_FOR_BODY (ret));
|
||
cp_parser_end_omp_structured_block (parser, save);
|
||
add_stmt (finish_omp_structured_block (sb));
|
||
return;
|
||
}
|
||
|
||
/* Create an identifier for a generic parameter type (a synthesized
|
||
template parameter implied by `auto' or a concept identifier). */
|
||
|
||
static GTY(()) int generic_parm_count;
|
||
static tree
|
||
make_generic_type_name ()
|
||
{
|
||
char buf[32];
|
||
sprintf (buf, "auto:%d", ++generic_parm_count);
|
||
return get_identifier (buf);
|
||
}
|
||
|
||
/* Predicate that behaves as is_auto_or_concept but matches the parent
|
||
node of the generic type rather than the generic type itself. This
|
||
allows for type transformation in add_implicit_template_parms. */
|
||
|
||
static inline bool
|
||
tree_type_is_auto_or_concept (const_tree t)
|
||
{
|
||
return TREE_TYPE (t) && is_auto_or_concept (TREE_TYPE (t));
|
||
}
|
||
|
||
/* Add an implicit template type parameter to the CURRENT_TEMPLATE_PARMS
|
||
(creating a new template parameter list if necessary). Returns the newly
|
||
created template type parm. */
|
||
|
||
tree
|
||
synthesize_implicit_template_parm (cp_parser *parser)
|
||
{
|
||
gcc_assert (current_binding_level->kind == sk_function_parms);
|
||
|
||
/* We are either continuing a function template that already contains implicit
|
||
template parameters, creating a new fully-implicit function template, or
|
||
extending an existing explicit function template with implicit template
|
||
parameters. */
|
||
|
||
cp_binding_level *const entry_scope = current_binding_level;
|
||
|
||
bool become_template = false;
|
||
cp_binding_level *parent_scope = 0;
|
||
|
||
if (parser->implicit_template_scope)
|
||
{
|
||
gcc_assert (parser->implicit_template_parms);
|
||
|
||
current_binding_level = parser->implicit_template_scope;
|
||
}
|
||
else
|
||
{
|
||
/* Roll back to the existing template parameter scope (in the case of
|
||
extending an explicit function template) or introduce a new template
|
||
parameter scope ahead of the function parameter scope (or class scope
|
||
in the case of out-of-line member definitions). The function scope is
|
||
added back after template parameter synthesis below. */
|
||
|
||
cp_binding_level *scope = entry_scope;
|
||
|
||
while (scope->kind == sk_function_parms)
|
||
{
|
||
parent_scope = scope;
|
||
scope = scope->level_chain;
|
||
}
|
||
if (current_class_type && !LAMBDA_TYPE_P (current_class_type))
|
||
{
|
||
/* If not defining a class, then any class scope is a scope level in
|
||
an out-of-line member definition. In this case simply wind back
|
||
beyond the first such scope to inject the template parameter list.
|
||
Otherwise wind back to the class being defined. The latter can
|
||
occur in class member friend declarations such as:
|
||
|
||
class A {
|
||
void foo (auto);
|
||
};
|
||
class B {
|
||
friend void A::foo (auto);
|
||
};
|
||
|
||
The template parameter list synthesized for the friend declaration
|
||
must be injected in the scope of 'B'. This can also occur in
|
||
erroneous cases such as:
|
||
|
||
struct A {
|
||
struct B {
|
||
void foo (auto);
|
||
};
|
||
void B::foo (auto) {}
|
||
};
|
||
|
||
Here the attempted definition of 'B::foo' within 'A' is ill-formed
|
||
but, nevertheless, the template parameter list synthesized for the
|
||
declarator should be injected into the scope of 'A' as if the
|
||
ill-formed template was specified explicitly. */
|
||
|
||
while (scope->kind == sk_class && !scope->defining_class_p)
|
||
{
|
||
parent_scope = scope;
|
||
scope = scope->level_chain;
|
||
}
|
||
}
|
||
|
||
current_binding_level = scope;
|
||
|
||
if (scope->kind != sk_template_parms
|
||
|| !function_being_declared_is_template_p (parser))
|
||
{
|
||
/* Introduce a new template parameter list for implicit template
|
||
parameters. */
|
||
|
||
become_template = true;
|
||
|
||
parser->implicit_template_scope
|
||
= begin_scope (sk_template_parms, NULL);
|
||
|
||
++processing_template_decl;
|
||
|
||
parser->fully_implicit_function_template_p = true;
|
||
++parser->num_template_parameter_lists;
|
||
}
|
||
else
|
||
{
|
||
/* Synthesize implicit template parameters at the end of the explicit
|
||
template parameter list. */
|
||
|
||
gcc_assert (current_template_parms);
|
||
|
||
parser->implicit_template_scope = scope;
|
||
|
||
tree v = INNERMOST_TEMPLATE_PARMS (current_template_parms);
|
||
parser->implicit_template_parms
|
||
= TREE_VEC_ELT (v, TREE_VEC_LENGTH (v) - 1);
|
||
}
|
||
}
|
||
|
||
/* Synthesize a new template parameter and track the current template
|
||
parameter chain with implicit_template_parms. */
|
||
|
||
tree synth_id = make_generic_type_name ();
|
||
tree synth_tmpl_parm = finish_template_type_parm (class_type_node,
|
||
synth_id);
|
||
tree new_parm
|
||
= process_template_parm (parser->implicit_template_parms,
|
||
input_location,
|
||
build_tree_list (NULL_TREE, synth_tmpl_parm),
|
||
/*non_type=*/false,
|
||
/*param_pack=*/false);
|
||
|
||
|
||
if (parser->implicit_template_parms)
|
||
parser->implicit_template_parms
|
||
= TREE_CHAIN (parser->implicit_template_parms);
|
||
else
|
||
parser->implicit_template_parms = new_parm;
|
||
|
||
tree new_type = TREE_TYPE (getdecls ());
|
||
|
||
/* If creating a fully implicit function template, start the new implicit
|
||
template parameter list with this synthesized type, otherwise grow the
|
||
current template parameter list. */
|
||
|
||
if (become_template)
|
||
{
|
||
parent_scope->level_chain = current_binding_level;
|
||
|
||
tree new_parms = make_tree_vec (1);
|
||
TREE_VEC_ELT (new_parms, 0) = parser->implicit_template_parms;
|
||
current_template_parms = tree_cons (size_int (processing_template_decl),
|
||
new_parms, current_template_parms);
|
||
}
|
||
else
|
||
{
|
||
tree& new_parms = INNERMOST_TEMPLATE_PARMS (current_template_parms);
|
||
int new_parm_idx = TREE_VEC_LENGTH (new_parms);
|
||
new_parms = grow_tree_vec (new_parms, new_parm_idx + 1);
|
||
TREE_VEC_ELT (new_parms, new_parm_idx) = parser->implicit_template_parms;
|
||
}
|
||
|
||
current_binding_level = entry_scope;
|
||
|
||
return new_type;
|
||
}
|
||
|
||
/* Finish the declaration of a fully implicit function template. Such a
|
||
template has no explicit template parameter list so has not been through the
|
||
normal template head and tail processing. synthesize_implicit_template_parm
|
||
tries to do the head; this tries to do the tail. MEMBER_DECL_OPT should be
|
||
provided if the declaration is a class member such that its template
|
||
declaration can be completed. If MEMBER_DECL_OPT is provided the finished
|
||
form is returned. Otherwise NULL_TREE is returned. */
|
||
|
||
tree
|
||
finish_fully_implicit_template (cp_parser *parser, tree member_decl_opt)
|
||
{
|
||
gcc_assert (parser->fully_implicit_function_template_p);
|
||
|
||
if (member_decl_opt && member_decl_opt != error_mark_node
|
||
&& DECL_VIRTUAL_P (member_decl_opt))
|
||
{
|
||
error_at (DECL_SOURCE_LOCATION (member_decl_opt),
|
||
"implicit templates may not be %<virtual%>");
|
||
DECL_VIRTUAL_P (member_decl_opt) = false;
|
||
}
|
||
|
||
if (member_decl_opt)
|
||
member_decl_opt = finish_member_template_decl (member_decl_opt);
|
||
end_template_decl ();
|
||
|
||
parser->fully_implicit_function_template_p = false;
|
||
--parser->num_template_parameter_lists;
|
||
|
||
return member_decl_opt;
|
||
}
|
||
|
||
#include "gt-cp-parser.h"
|