This patch is a follow-on to the fix for PR81136. The testcase for that PR shows that we can (correctly) calculate different base alignments for two data_references but still tell that their misalignments wrt the vector size are equal. This is because we calculate the base alignments for each dr individually, without looking at the other drs, and in general the alignment we calculate is only guaranteed if the dr's DR_REF actually occurs. This is working as designed, but it does expose a missed opportunity. We know that if a vectorised loop is reached, all statements in that loop execute at least once, so it should be safe to pool the alignment information for all the statements we're vectorising. The only catch is that DR_REFs for masked loads and stores only occur if the mask value is nonzero. For example, in: struct s __attribute__((aligned(32))) { int misaligner; int array[N]; }; int *ptr; for (int i = 0; i < n; ++i) ptr[i] = c[i] ? ((struct s *) (ptr - 1))->array[i] : 0; we can only guarantee that ptr points to a "struct s" if at least one c[i] is true. This patch adds a DR_IS_CONDITIONAL_IN_STMT flag to record whether the DR_REF is guaranteed to occur every time that the statement executes to completion. It then pools the alignment information for references that aren't conditional in this sense. 2017-08-04 Richard Sandiford <richard.sandiford@linaro.org> gcc/ PR tree-optimization/81136 * tree-vectorizer.h: Include tree-hash-traits.h. (vec_base_alignments): New typedef. (vec_info): Add a base_alignments field. (vect_record_base_alignments): Declare. * tree-data-ref.h (data_reference): Add an is_conditional_in_stmt field. (DR_IS_CONDITIONAL_IN_STMT): New macro. (create_data_ref): Add an is_conditional_in_stmt argument. * tree-data-ref.c (create_data_ref): Likewise. Use it to initialize the is_conditional_in_stmt field. (data_ref_loc): Add an is_conditional_in_stmt field. (get_references_in_stmt): Set the is_conditional_in_stmt field. (find_data_references_in_stmt): Update call to create_data_ref. (graphite_find_data_references_in_stmt): Likewise. * tree-ssa-loop-prefetch.c (determine_loop_nest_reuse): Likewise. * tree-vect-data-refs.c (vect_analyze_data_refs): Likewise. (vect_record_base_alignment): New function. (vect_record_base_alignments): Likewise. (vect_compute_data_ref_alignment): Adjust base_addr and aligned_to for nested statements even if we fail to compute a misalignment. Use pooled base alignments for unconditional references. (vect_find_same_alignment_drs): Compare base addresses instead of base objects. (vect_analyze_data_refs_alignment): Call vect_record_base_alignments. * tree-vect-slp.c (vect_slp_analyze_bb_1): Likewise. gcc/testsuite/ PR tree-optimization/81136 * gcc.dg/vect/pr81136.c: Add scan test. From-SVN: r250870
5266 lines
153 KiB
C
5266 lines
153 KiB
C
/* Data references and dependences detectors.
|
||
Copyright (C) 2003-2017 Free Software Foundation, Inc.
|
||
Contributed by Sebastian Pop <pop@cri.ensmp.fr>
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* This pass walks a given loop structure searching for array
|
||
references. The information about the array accesses is recorded
|
||
in DATA_REFERENCE structures.
|
||
|
||
The basic test for determining the dependences is:
|
||
given two access functions chrec1 and chrec2 to a same array, and
|
||
x and y two vectors from the iteration domain, the same element of
|
||
the array is accessed twice at iterations x and y if and only if:
|
||
| chrec1 (x) == chrec2 (y).
|
||
|
||
The goals of this analysis are:
|
||
|
||
- to determine the independence: the relation between two
|
||
independent accesses is qualified with the chrec_known (this
|
||
information allows a loop parallelization),
|
||
|
||
- when two data references access the same data, to qualify the
|
||
dependence relation with classic dependence representations:
|
||
|
||
- distance vectors
|
||
- direction vectors
|
||
- loop carried level dependence
|
||
- polyhedron dependence
|
||
or with the chains of recurrences based representation,
|
||
|
||
- to define a knowledge base for storing the data dependence
|
||
information,
|
||
|
||
- to define an interface to access this data.
|
||
|
||
|
||
Definitions:
|
||
|
||
- subscript: given two array accesses a subscript is the tuple
|
||
composed of the access functions for a given dimension. Example:
|
||
Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
|
||
(f1, g1), (f2, g2), (f3, g3).
|
||
|
||
- Diophantine equation: an equation whose coefficients and
|
||
solutions are integer constants, for example the equation
|
||
| 3*x + 2*y = 1
|
||
has an integer solution x = 1 and y = -1.
|
||
|
||
References:
|
||
|
||
- "Advanced Compilation for High Performance Computing" by Randy
|
||
Allen and Ken Kennedy.
|
||
http://citeseer.ist.psu.edu/goff91practical.html
|
||
|
||
- "Loop Transformations for Restructuring Compilers - The Foundations"
|
||
by Utpal Banerjee.
|
||
|
||
|
||
*/
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "gimple.h"
|
||
#include "gimple-pretty-print.h"
|
||
#include "alias.h"
|
||
#include "fold-const.h"
|
||
#include "expr.h"
|
||
#include "gimple-iterator.h"
|
||
#include "tree-ssa-loop-niter.h"
|
||
#include "tree-ssa-loop.h"
|
||
#include "tree-ssa.h"
|
||
#include "cfgloop.h"
|
||
#include "tree-data-ref.h"
|
||
#include "tree-scalar-evolution.h"
|
||
#include "dumpfile.h"
|
||
#include "tree-affine.h"
|
||
#include "params.h"
|
||
#include "builtins.h"
|
||
|
||
static struct datadep_stats
|
||
{
|
||
int num_dependence_tests;
|
||
int num_dependence_dependent;
|
||
int num_dependence_independent;
|
||
int num_dependence_undetermined;
|
||
|
||
int num_subscript_tests;
|
||
int num_subscript_undetermined;
|
||
int num_same_subscript_function;
|
||
|
||
int num_ziv;
|
||
int num_ziv_independent;
|
||
int num_ziv_dependent;
|
||
int num_ziv_unimplemented;
|
||
|
||
int num_siv;
|
||
int num_siv_independent;
|
||
int num_siv_dependent;
|
||
int num_siv_unimplemented;
|
||
|
||
int num_miv;
|
||
int num_miv_independent;
|
||
int num_miv_dependent;
|
||
int num_miv_unimplemented;
|
||
} dependence_stats;
|
||
|
||
static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
|
||
unsigned int, unsigned int,
|
||
struct loop *);
|
||
/* Returns true iff A divides B. */
|
||
|
||
static inline bool
|
||
tree_fold_divides_p (const_tree a, const_tree b)
|
||
{
|
||
gcc_assert (TREE_CODE (a) == INTEGER_CST);
|
||
gcc_assert (TREE_CODE (b) == INTEGER_CST);
|
||
return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a));
|
||
}
|
||
|
||
/* Returns true iff A divides B. */
|
||
|
||
static inline bool
|
||
int_divides_p (int a, int b)
|
||
{
|
||
return ((b % a) == 0);
|
||
}
|
||
|
||
/* Return true if reference REF contains a union access. */
|
||
|
||
static bool
|
||
ref_contains_union_access_p (tree ref)
|
||
{
|
||
while (handled_component_p (ref))
|
||
{
|
||
ref = TREE_OPERAND (ref, 0);
|
||
if (TREE_CODE (TREE_TYPE (ref)) == UNION_TYPE
|
||
|| TREE_CODE (TREE_TYPE (ref)) == QUAL_UNION_TYPE)
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
|
||
/* Dump into FILE all the data references from DATAREFS. */
|
||
|
||
static void
|
||
dump_data_references (FILE *file, vec<data_reference_p> datarefs)
|
||
{
|
||
unsigned int i;
|
||
struct data_reference *dr;
|
||
|
||
FOR_EACH_VEC_ELT (datarefs, i, dr)
|
||
dump_data_reference (file, dr);
|
||
}
|
||
|
||
/* Unified dump into FILE all the data references from DATAREFS. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (vec<data_reference_p> &ref)
|
||
{
|
||
dump_data_references (stderr, ref);
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (vec<data_reference_p> *ptr)
|
||
{
|
||
if (ptr)
|
||
debug (*ptr);
|
||
else
|
||
fprintf (stderr, "<nil>\n");
|
||
}
|
||
|
||
|
||
/* Dump into STDERR all the data references from DATAREFS. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_data_references (vec<data_reference_p> datarefs)
|
||
{
|
||
dump_data_references (stderr, datarefs);
|
||
}
|
||
|
||
/* Print to STDERR the data_reference DR. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_data_reference (struct data_reference *dr)
|
||
{
|
||
dump_data_reference (stderr, dr);
|
||
}
|
||
|
||
/* Dump function for a DATA_REFERENCE structure. */
|
||
|
||
void
|
||
dump_data_reference (FILE *outf,
|
||
struct data_reference *dr)
|
||
{
|
||
unsigned int i;
|
||
|
||
fprintf (outf, "#(Data Ref: \n");
|
||
fprintf (outf, "# bb: %d \n", gimple_bb (DR_STMT (dr))->index);
|
||
fprintf (outf, "# stmt: ");
|
||
print_gimple_stmt (outf, DR_STMT (dr), 0);
|
||
fprintf (outf, "# ref: ");
|
||
print_generic_stmt (outf, DR_REF (dr));
|
||
fprintf (outf, "# base_object: ");
|
||
print_generic_stmt (outf, DR_BASE_OBJECT (dr));
|
||
|
||
for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
|
||
{
|
||
fprintf (outf, "# Access function %d: ", i);
|
||
print_generic_stmt (outf, DR_ACCESS_FN (dr, i));
|
||
}
|
||
fprintf (outf, "#)\n");
|
||
}
|
||
|
||
/* Unified dump function for a DATA_REFERENCE structure. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (data_reference &ref)
|
||
{
|
||
dump_data_reference (stderr, &ref);
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (data_reference *ptr)
|
||
{
|
||
if (ptr)
|
||
debug (*ptr);
|
||
else
|
||
fprintf (stderr, "<nil>\n");
|
||
}
|
||
|
||
|
||
/* Dumps the affine function described by FN to the file OUTF. */
|
||
|
||
DEBUG_FUNCTION void
|
||
dump_affine_function (FILE *outf, affine_fn fn)
|
||
{
|
||
unsigned i;
|
||
tree coef;
|
||
|
||
print_generic_expr (outf, fn[0], TDF_SLIM);
|
||
for (i = 1; fn.iterate (i, &coef); i++)
|
||
{
|
||
fprintf (outf, " + ");
|
||
print_generic_expr (outf, coef, TDF_SLIM);
|
||
fprintf (outf, " * x_%u", i);
|
||
}
|
||
}
|
||
|
||
/* Dumps the conflict function CF to the file OUTF. */
|
||
|
||
DEBUG_FUNCTION void
|
||
dump_conflict_function (FILE *outf, conflict_function *cf)
|
||
{
|
||
unsigned i;
|
||
|
||
if (cf->n == NO_DEPENDENCE)
|
||
fprintf (outf, "no dependence");
|
||
else if (cf->n == NOT_KNOWN)
|
||
fprintf (outf, "not known");
|
||
else
|
||
{
|
||
for (i = 0; i < cf->n; i++)
|
||
{
|
||
if (i != 0)
|
||
fprintf (outf, " ");
|
||
fprintf (outf, "[");
|
||
dump_affine_function (outf, cf->fns[i]);
|
||
fprintf (outf, "]");
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Dump function for a SUBSCRIPT structure. */
|
||
|
||
DEBUG_FUNCTION void
|
||
dump_subscript (FILE *outf, struct subscript *subscript)
|
||
{
|
||
conflict_function *cf = SUB_CONFLICTS_IN_A (subscript);
|
||
|
||
fprintf (outf, "\n (subscript \n");
|
||
fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
|
||
dump_conflict_function (outf, cf);
|
||
if (CF_NONTRIVIAL_P (cf))
|
||
{
|
||
tree last_iteration = SUB_LAST_CONFLICT (subscript);
|
||
fprintf (outf, "\n last_conflict: ");
|
||
print_generic_expr (outf, last_iteration);
|
||
}
|
||
|
||
cf = SUB_CONFLICTS_IN_B (subscript);
|
||
fprintf (outf, "\n iterations_that_access_an_element_twice_in_B: ");
|
||
dump_conflict_function (outf, cf);
|
||
if (CF_NONTRIVIAL_P (cf))
|
||
{
|
||
tree last_iteration = SUB_LAST_CONFLICT (subscript);
|
||
fprintf (outf, "\n last_conflict: ");
|
||
print_generic_expr (outf, last_iteration);
|
||
}
|
||
|
||
fprintf (outf, "\n (Subscript distance: ");
|
||
print_generic_expr (outf, SUB_DISTANCE (subscript));
|
||
fprintf (outf, " ))\n");
|
||
}
|
||
|
||
/* Print the classic direction vector DIRV to OUTF. */
|
||
|
||
DEBUG_FUNCTION void
|
||
print_direction_vector (FILE *outf,
|
||
lambda_vector dirv,
|
||
int length)
|
||
{
|
||
int eq;
|
||
|
||
for (eq = 0; eq < length; eq++)
|
||
{
|
||
enum data_dependence_direction dir = ((enum data_dependence_direction)
|
||
dirv[eq]);
|
||
|
||
switch (dir)
|
||
{
|
||
case dir_positive:
|
||
fprintf (outf, " +");
|
||
break;
|
||
case dir_negative:
|
||
fprintf (outf, " -");
|
||
break;
|
||
case dir_equal:
|
||
fprintf (outf, " =");
|
||
break;
|
||
case dir_positive_or_equal:
|
||
fprintf (outf, " +=");
|
||
break;
|
||
case dir_positive_or_negative:
|
||
fprintf (outf, " +-");
|
||
break;
|
||
case dir_negative_or_equal:
|
||
fprintf (outf, " -=");
|
||
break;
|
||
case dir_star:
|
||
fprintf (outf, " *");
|
||
break;
|
||
default:
|
||
fprintf (outf, "indep");
|
||
break;
|
||
}
|
||
}
|
||
fprintf (outf, "\n");
|
||
}
|
||
|
||
/* Print a vector of direction vectors. */
|
||
|
||
DEBUG_FUNCTION void
|
||
print_dir_vectors (FILE *outf, vec<lambda_vector> dir_vects,
|
||
int length)
|
||
{
|
||
unsigned j;
|
||
lambda_vector v;
|
||
|
||
FOR_EACH_VEC_ELT (dir_vects, j, v)
|
||
print_direction_vector (outf, v, length);
|
||
}
|
||
|
||
/* Print out a vector VEC of length N to OUTFILE. */
|
||
|
||
DEBUG_FUNCTION void
|
||
print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < n; i++)
|
||
fprintf (outfile, "%3d ", vector[i]);
|
||
fprintf (outfile, "\n");
|
||
}
|
||
|
||
/* Print a vector of distance vectors. */
|
||
|
||
DEBUG_FUNCTION void
|
||
print_dist_vectors (FILE *outf, vec<lambda_vector> dist_vects,
|
||
int length)
|
||
{
|
||
unsigned j;
|
||
lambda_vector v;
|
||
|
||
FOR_EACH_VEC_ELT (dist_vects, j, v)
|
||
print_lambda_vector (outf, v, length);
|
||
}
|
||
|
||
/* Dump function for a DATA_DEPENDENCE_RELATION structure. */
|
||
|
||
DEBUG_FUNCTION void
|
||
dump_data_dependence_relation (FILE *outf,
|
||
struct data_dependence_relation *ddr)
|
||
{
|
||
struct data_reference *dra, *drb;
|
||
|
||
fprintf (outf, "(Data Dep: \n");
|
||
|
||
if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
||
{
|
||
if (ddr)
|
||
{
|
||
dra = DDR_A (ddr);
|
||
drb = DDR_B (ddr);
|
||
if (dra)
|
||
dump_data_reference (outf, dra);
|
||
else
|
||
fprintf (outf, " (nil)\n");
|
||
if (drb)
|
||
dump_data_reference (outf, drb);
|
||
else
|
||
fprintf (outf, " (nil)\n");
|
||
}
|
||
fprintf (outf, " (don't know)\n)\n");
|
||
return;
|
||
}
|
||
|
||
dra = DDR_A (ddr);
|
||
drb = DDR_B (ddr);
|
||
dump_data_reference (outf, dra);
|
||
dump_data_reference (outf, drb);
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
||
fprintf (outf, " (no dependence)\n");
|
||
|
||
else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
||
{
|
||
unsigned int i;
|
||
struct loop *loopi;
|
||
|
||
subscript *sub;
|
||
FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
|
||
{
|
||
fprintf (outf, " access_fn_A: ");
|
||
print_generic_stmt (outf, SUB_ACCESS_FN (sub, 0));
|
||
fprintf (outf, " access_fn_B: ");
|
||
print_generic_stmt (outf, SUB_ACCESS_FN (sub, 1));
|
||
dump_subscript (outf, sub);
|
||
}
|
||
|
||
fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr));
|
||
fprintf (outf, " loop nest: (");
|
||
FOR_EACH_VEC_ELT (DDR_LOOP_NEST (ddr), i, loopi)
|
||
fprintf (outf, "%d ", loopi->num);
|
||
fprintf (outf, ")\n");
|
||
|
||
for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
|
||
{
|
||
fprintf (outf, " distance_vector: ");
|
||
print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
|
||
DDR_NB_LOOPS (ddr));
|
||
}
|
||
|
||
for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
|
||
{
|
||
fprintf (outf, " direction_vector: ");
|
||
print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
|
||
DDR_NB_LOOPS (ddr));
|
||
}
|
||
}
|
||
|
||
fprintf (outf, ")\n");
|
||
}
|
||
|
||
/* Debug version. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_data_dependence_relation (struct data_dependence_relation *ddr)
|
||
{
|
||
dump_data_dependence_relation (stderr, ddr);
|
||
}
|
||
|
||
/* Dump into FILE all the dependence relations from DDRS. */
|
||
|
||
DEBUG_FUNCTION void
|
||
dump_data_dependence_relations (FILE *file,
|
||
vec<ddr_p> ddrs)
|
||
{
|
||
unsigned int i;
|
||
struct data_dependence_relation *ddr;
|
||
|
||
FOR_EACH_VEC_ELT (ddrs, i, ddr)
|
||
dump_data_dependence_relation (file, ddr);
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (vec<ddr_p> &ref)
|
||
{
|
||
dump_data_dependence_relations (stderr, ref);
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug (vec<ddr_p> *ptr)
|
||
{
|
||
if (ptr)
|
||
debug (*ptr);
|
||
else
|
||
fprintf (stderr, "<nil>\n");
|
||
}
|
||
|
||
|
||
/* Dump to STDERR all the dependence relations from DDRS. */
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_data_dependence_relations (vec<ddr_p> ddrs)
|
||
{
|
||
dump_data_dependence_relations (stderr, ddrs);
|
||
}
|
||
|
||
/* Dumps the distance and direction vectors in FILE. DDRS contains
|
||
the dependence relations, and VECT_SIZE is the size of the
|
||
dependence vectors, or in other words the number of loops in the
|
||
considered nest. */
|
||
|
||
DEBUG_FUNCTION void
|
||
dump_dist_dir_vectors (FILE *file, vec<ddr_p> ddrs)
|
||
{
|
||
unsigned int i, j;
|
||
struct data_dependence_relation *ddr;
|
||
lambda_vector v;
|
||
|
||
FOR_EACH_VEC_ELT (ddrs, i, ddr)
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
|
||
{
|
||
FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), j, v)
|
||
{
|
||
fprintf (file, "DISTANCE_V (");
|
||
print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
|
||
fprintf (file, ")\n");
|
||
}
|
||
|
||
FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), j, v)
|
||
{
|
||
fprintf (file, "DIRECTION_V (");
|
||
print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
|
||
fprintf (file, ")\n");
|
||
}
|
||
}
|
||
|
||
fprintf (file, "\n\n");
|
||
}
|
||
|
||
/* Dumps the data dependence relations DDRS in FILE. */
|
||
|
||
DEBUG_FUNCTION void
|
||
dump_ddrs (FILE *file, vec<ddr_p> ddrs)
|
||
{
|
||
unsigned int i;
|
||
struct data_dependence_relation *ddr;
|
||
|
||
FOR_EACH_VEC_ELT (ddrs, i, ddr)
|
||
dump_data_dependence_relation (file, ddr);
|
||
|
||
fprintf (file, "\n\n");
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
debug_ddrs (vec<ddr_p> ddrs)
|
||
{
|
||
dump_ddrs (stderr, ddrs);
|
||
}
|
||
|
||
/* Helper function for split_constant_offset. Expresses OP0 CODE OP1
|
||
(the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero
|
||
constant of type ssizetype, and returns true. If we cannot do this
|
||
with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false
|
||
is returned. */
|
||
|
||
static bool
|
||
split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1,
|
||
tree *var, tree *off)
|
||
{
|
||
tree var0, var1;
|
||
tree off0, off1;
|
||
enum tree_code ocode = code;
|
||
|
||
*var = NULL_TREE;
|
||
*off = NULL_TREE;
|
||
|
||
switch (code)
|
||
{
|
||
case INTEGER_CST:
|
||
*var = build_int_cst (type, 0);
|
||
*off = fold_convert (ssizetype, op0);
|
||
return true;
|
||
|
||
case POINTER_PLUS_EXPR:
|
||
ocode = PLUS_EXPR;
|
||
/* FALLTHROUGH */
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
split_constant_offset (op0, &var0, &off0);
|
||
split_constant_offset (op1, &var1, &off1);
|
||
*var = fold_build2 (code, type, var0, var1);
|
||
*off = size_binop (ocode, off0, off1);
|
||
return true;
|
||
|
||
case MULT_EXPR:
|
||
if (TREE_CODE (op1) != INTEGER_CST)
|
||
return false;
|
||
|
||
split_constant_offset (op0, &var0, &off0);
|
||
*var = fold_build2 (MULT_EXPR, type, var0, op1);
|
||
*off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1));
|
||
return true;
|
||
|
||
case ADDR_EXPR:
|
||
{
|
||
tree base, poffset;
|
||
HOST_WIDE_INT pbitsize, pbitpos;
|
||
machine_mode pmode;
|
||
int punsignedp, preversep, pvolatilep;
|
||
|
||
op0 = TREE_OPERAND (op0, 0);
|
||
base
|
||
= get_inner_reference (op0, &pbitsize, &pbitpos, &poffset, &pmode,
|
||
&punsignedp, &preversep, &pvolatilep);
|
||
|
||
if (pbitpos % BITS_PER_UNIT != 0)
|
||
return false;
|
||
base = build_fold_addr_expr (base);
|
||
off0 = ssize_int (pbitpos / BITS_PER_UNIT);
|
||
|
||
if (poffset)
|
||
{
|
||
split_constant_offset (poffset, &poffset, &off1);
|
||
off0 = size_binop (PLUS_EXPR, off0, off1);
|
||
if (POINTER_TYPE_P (TREE_TYPE (base)))
|
||
base = fold_build_pointer_plus (base, poffset);
|
||
else
|
||
base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base,
|
||
fold_convert (TREE_TYPE (base), poffset));
|
||
}
|
||
|
||
var0 = fold_convert (type, base);
|
||
|
||
/* If variable length types are involved, punt, otherwise casts
|
||
might be converted into ARRAY_REFs in gimplify_conversion.
|
||
To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
|
||
possibly no longer appears in current GIMPLE, might resurface.
|
||
This perhaps could run
|
||
if (CONVERT_EXPR_P (var0))
|
||
{
|
||
gimplify_conversion (&var0);
|
||
// Attempt to fill in any within var0 found ARRAY_REF's
|
||
// element size from corresponding op embedded ARRAY_REF,
|
||
// if unsuccessful, just punt.
|
||
} */
|
||
while (POINTER_TYPE_P (type))
|
||
type = TREE_TYPE (type);
|
||
if (int_size_in_bytes (type) < 0)
|
||
return false;
|
||
|
||
*var = var0;
|
||
*off = off0;
|
||
return true;
|
||
}
|
||
|
||
case SSA_NAME:
|
||
{
|
||
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0))
|
||
return false;
|
||
|
||
gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
|
||
enum tree_code subcode;
|
||
|
||
if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
|
||
return false;
|
||
|
||
var0 = gimple_assign_rhs1 (def_stmt);
|
||
subcode = gimple_assign_rhs_code (def_stmt);
|
||
var1 = gimple_assign_rhs2 (def_stmt);
|
||
|
||
return split_constant_offset_1 (type, var0, subcode, var1, var, off);
|
||
}
|
||
CASE_CONVERT:
|
||
{
|
||
/* We must not introduce undefined overflow, and we must not change the value.
|
||
Hence we're okay if the inner type doesn't overflow to start with
|
||
(pointer or signed), the outer type also is an integer or pointer
|
||
and the outer precision is at least as large as the inner. */
|
||
tree itype = TREE_TYPE (op0);
|
||
if ((POINTER_TYPE_P (itype)
|
||
|| (INTEGRAL_TYPE_P (itype) && TYPE_OVERFLOW_UNDEFINED (itype)))
|
||
&& TYPE_PRECISION (type) >= TYPE_PRECISION (itype)
|
||
&& (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)))
|
||
{
|
||
split_constant_offset (op0, &var0, off);
|
||
*var = fold_convert (type, var0);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Expresses EXP as VAR + OFF, where off is a constant. The type of OFF
|
||
will be ssizetype. */
|
||
|
||
void
|
||
split_constant_offset (tree exp, tree *var, tree *off)
|
||
{
|
||
tree type = TREE_TYPE (exp), otype, op0, op1, e, o;
|
||
enum tree_code code;
|
||
|
||
*var = exp;
|
||
*off = ssize_int (0);
|
||
STRIP_NOPS (exp);
|
||
|
||
if (tree_is_chrec (exp)
|
||
|| get_gimple_rhs_class (TREE_CODE (exp)) == GIMPLE_TERNARY_RHS)
|
||
return;
|
||
|
||
otype = TREE_TYPE (exp);
|
||
code = TREE_CODE (exp);
|
||
extract_ops_from_tree (exp, &code, &op0, &op1);
|
||
if (split_constant_offset_1 (otype, op0, code, op1, &e, &o))
|
||
{
|
||
*var = fold_convert (type, e);
|
||
*off = o;
|
||
}
|
||
}
|
||
|
||
/* Returns the address ADDR of an object in a canonical shape (without nop
|
||
casts, and with type of pointer to the object). */
|
||
|
||
static tree
|
||
canonicalize_base_object_address (tree addr)
|
||
{
|
||
tree orig = addr;
|
||
|
||
STRIP_NOPS (addr);
|
||
|
||
/* The base address may be obtained by casting from integer, in that case
|
||
keep the cast. */
|
||
if (!POINTER_TYPE_P (TREE_TYPE (addr)))
|
||
return orig;
|
||
|
||
if (TREE_CODE (addr) != ADDR_EXPR)
|
||
return addr;
|
||
|
||
return build_fold_addr_expr (TREE_OPERAND (addr, 0));
|
||
}
|
||
|
||
/* Analyze the behavior of memory reference REF. There are two modes:
|
||
|
||
- BB analysis. In this case we simply split the address into base,
|
||
init and offset components, without reference to any containing loop.
|
||
The resulting base and offset are general expressions and they can
|
||
vary arbitrarily from one iteration of the containing loop to the next.
|
||
The step is always zero.
|
||
|
||
- loop analysis. In this case we analyze the reference both wrt LOOP
|
||
and on the basis that the reference occurs (is "used") in LOOP;
|
||
see the comment above analyze_scalar_evolution_in_loop for more
|
||
information about this distinction. The base, init, offset and
|
||
step fields are all invariant in LOOP.
|
||
|
||
Perform BB analysis if LOOP is null, or if LOOP is the function's
|
||
dummy outermost loop. In other cases perform loop analysis.
|
||
|
||
Return true if the analysis succeeded and store the results in DRB if so.
|
||
BB analysis can only fail for bitfield or reversed-storage accesses. */
|
||
|
||
bool
|
||
dr_analyze_innermost (innermost_loop_behavior *drb, tree ref,
|
||
struct loop *loop)
|
||
{
|
||
HOST_WIDE_INT pbitsize, pbitpos;
|
||
tree base, poffset;
|
||
machine_mode pmode;
|
||
int punsignedp, preversep, pvolatilep;
|
||
affine_iv base_iv, offset_iv;
|
||
tree init, dinit, step;
|
||
bool in_loop = (loop && loop->num);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "analyze_innermost: ");
|
||
|
||
base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset, &pmode,
|
||
&punsignedp, &preversep, &pvolatilep);
|
||
gcc_assert (base != NULL_TREE);
|
||
|
||
if (pbitpos % BITS_PER_UNIT != 0)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "failed: bit offset alignment.\n");
|
||
return false;
|
||
}
|
||
|
||
if (preversep)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "failed: reverse storage order.\n");
|
||
return false;
|
||
}
|
||
|
||
/* Calculate the alignment and misalignment for the inner reference. */
|
||
unsigned int HOST_WIDE_INT base_misalignment;
|
||
unsigned int base_alignment;
|
||
get_object_alignment_1 (base, &base_alignment, &base_misalignment);
|
||
|
||
/* There are no bitfield references remaining in BASE, so the values
|
||
we got back must be whole bytes. */
|
||
gcc_assert (base_alignment % BITS_PER_UNIT == 0
|
||
&& base_misalignment % BITS_PER_UNIT == 0);
|
||
base_alignment /= BITS_PER_UNIT;
|
||
base_misalignment /= BITS_PER_UNIT;
|
||
|
||
if (TREE_CODE (base) == MEM_REF)
|
||
{
|
||
if (!integer_zerop (TREE_OPERAND (base, 1)))
|
||
{
|
||
/* Subtract MOFF from the base and add it to POFFSET instead.
|
||
Adjust the misalignment to reflect the amount we subtracted. */
|
||
offset_int moff = mem_ref_offset (base);
|
||
base_misalignment -= moff.to_short_addr ();
|
||
tree mofft = wide_int_to_tree (sizetype, moff);
|
||
if (!poffset)
|
||
poffset = mofft;
|
||
else
|
||
poffset = size_binop (PLUS_EXPR, poffset, mofft);
|
||
}
|
||
base = TREE_OPERAND (base, 0);
|
||
}
|
||
else
|
||
base = build_fold_addr_expr (base);
|
||
|
||
if (in_loop)
|
||
{
|
||
if (!simple_iv (loop, loop, base, &base_iv, true))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "failed: evolution of base is not affine.\n");
|
||
return false;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
base_iv.base = base;
|
||
base_iv.step = ssize_int (0);
|
||
base_iv.no_overflow = true;
|
||
}
|
||
|
||
if (!poffset)
|
||
{
|
||
offset_iv.base = ssize_int (0);
|
||
offset_iv.step = ssize_int (0);
|
||
}
|
||
else
|
||
{
|
||
if (!in_loop)
|
||
{
|
||
offset_iv.base = poffset;
|
||
offset_iv.step = ssize_int (0);
|
||
}
|
||
else if (!simple_iv (loop, loop, poffset, &offset_iv, true))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "failed: evolution of offset is not affine.\n");
|
||
return false;
|
||
}
|
||
}
|
||
|
||
init = ssize_int (pbitpos / BITS_PER_UNIT);
|
||
|
||
/* Subtract any constant component from the base and add it to INIT instead.
|
||
Adjust the misalignment to reflect the amount we subtracted. */
|
||
split_constant_offset (base_iv.base, &base_iv.base, &dinit);
|
||
init = size_binop (PLUS_EXPR, init, dinit);
|
||
base_misalignment -= TREE_INT_CST_LOW (dinit);
|
||
|
||
split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
|
||
init = size_binop (PLUS_EXPR, init, dinit);
|
||
|
||
step = size_binop (PLUS_EXPR,
|
||
fold_convert (ssizetype, base_iv.step),
|
||
fold_convert (ssizetype, offset_iv.step));
|
||
|
||
base = canonicalize_base_object_address (base_iv.base);
|
||
|
||
/* See if get_pointer_alignment can guarantee a higher alignment than
|
||
the one we calculated above. */
|
||
unsigned int HOST_WIDE_INT alt_misalignment;
|
||
unsigned int alt_alignment;
|
||
get_pointer_alignment_1 (base, &alt_alignment, &alt_misalignment);
|
||
|
||
/* As above, these values must be whole bytes. */
|
||
gcc_assert (alt_alignment % BITS_PER_UNIT == 0
|
||
&& alt_misalignment % BITS_PER_UNIT == 0);
|
||
alt_alignment /= BITS_PER_UNIT;
|
||
alt_misalignment /= BITS_PER_UNIT;
|
||
|
||
if (base_alignment < alt_alignment)
|
||
{
|
||
base_alignment = alt_alignment;
|
||
base_misalignment = alt_misalignment;
|
||
}
|
||
|
||
drb->base_address = base;
|
||
drb->offset = fold_convert (ssizetype, offset_iv.base);
|
||
drb->init = init;
|
||
drb->step = step;
|
||
drb->base_alignment = base_alignment;
|
||
drb->base_misalignment = base_misalignment & (base_alignment - 1);
|
||
drb->offset_alignment = highest_pow2_factor (offset_iv.base);
|
||
drb->step_alignment = highest_pow2_factor (step);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "success.\n");
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return true if OP is a valid component reference for a DR access
|
||
function. This accepts a subset of what handled_component_p accepts. */
|
||
|
||
static bool
|
||
access_fn_component_p (tree op)
|
||
{
|
||
switch (TREE_CODE (op))
|
||
{
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
case ARRAY_REF:
|
||
return true;
|
||
|
||
case COMPONENT_REF:
|
||
return TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == RECORD_TYPE;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Determines the base object and the list of indices of memory reference
|
||
DR, analyzed in LOOP and instantiated in loop nest NEST. */
|
||
|
||
static void
|
||
dr_analyze_indices (struct data_reference *dr, loop_p nest, loop_p loop)
|
||
{
|
||
vec<tree> access_fns = vNULL;
|
||
tree ref, op;
|
||
tree base, off, access_fn;
|
||
basic_block before_loop;
|
||
|
||
/* If analyzing a basic-block there are no indices to analyze
|
||
and thus no access functions. */
|
||
if (!nest)
|
||
{
|
||
DR_BASE_OBJECT (dr) = DR_REF (dr);
|
||
DR_ACCESS_FNS (dr).create (0);
|
||
return;
|
||
}
|
||
|
||
ref = DR_REF (dr);
|
||
before_loop = block_before_loop (nest);
|
||
|
||
/* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses
|
||
into a two element array with a constant index. The base is
|
||
then just the immediate underlying object. */
|
||
if (TREE_CODE (ref) == REALPART_EXPR)
|
||
{
|
||
ref = TREE_OPERAND (ref, 0);
|
||
access_fns.safe_push (integer_zero_node);
|
||
}
|
||
else if (TREE_CODE (ref) == IMAGPART_EXPR)
|
||
{
|
||
ref = TREE_OPERAND (ref, 0);
|
||
access_fns.safe_push (integer_one_node);
|
||
}
|
||
|
||
/* Analyze access functions of dimensions we know to be independent.
|
||
The list of component references handled here should be kept in
|
||
sync with access_fn_component_p. */
|
||
while (handled_component_p (ref))
|
||
{
|
||
if (TREE_CODE (ref) == ARRAY_REF)
|
||
{
|
||
op = TREE_OPERAND (ref, 1);
|
||
access_fn = analyze_scalar_evolution (loop, op);
|
||
access_fn = instantiate_scev (before_loop, loop, access_fn);
|
||
access_fns.safe_push (access_fn);
|
||
}
|
||
else if (TREE_CODE (ref) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
|
||
{
|
||
/* For COMPONENT_REFs of records (but not unions!) use the
|
||
FIELD_DECL offset as constant access function so we can
|
||
disambiguate a[i].f1 and a[i].f2. */
|
||
tree off = component_ref_field_offset (ref);
|
||
off = size_binop (PLUS_EXPR,
|
||
size_binop (MULT_EXPR,
|
||
fold_convert (bitsizetype, off),
|
||
bitsize_int (BITS_PER_UNIT)),
|
||
DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)));
|
||
access_fns.safe_push (off);
|
||
}
|
||
else
|
||
/* If we have an unhandled component we could not translate
|
||
to an access function stop analyzing. We have determined
|
||
our base object in this case. */
|
||
break;
|
||
|
||
ref = TREE_OPERAND (ref, 0);
|
||
}
|
||
|
||
/* If the address operand of a MEM_REF base has an evolution in the
|
||
analyzed nest, add it as an additional independent access-function. */
|
||
if (TREE_CODE (ref) == MEM_REF)
|
||
{
|
||
op = TREE_OPERAND (ref, 0);
|
||
access_fn = analyze_scalar_evolution (loop, op);
|
||
access_fn = instantiate_scev (before_loop, loop, access_fn);
|
||
if (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
|
||
{
|
||
tree orig_type;
|
||
tree memoff = TREE_OPERAND (ref, 1);
|
||
base = initial_condition (access_fn);
|
||
orig_type = TREE_TYPE (base);
|
||
STRIP_USELESS_TYPE_CONVERSION (base);
|
||
split_constant_offset (base, &base, &off);
|
||
STRIP_USELESS_TYPE_CONVERSION (base);
|
||
/* Fold the MEM_REF offset into the evolutions initial
|
||
value to make more bases comparable. */
|
||
if (!integer_zerop (memoff))
|
||
{
|
||
off = size_binop (PLUS_EXPR, off,
|
||
fold_convert (ssizetype, memoff));
|
||
memoff = build_int_cst (TREE_TYPE (memoff), 0);
|
||
}
|
||
/* Adjust the offset so it is a multiple of the access type
|
||
size and thus we separate bases that can possibly be used
|
||
to produce partial overlaps (which the access_fn machinery
|
||
cannot handle). */
|
||
wide_int rem;
|
||
if (TYPE_SIZE_UNIT (TREE_TYPE (ref))
|
||
&& TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (ref))) == INTEGER_CST
|
||
&& !integer_zerop (TYPE_SIZE_UNIT (TREE_TYPE (ref))))
|
||
rem = wi::mod_trunc (off, TYPE_SIZE_UNIT (TREE_TYPE (ref)), SIGNED);
|
||
else
|
||
/* If we can't compute the remainder simply force the initial
|
||
condition to zero. */
|
||
rem = off;
|
||
off = wide_int_to_tree (ssizetype, wi::sub (off, rem));
|
||
memoff = wide_int_to_tree (TREE_TYPE (memoff), rem);
|
||
/* And finally replace the initial condition. */
|
||
access_fn = chrec_replace_initial_condition
|
||
(access_fn, fold_convert (orig_type, off));
|
||
/* ??? This is still not a suitable base object for
|
||
dr_may_alias_p - the base object needs to be an
|
||
access that covers the object as whole. With
|
||
an evolution in the pointer this cannot be
|
||
guaranteed.
|
||
As a band-aid, mark the access so we can special-case
|
||
it in dr_may_alias_p. */
|
||
tree old = ref;
|
||
ref = fold_build2_loc (EXPR_LOCATION (ref),
|
||
MEM_REF, TREE_TYPE (ref),
|
||
base, memoff);
|
||
MR_DEPENDENCE_CLIQUE (ref) = MR_DEPENDENCE_CLIQUE (old);
|
||
MR_DEPENDENCE_BASE (ref) = MR_DEPENDENCE_BASE (old);
|
||
DR_UNCONSTRAINED_BASE (dr) = true;
|
||
access_fns.safe_push (access_fn);
|
||
}
|
||
}
|
||
else if (DECL_P (ref))
|
||
{
|
||
/* Canonicalize DR_BASE_OBJECT to MEM_REF form. */
|
||
ref = build2 (MEM_REF, TREE_TYPE (ref),
|
||
build_fold_addr_expr (ref),
|
||
build_int_cst (reference_alias_ptr_type (ref), 0));
|
||
}
|
||
|
||
DR_BASE_OBJECT (dr) = ref;
|
||
DR_ACCESS_FNS (dr) = access_fns;
|
||
}
|
||
|
||
/* Extracts the alias analysis information from the memory reference DR. */
|
||
|
||
static void
|
||
dr_analyze_alias (struct data_reference *dr)
|
||
{
|
||
tree ref = DR_REF (dr);
|
||
tree base = get_base_address (ref), addr;
|
||
|
||
if (INDIRECT_REF_P (base)
|
||
|| TREE_CODE (base) == MEM_REF)
|
||
{
|
||
addr = TREE_OPERAND (base, 0);
|
||
if (TREE_CODE (addr) == SSA_NAME)
|
||
DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
|
||
}
|
||
}
|
||
|
||
/* Frees data reference DR. */
|
||
|
||
void
|
||
free_data_ref (data_reference_p dr)
|
||
{
|
||
DR_ACCESS_FNS (dr).release ();
|
||
free (dr);
|
||
}
|
||
|
||
/* Analyze memory reference MEMREF, which is accessed in STMT.
|
||
The reference is a read if IS_READ is true, otherwise it is a write.
|
||
IS_CONDITIONAL_IN_STMT indicates that the reference is conditional
|
||
within STMT, i.e. that it might not occur even if STMT is executed
|
||
and runs to completion.
|
||
|
||
Return the data_reference description of MEMREF. NEST is the outermost
|
||
loop in which the reference should be instantiated, LOOP is the loop
|
||
in which the data reference should be analyzed. */
|
||
|
||
struct data_reference *
|
||
create_data_ref (loop_p nest, loop_p loop, tree memref, gimple *stmt,
|
||
bool is_read, bool is_conditional_in_stmt)
|
||
{
|
||
struct data_reference *dr;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "Creating dr for ");
|
||
print_generic_expr (dump_file, memref, TDF_SLIM);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
dr = XCNEW (struct data_reference);
|
||
DR_STMT (dr) = stmt;
|
||
DR_REF (dr) = memref;
|
||
DR_IS_READ (dr) = is_read;
|
||
DR_IS_CONDITIONAL_IN_STMT (dr) = is_conditional_in_stmt;
|
||
|
||
dr_analyze_innermost (&DR_INNERMOST (dr), memref,
|
||
nest != NULL ? loop : NULL);
|
||
dr_analyze_indices (dr, nest, loop);
|
||
dr_analyze_alias (dr);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
unsigned i;
|
||
fprintf (dump_file, "\tbase_address: ");
|
||
print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
|
||
fprintf (dump_file, "\n\toffset from base address: ");
|
||
print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
|
||
fprintf (dump_file, "\n\tconstant offset from base address: ");
|
||
print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
|
||
fprintf (dump_file, "\n\tstep: ");
|
||
print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
|
||
fprintf (dump_file, "\n\tbase alignment: %d", DR_BASE_ALIGNMENT (dr));
|
||
fprintf (dump_file, "\n\tbase misalignment: %d",
|
||
DR_BASE_MISALIGNMENT (dr));
|
||
fprintf (dump_file, "\n\toffset alignment: %d",
|
||
DR_OFFSET_ALIGNMENT (dr));
|
||
fprintf (dump_file, "\n\tstep alignment: %d", DR_STEP_ALIGNMENT (dr));
|
||
fprintf (dump_file, "\n\tbase_object: ");
|
||
print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
|
||
fprintf (dump_file, "\n");
|
||
for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
|
||
{
|
||
fprintf (dump_file, "\tAccess function %d: ", i);
|
||
print_generic_stmt (dump_file, DR_ACCESS_FN (dr, i), TDF_SLIM);
|
||
}
|
||
}
|
||
|
||
return dr;
|
||
}
|
||
|
||
/* A helper function computes order between two tree epxressions T1 and T2.
|
||
This is used in comparator functions sorting objects based on the order
|
||
of tree expressions. The function returns -1, 0, or 1. */
|
||
|
||
int
|
||
data_ref_compare_tree (tree t1, tree t2)
|
||
{
|
||
int i, cmp;
|
||
enum tree_code code;
|
||
char tclass;
|
||
|
||
if (t1 == t2)
|
||
return 0;
|
||
if (t1 == NULL)
|
||
return -1;
|
||
if (t2 == NULL)
|
||
return 1;
|
||
|
||
STRIP_NOPS (t1);
|
||
STRIP_NOPS (t2);
|
||
|
||
if (TREE_CODE (t1) != TREE_CODE (t2))
|
||
return TREE_CODE (t1) < TREE_CODE (t2) ? -1 : 1;
|
||
|
||
code = TREE_CODE (t1);
|
||
switch (code)
|
||
{
|
||
/* For const values, we can just use hash values for comparisons. */
|
||
case INTEGER_CST:
|
||
case REAL_CST:
|
||
case FIXED_CST:
|
||
case STRING_CST:
|
||
case COMPLEX_CST:
|
||
case VECTOR_CST:
|
||
{
|
||
hashval_t h1 = iterative_hash_expr (t1, 0);
|
||
hashval_t h2 = iterative_hash_expr (t2, 0);
|
||
if (h1 != h2)
|
||
return h1 < h2 ? -1 : 1;
|
||
break;
|
||
}
|
||
|
||
case SSA_NAME:
|
||
cmp = data_ref_compare_tree (SSA_NAME_VAR (t1), SSA_NAME_VAR (t2));
|
||
if (cmp != 0)
|
||
return cmp;
|
||
|
||
if (SSA_NAME_VERSION (t1) != SSA_NAME_VERSION (t2))
|
||
return SSA_NAME_VERSION (t1) < SSA_NAME_VERSION (t2) ? -1 : 1;
|
||
break;
|
||
|
||
default:
|
||
tclass = TREE_CODE_CLASS (code);
|
||
|
||
/* For var-decl, we could compare their UIDs. */
|
||
if (tclass == tcc_declaration)
|
||
{
|
||
if (DECL_UID (t1) != DECL_UID (t2))
|
||
return DECL_UID (t1) < DECL_UID (t2) ? -1 : 1;
|
||
break;
|
||
}
|
||
|
||
/* For expressions with operands, compare their operands recursively. */
|
||
for (i = TREE_OPERAND_LENGTH (t1) - 1; i >= 0; --i)
|
||
{
|
||
cmp = data_ref_compare_tree (TREE_OPERAND (t1, i),
|
||
TREE_OPERAND (t2, i));
|
||
if (cmp != 0)
|
||
return cmp;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return TRUE it's possible to resolve data dependence DDR by runtime alias
|
||
check. */
|
||
|
||
bool
|
||
runtime_alias_check_p (ddr_p ddr, struct loop *loop, bool speed_p)
|
||
{
|
||
if (dump_enabled_p ())
|
||
{
|
||
dump_printf (MSG_NOTE, "consider run-time aliasing test between ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
|
||
dump_printf (MSG_NOTE, " and ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
|
||
dump_printf (MSG_NOTE, "\n");
|
||
}
|
||
|
||
if (!speed_p)
|
||
{
|
||
if (dump_enabled_p ())
|
||
dump_printf (MSG_MISSED_OPTIMIZATION,
|
||
"runtime alias check not supported when optimizing "
|
||
"for size.\n");
|
||
return false;
|
||
}
|
||
|
||
/* FORNOW: We don't support versioning with outer-loop in either
|
||
vectorization or loop distribution. */
|
||
if (loop != NULL && loop->inner != NULL)
|
||
{
|
||
if (dump_enabled_p ())
|
||
dump_printf (MSG_MISSED_OPTIMIZATION,
|
||
"runtime alias check not supported for outer loop.\n");
|
||
return false;
|
||
}
|
||
|
||
/* FORNOW: We don't support creating runtime alias tests for non-constant
|
||
step. */
|
||
if (TREE_CODE (DR_STEP (DDR_A (ddr))) != INTEGER_CST
|
||
|| TREE_CODE (DR_STEP (DDR_B (ddr))) != INTEGER_CST)
|
||
{
|
||
if (dump_enabled_p ())
|
||
dump_printf (MSG_MISSED_OPTIMIZATION,
|
||
"runtime alias check not supported for non-constant "
|
||
"step\n");
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Operator == between two dr_with_seg_len objects.
|
||
|
||
This equality operator is used to make sure two data refs
|
||
are the same one so that we will consider to combine the
|
||
aliasing checks of those two pairs of data dependent data
|
||
refs. */
|
||
|
||
static bool
|
||
operator == (const dr_with_seg_len& d1,
|
||
const dr_with_seg_len& d2)
|
||
{
|
||
return operand_equal_p (DR_BASE_ADDRESS (d1.dr),
|
||
DR_BASE_ADDRESS (d2.dr), 0)
|
||
&& data_ref_compare_tree (DR_OFFSET (d1.dr), DR_OFFSET (d2.dr)) == 0
|
||
&& data_ref_compare_tree (DR_INIT (d1.dr), DR_INIT (d2.dr)) == 0
|
||
&& data_ref_compare_tree (d1.seg_len, d2.seg_len) == 0;
|
||
}
|
||
|
||
/* Comparison function for sorting objects of dr_with_seg_len_pair_t
|
||
so that we can combine aliasing checks in one scan. */
|
||
|
||
static int
|
||
comp_dr_with_seg_len_pair (const void *pa_, const void *pb_)
|
||
{
|
||
const dr_with_seg_len_pair_t* pa = (const dr_with_seg_len_pair_t *) pa_;
|
||
const dr_with_seg_len_pair_t* pb = (const dr_with_seg_len_pair_t *) pb_;
|
||
const dr_with_seg_len &a1 = pa->first, &a2 = pa->second;
|
||
const dr_with_seg_len &b1 = pb->first, &b2 = pb->second;
|
||
|
||
/* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
|
||
if a and c have the same basic address snd step, and b and d have the same
|
||
address and step. Therefore, if any a&c or b&d don't have the same address
|
||
and step, we don't care the order of those two pairs after sorting. */
|
||
int comp_res;
|
||
|
||
if ((comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (a1.dr),
|
||
DR_BASE_ADDRESS (b1.dr))) != 0)
|
||
return comp_res;
|
||
if ((comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (a2.dr),
|
||
DR_BASE_ADDRESS (b2.dr))) != 0)
|
||
return comp_res;
|
||
if ((comp_res = data_ref_compare_tree (DR_STEP (a1.dr),
|
||
DR_STEP (b1.dr))) != 0)
|
||
return comp_res;
|
||
if ((comp_res = data_ref_compare_tree (DR_STEP (a2.dr),
|
||
DR_STEP (b2.dr))) != 0)
|
||
return comp_res;
|
||
if ((comp_res = data_ref_compare_tree (DR_OFFSET (a1.dr),
|
||
DR_OFFSET (b1.dr))) != 0)
|
||
return comp_res;
|
||
if ((comp_res = data_ref_compare_tree (DR_INIT (a1.dr),
|
||
DR_INIT (b1.dr))) != 0)
|
||
return comp_res;
|
||
if ((comp_res = data_ref_compare_tree (DR_OFFSET (a2.dr),
|
||
DR_OFFSET (b2.dr))) != 0)
|
||
return comp_res;
|
||
if ((comp_res = data_ref_compare_tree (DR_INIT (a2.dr),
|
||
DR_INIT (b2.dr))) != 0)
|
||
return comp_res;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Merge alias checks recorded in ALIAS_PAIRS and remove redundant ones.
|
||
FACTOR is number of iterations that each data reference is accessed.
|
||
|
||
Basically, for each pair of dependent data refs store_ptr_0 & load_ptr_0,
|
||
we create an expression:
|
||
|
||
((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
|
||
|| (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
|
||
|
||
for aliasing checks. However, in some cases we can decrease the number
|
||
of checks by combining two checks into one. For example, suppose we have
|
||
another pair of data refs store_ptr_0 & load_ptr_1, and if the following
|
||
condition is satisfied:
|
||
|
||
load_ptr_0 < load_ptr_1 &&
|
||
load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0
|
||
|
||
(this condition means, in each iteration of vectorized loop, the accessed
|
||
memory of store_ptr_0 cannot be between the memory of load_ptr_0 and
|
||
load_ptr_1.)
|
||
|
||
we then can use only the following expression to finish the alising checks
|
||
between store_ptr_0 & load_ptr_0 and store_ptr_0 & load_ptr_1:
|
||
|
||
((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
|
||
|| (load_ptr_1 + load_segment_length_1 <= store_ptr_0))
|
||
|
||
Note that we only consider that load_ptr_0 and load_ptr_1 have the same
|
||
basic address. */
|
||
|
||
void
|
||
prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *alias_pairs,
|
||
unsigned HOST_WIDE_INT factor)
|
||
{
|
||
/* Sort the collected data ref pairs so that we can scan them once to
|
||
combine all possible aliasing checks. */
|
||
alias_pairs->qsort (comp_dr_with_seg_len_pair);
|
||
|
||
/* Scan the sorted dr pairs and check if we can combine alias checks
|
||
of two neighboring dr pairs. */
|
||
for (size_t i = 1; i < alias_pairs->length (); ++i)
|
||
{
|
||
/* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2). */
|
||
dr_with_seg_len *dr_a1 = &(*alias_pairs)[i-1].first,
|
||
*dr_b1 = &(*alias_pairs)[i-1].second,
|
||
*dr_a2 = &(*alias_pairs)[i].first,
|
||
*dr_b2 = &(*alias_pairs)[i].second;
|
||
|
||
/* Remove duplicate data ref pairs. */
|
||
if (*dr_a1 == *dr_a2 && *dr_b1 == *dr_b2)
|
||
{
|
||
if (dump_enabled_p ())
|
||
{
|
||
dump_printf (MSG_NOTE, "found equal ranges ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a1->dr));
|
||
dump_printf (MSG_NOTE, ", ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b1->dr));
|
||
dump_printf (MSG_NOTE, " and ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a2->dr));
|
||
dump_printf (MSG_NOTE, ", ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b2->dr));
|
||
dump_printf (MSG_NOTE, "\n");
|
||
}
|
||
alias_pairs->ordered_remove (i--);
|
||
continue;
|
||
}
|
||
|
||
if (*dr_a1 == *dr_a2 || *dr_b1 == *dr_b2)
|
||
{
|
||
/* We consider the case that DR_B1 and DR_B2 are same memrefs,
|
||
and DR_A1 and DR_A2 are two consecutive memrefs. */
|
||
if (*dr_a1 == *dr_a2)
|
||
{
|
||
std::swap (dr_a1, dr_b1);
|
||
std::swap (dr_a2, dr_b2);
|
||
}
|
||
|
||
if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1->dr),
|
||
DR_BASE_ADDRESS (dr_a2->dr), 0)
|
||
|| !operand_equal_p (DR_OFFSET (dr_a1->dr),
|
||
DR_OFFSET (dr_a2->dr), 0)
|
||
|| !tree_fits_shwi_p (DR_INIT (dr_a1->dr))
|
||
|| !tree_fits_shwi_p (DR_INIT (dr_a2->dr)))
|
||
continue;
|
||
|
||
/* Only merge const step data references. */
|
||
if (TREE_CODE (DR_STEP (dr_a1->dr)) != INTEGER_CST
|
||
|| TREE_CODE (DR_STEP (dr_a2->dr)) != INTEGER_CST)
|
||
continue;
|
||
|
||
/* DR_A1 and DR_A2 must goes in the same direction. */
|
||
if (tree_int_cst_compare (DR_STEP (dr_a1->dr), size_zero_node)
|
||
!= tree_int_cst_compare (DR_STEP (dr_a2->dr), size_zero_node))
|
||
continue;
|
||
|
||
bool neg_step
|
||
= (tree_int_cst_compare (DR_STEP (dr_a1->dr), size_zero_node) < 0);
|
||
|
||
/* We need to compute merged segment length at compilation time for
|
||
dr_a1 and dr_a2, which is impossible if either one has non-const
|
||
segment length. */
|
||
if ((!tree_fits_uhwi_p (dr_a1->seg_len)
|
||
|| !tree_fits_uhwi_p (dr_a2->seg_len))
|
||
&& tree_int_cst_compare (DR_STEP (dr_a1->dr),
|
||
DR_STEP (dr_a2->dr)) != 0)
|
||
continue;
|
||
|
||
/* Make sure dr_a1 starts left of dr_a2. */
|
||
if (tree_int_cst_lt (DR_INIT (dr_a2->dr), DR_INIT (dr_a1->dr)))
|
||
std::swap (*dr_a1, *dr_a2);
|
||
|
||
bool do_remove = false;
|
||
wide_int diff = wi::sub (DR_INIT (dr_a2->dr), DR_INIT (dr_a1->dr));
|
||
wide_int min_seg_len_b;
|
||
tree new_seg_len;
|
||
|
||
if (TREE_CODE (dr_b1->seg_len) == INTEGER_CST)
|
||
min_seg_len_b = wi::abs (dr_b1->seg_len);
|
||
else
|
||
min_seg_len_b = wi::mul (factor, wi::abs (DR_STEP (dr_b1->dr)));
|
||
|
||
/* Now we try to merge alias check dr_a1 & dr_b and dr_a2 & dr_b.
|
||
|
||
Case A:
|
||
check if the following condition is satisfied:
|
||
|
||
DIFF - SEGMENT_LENGTH_A < SEGMENT_LENGTH_B
|
||
|
||
where DIFF = DR_A2_INIT - DR_A1_INIT. However,
|
||
SEGMENT_LENGTH_A or SEGMENT_LENGTH_B may not be constant so we
|
||
have to make a best estimation. We can get the minimum value
|
||
of SEGMENT_LENGTH_B as a constant, represented by MIN_SEG_LEN_B,
|
||
then either of the following two conditions can guarantee the
|
||
one above:
|
||
|
||
1: DIFF <= MIN_SEG_LEN_B
|
||
2: DIFF - SEGMENT_LENGTH_A < MIN_SEG_LEN_B
|
||
Because DIFF - SEGMENT_LENGTH_A is done in sizetype, we need
|
||
to take care of wrapping behavior in it.
|
||
|
||
Case B:
|
||
If the left segment does not extend beyond the start of the
|
||
right segment the new segment length is that of the right
|
||
plus the segment distance. The condition is like:
|
||
|
||
DIFF >= SEGMENT_LENGTH_A ;SEGMENT_LENGTH_A is a constant.
|
||
|
||
Note 1: Case A.2 and B combined together effectively merges every
|
||
dr_a1 & dr_b and dr_a2 & dr_b when SEGMENT_LENGTH_A is const.
|
||
|
||
Note 2: Above description is based on positive DR_STEP, we need to
|
||
take care of negative DR_STEP for wrapping behavior. See PR80815
|
||
for more information. */
|
||
if (neg_step)
|
||
{
|
||
/* Adjust diff according to access size of both references. */
|
||
tree size_a1 = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a1->dr)));
|
||
tree size_a2 = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a2->dr)));
|
||
diff = wi::add (diff, wi::sub (size_a2, size_a1));
|
||
/* Case A.1. */
|
||
if (wi::leu_p (diff, min_seg_len_b)
|
||
/* Case A.2 and B combined. */
|
||
|| (tree_fits_uhwi_p (dr_a2->seg_len)))
|
||
{
|
||
if (tree_fits_uhwi_p (dr_a1->seg_len)
|
||
&& tree_fits_uhwi_p (dr_a2->seg_len))
|
||
new_seg_len
|
||
= wide_int_to_tree (sizetype,
|
||
wi::umin (wi::sub (dr_a1->seg_len,
|
||
diff),
|
||
dr_a2->seg_len));
|
||
else
|
||
new_seg_len
|
||
= size_binop (MINUS_EXPR, dr_a2->seg_len,
|
||
wide_int_to_tree (sizetype, diff));
|
||
|
||
dr_a2->seg_len = new_seg_len;
|
||
do_remove = true;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Case A.1. */
|
||
if (wi::leu_p (diff, min_seg_len_b)
|
||
/* Case A.2 and B combined. */
|
||
|| (tree_fits_uhwi_p (dr_a1->seg_len)))
|
||
{
|
||
if (tree_fits_uhwi_p (dr_a1->seg_len)
|
||
&& tree_fits_uhwi_p (dr_a2->seg_len))
|
||
new_seg_len
|
||
= wide_int_to_tree (sizetype,
|
||
wi::umax (wi::add (dr_a2->seg_len,
|
||
diff),
|
||
dr_a1->seg_len));
|
||
else
|
||
new_seg_len
|
||
= size_binop (PLUS_EXPR, dr_a2->seg_len,
|
||
wide_int_to_tree (sizetype, diff));
|
||
|
||
dr_a1->seg_len = new_seg_len;
|
||
do_remove = true;
|
||
}
|
||
}
|
||
|
||
if (do_remove)
|
||
{
|
||
if (dump_enabled_p ())
|
||
{
|
||
dump_printf (MSG_NOTE, "merging ranges for ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a1->dr));
|
||
dump_printf (MSG_NOTE, ", ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b1->dr));
|
||
dump_printf (MSG_NOTE, " and ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a2->dr));
|
||
dump_printf (MSG_NOTE, ", ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b2->dr));
|
||
dump_printf (MSG_NOTE, "\n");
|
||
}
|
||
alias_pairs->ordered_remove (neg_step ? i - 1 : i);
|
||
i--;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Given LOOP's two data references and segment lengths described by DR_A
|
||
and DR_B, create expression checking if the two addresses ranges intersect
|
||
with each other based on index of the two addresses. This can only be
|
||
done if DR_A and DR_B referring to the same (array) object and the index
|
||
is the only difference. For example:
|
||
|
||
DR_A DR_B
|
||
data-ref arr[i] arr[j]
|
||
base_object arr arr
|
||
index {i_0, +, 1}_loop {j_0, +, 1}_loop
|
||
|
||
The addresses and their index are like:
|
||
|
||
|<- ADDR_A ->| |<- ADDR_B ->|
|
||
------------------------------------------------------->
|
||
| | | | | | | | | |
|
||
------------------------------------------------------->
|
||
i_0 ... i_0+4 j_0 ... j_0+4
|
||
|
||
We can create expression based on index rather than address:
|
||
|
||
(i_0 + 4 < j_0 || j_0 + 4 < i_0)
|
||
|
||
Note evolution step of index needs to be considered in comparison. */
|
||
|
||
static bool
|
||
create_intersect_range_checks_index (struct loop *loop, tree *cond_expr,
|
||
const dr_with_seg_len& dr_a,
|
||
const dr_with_seg_len& dr_b)
|
||
{
|
||
if (integer_zerop (DR_STEP (dr_a.dr))
|
||
|| integer_zerop (DR_STEP (dr_b.dr))
|
||
|| DR_NUM_DIMENSIONS (dr_a.dr) != DR_NUM_DIMENSIONS (dr_b.dr))
|
||
return false;
|
||
|
||
if (!tree_fits_uhwi_p (dr_a.seg_len) || !tree_fits_uhwi_p (dr_b.seg_len))
|
||
return false;
|
||
|
||
if (!tree_fits_shwi_p (DR_STEP (dr_a.dr)))
|
||
return false;
|
||
|
||
if (!operand_equal_p (DR_BASE_OBJECT (dr_a.dr), DR_BASE_OBJECT (dr_b.dr), 0))
|
||
return false;
|
||
|
||
if (!operand_equal_p (DR_STEP (dr_a.dr), DR_STEP (dr_b.dr), 0))
|
||
return false;
|
||
|
||
gcc_assert (TREE_CODE (DR_STEP (dr_a.dr)) == INTEGER_CST);
|
||
|
||
bool neg_step = tree_int_cst_compare (DR_STEP (dr_a.dr), size_zero_node) < 0;
|
||
unsigned HOST_WIDE_INT abs_step
|
||
= absu_hwi (tree_to_shwi (DR_STEP (dr_a.dr)));
|
||
|
||
unsigned HOST_WIDE_INT seg_len1 = tree_to_uhwi (dr_a.seg_len);
|
||
unsigned HOST_WIDE_INT seg_len2 = tree_to_uhwi (dr_b.seg_len);
|
||
/* Infer the number of iterations with which the memory segment is accessed
|
||
by DR. In other words, alias is checked if memory segment accessed by
|
||
DR_A in some iterations intersect with memory segment accessed by DR_B
|
||
in the same amount iterations.
|
||
Note segnment length is a linear function of number of iterations with
|
||
DR_STEP as the coefficient. */
|
||
unsigned HOST_WIDE_INT niter_len1 = (seg_len1 + abs_step - 1) / abs_step;
|
||
unsigned HOST_WIDE_INT niter_len2 = (seg_len2 + abs_step - 1) / abs_step;
|
||
|
||
unsigned int i;
|
||
for (i = 0; i < DR_NUM_DIMENSIONS (dr_a.dr); i++)
|
||
{
|
||
tree access1 = DR_ACCESS_FN (dr_a.dr, i);
|
||
tree access2 = DR_ACCESS_FN (dr_b.dr, i);
|
||
/* Two indices must be the same if they are not scev, or not scev wrto
|
||
current loop being vecorized. */
|
||
if (TREE_CODE (access1) != POLYNOMIAL_CHREC
|
||
|| TREE_CODE (access2) != POLYNOMIAL_CHREC
|
||
|| CHREC_VARIABLE (access1) != (unsigned)loop->num
|
||
|| CHREC_VARIABLE (access2) != (unsigned)loop->num)
|
||
{
|
||
if (operand_equal_p (access1, access2, 0))
|
||
continue;
|
||
|
||
return false;
|
||
}
|
||
/* The two indices must have the same step. */
|
||
if (!operand_equal_p (CHREC_RIGHT (access1), CHREC_RIGHT (access2), 0))
|
||
return false;
|
||
|
||
tree idx_step = CHREC_RIGHT (access1);
|
||
/* Index must have const step, otherwise DR_STEP won't be constant. */
|
||
gcc_assert (TREE_CODE (idx_step) == INTEGER_CST);
|
||
/* Index must evaluate in the same direction as DR. */
|
||
gcc_assert (!neg_step || tree_int_cst_sign_bit (idx_step) == 1);
|
||
|
||
tree min1 = CHREC_LEFT (access1);
|
||
tree min2 = CHREC_LEFT (access2);
|
||
if (!types_compatible_p (TREE_TYPE (min1), TREE_TYPE (min2)))
|
||
return false;
|
||
|
||
/* Ideally, alias can be checked against loop's control IV, but we
|
||
need to prove linear mapping between control IV and reference
|
||
index. Although that should be true, we check against (array)
|
||
index of data reference. Like segment length, index length is
|
||
linear function of the number of iterations with index_step as
|
||
the coefficient, i.e, niter_len * idx_step. */
|
||
tree idx_len1 = fold_build2 (MULT_EXPR, TREE_TYPE (min1), idx_step,
|
||
build_int_cst (TREE_TYPE (min1),
|
||
niter_len1));
|
||
tree idx_len2 = fold_build2 (MULT_EXPR, TREE_TYPE (min2), idx_step,
|
||
build_int_cst (TREE_TYPE (min2),
|
||
niter_len2));
|
||
tree max1 = fold_build2 (PLUS_EXPR, TREE_TYPE (min1), min1, idx_len1);
|
||
tree max2 = fold_build2 (PLUS_EXPR, TREE_TYPE (min2), min2, idx_len2);
|
||
/* Adjust ranges for negative step. */
|
||
if (neg_step)
|
||
{
|
||
min1 = fold_build2 (MINUS_EXPR, TREE_TYPE (min1), max1, idx_step);
|
||
max1 = fold_build2 (MINUS_EXPR, TREE_TYPE (min1),
|
||
CHREC_LEFT (access1), idx_step);
|
||
min2 = fold_build2 (MINUS_EXPR, TREE_TYPE (min2), max2, idx_step);
|
||
max2 = fold_build2 (MINUS_EXPR, TREE_TYPE (min2),
|
||
CHREC_LEFT (access2), idx_step);
|
||
}
|
||
tree part_cond_expr
|
||
= fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
|
||
fold_build2 (LE_EXPR, boolean_type_node, max1, min2),
|
||
fold_build2 (LE_EXPR, boolean_type_node, max2, min1));
|
||
if (*cond_expr)
|
||
*cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
||
*cond_expr, part_cond_expr);
|
||
else
|
||
*cond_expr = part_cond_expr;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Given two data references and segment lengths described by DR_A and DR_B,
|
||
create expression checking if the two addresses ranges intersect with
|
||
each other:
|
||
|
||
((DR_A_addr_0 + DR_A_segment_length_0) <= DR_B_addr_0)
|
||
|| (DR_B_addr_0 + DER_B_segment_length_0) <= DR_A_addr_0)) */
|
||
|
||
static void
|
||
create_intersect_range_checks (struct loop *loop, tree *cond_expr,
|
||
const dr_with_seg_len& dr_a,
|
||
const dr_with_seg_len& dr_b)
|
||
{
|
||
*cond_expr = NULL_TREE;
|
||
if (create_intersect_range_checks_index (loop, cond_expr, dr_a, dr_b))
|
||
return;
|
||
|
||
tree segment_length_a = dr_a.seg_len;
|
||
tree segment_length_b = dr_b.seg_len;
|
||
tree addr_base_a = DR_BASE_ADDRESS (dr_a.dr);
|
||
tree addr_base_b = DR_BASE_ADDRESS (dr_b.dr);
|
||
tree offset_a = DR_OFFSET (dr_a.dr), offset_b = DR_OFFSET (dr_b.dr);
|
||
|
||
offset_a = fold_build2 (PLUS_EXPR, TREE_TYPE (offset_a),
|
||
offset_a, DR_INIT (dr_a.dr));
|
||
offset_b = fold_build2 (PLUS_EXPR, TREE_TYPE (offset_b),
|
||
offset_b, DR_INIT (dr_b.dr));
|
||
addr_base_a = fold_build_pointer_plus (addr_base_a, offset_a);
|
||
addr_base_b = fold_build_pointer_plus (addr_base_b, offset_b);
|
||
|
||
tree seg_a_min = addr_base_a;
|
||
tree seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
|
||
/* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
|
||
bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
|
||
[a, a+12) */
|
||
if (tree_int_cst_compare (DR_STEP (dr_a.dr), size_zero_node) < 0)
|
||
{
|
||
tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a.dr)));
|
||
seg_a_min = fold_build_pointer_plus (seg_a_max, unit_size);
|
||
seg_a_max = fold_build_pointer_plus (addr_base_a, unit_size);
|
||
}
|
||
|
||
tree seg_b_min = addr_base_b;
|
||
tree seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
|
||
if (tree_int_cst_compare (DR_STEP (dr_b.dr), size_zero_node) < 0)
|
||
{
|
||
tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b.dr)));
|
||
seg_b_min = fold_build_pointer_plus (seg_b_max, unit_size);
|
||
seg_b_max = fold_build_pointer_plus (addr_base_b, unit_size);
|
||
}
|
||
*cond_expr
|
||
= fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
|
||
fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
|
||
fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
|
||
}
|
||
|
||
/* Create a conditional expression that represents the run-time checks for
|
||
overlapping of address ranges represented by a list of data references
|
||
pairs passed in ALIAS_PAIRS. Data references are in LOOP. The returned
|
||
COND_EXPR is the conditional expression to be used in the if statement
|
||
that controls which version of the loop gets executed at runtime. */
|
||
|
||
void
|
||
create_runtime_alias_checks (struct loop *loop,
|
||
vec<dr_with_seg_len_pair_t> *alias_pairs,
|
||
tree * cond_expr)
|
||
{
|
||
tree part_cond_expr;
|
||
|
||
for (size_t i = 0, s = alias_pairs->length (); i < s; ++i)
|
||
{
|
||
const dr_with_seg_len& dr_a = (*alias_pairs)[i].first;
|
||
const dr_with_seg_len& dr_b = (*alias_pairs)[i].second;
|
||
|
||
if (dump_enabled_p ())
|
||
{
|
||
dump_printf (MSG_NOTE, "create runtime check for data references ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a.dr));
|
||
dump_printf (MSG_NOTE, " and ");
|
||
dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b.dr));
|
||
dump_printf (MSG_NOTE, "\n");
|
||
}
|
||
|
||
/* Create condition expression for each pair data references. */
|
||
create_intersect_range_checks (loop, &part_cond_expr, dr_a, dr_b);
|
||
if (*cond_expr)
|
||
*cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
|
||
*cond_expr, part_cond_expr);
|
||
else
|
||
*cond_expr = part_cond_expr;
|
||
}
|
||
}
|
||
|
||
/* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
|
||
expressions. */
|
||
static bool
|
||
dr_equal_offsets_p1 (tree offset1, tree offset2)
|
||
{
|
||
bool res;
|
||
|
||
STRIP_NOPS (offset1);
|
||
STRIP_NOPS (offset2);
|
||
|
||
if (offset1 == offset2)
|
||
return true;
|
||
|
||
if (TREE_CODE (offset1) != TREE_CODE (offset2)
|
||
|| (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1)))
|
||
return false;
|
||
|
||
res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0),
|
||
TREE_OPERAND (offset2, 0));
|
||
|
||
if (!res || !BINARY_CLASS_P (offset1))
|
||
return res;
|
||
|
||
res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1),
|
||
TREE_OPERAND (offset2, 1));
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Check if DRA and DRB have equal offsets. */
|
||
bool
|
||
dr_equal_offsets_p (struct data_reference *dra,
|
||
struct data_reference *drb)
|
||
{
|
||
tree offset1, offset2;
|
||
|
||
offset1 = DR_OFFSET (dra);
|
||
offset2 = DR_OFFSET (drb);
|
||
|
||
return dr_equal_offsets_p1 (offset1, offset2);
|
||
}
|
||
|
||
/* Returns true if FNA == FNB. */
|
||
|
||
static bool
|
||
affine_function_equal_p (affine_fn fna, affine_fn fnb)
|
||
{
|
||
unsigned i, n = fna.length ();
|
||
|
||
if (n != fnb.length ())
|
||
return false;
|
||
|
||
for (i = 0; i < n; i++)
|
||
if (!operand_equal_p (fna[i], fnb[i], 0))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* If all the functions in CF are the same, returns one of them,
|
||
otherwise returns NULL. */
|
||
|
||
static affine_fn
|
||
common_affine_function (conflict_function *cf)
|
||
{
|
||
unsigned i;
|
||
affine_fn comm;
|
||
|
||
if (!CF_NONTRIVIAL_P (cf))
|
||
return affine_fn ();
|
||
|
||
comm = cf->fns[0];
|
||
|
||
for (i = 1; i < cf->n; i++)
|
||
if (!affine_function_equal_p (comm, cf->fns[i]))
|
||
return affine_fn ();
|
||
|
||
return comm;
|
||
}
|
||
|
||
/* Returns the base of the affine function FN. */
|
||
|
||
static tree
|
||
affine_function_base (affine_fn fn)
|
||
{
|
||
return fn[0];
|
||
}
|
||
|
||
/* Returns true if FN is a constant. */
|
||
|
||
static bool
|
||
affine_function_constant_p (affine_fn fn)
|
||
{
|
||
unsigned i;
|
||
tree coef;
|
||
|
||
for (i = 1; fn.iterate (i, &coef); i++)
|
||
if (!integer_zerop (coef))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Returns true if FN is the zero constant function. */
|
||
|
||
static bool
|
||
affine_function_zero_p (affine_fn fn)
|
||
{
|
||
return (integer_zerop (affine_function_base (fn))
|
||
&& affine_function_constant_p (fn));
|
||
}
|
||
|
||
/* Returns a signed integer type with the largest precision from TA
|
||
and TB. */
|
||
|
||
static tree
|
||
signed_type_for_types (tree ta, tree tb)
|
||
{
|
||
if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb))
|
||
return signed_type_for (ta);
|
||
else
|
||
return signed_type_for (tb);
|
||
}
|
||
|
||
/* Applies operation OP on affine functions FNA and FNB, and returns the
|
||
result. */
|
||
|
||
static affine_fn
|
||
affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
|
||
{
|
||
unsigned i, n, m;
|
||
affine_fn ret;
|
||
tree coef;
|
||
|
||
if (fnb.length () > fna.length ())
|
||
{
|
||
n = fna.length ();
|
||
m = fnb.length ();
|
||
}
|
||
else
|
||
{
|
||
n = fnb.length ();
|
||
m = fna.length ();
|
||
}
|
||
|
||
ret.create (m);
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
tree type = signed_type_for_types (TREE_TYPE (fna[i]),
|
||
TREE_TYPE (fnb[i]));
|
||
ret.quick_push (fold_build2 (op, type, fna[i], fnb[i]));
|
||
}
|
||
|
||
for (; fna.iterate (i, &coef); i++)
|
||
ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
|
||
coef, integer_zero_node));
|
||
for (; fnb.iterate (i, &coef); i++)
|
||
ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
|
||
integer_zero_node, coef));
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Returns the sum of affine functions FNA and FNB. */
|
||
|
||
static affine_fn
|
||
affine_fn_plus (affine_fn fna, affine_fn fnb)
|
||
{
|
||
return affine_fn_op (PLUS_EXPR, fna, fnb);
|
||
}
|
||
|
||
/* Returns the difference of affine functions FNA and FNB. */
|
||
|
||
static affine_fn
|
||
affine_fn_minus (affine_fn fna, affine_fn fnb)
|
||
{
|
||
return affine_fn_op (MINUS_EXPR, fna, fnb);
|
||
}
|
||
|
||
/* Frees affine function FN. */
|
||
|
||
static void
|
||
affine_fn_free (affine_fn fn)
|
||
{
|
||
fn.release ();
|
||
}
|
||
|
||
/* Determine for each subscript in the data dependence relation DDR
|
||
the distance. */
|
||
|
||
static void
|
||
compute_subscript_distance (struct data_dependence_relation *ddr)
|
||
{
|
||
conflict_function *cf_a, *cf_b;
|
||
affine_fn fn_a, fn_b, diff;
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
struct subscript *subscript;
|
||
|
||
subscript = DDR_SUBSCRIPT (ddr, i);
|
||
cf_a = SUB_CONFLICTS_IN_A (subscript);
|
||
cf_b = SUB_CONFLICTS_IN_B (subscript);
|
||
|
||
fn_a = common_affine_function (cf_a);
|
||
fn_b = common_affine_function (cf_b);
|
||
if (!fn_a.exists () || !fn_b.exists ())
|
||
{
|
||
SUB_DISTANCE (subscript) = chrec_dont_know;
|
||
return;
|
||
}
|
||
diff = affine_fn_minus (fn_a, fn_b);
|
||
|
||
if (affine_function_constant_p (diff))
|
||
SUB_DISTANCE (subscript) = affine_function_base (diff);
|
||
else
|
||
SUB_DISTANCE (subscript) = chrec_dont_know;
|
||
|
||
affine_fn_free (diff);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Returns the conflict function for "unknown". */
|
||
|
||
static conflict_function *
|
||
conflict_fn_not_known (void)
|
||
{
|
||
conflict_function *fn = XCNEW (conflict_function);
|
||
fn->n = NOT_KNOWN;
|
||
|
||
return fn;
|
||
}
|
||
|
||
/* Returns the conflict function for "independent". */
|
||
|
||
static conflict_function *
|
||
conflict_fn_no_dependence (void)
|
||
{
|
||
conflict_function *fn = XCNEW (conflict_function);
|
||
fn->n = NO_DEPENDENCE;
|
||
|
||
return fn;
|
||
}
|
||
|
||
/* Returns true if the address of OBJ is invariant in LOOP. */
|
||
|
||
static bool
|
||
object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj)
|
||
{
|
||
while (handled_component_p (obj))
|
||
{
|
||
if (TREE_CODE (obj) == ARRAY_REF)
|
||
{
|
||
/* Index of the ARRAY_REF was zeroed in analyze_indices, thus we only
|
||
need to check the stride and the lower bound of the reference. */
|
||
if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
|
||
loop->num)
|
||
|| chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 3),
|
||
loop->num))
|
||
return false;
|
||
}
|
||
else if (TREE_CODE (obj) == COMPONENT_REF)
|
||
{
|
||
if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
|
||
loop->num))
|
||
return false;
|
||
}
|
||
obj = TREE_OPERAND (obj, 0);
|
||
}
|
||
|
||
if (!INDIRECT_REF_P (obj)
|
||
&& TREE_CODE (obj) != MEM_REF)
|
||
return true;
|
||
|
||
return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0),
|
||
loop->num);
|
||
}
|
||
|
||
/* Returns false if we can prove that data references A and B do not alias,
|
||
true otherwise. If LOOP_NEST is false no cross-iteration aliases are
|
||
considered. */
|
||
|
||
bool
|
||
dr_may_alias_p (const struct data_reference *a, const struct data_reference *b,
|
||
bool loop_nest)
|
||
{
|
||
tree addr_a = DR_BASE_OBJECT (a);
|
||
tree addr_b = DR_BASE_OBJECT (b);
|
||
|
||
/* If we are not processing a loop nest but scalar code we
|
||
do not need to care about possible cross-iteration dependences
|
||
and thus can process the full original reference. Do so,
|
||
similar to how loop invariant motion applies extra offset-based
|
||
disambiguation. */
|
||
if (!loop_nest)
|
||
{
|
||
aff_tree off1, off2;
|
||
widest_int size1, size2;
|
||
get_inner_reference_aff (DR_REF (a), &off1, &size1);
|
||
get_inner_reference_aff (DR_REF (b), &off2, &size2);
|
||
aff_combination_scale (&off1, -1);
|
||
aff_combination_add (&off2, &off1);
|
||
if (aff_comb_cannot_overlap_p (&off2, size1, size2))
|
||
return false;
|
||
}
|
||
|
||
if ((TREE_CODE (addr_a) == MEM_REF || TREE_CODE (addr_a) == TARGET_MEM_REF)
|
||
&& (TREE_CODE (addr_b) == MEM_REF || TREE_CODE (addr_b) == TARGET_MEM_REF)
|
||
&& MR_DEPENDENCE_CLIQUE (addr_a) == MR_DEPENDENCE_CLIQUE (addr_b)
|
||
&& MR_DEPENDENCE_BASE (addr_a) != MR_DEPENDENCE_BASE (addr_b))
|
||
return false;
|
||
|
||
/* If we had an evolution in a pointer-based MEM_REF BASE_OBJECT we
|
||
do not know the size of the base-object. So we cannot do any
|
||
offset/overlap based analysis but have to rely on points-to
|
||
information only. */
|
||
if (TREE_CODE (addr_a) == MEM_REF
|
||
&& (DR_UNCONSTRAINED_BASE (a)
|
||
|| TREE_CODE (TREE_OPERAND (addr_a, 0)) == SSA_NAME))
|
||
{
|
||
/* For true dependences we can apply TBAA. */
|
||
if (flag_strict_aliasing
|
||
&& DR_IS_WRITE (a) && DR_IS_READ (b)
|
||
&& !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
|
||
get_alias_set (DR_REF (b))))
|
||
return false;
|
||
if (TREE_CODE (addr_b) == MEM_REF)
|
||
return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
|
||
TREE_OPERAND (addr_b, 0));
|
||
else
|
||
return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
|
||
build_fold_addr_expr (addr_b));
|
||
}
|
||
else if (TREE_CODE (addr_b) == MEM_REF
|
||
&& (DR_UNCONSTRAINED_BASE (b)
|
||
|| TREE_CODE (TREE_OPERAND (addr_b, 0)) == SSA_NAME))
|
||
{
|
||
/* For true dependences we can apply TBAA. */
|
||
if (flag_strict_aliasing
|
||
&& DR_IS_WRITE (a) && DR_IS_READ (b)
|
||
&& !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
|
||
get_alias_set (DR_REF (b))))
|
||
return false;
|
||
if (TREE_CODE (addr_a) == MEM_REF)
|
||
return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
|
||
TREE_OPERAND (addr_b, 0));
|
||
else
|
||
return ptr_derefs_may_alias_p (build_fold_addr_expr (addr_a),
|
||
TREE_OPERAND (addr_b, 0));
|
||
}
|
||
|
||
/* Otherwise DR_BASE_OBJECT is an access that covers the whole object
|
||
that is being subsetted in the loop nest. */
|
||
if (DR_IS_WRITE (a) && DR_IS_WRITE (b))
|
||
return refs_output_dependent_p (addr_a, addr_b);
|
||
else if (DR_IS_READ (a) && DR_IS_WRITE (b))
|
||
return refs_anti_dependent_p (addr_a, addr_b);
|
||
return refs_may_alias_p (addr_a, addr_b);
|
||
}
|
||
|
||
/* REF_A and REF_B both satisfy access_fn_component_p. Return true
|
||
if it is meaningful to compare their associated access functions
|
||
when checking for dependencies. */
|
||
|
||
static bool
|
||
access_fn_components_comparable_p (tree ref_a, tree ref_b)
|
||
{
|
||
/* Allow pairs of component refs from the following sets:
|
||
|
||
{ REALPART_EXPR, IMAGPART_EXPR }
|
||
{ COMPONENT_REF }
|
||
{ ARRAY_REF }. */
|
||
tree_code code_a = TREE_CODE (ref_a);
|
||
tree_code code_b = TREE_CODE (ref_b);
|
||
if (code_a == IMAGPART_EXPR)
|
||
code_a = REALPART_EXPR;
|
||
if (code_b == IMAGPART_EXPR)
|
||
code_b = REALPART_EXPR;
|
||
if (code_a != code_b)
|
||
return false;
|
||
|
||
if (TREE_CODE (ref_a) == COMPONENT_REF)
|
||
/* ??? We cannot simply use the type of operand #0 of the refs here as
|
||
the Fortran compiler smuggles type punning into COMPONENT_REFs.
|
||
Use the DECL_CONTEXT of the FIELD_DECLs instead. */
|
||
return (DECL_CONTEXT (TREE_OPERAND (ref_a, 1))
|
||
== DECL_CONTEXT (TREE_OPERAND (ref_b, 1)));
|
||
|
||
return types_compatible_p (TREE_TYPE (TREE_OPERAND (ref_a, 0)),
|
||
TREE_TYPE (TREE_OPERAND (ref_b, 0)));
|
||
}
|
||
|
||
/* Initialize a data dependence relation between data accesses A and
|
||
B. NB_LOOPS is the number of loops surrounding the references: the
|
||
size of the classic distance/direction vectors. */
|
||
|
||
struct data_dependence_relation *
|
||
initialize_data_dependence_relation (struct data_reference *a,
|
||
struct data_reference *b,
|
||
vec<loop_p> loop_nest)
|
||
{
|
||
struct data_dependence_relation *res;
|
||
unsigned int i;
|
||
|
||
res = XCNEW (struct data_dependence_relation);
|
||
DDR_A (res) = a;
|
||
DDR_B (res) = b;
|
||
DDR_LOOP_NEST (res).create (0);
|
||
DDR_SUBSCRIPTS (res).create (0);
|
||
DDR_DIR_VECTS (res).create (0);
|
||
DDR_DIST_VECTS (res).create (0);
|
||
|
||
if (a == NULL || b == NULL)
|
||
{
|
||
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
|
||
return res;
|
||
}
|
||
|
||
/* If the data references do not alias, then they are independent. */
|
||
if (!dr_may_alias_p (a, b, loop_nest.exists ()))
|
||
{
|
||
DDR_ARE_DEPENDENT (res) = chrec_known;
|
||
return res;
|
||
}
|
||
|
||
unsigned int num_dimensions_a = DR_NUM_DIMENSIONS (a);
|
||
unsigned int num_dimensions_b = DR_NUM_DIMENSIONS (b);
|
||
if (num_dimensions_a == 0 || num_dimensions_b == 0)
|
||
{
|
||
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
|
||
return res;
|
||
}
|
||
|
||
/* For unconstrained bases, the root (highest-indexed) subscript
|
||
describes a variation in the base of the original DR_REF rather
|
||
than a component access. We have no type that accurately describes
|
||
the new DR_BASE_OBJECT (whose TREE_TYPE describes the type *after*
|
||
applying this subscript) so limit the search to the last real
|
||
component access.
|
||
|
||
E.g. for:
|
||
|
||
void
|
||
f (int a[][8], int b[][8])
|
||
{
|
||
for (int i = 0; i < 8; ++i)
|
||
a[i * 2][0] = b[i][0];
|
||
}
|
||
|
||
the a and b accesses have a single ARRAY_REF component reference [0]
|
||
but have two subscripts. */
|
||
if (DR_UNCONSTRAINED_BASE (a))
|
||
num_dimensions_a -= 1;
|
||
if (DR_UNCONSTRAINED_BASE (b))
|
||
num_dimensions_b -= 1;
|
||
|
||
/* These structures describe sequences of component references in
|
||
DR_REF (A) and DR_REF (B). Each component reference is tied to a
|
||
specific access function. */
|
||
struct {
|
||
/* The sequence starts at DR_ACCESS_FN (A, START_A) of A and
|
||
DR_ACCESS_FN (B, START_B) of B (inclusive) and extends to higher
|
||
indices. In C notation, these are the indices of the rightmost
|
||
component references; e.g. for a sequence .b.c.d, the start
|
||
index is for .d. */
|
||
unsigned int start_a;
|
||
unsigned int start_b;
|
||
|
||
/* The sequence contains LENGTH consecutive access functions from
|
||
each DR. */
|
||
unsigned int length;
|
||
|
||
/* The enclosing objects for the A and B sequences respectively,
|
||
i.e. the objects to which DR_ACCESS_FN (A, START_A + LENGTH - 1)
|
||
and DR_ACCESS_FN (B, START_B + LENGTH - 1) are applied. */
|
||
tree object_a;
|
||
tree object_b;
|
||
} full_seq = {}, struct_seq = {};
|
||
|
||
/* Before each iteration of the loop:
|
||
|
||
- REF_A is what you get after applying DR_ACCESS_FN (A, INDEX_A) and
|
||
- REF_B is what you get after applying DR_ACCESS_FN (B, INDEX_B). */
|
||
unsigned int index_a = 0;
|
||
unsigned int index_b = 0;
|
||
tree ref_a = DR_REF (a);
|
||
tree ref_b = DR_REF (b);
|
||
|
||
/* Now walk the component references from the final DR_REFs back up to
|
||
the enclosing base objects. Each component reference corresponds
|
||
to one access function in the DR, with access function 0 being for
|
||
the final DR_REF and the highest-indexed access function being the
|
||
one that is applied to the base of the DR.
|
||
|
||
Look for a sequence of component references whose access functions
|
||
are comparable (see access_fn_components_comparable_p). If more
|
||
than one such sequence exists, pick the one nearest the base
|
||
(which is the leftmost sequence in C notation). Store this sequence
|
||
in FULL_SEQ.
|
||
|
||
For example, if we have:
|
||
|
||
struct foo { struct bar s; ... } (*a)[10], (*b)[10];
|
||
|
||
A: a[0][i].s.c.d
|
||
B: __real b[0][i].s.e[i].f
|
||
|
||
(where d is the same type as the real component of f) then the access
|
||
functions would be:
|
||
|
||
0 1 2 3
|
||
A: .d .c .s [i]
|
||
|
||
0 1 2 3 4 5
|
||
B: __real .f [i] .e .s [i]
|
||
|
||
The A0/B2 column isn't comparable, since .d is a COMPONENT_REF
|
||
and [i] is an ARRAY_REF. However, the A1/B3 column contains two
|
||
COMPONENT_REF accesses for struct bar, so is comparable. Likewise
|
||
the A2/B4 column contains two COMPONENT_REF accesses for struct foo,
|
||
so is comparable. The A3/B5 column contains two ARRAY_REFs that
|
||
index foo[10] arrays, so is again comparable. The sequence is
|
||
therefore:
|
||
|
||
A: [1, 3] (i.e. [i].s.c)
|
||
B: [3, 5] (i.e. [i].s.e)
|
||
|
||
Also look for sequences of component references whose access
|
||
functions are comparable and whose enclosing objects have the same
|
||
RECORD_TYPE. Store this sequence in STRUCT_SEQ. In the above
|
||
example, STRUCT_SEQ would be:
|
||
|
||
A: [1, 2] (i.e. s.c)
|
||
B: [3, 4] (i.e. s.e) */
|
||
while (index_a < num_dimensions_a && index_b < num_dimensions_b)
|
||
{
|
||
/* REF_A and REF_B must be one of the component access types
|
||
allowed by dr_analyze_indices. */
|
||
gcc_checking_assert (access_fn_component_p (ref_a));
|
||
gcc_checking_assert (access_fn_component_p (ref_b));
|
||
|
||
/* Get the immediately-enclosing objects for REF_A and REF_B,
|
||
i.e. the references *before* applying DR_ACCESS_FN (A, INDEX_A)
|
||
and DR_ACCESS_FN (B, INDEX_B). */
|
||
tree object_a = TREE_OPERAND (ref_a, 0);
|
||
tree object_b = TREE_OPERAND (ref_b, 0);
|
||
|
||
tree type_a = TREE_TYPE (object_a);
|
||
tree type_b = TREE_TYPE (object_b);
|
||
if (access_fn_components_comparable_p (ref_a, ref_b))
|
||
{
|
||
/* This pair of component accesses is comparable for dependence
|
||
analysis, so we can include DR_ACCESS_FN (A, INDEX_A) and
|
||
DR_ACCESS_FN (B, INDEX_B) in the sequence. */
|
||
if (full_seq.start_a + full_seq.length != index_a
|
||
|| full_seq.start_b + full_seq.length != index_b)
|
||
{
|
||
/* The accesses don't extend the current sequence,
|
||
so start a new one here. */
|
||
full_seq.start_a = index_a;
|
||
full_seq.start_b = index_b;
|
||
full_seq.length = 0;
|
||
}
|
||
|
||
/* Add this pair of references to the sequence. */
|
||
full_seq.length += 1;
|
||
full_seq.object_a = object_a;
|
||
full_seq.object_b = object_b;
|
||
|
||
/* If the enclosing objects are structures (and thus have the
|
||
same RECORD_TYPE), record the new sequence in STRUCT_SEQ. */
|
||
if (TREE_CODE (type_a) == RECORD_TYPE)
|
||
struct_seq = full_seq;
|
||
|
||
/* Move to the next containing reference for both A and B. */
|
||
ref_a = object_a;
|
||
ref_b = object_b;
|
||
index_a += 1;
|
||
index_b += 1;
|
||
continue;
|
||
}
|
||
|
||
/* Try to approach equal type sizes. */
|
||
if (!COMPLETE_TYPE_P (type_a)
|
||
|| !COMPLETE_TYPE_P (type_b)
|
||
|| !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_a))
|
||
|| !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_b)))
|
||
break;
|
||
|
||
unsigned HOST_WIDE_INT size_a = tree_to_uhwi (TYPE_SIZE_UNIT (type_a));
|
||
unsigned HOST_WIDE_INT size_b = tree_to_uhwi (TYPE_SIZE_UNIT (type_b));
|
||
if (size_a <= size_b)
|
||
{
|
||
index_a += 1;
|
||
ref_a = object_a;
|
||
}
|
||
if (size_b <= size_a)
|
||
{
|
||
index_b += 1;
|
||
ref_b = object_b;
|
||
}
|
||
}
|
||
|
||
/* See whether FULL_SEQ ends at the base and whether the two bases
|
||
are equal. We do not care about TBAA or alignment info so we can
|
||
use OEP_ADDRESS_OF to avoid false negatives. */
|
||
tree base_a = DR_BASE_OBJECT (a);
|
||
tree base_b = DR_BASE_OBJECT (b);
|
||
bool same_base_p = (full_seq.start_a + full_seq.length == num_dimensions_a
|
||
&& full_seq.start_b + full_seq.length == num_dimensions_b
|
||
&& DR_UNCONSTRAINED_BASE (a) == DR_UNCONSTRAINED_BASE (b)
|
||
&& operand_equal_p (base_a, base_b, OEP_ADDRESS_OF)
|
||
&& types_compatible_p (TREE_TYPE (base_a),
|
||
TREE_TYPE (base_b))
|
||
&& (!loop_nest.exists ()
|
||
|| (object_address_invariant_in_loop_p
|
||
(loop_nest[0], base_a))));
|
||
|
||
/* If the bases are the same, we can include the base variation too.
|
||
E.g. the b accesses in:
|
||
|
||
for (int i = 0; i < n; ++i)
|
||
b[i + 4][0] = b[i][0];
|
||
|
||
have a definite dependence distance of 4, while for:
|
||
|
||
for (int i = 0; i < n; ++i)
|
||
a[i + 4][0] = b[i][0];
|
||
|
||
the dependence distance depends on the gap between a and b.
|
||
|
||
If the bases are different then we can only rely on the sequence
|
||
rooted at a structure access, since arrays are allowed to overlap
|
||
arbitrarily and change shape arbitrarily. E.g. we treat this as
|
||
valid code:
|
||
|
||
int a[256];
|
||
...
|
||
((int (*)[4][3]) &a[1])[i][0] += ((int (*)[4][3]) &a[2])[i][0];
|
||
|
||
where two lvalues with the same int[4][3] type overlap, and where
|
||
both lvalues are distinct from the object's declared type. */
|
||
if (same_base_p)
|
||
{
|
||
if (DR_UNCONSTRAINED_BASE (a))
|
||
full_seq.length += 1;
|
||
}
|
||
else
|
||
full_seq = struct_seq;
|
||
|
||
/* Punt if we didn't find a suitable sequence. */
|
||
if (full_seq.length == 0)
|
||
{
|
||
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
|
||
return res;
|
||
}
|
||
|
||
if (!same_base_p)
|
||
{
|
||
/* Partial overlap is possible for different bases when strict aliasing
|
||
is not in effect. It's also possible if either base involves a union
|
||
access; e.g. for:
|
||
|
||
struct s1 { int a[2]; };
|
||
struct s2 { struct s1 b; int c; };
|
||
struct s3 { int d; struct s1 e; };
|
||
union u { struct s2 f; struct s3 g; } *p, *q;
|
||
|
||
the s1 at "p->f.b" (base "p->f") partially overlaps the s1 at
|
||
"p->g.e" (base "p->g") and might partially overlap the s1 at
|
||
"q->g.e" (base "q->g"). */
|
||
if (!flag_strict_aliasing
|
||
|| ref_contains_union_access_p (full_seq.object_a)
|
||
|| ref_contains_union_access_p (full_seq.object_b))
|
||
{
|
||
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
|
||
return res;
|
||
}
|
||
|
||
DDR_COULD_BE_INDEPENDENT_P (res) = true;
|
||
if (!loop_nest.exists ()
|
||
|| (object_address_invariant_in_loop_p (loop_nest[0],
|
||
full_seq.object_a)
|
||
&& object_address_invariant_in_loop_p (loop_nest[0],
|
||
full_seq.object_b)))
|
||
{
|
||
DDR_OBJECT_A (res) = full_seq.object_a;
|
||
DDR_OBJECT_B (res) = full_seq.object_b;
|
||
}
|
||
}
|
||
|
||
DDR_AFFINE_P (res) = true;
|
||
DDR_ARE_DEPENDENT (res) = NULL_TREE;
|
||
DDR_SUBSCRIPTS (res).create (full_seq.length);
|
||
DDR_LOOP_NEST (res) = loop_nest;
|
||
DDR_INNER_LOOP (res) = 0;
|
||
DDR_SELF_REFERENCE (res) = false;
|
||
|
||
for (i = 0; i < full_seq.length; ++i)
|
||
{
|
||
struct subscript *subscript;
|
||
|
||
subscript = XNEW (struct subscript);
|
||
SUB_ACCESS_FN (subscript, 0) = DR_ACCESS_FN (a, full_seq.start_a + i);
|
||
SUB_ACCESS_FN (subscript, 1) = DR_ACCESS_FN (b, full_seq.start_b + i);
|
||
SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
|
||
SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
|
||
SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
|
||
SUB_DISTANCE (subscript) = chrec_dont_know;
|
||
DDR_SUBSCRIPTS (res).safe_push (subscript);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Frees memory used by the conflict function F. */
|
||
|
||
static void
|
||
free_conflict_function (conflict_function *f)
|
||
{
|
||
unsigned i;
|
||
|
||
if (CF_NONTRIVIAL_P (f))
|
||
{
|
||
for (i = 0; i < f->n; i++)
|
||
affine_fn_free (f->fns[i]);
|
||
}
|
||
free (f);
|
||
}
|
||
|
||
/* Frees memory used by SUBSCRIPTS. */
|
||
|
||
static void
|
||
free_subscripts (vec<subscript_p> subscripts)
|
||
{
|
||
unsigned i;
|
||
subscript_p s;
|
||
|
||
FOR_EACH_VEC_ELT (subscripts, i, s)
|
||
{
|
||
free_conflict_function (s->conflicting_iterations_in_a);
|
||
free_conflict_function (s->conflicting_iterations_in_b);
|
||
free (s);
|
||
}
|
||
subscripts.release ();
|
||
}
|
||
|
||
/* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
|
||
description. */
|
||
|
||
static inline void
|
||
finalize_ddr_dependent (struct data_dependence_relation *ddr,
|
||
tree chrec)
|
||
{
|
||
DDR_ARE_DEPENDENT (ddr) = chrec;
|
||
free_subscripts (DDR_SUBSCRIPTS (ddr));
|
||
DDR_SUBSCRIPTS (ddr).create (0);
|
||
}
|
||
|
||
/* The dependence relation DDR cannot be represented by a distance
|
||
vector. */
|
||
|
||
static inline void
|
||
non_affine_dependence_relation (struct data_dependence_relation *ddr)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
|
||
|
||
DDR_AFFINE_P (ddr) = false;
|
||
}
|
||
|
||
|
||
|
||
/* This section contains the classic Banerjee tests. */
|
||
|
||
/* Returns true iff CHREC_A and CHREC_B are not dependent on any index
|
||
variables, i.e., if the ZIV (Zero Index Variable) test is true. */
|
||
|
||
static inline bool
|
||
ziv_subscript_p (const_tree chrec_a, const_tree chrec_b)
|
||
{
|
||
return (evolution_function_is_constant_p (chrec_a)
|
||
&& evolution_function_is_constant_p (chrec_b));
|
||
}
|
||
|
||
/* Returns true iff CHREC_A and CHREC_B are dependent on an index
|
||
variable, i.e., if the SIV (Single Index Variable) test is true. */
|
||
|
||
static bool
|
||
siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
|
||
{
|
||
if ((evolution_function_is_constant_p (chrec_a)
|
||
&& evolution_function_is_univariate_p (chrec_b))
|
||
|| (evolution_function_is_constant_p (chrec_b)
|
||
&& evolution_function_is_univariate_p (chrec_a)))
|
||
return true;
|
||
|
||
if (evolution_function_is_univariate_p (chrec_a)
|
||
&& evolution_function_is_univariate_p (chrec_b))
|
||
{
|
||
switch (TREE_CODE (chrec_a))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
switch (TREE_CODE (chrec_b))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
|
||
return false;
|
||
/* FALLTHRU */
|
||
|
||
default:
|
||
return true;
|
||
}
|
||
|
||
default:
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Creates a conflict function with N dimensions. The affine functions
|
||
in each dimension follow. */
|
||
|
||
static conflict_function *
|
||
conflict_fn (unsigned n, ...)
|
||
{
|
||
unsigned i;
|
||
conflict_function *ret = XCNEW (conflict_function);
|
||
va_list ap;
|
||
|
||
gcc_assert (0 < n && n <= MAX_DIM);
|
||
va_start (ap, n);
|
||
|
||
ret->n = n;
|
||
for (i = 0; i < n; i++)
|
||
ret->fns[i] = va_arg (ap, affine_fn);
|
||
va_end (ap);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Returns constant affine function with value CST. */
|
||
|
||
static affine_fn
|
||
affine_fn_cst (tree cst)
|
||
{
|
||
affine_fn fn;
|
||
fn.create (1);
|
||
fn.quick_push (cst);
|
||
return fn;
|
||
}
|
||
|
||
/* Returns affine function with single variable, CST + COEF * x_DIM. */
|
||
|
||
static affine_fn
|
||
affine_fn_univar (tree cst, unsigned dim, tree coef)
|
||
{
|
||
affine_fn fn;
|
||
fn.create (dim + 1);
|
||
unsigned i;
|
||
|
||
gcc_assert (dim > 0);
|
||
fn.quick_push (cst);
|
||
for (i = 1; i < dim; i++)
|
||
fn.quick_push (integer_zero_node);
|
||
fn.quick_push (coef);
|
||
return fn;
|
||
}
|
||
|
||
/* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_ziv_subscript (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
tree type, difference;
|
||
dependence_stats.num_ziv++;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_ziv_subscript \n");
|
||
|
||
type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
|
||
chrec_a = chrec_convert (type, chrec_a, NULL);
|
||
chrec_b = chrec_convert (type, chrec_b, NULL);
|
||
difference = chrec_fold_minus (type, chrec_a, chrec_b);
|
||
|
||
switch (TREE_CODE (difference))
|
||
{
|
||
case INTEGER_CST:
|
||
if (integer_zerop (difference))
|
||
{
|
||
/* The difference is equal to zero: the accessed index
|
||
overlaps for each iteration in the loop. */
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_ziv_dependent++;
|
||
}
|
||
else
|
||
{
|
||
/* The accesses do not overlap. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_ziv_independent++;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* We're not sure whether the indexes overlap. For the moment,
|
||
conservatively answer "don't know". */
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
|
||
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_ziv_unimplemented++;
|
||
break;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Similar to max_stmt_executions_int, but returns the bound as a tree,
|
||
and only if it fits to the int type. If this is not the case, or the
|
||
bound on the number of iterations of LOOP could not be derived, returns
|
||
chrec_dont_know. */
|
||
|
||
static tree
|
||
max_stmt_executions_tree (struct loop *loop)
|
||
{
|
||
widest_int nit;
|
||
|
||
if (!max_stmt_executions (loop, &nit))
|
||
return chrec_dont_know;
|
||
|
||
if (!wi::fits_to_tree_p (nit, unsigned_type_node))
|
||
return chrec_dont_know;
|
||
|
||
return wide_int_to_tree (unsigned_type_node, nit);
|
||
}
|
||
|
||
/* Determine whether the CHREC is always positive/negative. If the expression
|
||
cannot be statically analyzed, return false, otherwise set the answer into
|
||
VALUE. */
|
||
|
||
static bool
|
||
chrec_is_positive (tree chrec, bool *value)
|
||
{
|
||
bool value0, value1, value2;
|
||
tree end_value, nb_iter;
|
||
|
||
switch (TREE_CODE (chrec))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
|
||
|| !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
|
||
return false;
|
||
|
||
/* FIXME -- overflows. */
|
||
if (value0 == value1)
|
||
{
|
||
*value = value0;
|
||
return true;
|
||
}
|
||
|
||
/* Otherwise the chrec is under the form: "{-197, +, 2}_1",
|
||
and the proof consists in showing that the sign never
|
||
changes during the execution of the loop, from 0 to
|
||
loop->nb_iterations. */
|
||
if (!evolution_function_is_affine_p (chrec))
|
||
return false;
|
||
|
||
nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
|
||
if (chrec_contains_undetermined (nb_iter))
|
||
return false;
|
||
|
||
#if 0
|
||
/* TODO -- If the test is after the exit, we may decrease the number of
|
||
iterations by one. */
|
||
if (after_exit)
|
||
nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
|
||
#endif
|
||
|
||
end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
|
||
|
||
if (!chrec_is_positive (end_value, &value2))
|
||
return false;
|
||
|
||
*value = value0;
|
||
return value0 == value1;
|
||
|
||
case INTEGER_CST:
|
||
switch (tree_int_cst_sgn (chrec))
|
||
{
|
||
case -1:
|
||
*value = false;
|
||
break;
|
||
case 1:
|
||
*value = true;
|
||
break;
|
||
default:
|
||
return false;
|
||
}
|
||
return true;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
|
||
/* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
|
||
constant, and CHREC_B is an affine function. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_siv_subscript_cst_affine (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
bool value0, value1, value2;
|
||
tree type, difference, tmp;
|
||
|
||
type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
|
||
chrec_a = chrec_convert (type, chrec_a, NULL);
|
||
chrec_b = chrec_convert (type, chrec_b, NULL);
|
||
difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
|
||
|
||
/* Special case overlap in the first iteration. */
|
||
if (integer_zerop (difference))
|
||
{
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = integer_one_node;
|
||
return;
|
||
}
|
||
|
||
if (!chrec_is_positive (initial_condition (difference), &value0))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "siv test failed: chrec is not positive.\n");
|
||
|
||
dependence_stats.num_siv_unimplemented++;
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (value0 == false)
|
||
{
|
||
if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "siv test failed: chrec not positive.\n");
|
||
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_siv_unimplemented++;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (value1 == true)
|
||
{
|
||
/* Example:
|
||
chrec_a = 12
|
||
chrec_b = {10, +, 1}
|
||
*/
|
||
|
||
if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
|
||
{
|
||
HOST_WIDE_INT numiter;
|
||
struct loop *loop = get_chrec_loop (chrec_b);
|
||
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
tmp = fold_build2 (EXACT_DIV_EXPR, type,
|
||
fold_build1 (ABS_EXPR, type, difference),
|
||
CHREC_RIGHT (chrec_b));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
|
||
*last_conflicts = integer_one_node;
|
||
|
||
|
||
/* Perform weak-zero siv test to see if overlap is
|
||
outside the loop bounds. */
|
||
numiter = max_stmt_executions_int (loop);
|
||
|
||
if (numiter >= 0
|
||
&& compare_tree_int (tmp, numiter) > 0)
|
||
{
|
||
free_conflict_function (*overlaps_a);
|
||
free_conflict_function (*overlaps_b);
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
dependence_stats.num_siv_dependent++;
|
||
return;
|
||
}
|
||
|
||
/* When the step does not divide the difference, there are
|
||
no overlaps. */
|
||
else
|
||
{
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
}
|
||
|
||
else
|
||
{
|
||
/* Example:
|
||
chrec_a = 12
|
||
chrec_b = {10, +, -1}
|
||
|
||
In this case, chrec_a will not overlap with chrec_b. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "siv test failed: chrec not positive.\n");
|
||
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_siv_unimplemented++;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (value2 == false)
|
||
{
|
||
/* Example:
|
||
chrec_a = 3
|
||
chrec_b = {10, +, -1}
|
||
*/
|
||
if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
|
||
{
|
||
HOST_WIDE_INT numiter;
|
||
struct loop *loop = get_chrec_loop (chrec_b);
|
||
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
tmp = fold_build2 (EXACT_DIV_EXPR, type, difference,
|
||
CHREC_RIGHT (chrec_b));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
|
||
*last_conflicts = integer_one_node;
|
||
|
||
/* Perform weak-zero siv test to see if overlap is
|
||
outside the loop bounds. */
|
||
numiter = max_stmt_executions_int (loop);
|
||
|
||
if (numiter >= 0
|
||
&& compare_tree_int (tmp, numiter) > 0)
|
||
{
|
||
free_conflict_function (*overlaps_a);
|
||
free_conflict_function (*overlaps_b);
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
dependence_stats.num_siv_dependent++;
|
||
return;
|
||
}
|
||
|
||
/* When the step does not divide the difference, there
|
||
are no overlaps. */
|
||
else
|
||
{
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Example:
|
||
chrec_a = 3
|
||
chrec_b = {4, +, 1}
|
||
|
||
In this case, chrec_a will not overlap with chrec_b. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_siv_independent++;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Helper recursive function for initializing the matrix A. Returns
|
||
the initial value of CHREC. */
|
||
|
||
static tree
|
||
initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
|
||
{
|
||
gcc_assert (chrec);
|
||
|
||
switch (TREE_CODE (chrec))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
|
||
return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
|
||
|
||
case PLUS_EXPR:
|
||
case MULT_EXPR:
|
||
case MINUS_EXPR:
|
||
{
|
||
tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
|
||
tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);
|
||
|
||
return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
|
||
}
|
||
|
||
CASE_CONVERT:
|
||
{
|
||
tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
|
||
return chrec_convert (chrec_type (chrec), op, NULL);
|
||
}
|
||
|
||
case BIT_NOT_EXPR:
|
||
{
|
||
/* Handle ~X as -1 - X. */
|
||
tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
|
||
return chrec_fold_op (MINUS_EXPR, chrec_type (chrec),
|
||
build_int_cst (TREE_TYPE (chrec), -1), op);
|
||
}
|
||
|
||
case INTEGER_CST:
|
||
return chrec;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
#define FLOOR_DIV(x,y) ((x) / (y))
|
||
|
||
/* Solves the special case of the Diophantine equation:
|
||
| {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
|
||
|
||
Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
|
||
number of iterations that loops X and Y run. The overlaps will be
|
||
constructed as evolutions in dimension DIM. */
|
||
|
||
static void
|
||
compute_overlap_steps_for_affine_univar (HOST_WIDE_INT niter,
|
||
HOST_WIDE_INT step_a,
|
||
HOST_WIDE_INT step_b,
|
||
affine_fn *overlaps_a,
|
||
affine_fn *overlaps_b,
|
||
tree *last_conflicts, int dim)
|
||
{
|
||
if (((step_a > 0 && step_b > 0)
|
||
|| (step_a < 0 && step_b < 0)))
|
||
{
|
||
HOST_WIDE_INT step_overlaps_a, step_overlaps_b;
|
||
HOST_WIDE_INT gcd_steps_a_b, last_conflict, tau2;
|
||
|
||
gcd_steps_a_b = gcd (step_a, step_b);
|
||
step_overlaps_a = step_b / gcd_steps_a_b;
|
||
step_overlaps_b = step_a / gcd_steps_a_b;
|
||
|
||
if (niter > 0)
|
||
{
|
||
tau2 = FLOOR_DIV (niter, step_overlaps_a);
|
||
tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
|
||
last_conflict = tau2;
|
||
*last_conflicts = build_int_cst (NULL_TREE, last_conflict);
|
||
}
|
||
else
|
||
*last_conflicts = chrec_dont_know;
|
||
|
||
*overlaps_a = affine_fn_univar (integer_zero_node, dim,
|
||
build_int_cst (NULL_TREE,
|
||
step_overlaps_a));
|
||
*overlaps_b = affine_fn_univar (integer_zero_node, dim,
|
||
build_int_cst (NULL_TREE,
|
||
step_overlaps_b));
|
||
}
|
||
|
||
else
|
||
{
|
||
*overlaps_a = affine_fn_cst (integer_zero_node);
|
||
*overlaps_b = affine_fn_cst (integer_zero_node);
|
||
*last_conflicts = integer_zero_node;
|
||
}
|
||
}
|
||
|
||
/* Solves the special case of a Diophantine equation where CHREC_A is
|
||
an affine bivariate function, and CHREC_B is an affine univariate
|
||
function. For example,
|
||
|
||
| {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
|
||
|
||
has the following overlapping functions:
|
||
|
||
| x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
|
||
| y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
|
||
| z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
|
||
|
||
FORNOW: This is a specialized implementation for a case occurring in
|
||
a common benchmark. Implement the general algorithm. */
|
||
|
||
static void
|
||
compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
bool xz_p, yz_p, xyz_p;
|
||
HOST_WIDE_INT step_x, step_y, step_z;
|
||
HOST_WIDE_INT niter_x, niter_y, niter_z, niter;
|
||
affine_fn overlaps_a_xz, overlaps_b_xz;
|
||
affine_fn overlaps_a_yz, overlaps_b_yz;
|
||
affine_fn overlaps_a_xyz, overlaps_b_xyz;
|
||
affine_fn ova1, ova2, ovb;
|
||
tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz;
|
||
|
||
step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
|
||
step_y = int_cst_value (CHREC_RIGHT (chrec_a));
|
||
step_z = int_cst_value (CHREC_RIGHT (chrec_b));
|
||
|
||
niter_x = max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a)));
|
||
niter_y = max_stmt_executions_int (get_chrec_loop (chrec_a));
|
||
niter_z = max_stmt_executions_int (get_chrec_loop (chrec_b));
|
||
|
||
if (niter_x < 0 || niter_y < 0 || niter_z < 0)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
|
||
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
return;
|
||
}
|
||
|
||
niter = MIN (niter_x, niter_z);
|
||
compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
|
||
&overlaps_a_xz,
|
||
&overlaps_b_xz,
|
||
&last_conflicts_xz, 1);
|
||
niter = MIN (niter_y, niter_z);
|
||
compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
|
||
&overlaps_a_yz,
|
||
&overlaps_b_yz,
|
||
&last_conflicts_yz, 2);
|
||
niter = MIN (niter_x, niter_z);
|
||
niter = MIN (niter_y, niter);
|
||
compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
|
||
&overlaps_a_xyz,
|
||
&overlaps_b_xyz,
|
||
&last_conflicts_xyz, 3);
|
||
|
||
xz_p = !integer_zerop (last_conflicts_xz);
|
||
yz_p = !integer_zerop (last_conflicts_yz);
|
||
xyz_p = !integer_zerop (last_conflicts_xyz);
|
||
|
||
if (xz_p || yz_p || xyz_p)
|
||
{
|
||
ova1 = affine_fn_cst (integer_zero_node);
|
||
ova2 = affine_fn_cst (integer_zero_node);
|
||
ovb = affine_fn_cst (integer_zero_node);
|
||
if (xz_p)
|
||
{
|
||
affine_fn t0 = ova1;
|
||
affine_fn t2 = ovb;
|
||
|
||
ova1 = affine_fn_plus (ova1, overlaps_a_xz);
|
||
ovb = affine_fn_plus (ovb, overlaps_b_xz);
|
||
affine_fn_free (t0);
|
||
affine_fn_free (t2);
|
||
*last_conflicts = last_conflicts_xz;
|
||
}
|
||
if (yz_p)
|
||
{
|
||
affine_fn t0 = ova2;
|
||
affine_fn t2 = ovb;
|
||
|
||
ova2 = affine_fn_plus (ova2, overlaps_a_yz);
|
||
ovb = affine_fn_plus (ovb, overlaps_b_yz);
|
||
affine_fn_free (t0);
|
||
affine_fn_free (t2);
|
||
*last_conflicts = last_conflicts_yz;
|
||
}
|
||
if (xyz_p)
|
||
{
|
||
affine_fn t0 = ova1;
|
||
affine_fn t2 = ova2;
|
||
affine_fn t4 = ovb;
|
||
|
||
ova1 = affine_fn_plus (ova1, overlaps_a_xyz);
|
||
ova2 = affine_fn_plus (ova2, overlaps_a_xyz);
|
||
ovb = affine_fn_plus (ovb, overlaps_b_xyz);
|
||
affine_fn_free (t0);
|
||
affine_fn_free (t2);
|
||
affine_fn_free (t4);
|
||
*last_conflicts = last_conflicts_xyz;
|
||
}
|
||
*overlaps_a = conflict_fn (2, ova1, ova2);
|
||
*overlaps_b = conflict_fn (1, ovb);
|
||
}
|
||
else
|
||
{
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = integer_zero_node;
|
||
}
|
||
|
||
affine_fn_free (overlaps_a_xz);
|
||
affine_fn_free (overlaps_b_xz);
|
||
affine_fn_free (overlaps_a_yz);
|
||
affine_fn_free (overlaps_b_yz);
|
||
affine_fn_free (overlaps_a_xyz);
|
||
affine_fn_free (overlaps_b_xyz);
|
||
}
|
||
|
||
/* Copy the elements of vector VEC1 with length SIZE to VEC2. */
|
||
|
||
static void
|
||
lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
|
||
int size)
|
||
{
|
||
memcpy (vec2, vec1, size * sizeof (*vec1));
|
||
}
|
||
|
||
/* Copy the elements of M x N matrix MAT1 to MAT2. */
|
||
|
||
static void
|
||
lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
|
||
int m, int n)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < m; i++)
|
||
lambda_vector_copy (mat1[i], mat2[i], n);
|
||
}
|
||
|
||
/* Store the N x N identity matrix in MAT. */
|
||
|
||
static void
|
||
lambda_matrix_id (lambda_matrix mat, int size)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = 0; i < size; i++)
|
||
for (j = 0; j < size; j++)
|
||
mat[i][j] = (i == j) ? 1 : 0;
|
||
}
|
||
|
||
/* Return the first nonzero element of vector VEC1 between START and N.
|
||
We must have START <= N. Returns N if VEC1 is the zero vector. */
|
||
|
||
static int
|
||
lambda_vector_first_nz (lambda_vector vec1, int n, int start)
|
||
{
|
||
int j = start;
|
||
while (j < n && vec1[j] == 0)
|
||
j++;
|
||
return j;
|
||
}
|
||
|
||
/* Add a multiple of row R1 of matrix MAT with N columns to row R2:
|
||
R2 = R2 + CONST1 * R1. */
|
||
|
||
static void
|
||
lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
|
||
{
|
||
int i;
|
||
|
||
if (const1 == 0)
|
||
return;
|
||
|
||
for (i = 0; i < n; i++)
|
||
mat[r2][i] += const1 * mat[r1][i];
|
||
}
|
||
|
||
/* Multiply vector VEC1 of length SIZE by a constant CONST1,
|
||
and store the result in VEC2. */
|
||
|
||
static void
|
||
lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
|
||
int size, int const1)
|
||
{
|
||
int i;
|
||
|
||
if (const1 == 0)
|
||
lambda_vector_clear (vec2, size);
|
||
else
|
||
for (i = 0; i < size; i++)
|
||
vec2[i] = const1 * vec1[i];
|
||
}
|
||
|
||
/* Negate vector VEC1 with length SIZE and store it in VEC2. */
|
||
|
||
static void
|
||
lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
|
||
int size)
|
||
{
|
||
lambda_vector_mult_const (vec1, vec2, size, -1);
|
||
}
|
||
|
||
/* Negate row R1 of matrix MAT which has N columns. */
|
||
|
||
static void
|
||
lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
|
||
{
|
||
lambda_vector_negate (mat[r1], mat[r1], n);
|
||
}
|
||
|
||
/* Return true if two vectors are equal. */
|
||
|
||
static bool
|
||
lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
|
||
{
|
||
int i;
|
||
for (i = 0; i < size; i++)
|
||
if (vec1[i] != vec2[i])
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* Given an M x N integer matrix A, this function determines an M x
|
||
M unimodular matrix U, and an M x N echelon matrix S such that
|
||
"U.A = S". This decomposition is also known as "right Hermite".
|
||
|
||
Ref: Algorithm 2.1 page 33 in "Loop Transformations for
|
||
Restructuring Compilers" Utpal Banerjee. */
|
||
|
||
static void
|
||
lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
|
||
lambda_matrix S, lambda_matrix U)
|
||
{
|
||
int i, j, i0 = 0;
|
||
|
||
lambda_matrix_copy (A, S, m, n);
|
||
lambda_matrix_id (U, m);
|
||
|
||
for (j = 0; j < n; j++)
|
||
{
|
||
if (lambda_vector_first_nz (S[j], m, i0) < m)
|
||
{
|
||
++i0;
|
||
for (i = m - 1; i >= i0; i--)
|
||
{
|
||
while (S[i][j] != 0)
|
||
{
|
||
int sigma, factor, a, b;
|
||
|
||
a = S[i-1][j];
|
||
b = S[i][j];
|
||
sigma = (a * b < 0) ? -1: 1;
|
||
a = abs (a);
|
||
b = abs (b);
|
||
factor = sigma * (a / b);
|
||
|
||
lambda_matrix_row_add (S, n, i, i-1, -factor);
|
||
std::swap (S[i], S[i-1]);
|
||
|
||
lambda_matrix_row_add (U, m, i, i-1, -factor);
|
||
std::swap (U[i], U[i-1]);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Determines the overlapping elements due to accesses CHREC_A and
|
||
CHREC_B, that are affine functions. This function cannot handle
|
||
symbolic evolution functions, ie. when initial conditions are
|
||
parameters, because it uses lambda matrices of integers. */
|
||
|
||
static void
|
||
analyze_subscript_affine_affine (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts)
|
||
{
|
||
unsigned nb_vars_a, nb_vars_b, dim;
|
||
HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta;
|
||
lambda_matrix A, U, S;
|
||
struct obstack scratch_obstack;
|
||
|
||
if (eq_evolutions_p (chrec_a, chrec_b))
|
||
{
|
||
/* The accessed index overlaps for each iteration in the
|
||
loop. */
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = chrec_dont_know;
|
||
return;
|
||
}
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_subscript_affine_affine \n");
|
||
|
||
/* For determining the initial intersection, we have to solve a
|
||
Diophantine equation. This is the most time consuming part.
|
||
|
||
For answering to the question: "Is there a dependence?" we have
|
||
to prove that there exists a solution to the Diophantine
|
||
equation, and that the solution is in the iteration domain,
|
||
i.e. the solution is positive or zero, and that the solution
|
||
happens before the upper bound loop.nb_iterations. Otherwise
|
||
there is no dependence. This function outputs a description of
|
||
the iterations that hold the intersections. */
|
||
|
||
nb_vars_a = nb_vars_in_chrec (chrec_a);
|
||
nb_vars_b = nb_vars_in_chrec (chrec_b);
|
||
|
||
gcc_obstack_init (&scratch_obstack);
|
||
|
||
dim = nb_vars_a + nb_vars_b;
|
||
U = lambda_matrix_new (dim, dim, &scratch_obstack);
|
||
A = lambda_matrix_new (dim, 1, &scratch_obstack);
|
||
S = lambda_matrix_new (dim, 1, &scratch_obstack);
|
||
|
||
init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1));
|
||
init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1));
|
||
gamma = init_b - init_a;
|
||
|
||
/* Don't do all the hard work of solving the Diophantine equation
|
||
when we already know the solution: for example,
|
||
| {3, +, 1}_1
|
||
| {3, +, 4}_2
|
||
| gamma = 3 - 3 = 0.
|
||
Then the first overlap occurs during the first iterations:
|
||
| {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
|
||
*/
|
||
if (gamma == 0)
|
||
{
|
||
if (nb_vars_a == 1 && nb_vars_b == 1)
|
||
{
|
||
HOST_WIDE_INT step_a, step_b;
|
||
HOST_WIDE_INT niter, niter_a, niter_b;
|
||
affine_fn ova, ovb;
|
||
|
||
niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a));
|
||
niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b));
|
||
niter = MIN (niter_a, niter_b);
|
||
step_a = int_cst_value (CHREC_RIGHT (chrec_a));
|
||
step_b = int_cst_value (CHREC_RIGHT (chrec_b));
|
||
|
||
compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
|
||
&ova, &ovb,
|
||
last_conflicts, 1);
|
||
*overlaps_a = conflict_fn (1, ova);
|
||
*overlaps_b = conflict_fn (1, ovb);
|
||
}
|
||
|
||
else if (nb_vars_a == 2 && nb_vars_b == 1)
|
||
compute_overlap_steps_for_affine_1_2
|
||
(chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
|
||
|
||
else if (nb_vars_a == 1 && nb_vars_b == 2)
|
||
compute_overlap_steps_for_affine_1_2
|
||
(chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
|
||
|
||
else
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "affine-affine test failed: too many variables.\n");
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
goto end_analyze_subs_aa;
|
||
}
|
||
|
||
/* U.A = S */
|
||
lambda_matrix_right_hermite (A, dim, 1, S, U);
|
||
|
||
if (S[0][0] < 0)
|
||
{
|
||
S[0][0] *= -1;
|
||
lambda_matrix_row_negate (U, dim, 0);
|
||
}
|
||
gcd_alpha_beta = S[0][0];
|
||
|
||
/* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
|
||
but that is a quite strange case. Instead of ICEing, answer
|
||
don't know. */
|
||
if (gcd_alpha_beta == 0)
|
||
{
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
goto end_analyze_subs_aa;
|
||
}
|
||
|
||
/* The classic "gcd-test". */
|
||
if (!int_divides_p (gcd_alpha_beta, gamma))
|
||
{
|
||
/* The "gcd-test" has determined that there is no integer
|
||
solution, i.e. there is no dependence. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
}
|
||
|
||
/* Both access functions are univariate. This includes SIV and MIV cases. */
|
||
else if (nb_vars_a == 1 && nb_vars_b == 1)
|
||
{
|
||
/* Both functions should have the same evolution sign. */
|
||
if (((A[0][0] > 0 && -A[1][0] > 0)
|
||
|| (A[0][0] < 0 && -A[1][0] < 0)))
|
||
{
|
||
/* The solutions are given by:
|
||
|
|
||
| [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
|
||
| [u21 u22] [y0]
|
||
|
||
For a given integer t. Using the following variables,
|
||
|
||
| i0 = u11 * gamma / gcd_alpha_beta
|
||
| j0 = u12 * gamma / gcd_alpha_beta
|
||
| i1 = u21
|
||
| j1 = u22
|
||
|
||
the solutions are:
|
||
|
||
| x0 = i0 + i1 * t,
|
||
| y0 = j0 + j1 * t. */
|
||
HOST_WIDE_INT i0, j0, i1, j1;
|
||
|
||
i0 = U[0][0] * gamma / gcd_alpha_beta;
|
||
j0 = U[0][1] * gamma / gcd_alpha_beta;
|
||
i1 = U[1][0];
|
||
j1 = U[1][1];
|
||
|
||
if ((i1 == 0 && i0 < 0)
|
||
|| (j1 == 0 && j0 < 0))
|
||
{
|
||
/* There is no solution.
|
||
FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
|
||
falls in here, but for the moment we don't look at the
|
||
upper bound of the iteration domain. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
goto end_analyze_subs_aa;
|
||
}
|
||
|
||
if (i1 > 0 && j1 > 0)
|
||
{
|
||
HOST_WIDE_INT niter_a
|
||
= max_stmt_executions_int (get_chrec_loop (chrec_a));
|
||
HOST_WIDE_INT niter_b
|
||
= max_stmt_executions_int (get_chrec_loop (chrec_b));
|
||
HOST_WIDE_INT niter = MIN (niter_a, niter_b);
|
||
|
||
/* (X0, Y0) is a solution of the Diophantine equation:
|
||
"chrec_a (X0) = chrec_b (Y0)". */
|
||
HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1),
|
||
CEIL (-j0, j1));
|
||
HOST_WIDE_INT x0 = i1 * tau1 + i0;
|
||
HOST_WIDE_INT y0 = j1 * tau1 + j0;
|
||
|
||
/* (X1, Y1) is the smallest positive solution of the eq
|
||
"chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
|
||
first conflict occurs. */
|
||
HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1);
|
||
HOST_WIDE_INT x1 = x0 - i1 * min_multiple;
|
||
HOST_WIDE_INT y1 = y0 - j1 * min_multiple;
|
||
|
||
if (niter > 0)
|
||
{
|
||
HOST_WIDE_INT tau2 = MIN (FLOOR_DIV (niter_a - i0, i1),
|
||
FLOOR_DIV (niter_b - j0, j1));
|
||
HOST_WIDE_INT last_conflict = tau2 - (x1 - i0)/i1;
|
||
|
||
/* If the overlap occurs outside of the bounds of the
|
||
loop, there is no dependence. */
|
||
if (x1 >= niter_a || y1 >= niter_b)
|
||
{
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
goto end_analyze_subs_aa;
|
||
}
|
||
else
|
||
*last_conflicts = build_int_cst (NULL_TREE, last_conflict);
|
||
}
|
||
else
|
||
*last_conflicts = chrec_dont_know;
|
||
|
||
*overlaps_a
|
||
= conflict_fn (1,
|
||
affine_fn_univar (build_int_cst (NULL_TREE, x1),
|
||
1,
|
||
build_int_cst (NULL_TREE, i1)));
|
||
*overlaps_b
|
||
= conflict_fn (1,
|
||
affine_fn_univar (build_int_cst (NULL_TREE, y1),
|
||
1,
|
||
build_int_cst (NULL_TREE, j1)));
|
||
}
|
||
else
|
||
{
|
||
/* FIXME: For the moment, the upper bound of the
|
||
iteration domain for i and j is not checked. */
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
|
||
end_analyze_subs_aa:
|
||
obstack_free (&scratch_obstack, NULL);
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, " (overlaps_a = ");
|
||
dump_conflict_function (dump_file, *overlaps_a);
|
||
fprintf (dump_file, ")\n (overlaps_b = ");
|
||
dump_conflict_function (dump_file, *overlaps_b);
|
||
fprintf (dump_file, "))\n");
|
||
}
|
||
}
|
||
|
||
/* Returns true when analyze_subscript_affine_affine can be used for
|
||
determining the dependence relation between chrec_a and chrec_b,
|
||
that contain symbols. This function modifies chrec_a and chrec_b
|
||
such that the analysis result is the same, and such that they don't
|
||
contain symbols, and then can safely be passed to the analyzer.
|
||
|
||
Example: The analysis of the following tuples of evolutions produce
|
||
the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
|
||
vs. {0, +, 1}_1
|
||
|
||
{x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
|
||
{-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
|
||
*/
|
||
|
||
static bool
|
||
can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
|
||
{
|
||
tree diff, type, left_a, left_b, right_b;
|
||
|
||
if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
|
||
|| chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
|
||
/* FIXME: For the moment not handled. Might be refined later. */
|
||
return false;
|
||
|
||
type = chrec_type (*chrec_a);
|
||
left_a = CHREC_LEFT (*chrec_a);
|
||
left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL);
|
||
diff = chrec_fold_minus (type, left_a, left_b);
|
||
|
||
if (!evolution_function_is_constant_p (diff))
|
||
return false;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
|
||
|
||
*chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
|
||
diff, CHREC_RIGHT (*chrec_a));
|
||
right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL);
|
||
*chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
|
||
build_int_cst (type, 0),
|
||
right_b);
|
||
return true;
|
||
}
|
||
|
||
/* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_siv_subscript (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts,
|
||
int loop_nest_num)
|
||
{
|
||
dependence_stats.num_siv++;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_siv_subscript \n");
|
||
|
||
if (evolution_function_is_constant_p (chrec_a)
|
||
&& evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
|
||
analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b, last_conflicts);
|
||
|
||
else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
|
||
&& evolution_function_is_constant_p (chrec_b))
|
||
analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
|
||
overlaps_b, overlaps_a, last_conflicts);
|
||
|
||
else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
|
||
&& evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
|
||
{
|
||
if (!chrec_contains_symbols (chrec_a)
|
||
&& !chrec_contains_symbols (chrec_b))
|
||
{
|
||
analyze_subscript_affine_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b,
|
||
last_conflicts);
|
||
|
||
if (CF_NOT_KNOWN_P (*overlaps_a)
|
||
|| CF_NOT_KNOWN_P (*overlaps_b))
|
||
dependence_stats.num_siv_unimplemented++;
|
||
else if (CF_NO_DEPENDENCE_P (*overlaps_a)
|
||
|| CF_NO_DEPENDENCE_P (*overlaps_b))
|
||
dependence_stats.num_siv_independent++;
|
||
else
|
||
dependence_stats.num_siv_dependent++;
|
||
}
|
||
else if (can_use_analyze_subscript_affine_affine (&chrec_a,
|
||
&chrec_b))
|
||
{
|
||
analyze_subscript_affine_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b,
|
||
last_conflicts);
|
||
|
||
if (CF_NOT_KNOWN_P (*overlaps_a)
|
||
|| CF_NOT_KNOWN_P (*overlaps_b))
|
||
dependence_stats.num_siv_unimplemented++;
|
||
else if (CF_NO_DEPENDENCE_P (*overlaps_a)
|
||
|| CF_NO_DEPENDENCE_P (*overlaps_b))
|
||
dependence_stats.num_siv_independent++;
|
||
else
|
||
dependence_stats.num_siv_dependent++;
|
||
}
|
||
else
|
||
goto siv_subscript_dontknow;
|
||
}
|
||
|
||
else
|
||
{
|
||
siv_subscript_dontknow:;
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, " siv test failed: unimplemented");
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_siv_unimplemented++;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Returns false if we can prove that the greatest common divisor of the steps
|
||
of CHREC does not divide CST, false otherwise. */
|
||
|
||
static bool
|
||
gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
|
||
{
|
||
HOST_WIDE_INT cd = 0, val;
|
||
tree step;
|
||
|
||
if (!tree_fits_shwi_p (cst))
|
||
return true;
|
||
val = tree_to_shwi (cst);
|
||
|
||
while (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
|
||
{
|
||
step = CHREC_RIGHT (chrec);
|
||
if (!tree_fits_shwi_p (step))
|
||
return true;
|
||
cd = gcd (cd, tree_to_shwi (step));
|
||
chrec = CHREC_LEFT (chrec);
|
||
}
|
||
|
||
return val % cd == 0;
|
||
}
|
||
|
||
/* Analyze a MIV (Multiple Index Variable) subscript with respect to
|
||
LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the
|
||
functions that describe the relation between the elements accessed
|
||
twice by CHREC_A and CHREC_B. For k >= 0, the following property
|
||
is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_miv_subscript (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlaps_a,
|
||
conflict_function **overlaps_b,
|
||
tree *last_conflicts,
|
||
struct loop *loop_nest)
|
||
{
|
||
tree type, difference;
|
||
|
||
dependence_stats.num_miv++;
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_miv_subscript \n");
|
||
|
||
type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
|
||
chrec_a = chrec_convert (type, chrec_a, NULL);
|
||
chrec_b = chrec_convert (type, chrec_b, NULL);
|
||
difference = chrec_fold_minus (type, chrec_a, chrec_b);
|
||
|
||
if (eq_evolutions_p (chrec_a, chrec_b))
|
||
{
|
||
/* Access functions are the same: all the elements are accessed
|
||
in the same order. */
|
||
*overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = max_stmt_executions_tree (get_chrec_loop (chrec_a));
|
||
dependence_stats.num_miv_dependent++;
|
||
}
|
||
|
||
else if (evolution_function_is_constant_p (difference)
|
||
/* For the moment, the following is verified:
|
||
evolution_function_is_affine_multivariate_p (chrec_a,
|
||
loop_nest->num) */
|
||
&& !gcd_of_steps_may_divide_p (chrec_a, difference))
|
||
{
|
||
/* testsuite/.../ssa-chrec-33.c
|
||
{{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
|
||
|
||
The difference is 1, and all the evolution steps are multiples
|
||
of 2, consequently there are no overlapping elements. */
|
||
*overlaps_a = conflict_fn_no_dependence ();
|
||
*overlaps_b = conflict_fn_no_dependence ();
|
||
*last_conflicts = integer_zero_node;
|
||
dependence_stats.num_miv_independent++;
|
||
}
|
||
|
||
else if (evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num)
|
||
&& !chrec_contains_symbols (chrec_a)
|
||
&& evolution_function_is_affine_multivariate_p (chrec_b, loop_nest->num)
|
||
&& !chrec_contains_symbols (chrec_b))
|
||
{
|
||
/* testsuite/.../ssa-chrec-35.c
|
||
{0, +, 1}_2 vs. {0, +, 1}_3
|
||
the overlapping elements are respectively located at iterations:
|
||
{0, +, 1}_x and {0, +, 1}_x,
|
||
in other words, we have the equality:
|
||
{0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
|
||
|
||
Other examples:
|
||
{{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
|
||
{0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
|
||
|
||
{{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
|
||
{{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
|
||
*/
|
||
analyze_subscript_affine_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b, last_conflicts);
|
||
|
||
if (CF_NOT_KNOWN_P (*overlaps_a)
|
||
|| CF_NOT_KNOWN_P (*overlaps_b))
|
||
dependence_stats.num_miv_unimplemented++;
|
||
else if (CF_NO_DEPENDENCE_P (*overlaps_a)
|
||
|| CF_NO_DEPENDENCE_P (*overlaps_b))
|
||
dependence_stats.num_miv_independent++;
|
||
else
|
||
dependence_stats.num_miv_dependent++;
|
||
}
|
||
|
||
else
|
||
{
|
||
/* When the analysis is too difficult, answer "don't know". */
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
|
||
|
||
*overlaps_a = conflict_fn_not_known ();
|
||
*overlaps_b = conflict_fn_not_known ();
|
||
*last_conflicts = chrec_dont_know;
|
||
dependence_stats.num_miv_unimplemented++;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Determines the iterations for which CHREC_A is equal to CHREC_B in
|
||
with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and
|
||
OVERLAP_ITERATIONS_B are initialized with two functions that
|
||
describe the iterations that contain conflicting elements.
|
||
|
||
Remark: For an integer k >= 0, the following equality is true:
|
||
|
||
CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
|
||
*/
|
||
|
||
static void
|
||
analyze_overlapping_iterations (tree chrec_a,
|
||
tree chrec_b,
|
||
conflict_function **overlap_iterations_a,
|
||
conflict_function **overlap_iterations_b,
|
||
tree *last_conflicts, struct loop *loop_nest)
|
||
{
|
||
unsigned int lnn = loop_nest->num;
|
||
|
||
dependence_stats.num_subscript_tests++;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(analyze_overlapping_iterations \n");
|
||
fprintf (dump_file, " (chrec_a = ");
|
||
print_generic_expr (dump_file, chrec_a);
|
||
fprintf (dump_file, ")\n (chrec_b = ");
|
||
print_generic_expr (dump_file, chrec_b);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
if (chrec_a == NULL_TREE
|
||
|| chrec_b == NULL_TREE
|
||
|| chrec_contains_undetermined (chrec_a)
|
||
|| chrec_contains_undetermined (chrec_b))
|
||
{
|
||
dependence_stats.num_subscript_undetermined++;
|
||
|
||
*overlap_iterations_a = conflict_fn_not_known ();
|
||
*overlap_iterations_b = conflict_fn_not_known ();
|
||
}
|
||
|
||
/* If they are the same chrec, and are affine, they overlap
|
||
on every iteration. */
|
||
else if (eq_evolutions_p (chrec_a, chrec_b)
|
||
&& (evolution_function_is_affine_multivariate_p (chrec_a, lnn)
|
||
|| operand_equal_p (chrec_a, chrec_b, 0)))
|
||
{
|
||
dependence_stats.num_same_subscript_function++;
|
||
*overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
|
||
*last_conflicts = chrec_dont_know;
|
||
}
|
||
|
||
/* If they aren't the same, and aren't affine, we can't do anything
|
||
yet. */
|
||
else if ((chrec_contains_symbols (chrec_a)
|
||
|| chrec_contains_symbols (chrec_b))
|
||
&& (!evolution_function_is_affine_multivariate_p (chrec_a, lnn)
|
||
|| !evolution_function_is_affine_multivariate_p (chrec_b, lnn)))
|
||
{
|
||
dependence_stats.num_subscript_undetermined++;
|
||
*overlap_iterations_a = conflict_fn_not_known ();
|
||
*overlap_iterations_b = conflict_fn_not_known ();
|
||
}
|
||
|
||
else if (ziv_subscript_p (chrec_a, chrec_b))
|
||
analyze_ziv_subscript (chrec_a, chrec_b,
|
||
overlap_iterations_a, overlap_iterations_b,
|
||
last_conflicts);
|
||
|
||
else if (siv_subscript_p (chrec_a, chrec_b))
|
||
analyze_siv_subscript (chrec_a, chrec_b,
|
||
overlap_iterations_a, overlap_iterations_b,
|
||
last_conflicts, lnn);
|
||
|
||
else
|
||
analyze_miv_subscript (chrec_a, chrec_b,
|
||
overlap_iterations_a, overlap_iterations_b,
|
||
last_conflicts, loop_nest);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, " (overlap_iterations_a = ");
|
||
dump_conflict_function (dump_file, *overlap_iterations_a);
|
||
fprintf (dump_file, ")\n (overlap_iterations_b = ");
|
||
dump_conflict_function (dump_file, *overlap_iterations_b);
|
||
fprintf (dump_file, "))\n");
|
||
}
|
||
}
|
||
|
||
/* Helper function for uniquely inserting distance vectors. */
|
||
|
||
static void
|
||
save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
|
||
{
|
||
unsigned i;
|
||
lambda_vector v;
|
||
|
||
FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, v)
|
||
if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
|
||
return;
|
||
|
||
DDR_DIST_VECTS (ddr).safe_push (dist_v);
|
||
}
|
||
|
||
/* Helper function for uniquely inserting direction vectors. */
|
||
|
||
static void
|
||
save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
|
||
{
|
||
unsigned i;
|
||
lambda_vector v;
|
||
|
||
FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), i, v)
|
||
if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
|
||
return;
|
||
|
||
DDR_DIR_VECTS (ddr).safe_push (dir_v);
|
||
}
|
||
|
||
/* Add a distance of 1 on all the loops outer than INDEX. If we
|
||
haven't yet determined a distance for this outer loop, push a new
|
||
distance vector composed of the previous distance, and a distance
|
||
of 1 for this outer loop. Example:
|
||
|
||
| loop_1
|
||
| loop_2
|
||
| A[10]
|
||
| endloop_2
|
||
| endloop_1
|
||
|
||
Saved vectors are of the form (dist_in_1, dist_in_2). First, we
|
||
save (0, 1), then we have to save (1, 0). */
|
||
|
||
static void
|
||
add_outer_distances (struct data_dependence_relation *ddr,
|
||
lambda_vector dist_v, int index)
|
||
{
|
||
/* For each outer loop where init_v is not set, the accesses are
|
||
in dependence of distance 1 in the loop. */
|
||
while (--index >= 0)
|
||
{
|
||
lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
|
||
save_v[index] = 1;
|
||
save_dist_v (ddr, save_v);
|
||
}
|
||
}
|
||
|
||
/* Return false when fail to represent the data dependence as a
|
||
distance vector. A_INDEX is the index of the first reference
|
||
(0 for DDR_A, 1 for DDR_B) and B_INDEX is the index of the
|
||
second reference. INIT_B is set to true when a component has been
|
||
added to the distance vector DIST_V. INDEX_CARRY is then set to
|
||
the index in DIST_V that carries the dependence. */
|
||
|
||
static bool
|
||
build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
|
||
unsigned int a_index, unsigned int b_index,
|
||
lambda_vector dist_v, bool *init_b,
|
||
int *index_carry)
|
||
{
|
||
unsigned i;
|
||
lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
tree access_fn_a, access_fn_b;
|
||
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
|
||
|
||
if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
|
||
{
|
||
non_affine_dependence_relation (ddr);
|
||
return false;
|
||
}
|
||
|
||
access_fn_a = SUB_ACCESS_FN (subscript, a_index);
|
||
access_fn_b = SUB_ACCESS_FN (subscript, b_index);
|
||
|
||
if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
|
||
&& TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
|
||
{
|
||
HOST_WIDE_INT dist;
|
||
int index;
|
||
int var_a = CHREC_VARIABLE (access_fn_a);
|
||
int var_b = CHREC_VARIABLE (access_fn_b);
|
||
|
||
if (var_a != var_b
|
||
|| chrec_contains_undetermined (SUB_DISTANCE (subscript)))
|
||
{
|
||
non_affine_dependence_relation (ddr);
|
||
return false;
|
||
}
|
||
|
||
dist = int_cst_value (SUB_DISTANCE (subscript));
|
||
index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr));
|
||
*index_carry = MIN (index, *index_carry);
|
||
|
||
/* This is the subscript coupling test. If we have already
|
||
recorded a distance for this loop (a distance coming from
|
||
another subscript), it should be the same. For example,
|
||
in the following code, there is no dependence:
|
||
|
||
| loop i = 0, N, 1
|
||
| T[i+1][i] = ...
|
||
| ... = T[i][i]
|
||
| endloop
|
||
*/
|
||
if (init_v[index] != 0 && dist_v[index] != dist)
|
||
{
|
||
finalize_ddr_dependent (ddr, chrec_known);
|
||
return false;
|
||
}
|
||
|
||
dist_v[index] = dist;
|
||
init_v[index] = 1;
|
||
*init_b = true;
|
||
}
|
||
else if (!operand_equal_p (access_fn_a, access_fn_b, 0))
|
||
{
|
||
/* This can be for example an affine vs. constant dependence
|
||
(T[i] vs. T[3]) that is not an affine dependence and is
|
||
not representable as a distance vector. */
|
||
non_affine_dependence_relation (ddr);
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return true when the DDR contains only constant access functions. */
|
||
|
||
static bool
|
||
constant_access_functions (const struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned i;
|
||
subscript *sub;
|
||
|
||
FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
|
||
if (!evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 0))
|
||
|| !evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 1)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Helper function for the case where DDR_A and DDR_B are the same
|
||
multivariate access function with a constant step. For an example
|
||
see pr34635-1.c. */
|
||
|
||
static void
|
||
add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
|
||
{
|
||
int x_1, x_2;
|
||
tree c_1 = CHREC_LEFT (c_2);
|
||
tree c_0 = CHREC_LEFT (c_1);
|
||
lambda_vector dist_v;
|
||
HOST_WIDE_INT v1, v2, cd;
|
||
|
||
/* Polynomials with more than 2 variables are not handled yet. When
|
||
the evolution steps are parameters, it is not possible to
|
||
represent the dependence using classical distance vectors. */
|
||
if (TREE_CODE (c_0) != INTEGER_CST
|
||
|| TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST
|
||
|| TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST)
|
||
{
|
||
DDR_AFFINE_P (ddr) = false;
|
||
return;
|
||
}
|
||
|
||
x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
|
||
x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
|
||
|
||
/* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
|
||
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
v1 = int_cst_value (CHREC_RIGHT (c_1));
|
||
v2 = int_cst_value (CHREC_RIGHT (c_2));
|
||
cd = gcd (v1, v2);
|
||
v1 /= cd;
|
||
v2 /= cd;
|
||
|
||
if (v2 < 0)
|
||
{
|
||
v2 = -v2;
|
||
v1 = -v1;
|
||
}
|
||
|
||
dist_v[x_1] = v2;
|
||
dist_v[x_2] = -v1;
|
||
save_dist_v (ddr, dist_v);
|
||
|
||
add_outer_distances (ddr, dist_v, x_1);
|
||
}
|
||
|
||
/* Helper function for the case where DDR_A and DDR_B are the same
|
||
access functions. */
|
||
|
||
static void
|
||
add_other_self_distances (struct data_dependence_relation *ddr)
|
||
{
|
||
lambda_vector dist_v;
|
||
unsigned i;
|
||
int index_carry = DDR_NB_LOOPS (ddr);
|
||
subscript *sub;
|
||
|
||
FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
|
||
{
|
||
tree access_fun = SUB_ACCESS_FN (sub, 0);
|
||
|
||
if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
|
||
{
|
||
if (!evolution_function_is_univariate_p (access_fun))
|
||
{
|
||
if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
|
||
{
|
||
DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
|
||
return;
|
||
}
|
||
|
||
access_fun = SUB_ACCESS_FN (DDR_SUBSCRIPT (ddr, 0), 0);
|
||
|
||
if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
|
||
add_multivariate_self_dist (ddr, access_fun);
|
||
else
|
||
/* The evolution step is not constant: it varies in
|
||
the outer loop, so this cannot be represented by a
|
||
distance vector. For example in pr34635.c the
|
||
evolution is {0, +, {0, +, 4}_1}_2. */
|
||
DDR_AFFINE_P (ddr) = false;
|
||
|
||
return;
|
||
}
|
||
|
||
index_carry = MIN (index_carry,
|
||
index_in_loop_nest (CHREC_VARIABLE (access_fun),
|
||
DDR_LOOP_NEST (ddr)));
|
||
}
|
||
}
|
||
|
||
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
add_outer_distances (ddr, dist_v, index_carry);
|
||
}
|
||
|
||
static void
|
||
insert_innermost_unit_dist_vector (struct data_dependence_relation *ddr)
|
||
{
|
||
lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
|
||
dist_v[DDR_INNER_LOOP (ddr)] = 1;
|
||
save_dist_v (ddr, dist_v);
|
||
}
|
||
|
||
/* Adds a unit distance vector to DDR when there is a 0 overlap. This
|
||
is the case for example when access functions are the same and
|
||
equal to a constant, as in:
|
||
|
||
| loop_1
|
||
| A[3] = ...
|
||
| ... = A[3]
|
||
| endloop_1
|
||
|
||
in which case the distance vectors are (0) and (1). */
|
||
|
||
static void
|
||
add_distance_for_zero_overlaps (struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned i, j;
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
subscript_p sub = DDR_SUBSCRIPT (ddr, i);
|
||
conflict_function *ca = SUB_CONFLICTS_IN_A (sub);
|
||
conflict_function *cb = SUB_CONFLICTS_IN_B (sub);
|
||
|
||
for (j = 0; j < ca->n; j++)
|
||
if (affine_function_zero_p (ca->fns[j]))
|
||
{
|
||
insert_innermost_unit_dist_vector (ddr);
|
||
return;
|
||
}
|
||
|
||
for (j = 0; j < cb->n; j++)
|
||
if (affine_function_zero_p (cb->fns[j]))
|
||
{
|
||
insert_innermost_unit_dist_vector (ddr);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return true when the DDR contains two data references that have the
|
||
same access functions. */
|
||
|
||
static inline bool
|
||
same_access_functions (const struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned i;
|
||
subscript *sub;
|
||
|
||
FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
|
||
if (!eq_evolutions_p (SUB_ACCESS_FN (sub, 0),
|
||
SUB_ACCESS_FN (sub, 1)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Compute the classic per loop distance vector. DDR is the data
|
||
dependence relation to build a vector from. Return false when fail
|
||
to represent the data dependence as a distance vector. */
|
||
|
||
static bool
|
||
build_classic_dist_vector (struct data_dependence_relation *ddr,
|
||
struct loop *loop_nest)
|
||
{
|
||
bool init_b = false;
|
||
int index_carry = DDR_NB_LOOPS (ddr);
|
||
lambda_vector dist_v;
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
|
||
return false;
|
||
|
||
if (same_access_functions (ddr))
|
||
{
|
||
/* Save the 0 vector. */
|
||
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
save_dist_v (ddr, dist_v);
|
||
|
||
if (constant_access_functions (ddr))
|
||
add_distance_for_zero_overlaps (ddr);
|
||
|
||
if (DDR_NB_LOOPS (ddr) > 1)
|
||
add_other_self_distances (ddr);
|
||
|
||
return true;
|
||
}
|
||
|
||
dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
if (!build_classic_dist_vector_1 (ddr, 0, 1, dist_v, &init_b, &index_carry))
|
||
return false;
|
||
|
||
/* Save the distance vector if we initialized one. */
|
||
if (init_b)
|
||
{
|
||
/* Verify a basic constraint: classic distance vectors should
|
||
always be lexicographically positive.
|
||
|
||
Data references are collected in the order of execution of
|
||
the program, thus for the following loop
|
||
|
||
| for (i = 1; i < 100; i++)
|
||
| for (j = 1; j < 100; j++)
|
||
| {
|
||
| t = T[j+1][i-1]; // A
|
||
| T[j][i] = t + 2; // B
|
||
| }
|
||
|
||
references are collected following the direction of the wind:
|
||
A then B. The data dependence tests are performed also
|
||
following this order, such that we're looking at the distance
|
||
separating the elements accessed by A from the elements later
|
||
accessed by B. But in this example, the distance returned by
|
||
test_dep (A, B) is lexicographically negative (-1, 1), that
|
||
means that the access A occurs later than B with respect to
|
||
the outer loop, ie. we're actually looking upwind. In this
|
||
case we solve test_dep (B, A) looking downwind to the
|
||
lexicographically positive solution, that returns the
|
||
distance vector (1, -1). */
|
||
if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
|
||
{
|
||
lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
|
||
return false;
|
||
compute_subscript_distance (ddr);
|
||
if (!build_classic_dist_vector_1 (ddr, 1, 0, save_v, &init_b,
|
||
&index_carry))
|
||
return false;
|
||
save_dist_v (ddr, save_v);
|
||
DDR_REVERSED_P (ddr) = true;
|
||
|
||
/* In this case there is a dependence forward for all the
|
||
outer loops:
|
||
|
||
| for (k = 1; k < 100; k++)
|
||
| for (i = 1; i < 100; i++)
|
||
| for (j = 1; j < 100; j++)
|
||
| {
|
||
| t = T[j+1][i-1]; // A
|
||
| T[j][i] = t + 2; // B
|
||
| }
|
||
|
||
the vectors are:
|
||
(0, 1, -1)
|
||
(1, 1, -1)
|
||
(1, -1, 1)
|
||
*/
|
||
if (DDR_NB_LOOPS (ddr) > 1)
|
||
{
|
||
add_outer_distances (ddr, save_v, index_carry);
|
||
add_outer_distances (ddr, dist_v, index_carry);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
|
||
|
||
if (DDR_NB_LOOPS (ddr) > 1)
|
||
{
|
||
lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
|
||
if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
|
||
return false;
|
||
compute_subscript_distance (ddr);
|
||
if (!build_classic_dist_vector_1 (ddr, 1, 0, opposite_v, &init_b,
|
||
&index_carry))
|
||
return false;
|
||
|
||
save_dist_v (ddr, save_v);
|
||
add_outer_distances (ddr, dist_v, index_carry);
|
||
add_outer_distances (ddr, opposite_v, index_carry);
|
||
}
|
||
else
|
||
save_dist_v (ddr, save_v);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* There is a distance of 1 on all the outer loops: Example:
|
||
there is a dependence of distance 1 on loop_1 for the array A.
|
||
|
||
| loop_1
|
||
| A[5] = ...
|
||
| endloop
|
||
*/
|
||
add_outer_distances (ddr, dist_v,
|
||
lambda_vector_first_nz (dist_v,
|
||
DDR_NB_LOOPS (ddr), 0));
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
unsigned i;
|
||
|
||
fprintf (dump_file, "(build_classic_dist_vector\n");
|
||
for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
|
||
{
|
||
fprintf (dump_file, " dist_vector = (");
|
||
print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
|
||
DDR_NB_LOOPS (ddr));
|
||
fprintf (dump_file, " )\n");
|
||
}
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return the direction for a given distance.
|
||
FIXME: Computing dir this way is suboptimal, since dir can catch
|
||
cases that dist is unable to represent. */
|
||
|
||
static inline enum data_dependence_direction
|
||
dir_from_dist (int dist)
|
||
{
|
||
if (dist > 0)
|
||
return dir_positive;
|
||
else if (dist < 0)
|
||
return dir_negative;
|
||
else
|
||
return dir_equal;
|
||
}
|
||
|
||
/* Compute the classic per loop direction vector. DDR is the data
|
||
dependence relation to build a vector from. */
|
||
|
||
static void
|
||
build_classic_dir_vector (struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned i, j;
|
||
lambda_vector dist_v;
|
||
|
||
FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
|
||
{
|
||
lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
|
||
|
||
for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
|
||
dir_v[j] = dir_from_dist (dist_v[j]);
|
||
|
||
save_dir_v (ddr, dir_v);
|
||
}
|
||
}
|
||
|
||
/* Helper function. Returns true when there is a dependence between the
|
||
data references. A_INDEX is the index of the first reference (0 for
|
||
DDR_A, 1 for DDR_B) and B_INDEX is the index of the second reference. */
|
||
|
||
static bool
|
||
subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
|
||
unsigned int a_index, unsigned int b_index,
|
||
struct loop *loop_nest)
|
||
{
|
||
unsigned int i;
|
||
tree last_conflicts;
|
||
struct subscript *subscript;
|
||
tree res = NULL_TREE;
|
||
|
||
for (i = 0; DDR_SUBSCRIPTS (ddr).iterate (i, &subscript); i++)
|
||
{
|
||
conflict_function *overlaps_a, *overlaps_b;
|
||
|
||
analyze_overlapping_iterations (SUB_ACCESS_FN (subscript, a_index),
|
||
SUB_ACCESS_FN (subscript, b_index),
|
||
&overlaps_a, &overlaps_b,
|
||
&last_conflicts, loop_nest);
|
||
|
||
if (SUB_CONFLICTS_IN_A (subscript))
|
||
free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
|
||
if (SUB_CONFLICTS_IN_B (subscript))
|
||
free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
|
||
|
||
SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
|
||
SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
|
||
SUB_LAST_CONFLICT (subscript) = last_conflicts;
|
||
|
||
/* If there is any undetermined conflict function we have to
|
||
give a conservative answer in case we cannot prove that
|
||
no dependence exists when analyzing another subscript. */
|
||
if (CF_NOT_KNOWN_P (overlaps_a)
|
||
|| CF_NOT_KNOWN_P (overlaps_b))
|
||
{
|
||
res = chrec_dont_know;
|
||
continue;
|
||
}
|
||
|
||
/* When there is a subscript with no dependence we can stop. */
|
||
else if (CF_NO_DEPENDENCE_P (overlaps_a)
|
||
|| CF_NO_DEPENDENCE_P (overlaps_b))
|
||
{
|
||
res = chrec_known;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (res == NULL_TREE)
|
||
return true;
|
||
|
||
if (res == chrec_known)
|
||
dependence_stats.num_dependence_independent++;
|
||
else
|
||
dependence_stats.num_dependence_undetermined++;
|
||
finalize_ddr_dependent (ddr, res);
|
||
return false;
|
||
}
|
||
|
||
/* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */
|
||
|
||
static void
|
||
subscript_dependence_tester (struct data_dependence_relation *ddr,
|
||
struct loop *loop_nest)
|
||
{
|
||
if (subscript_dependence_tester_1 (ddr, 0, 1, loop_nest))
|
||
dependence_stats.num_dependence_dependent++;
|
||
|
||
compute_subscript_distance (ddr);
|
||
if (build_classic_dist_vector (ddr, loop_nest))
|
||
build_classic_dir_vector (ddr);
|
||
}
|
||
|
||
/* Returns true when all the access functions of A are affine or
|
||
constant with respect to LOOP_NEST. */
|
||
|
||
static bool
|
||
access_functions_are_affine_or_constant_p (const struct data_reference *a,
|
||
const struct loop *loop_nest)
|
||
{
|
||
unsigned int i;
|
||
vec<tree> fns = DR_ACCESS_FNS (a);
|
||
tree t;
|
||
|
||
FOR_EACH_VEC_ELT (fns, i, t)
|
||
if (!evolution_function_is_invariant_p (t, loop_nest->num)
|
||
&& !evolution_function_is_affine_multivariate_p (t, loop_nest->num))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* This computes the affine dependence relation between A and B with
|
||
respect to LOOP_NEST. CHREC_KNOWN is used for representing the
|
||
independence between two accesses, while CHREC_DONT_KNOW is used
|
||
for representing the unknown relation.
|
||
|
||
Note that it is possible to stop the computation of the dependence
|
||
relation the first time we detect a CHREC_KNOWN element for a given
|
||
subscript. */
|
||
|
||
void
|
||
compute_affine_dependence (struct data_dependence_relation *ddr,
|
||
struct loop *loop_nest)
|
||
{
|
||
struct data_reference *dra = DDR_A (ddr);
|
||
struct data_reference *drb = DDR_B (ddr);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(compute_affine_dependence\n");
|
||
fprintf (dump_file, " stmt_a: ");
|
||
print_gimple_stmt (dump_file, DR_STMT (dra), 0, TDF_SLIM);
|
||
fprintf (dump_file, " stmt_b: ");
|
||
print_gimple_stmt (dump_file, DR_STMT (drb), 0, TDF_SLIM);
|
||
}
|
||
|
||
/* Analyze only when the dependence relation is not yet known. */
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
||
{
|
||
dependence_stats.num_dependence_tests++;
|
||
|
||
if (access_functions_are_affine_or_constant_p (dra, loop_nest)
|
||
&& access_functions_are_affine_or_constant_p (drb, loop_nest))
|
||
subscript_dependence_tester (ddr, loop_nest);
|
||
|
||
/* As a last case, if the dependence cannot be determined, or if
|
||
the dependence is considered too difficult to determine, answer
|
||
"don't know". */
|
||
else
|
||
{
|
||
dependence_stats.num_dependence_undetermined++;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "Data ref a:\n");
|
||
dump_data_reference (dump_file, dra);
|
||
fprintf (dump_file, "Data ref b:\n");
|
||
dump_data_reference (dump_file, drb);
|
||
fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
|
||
}
|
||
finalize_ddr_dependent (ddr, chrec_dont_know);
|
||
}
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
||
fprintf (dump_file, ") -> no dependence\n");
|
||
else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
|
||
fprintf (dump_file, ") -> dependence analysis failed\n");
|
||
else
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
}
|
||
|
||
/* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
|
||
the data references in DATAREFS, in the LOOP_NEST. When
|
||
COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
|
||
relations. Return true when successful, i.e. data references number
|
||
is small enough to be handled. */
|
||
|
||
bool
|
||
compute_all_dependences (vec<data_reference_p> datarefs,
|
||
vec<ddr_p> *dependence_relations,
|
||
vec<loop_p> loop_nest,
|
||
bool compute_self_and_rr)
|
||
{
|
||
struct data_dependence_relation *ddr;
|
||
struct data_reference *a, *b;
|
||
unsigned int i, j;
|
||
|
||
if ((int) datarefs.length ()
|
||
> PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
|
||
{
|
||
struct data_dependence_relation *ddr;
|
||
|
||
/* Insert a single relation into dependence_relations:
|
||
chrec_dont_know. */
|
||
ddr = initialize_data_dependence_relation (NULL, NULL, loop_nest);
|
||
dependence_relations->safe_push (ddr);
|
||
return false;
|
||
}
|
||
|
||
FOR_EACH_VEC_ELT (datarefs, i, a)
|
||
for (j = i + 1; datarefs.iterate (j, &b); j++)
|
||
if (DR_IS_WRITE (a) || DR_IS_WRITE (b) || compute_self_and_rr)
|
||
{
|
||
ddr = initialize_data_dependence_relation (a, b, loop_nest);
|
||
dependence_relations->safe_push (ddr);
|
||
if (loop_nest.exists ())
|
||
compute_affine_dependence (ddr, loop_nest[0]);
|
||
}
|
||
|
||
if (compute_self_and_rr)
|
||
FOR_EACH_VEC_ELT (datarefs, i, a)
|
||
{
|
||
ddr = initialize_data_dependence_relation (a, a, loop_nest);
|
||
dependence_relations->safe_push (ddr);
|
||
if (loop_nest.exists ())
|
||
compute_affine_dependence (ddr, loop_nest[0]);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Describes a location of a memory reference. */
|
||
|
||
struct data_ref_loc
|
||
{
|
||
/* The memory reference. */
|
||
tree ref;
|
||
|
||
/* True if the memory reference is read. */
|
||
bool is_read;
|
||
|
||
/* True if the data reference is conditional within the containing
|
||
statement, i.e. if it might not occur even when the statement
|
||
is executed and runs to completion. */
|
||
bool is_conditional_in_stmt;
|
||
};
|
||
|
||
|
||
/* Stores the locations of memory references in STMT to REFERENCES. Returns
|
||
true if STMT clobbers memory, false otherwise. */
|
||
|
||
static bool
|
||
get_references_in_stmt (gimple *stmt, vec<data_ref_loc, va_heap> *references)
|
||
{
|
||
bool clobbers_memory = false;
|
||
data_ref_loc ref;
|
||
tree op0, op1;
|
||
enum gimple_code stmt_code = gimple_code (stmt);
|
||
|
||
/* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
|
||
As we cannot model data-references to not spelled out
|
||
accesses give up if they may occur. */
|
||
if (stmt_code == GIMPLE_CALL
|
||
&& !(gimple_call_flags (stmt) & ECF_CONST))
|
||
{
|
||
/* Allow IFN_GOMP_SIMD_LANE in their own loops. */
|
||
if (gimple_call_internal_p (stmt))
|
||
switch (gimple_call_internal_fn (stmt))
|
||
{
|
||
case IFN_GOMP_SIMD_LANE:
|
||
{
|
||
struct loop *loop = gimple_bb (stmt)->loop_father;
|
||
tree uid = gimple_call_arg (stmt, 0);
|
||
gcc_assert (TREE_CODE (uid) == SSA_NAME);
|
||
if (loop == NULL
|
||
|| loop->simduid != SSA_NAME_VAR (uid))
|
||
clobbers_memory = true;
|
||
break;
|
||
}
|
||
case IFN_MASK_LOAD:
|
||
case IFN_MASK_STORE:
|
||
break;
|
||
default:
|
||
clobbers_memory = true;
|
||
break;
|
||
}
|
||
else
|
||
clobbers_memory = true;
|
||
}
|
||
else if (stmt_code == GIMPLE_ASM
|
||
&& (gimple_asm_volatile_p (as_a <gasm *> (stmt))
|
||
|| gimple_vuse (stmt)))
|
||
clobbers_memory = true;
|
||
|
||
if (!gimple_vuse (stmt))
|
||
return clobbers_memory;
|
||
|
||
if (stmt_code == GIMPLE_ASSIGN)
|
||
{
|
||
tree base;
|
||
op0 = gimple_assign_lhs (stmt);
|
||
op1 = gimple_assign_rhs1 (stmt);
|
||
|
||
if (DECL_P (op1)
|
||
|| (REFERENCE_CLASS_P (op1)
|
||
&& (base = get_base_address (op1))
|
||
&& TREE_CODE (base) != SSA_NAME
|
||
&& !is_gimple_min_invariant (base)))
|
||
{
|
||
ref.ref = op1;
|
||
ref.is_read = true;
|
||
ref.is_conditional_in_stmt = false;
|
||
references->safe_push (ref);
|
||
}
|
||
}
|
||
else if (stmt_code == GIMPLE_CALL)
|
||
{
|
||
unsigned i, n;
|
||
tree ptr, type;
|
||
unsigned int align;
|
||
|
||
ref.is_read = false;
|
||
if (gimple_call_internal_p (stmt))
|
||
switch (gimple_call_internal_fn (stmt))
|
||
{
|
||
case IFN_MASK_LOAD:
|
||
if (gimple_call_lhs (stmt) == NULL_TREE)
|
||
break;
|
||
ref.is_read = true;
|
||
/* FALLTHRU */
|
||
case IFN_MASK_STORE:
|
||
ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
|
||
align = tree_to_shwi (gimple_call_arg (stmt, 1));
|
||
if (ref.is_read)
|
||
type = TREE_TYPE (gimple_call_lhs (stmt));
|
||
else
|
||
type = TREE_TYPE (gimple_call_arg (stmt, 3));
|
||
if (TYPE_ALIGN (type) != align)
|
||
type = build_aligned_type (type, align);
|
||
ref.is_conditional_in_stmt = true;
|
||
ref.ref = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0),
|
||
ptr);
|
||
references->safe_push (ref);
|
||
return false;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
op0 = gimple_call_lhs (stmt);
|
||
n = gimple_call_num_args (stmt);
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
op1 = gimple_call_arg (stmt, i);
|
||
|
||
if (DECL_P (op1)
|
||
|| (REFERENCE_CLASS_P (op1) && get_base_address (op1)))
|
||
{
|
||
ref.ref = op1;
|
||
ref.is_read = true;
|
||
ref.is_conditional_in_stmt = false;
|
||
references->safe_push (ref);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
return clobbers_memory;
|
||
|
||
if (op0
|
||
&& (DECL_P (op0)
|
||
|| (REFERENCE_CLASS_P (op0) && get_base_address (op0))))
|
||
{
|
||
ref.ref = op0;
|
||
ref.is_read = false;
|
||
ref.is_conditional_in_stmt = false;
|
||
references->safe_push (ref);
|
||
}
|
||
return clobbers_memory;
|
||
}
|
||
|
||
|
||
/* Returns true if the loop-nest has any data reference. */
|
||
|
||
bool
|
||
loop_nest_has_data_refs (loop_p loop)
|
||
{
|
||
basic_block *bbs = get_loop_body (loop);
|
||
auto_vec<data_ref_loc, 3> references;
|
||
|
||
for (unsigned i = 0; i < loop->num_nodes; i++)
|
||
{
|
||
basic_block bb = bbs[i];
|
||
gimple_stmt_iterator bsi;
|
||
|
||
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
||
{
|
||
gimple *stmt = gsi_stmt (bsi);
|
||
get_references_in_stmt (stmt, &references);
|
||
if (references.length ())
|
||
{
|
||
free (bbs);
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
free (bbs);
|
||
|
||
if (loop->inner)
|
||
{
|
||
loop = loop->inner;
|
||
while (loop)
|
||
{
|
||
if (loop_nest_has_data_refs (loop))
|
||
return true;
|
||
loop = loop->next;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
|
||
reference, returns false, otherwise returns true. NEST is the outermost
|
||
loop of the loop nest in which the references should be analyzed. */
|
||
|
||
bool
|
||
find_data_references_in_stmt (struct loop *nest, gimple *stmt,
|
||
vec<data_reference_p> *datarefs)
|
||
{
|
||
unsigned i;
|
||
auto_vec<data_ref_loc, 2> references;
|
||
data_ref_loc *ref;
|
||
bool ret = true;
|
||
data_reference_p dr;
|
||
|
||
if (get_references_in_stmt (stmt, &references))
|
||
return false;
|
||
|
||
FOR_EACH_VEC_ELT (references, i, ref)
|
||
{
|
||
dr = create_data_ref (nest, loop_containing_stmt (stmt), ref->ref,
|
||
stmt, ref->is_read, ref->is_conditional_in_stmt);
|
||
gcc_assert (dr != NULL);
|
||
datarefs->safe_push (dr);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Stores the data references in STMT to DATAREFS. If there is an
|
||
unanalyzable reference, returns false, otherwise returns true.
|
||
NEST is the outermost loop of the loop nest in which the references
|
||
should be instantiated, LOOP is the loop in which the references
|
||
should be analyzed. */
|
||
|
||
bool
|
||
graphite_find_data_references_in_stmt (loop_p nest, loop_p loop, gimple *stmt,
|
||
vec<data_reference_p> *datarefs)
|
||
{
|
||
unsigned i;
|
||
auto_vec<data_ref_loc, 2> references;
|
||
data_ref_loc *ref;
|
||
bool ret = true;
|
||
data_reference_p dr;
|
||
|
||
if (get_references_in_stmt (stmt, &references))
|
||
return false;
|
||
|
||
FOR_EACH_VEC_ELT (references, i, ref)
|
||
{
|
||
dr = create_data_ref (nest, loop, ref->ref, stmt, ref->is_read,
|
||
ref->is_conditional_in_stmt);
|
||
gcc_assert (dr != NULL);
|
||
datarefs->safe_push (dr);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Search the data references in LOOP, and record the information into
|
||
DATAREFS. Returns chrec_dont_know when failing to analyze a
|
||
difficult case, returns NULL_TREE otherwise. */
|
||
|
||
tree
|
||
find_data_references_in_bb (struct loop *loop, basic_block bb,
|
||
vec<data_reference_p> *datarefs)
|
||
{
|
||
gimple_stmt_iterator bsi;
|
||
|
||
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
|
||
{
|
||
gimple *stmt = gsi_stmt (bsi);
|
||
|
||
if (!find_data_references_in_stmt (loop, stmt, datarefs))
|
||
{
|
||
struct data_reference *res;
|
||
res = XCNEW (struct data_reference);
|
||
datarefs->safe_push (res);
|
||
|
||
return chrec_dont_know;
|
||
}
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Search the data references in LOOP, and record the information into
|
||
DATAREFS. Returns chrec_dont_know when failing to analyze a
|
||
difficult case, returns NULL_TREE otherwise.
|
||
|
||
TODO: This function should be made smarter so that it can handle address
|
||
arithmetic as if they were array accesses, etc. */
|
||
|
||
tree
|
||
find_data_references_in_loop (struct loop *loop,
|
||
vec<data_reference_p> *datarefs)
|
||
{
|
||
basic_block bb, *bbs;
|
||
unsigned int i;
|
||
|
||
bbs = get_loop_body_in_dom_order (loop);
|
||
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
{
|
||
bb = bbs[i];
|
||
|
||
if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know)
|
||
{
|
||
free (bbs);
|
||
return chrec_dont_know;
|
||
}
|
||
}
|
||
free (bbs);
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return the alignment in bytes that DRB is guaranteed to have at all
|
||
times. */
|
||
|
||
unsigned int
|
||
dr_alignment (innermost_loop_behavior *drb)
|
||
{
|
||
/* Get the alignment of BASE_ADDRESS + INIT. */
|
||
unsigned int alignment = drb->base_alignment;
|
||
unsigned int misalignment = (drb->base_misalignment
|
||
+ TREE_INT_CST_LOW (drb->init));
|
||
if (misalignment != 0)
|
||
alignment = MIN (alignment, misalignment & -misalignment);
|
||
|
||
/* Cap it to the alignment of OFFSET. */
|
||
if (!integer_zerop (drb->offset))
|
||
alignment = MIN (alignment, drb->offset_alignment);
|
||
|
||
/* Cap it to the alignment of STEP. */
|
||
if (!integer_zerop (drb->step))
|
||
alignment = MIN (alignment, drb->step_alignment);
|
||
|
||
return alignment;
|
||
}
|
||
|
||
/* Recursive helper function. */
|
||
|
||
static bool
|
||
find_loop_nest_1 (struct loop *loop, vec<loop_p> *loop_nest)
|
||
{
|
||
/* Inner loops of the nest should not contain siblings. Example:
|
||
when there are two consecutive loops,
|
||
|
||
| loop_0
|
||
| loop_1
|
||
| A[{0, +, 1}_1]
|
||
| endloop_1
|
||
| loop_2
|
||
| A[{0, +, 1}_2]
|
||
| endloop_2
|
||
| endloop_0
|
||
|
||
the dependence relation cannot be captured by the distance
|
||
abstraction. */
|
||
if (loop->next)
|
||
return false;
|
||
|
||
loop_nest->safe_push (loop);
|
||
if (loop->inner)
|
||
return find_loop_nest_1 (loop->inner, loop_nest);
|
||
return true;
|
||
}
|
||
|
||
/* Return false when the LOOP is not well nested. Otherwise return
|
||
true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
|
||
contain the loops from the outermost to the innermost, as they will
|
||
appear in the classic distance vector. */
|
||
|
||
bool
|
||
find_loop_nest (struct loop *loop, vec<loop_p> *loop_nest)
|
||
{
|
||
loop_nest->safe_push (loop);
|
||
if (loop->inner)
|
||
return find_loop_nest_1 (loop->inner, loop_nest);
|
||
return true;
|
||
}
|
||
|
||
/* Returns true when the data dependences have been computed, false otherwise.
|
||
Given a loop nest LOOP, the following vectors are returned:
|
||
DATAREFS is initialized to all the array elements contained in this loop,
|
||
DEPENDENCE_RELATIONS contains the relations between the data references.
|
||
Compute read-read and self relations if
|
||
COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
|
||
|
||
bool
|
||
compute_data_dependences_for_loop (struct loop *loop,
|
||
bool compute_self_and_read_read_dependences,
|
||
vec<loop_p> *loop_nest,
|
||
vec<data_reference_p> *datarefs,
|
||
vec<ddr_p> *dependence_relations)
|
||
{
|
||
bool res = true;
|
||
|
||
memset (&dependence_stats, 0, sizeof (dependence_stats));
|
||
|
||
/* If the loop nest is not well formed, or one of the data references
|
||
is not computable, give up without spending time to compute other
|
||
dependences. */
|
||
if (!loop
|
||
|| !find_loop_nest (loop, loop_nest)
|
||
|| find_data_references_in_loop (loop, datarefs) == chrec_dont_know
|
||
|| !compute_all_dependences (*datarefs, dependence_relations, *loop_nest,
|
||
compute_self_and_read_read_dependences))
|
||
res = false;
|
||
|
||
if (dump_file && (dump_flags & TDF_STATS))
|
||
{
|
||
fprintf (dump_file, "Dependence tester statistics:\n");
|
||
|
||
fprintf (dump_file, "Number of dependence tests: %d\n",
|
||
dependence_stats.num_dependence_tests);
|
||
fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
|
||
dependence_stats.num_dependence_dependent);
|
||
fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
|
||
dependence_stats.num_dependence_independent);
|
||
fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
|
||
dependence_stats.num_dependence_undetermined);
|
||
|
||
fprintf (dump_file, "Number of subscript tests: %d\n",
|
||
dependence_stats.num_subscript_tests);
|
||
fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
|
||
dependence_stats.num_subscript_undetermined);
|
||
fprintf (dump_file, "Number of same subscript function: %d\n",
|
||
dependence_stats.num_same_subscript_function);
|
||
|
||
fprintf (dump_file, "Number of ziv tests: %d\n",
|
||
dependence_stats.num_ziv);
|
||
fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
|
||
dependence_stats.num_ziv_dependent);
|
||
fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
|
||
dependence_stats.num_ziv_independent);
|
||
fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
|
||
dependence_stats.num_ziv_unimplemented);
|
||
|
||
fprintf (dump_file, "Number of siv tests: %d\n",
|
||
dependence_stats.num_siv);
|
||
fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
|
||
dependence_stats.num_siv_dependent);
|
||
fprintf (dump_file, "Number of siv tests returning independent: %d\n",
|
||
dependence_stats.num_siv_independent);
|
||
fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
|
||
dependence_stats.num_siv_unimplemented);
|
||
|
||
fprintf (dump_file, "Number of miv tests: %d\n",
|
||
dependence_stats.num_miv);
|
||
fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
|
||
dependence_stats.num_miv_dependent);
|
||
fprintf (dump_file, "Number of miv tests returning independent: %d\n",
|
||
dependence_stats.num_miv_independent);
|
||
fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
|
||
dependence_stats.num_miv_unimplemented);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Free the memory used by a data dependence relation DDR. */
|
||
|
||
void
|
||
free_dependence_relation (struct data_dependence_relation *ddr)
|
||
{
|
||
if (ddr == NULL)
|
||
return;
|
||
|
||
if (DDR_SUBSCRIPTS (ddr).exists ())
|
||
free_subscripts (DDR_SUBSCRIPTS (ddr));
|
||
DDR_DIST_VECTS (ddr).release ();
|
||
DDR_DIR_VECTS (ddr).release ();
|
||
|
||
free (ddr);
|
||
}
|
||
|
||
/* Free the memory used by the data dependence relations from
|
||
DEPENDENCE_RELATIONS. */
|
||
|
||
void
|
||
free_dependence_relations (vec<ddr_p> dependence_relations)
|
||
{
|
||
unsigned int i;
|
||
struct data_dependence_relation *ddr;
|
||
|
||
FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
|
||
if (ddr)
|
||
free_dependence_relation (ddr);
|
||
|
||
dependence_relations.release ();
|
||
}
|
||
|
||
/* Free the memory used by the data references from DATAREFS. */
|
||
|
||
void
|
||
free_data_refs (vec<data_reference_p> datarefs)
|
||
{
|
||
unsigned int i;
|
||
struct data_reference *dr;
|
||
|
||
FOR_EACH_VEC_ELT (datarefs, i, dr)
|
||
free_data_ref (dr);
|
||
datarefs.release ();
|
||
}
|