Merge from tree-cleanup-branch: VRP, store CCP, store copy-prop, incremental SSA updating of FUD chains and newly exposed symbols. * Makefile.in (tree-ssa-copy.o): Depend on tree-ssa-propagate.h. (OBJS-common): Add tree-vrp.o. (tree-vrp.o): New rule. * basic-block.h (nearest_common_dominator_for_set): Declare. * common.opt (ftree-store-ccp): New flag. (ftree-copy-prop): New flag. (ftree-vrp): New flag. (ftree-store-copy-prop): New flag. * dominance.c (nearest_common_dominator_for_set): New. * domwalk.c (walk_dominator_tree): Only traverse statements in blocks marked in walk_data->interesting_blocks. * domwalk.h (struct dom_walk_data): Add field interesting_blocks. * fold-const.c (fold): Handle ASSERT_EXPR. * opts.c (decode_options): Set flag_tree_copy_prop at -O1. Set flag_tree_store_ccp, flag_tree_store_copy_prop and flag_tree_vrp at -O2. * timevar.def (TV_TREE_VRP): Define. (TV_TREE_COPY_PROP): Define. (TV_TREE_STORE_COPY_PROP): Define. (TV_TREE_SSA_INCREMENTAL): Define. (TV_TREE_STORE_CCP): Define. * tree-cfg.c (tree_can_merge_blocks_p): Remove reference to kill_redundant_phi_nodes from comment. (verify_expr): Handle ASSERT_EXPR. * tree-dfa.c (mark_new_vars_to_rename): Remove second argument. Update all users. (mark_call_clobbered_vars_to_rename): Remove. Update all users. * tree-flow-inline.h (unmodifiable_var_p): New. * tree-flow.h (enum value_range_type): Declare. (struct value_range_def): Declare. (value_range): Declare. (remove_all_phi_nodes_for): Remove. Update all users. (find_phi_node_for): Declare. (add_type_alias): Declare. (count_uses_and_derefs): Declare. (kill_redundant_phi_nodes): Remove. (rewrite_into_ssa): Remove. (rewrite_def_def_chains): Remove. (update_ssa, register_new_name_mapping, create_new_def_for, need_ssa_update_p, name_registered_for_update_p, release_ssa_name_after_update_ssa, dump_repl_tbl, debug_repl_tbl, dump_names_replaced_by, debug_names_replaced_by, mark_sym_for_renaming, mark_set_for_renaming, get_current_def, set_current_def, get_value_range, dump_value_range, debug_value_range, dump_all_value_ranges, debug_all_value_ranges, expr_computes_nonzero, loop_depth_of_name, unmodifiable_var_p): Declare. * tree-gimple.c (is_gimple_formal_tmp_rhs): Handle ASSERT_EXPR. * tree-into-ssa.c (block_defs_stack): Update comment. (old_ssa_names, new_ssa_names, old_virtual_ssa_names, syms_to_rename, names_to_release, repl_tbl, need_to_initialize_update_ssa_p, need_to_update_vops_p, need_to_replace_names_p): New locals. (NAME_SETS_GROWTH_FACTOR): Define. (struct repl_map_d): Declare. (struct mark_def_sites_global_data): Add field interesting_blocks. (enum rewrite_mode): Declare. (REGISTER_DEFS_IN_THIS_STMT): Define. (compute_global_livein): Use last_basic_block instead of n_basic_blocks. (set_def_block): Remove last argument. Update all callers. (prepare_use_operand_for_rename): Remove. Update all callers. (prepare_def_operand_for_rename): Remove. Update all callers. (symbol_marked_for_renaming): New. (is_old_name): New. (is_new_name): New. (repl_map_hash): New. (repl_map_eq): New. (repl_map_free): New. (names_replaced_by): New. (add_to_repl_tbl): New. (add_new_name_mapping): New. (mark_def_sites): Assume that all the operands in the statement are in normal form. (find_idf): Assert that the block in the stack is valid. (get_default_def_for): New. (insert_phi_nodes_for): Add new argument 'update_p'. Add documentation. If update_p is true, add a new mapping between the LHS of each new PHI and the name that it replaces. (insert_phi_nodes_1): Only call find_idf if needed. (get_reaching_def): Call get_default_def_for. (rewrite_operand): Remove. (rewrite_stmt): Do nothing if REGISTER_DEFS_IN_THIS_STMT and REWRITE_THIS_STMT are false. Assume that all the operands in the statement are in normal form. (rewrite_add_phi_arguments): Don't use PHI_REWRITTEN. (rewrite_virtual_phi_arguments): Remove. (invalidate_name_tags): Remove. (register_new_update_single, register_new_update_set, rewrite_update_init_block, replace_use, rewrite_update_fini_block, rewrite_update_stmt, rewrite_update_phi_arguments): New. rewrite_blocks): Remove argument 'fix_virtual_phis'. Add arguments 'entry', 'what' and 'blocks'. Initialize the dominator walker according to 'what' and 'blocks'. Start the dominator walk at 'entry'. (mark_def_site_blocks): Add argument 'interesting_blocks'. Use it to configure the dominator walker. (rewrite_into_ssa): Remove argument 'all'. Make internal. (rewrite_all_into_ssa): Remove. (rewrite_def_def_chains): Remove. (mark_def_interesting, mark_use_interesting, prepare_phi_args_for_update, prepare_block_for_update, prepare_def_site_for, prepare_def_sites, dump_names_replaced_by, debug_names_replaced_by, dump_repl_tbl, debug_repl_tbl, init_update_ssa, delete_update_ssa, create_new_def_for, register_new_name_mapping, mark_sym_for_renaming, mark_set_for_renaming, need_ssa_update_p, name_registered_for_update_p, ssa_names_to_replace, release_ssa_name_after_update_ssa, insert_updated_phi_nodes_for, update_ssa): New. * tree-loop-linear.c (linear_transform_loops): Call update_ssa instead of rewrite_into_ssa. * tree-optimize.c (vars_to_rename): Remove. Update all users. (init_tree_optimization_passes): Replace pass_redundant_phi with pass_copy_prop. Add pass_vrp. Replace pass_ccp with pass_store_ccp. Add pass_store_copy_prop after pass_store_ccp. (execute_todo): If the TODO_ flags don't include updating the SSA form, assert that it does not need to be updated. Call update_ssa instead of rewrite_into_ssa and rewrite_def_def_chains. If TODO_verify_loops is set, call verify_loop_closed_ssa. (tree_rest_of_compilation): * tree-pass.h (TODO_dump_func, TODO_ggc_collect, TODO_verify_ssa, TODO_verify_flow, TODO_verify_stmts, TODO_cleanup_cfg): Renumber. (TODO_verify_loops, TODO_update_ssa, TODO_update_ssa_no_phi, TODO_update_ssa_full_phi, TODO_update_ssa_only_virtuals): Define. (pass_copy_prop, pass_store_ccp, pass_store_copy_prop, pass_vrp): Declare. * tree-phinodes.c (make_phi_node): Update documentation. (remove_all_phi_nodes_for): Remove. (find_phi_node_for): New. * tree-pretty-print.c (dump_generic_node): Handle ASSERT_EXPR. * tree-scalar-evolution.c (follow_ssa_edge_in_rhs): Likewise. (interpret_rhs_modify_expr): Likewise. * tree-sra.c (decide_instantiations): Mark all symbols in SRA_CANDIDATES for renaming. (mark_all_v_defs_1): Rename from mark_all_v_defs. (mark_all_v_defs): New function. Update all users to call it with the whole list of scalarized statements, not just the first one. * tree-ssa-alias.c (count_ptr_derefs): Make extern. (compute_flow_insensitive_aliasing): If the tag is unmodifiable and the variable isn't or vice-versa, don't make them alias of each other. (setup_pointers_and_addressables): If the type tag for VAR is about to change, mark the old one for renaming. (add_type_alias): New. * tree-ssa-ccp.c: Document SSA-CCP and STORE-CCP. (ccp_lattice_t): Rename from latticevalue. (value): Remove. Update all users. (const_val): New local variable. (do_store_ccp): New local variable. (dump_lattice_value): Handle UNINITIALIZED. (debug_lattice_value): New. (get_default_value): Re-write. (set_lattice_value): Re-write. (def_to_varying): Remove. Update all users. (likely_value): Return VARYING for statements that make stores when STORE_CCP is false. Return VARYING for any statement other than MODIFY_EXPR, COND_EXPR and SWITCH_EXPR. (ccp_initialize): Re-write. (replace_uses_in, replace_vuse_in, substitute_and_fold): Move to tree-ssa-propagate.c. (ccp_lattice_meet): Handle memory stores when DO_STORE_CCP is true. (ccp_visit_phi_node): Likewise. (ccp_fold): Likewise. (evaluate_stmt): Likewise. (visit_assignment): Likewise. (ccp_visit_stmt): Likewise. (execute_ssa_ccp): Add argument 'store_ccp'. Copy it into DO_STORE_CCP. (do_ssa_ccp): New. (pass_ccp): Use it. (do_ssa_store_ccp): New. (gate_store_ccp): New. (pass_store_ccp): Declare. * tree-ssa-copy.c: Include tree-ssa-propagate.h. (may_propagate_copy): Reformat. Don't abort if ORIG is a virtual and DEST isn't. If NEW does not have alias information but DEST does, copy it. (copy_of, cached_last_copy_of, do_store_copy_prop, enum copy_prop_kind, which_copy_prop): Declare. (stmt_may_generate_copy, get_copy_of_val, get_last_copy_of, set_copy_of_val, dump_copy_of, copy_prop_visit_assignment, copy_prop_visit_cond_stmt, copy_prop_visit_stmt, copy_prop_visit_phi_node, init_copy_prop, fini_copy_prop, execute_copy_prop, gate_copy_prop, do_copy_prop, gate_store_copy_prop, store_copy_prop): New. (pass_copy_prop, pass_store_copy_prop): Declare. * tree-ssa-dom.c (struct opt_stats_d): Add fields 'num_const_prop' and 'num_copy_prop'. (cprop_operand): Update them. (dump_dominator_optimization_stats): Dump them. (tree_ssa_dominator_optimize): Call update_ssa instead of rewrite_into_ssa. (loop_depth_of_name): Declare extern. (simplify_cond_and_lookup_avail_expr): Guard against NULL values for LOW or HIGH. (cprop_into_successor_phis): Only propagate if NEW != ORIG. (record_equivalences_from_stmt): Call expr_computes_nonzero. (cprop_operand): Only propagate if VAL != OP. * tree-ssa-dse.c (dse_optimize_stmt): Mark symbols in removed statement for renaming. * tree-ssa-loop-im.c (move_computations): Call update_ssa. * tree-ssa-loop-ivopts.c (rewrite_address_base): Call add_type_alias if necessary. Call mark_new_vars_to_rename. (tree_ssa_iv_optimize): If new symbols need to be renamed, mark every statement updated, call update_ssa and rewrite_into_loop_closed_ssa. * tree-ssa-loop-manip.c (add_exit_phis): Do not remove DEF_BB from LIVEIN if VAR is a virtual. * tree-ssa-loop.c (tree_loop_optimizer_init): Call update_ssa. * tree-ssa-operands.c (get_expr_operands): Handle ASSERT_EXPR. (get_call_expr_operands): Reformat statement. (add_stmt_operand): Don't create V_MAY_DEFs for read-only symbols. * tree-ssa-propagate.c (ssa_prop_init): Initialize SSA_NAME_VALUE for every name. (first_vdef, stmt_makes_single_load, stmt_makes_single_store, get_value_loaded_by): New. (replace_uses_in, replace_vuses_in, replace_phi_args_in, substitute_and_fold): Move from tree-ssa-ccp.c. * tree-ssa-propagate.h (struct prop_value_d, prop_value_t, first_vdef, stmt_makes_single_load, stmt_makes_single_store, get_value_loaded_by, replace_uses_in, substitute_and_fold): Declare. * tree-ssa.c (verify_use): Fix error message. (propagate_into_addr, replace_immediate_uses, get_eq_name, check_phi_redundancy, kill_redundant_phi_nodes, pass_redundant_phi): Remove. Update all users. * tree-vect-transform.c (vect_create_data_ref_ptr): Call add_type_alias, if necessary. * tree-vectorizer.h (struct _stmt_vect_info): Update documentation for field 'memtag'. * tree-vrp.c: New file. * tree.def (ASSERT_EXPR): Define. * tree.h (ASSERT_EXPR_VAR): Define. (ASSERT_EXPR_COND): Define. (SSA_NAME_VALUE_RANGE): Define. (struct tree_ssa_name): Add field 'value_range'. (PHI_REWRITTEN): Remove. (struct tree_phi_node): Remove field 'rewritten'. * doc/invoke.texi (-fdump-tree-storeccp, -ftree-copy-prop, -ftree-store-copy-prop): Document. * doc/tree-ssa.texi: Remove broken link to McCAT's compiler. Document usage of update_ssa. testsuite/ChangeLog * g++.dg/tree-ssa/pr18178.C: New test. * gcc.c-torture/execute/20030216-1.x: Ignore at -O1. * gcc.c-torture/execute/20041019-1.c: New test. * gcc.dg/tree-ssa/20041008-1.c: New test. * gcc.dg/tree-ssa/ssa-ccp-12.c: New test. * gcc.dg/tree-ssa/20030731-2.c: Update to use -fdump-tree-store_ccp. * gcc.dg/tree-ssa/20030917-1.c: Likewise. * gcc.dg/tree-ssa/20030917-3.c: Likewise. * gcc.dg/tree-ssa/20040721-1.c: Likewise. * gcc.dg/tree-ssa/ssa-ccp-1.c: Likewise. * gcc.dg/tree-ssa/ssa-ccp-2.c: Likewise. * gcc.dg/tree-ssa/ssa-ccp-3.c: Likewise. * gcc.dg/tree-ssa/ssa-ccp-7.c: Likewise. * gcc.dg/tree-ssa/ssa-ccp-9.c: Likewise. From-SVN: r97884
1299 lines
33 KiB
C
1299 lines
33 KiB
C
/* Inline functions for tree-flow.h
|
|
Copyright (C) 2001, 2003, 2005 Free Software Foundation, Inc.
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#ifndef _TREE_FLOW_INLINE_H
|
|
#define _TREE_FLOW_INLINE_H 1
|
|
|
|
/* Inline functions for manipulating various data structures defined in
|
|
tree-flow.h. See tree-flow.h for documentation. */
|
|
|
|
/* Return the variable annotation for T, which must be a _DECL node.
|
|
Return NULL if the variable annotation doesn't already exist. */
|
|
static inline var_ann_t
|
|
var_ann (tree t)
|
|
{
|
|
gcc_assert (t);
|
|
gcc_assert (DECL_P (t));
|
|
gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN);
|
|
|
|
return (var_ann_t) t->common.ann;
|
|
}
|
|
|
|
/* Return the variable annotation for T, which must be a _DECL node.
|
|
Create the variable annotation if it doesn't exist. */
|
|
static inline var_ann_t
|
|
get_var_ann (tree var)
|
|
{
|
|
var_ann_t ann = var_ann (var);
|
|
return (ann) ? ann : create_var_ann (var);
|
|
}
|
|
|
|
/* Return the statement annotation for T, which must be a statement
|
|
node. Return NULL if the statement annotation doesn't exist. */
|
|
static inline stmt_ann_t
|
|
stmt_ann (tree t)
|
|
{
|
|
#ifdef ENABLE_CHECKING
|
|
gcc_assert (is_gimple_stmt (t));
|
|
#endif
|
|
return (stmt_ann_t) t->common.ann;
|
|
}
|
|
|
|
/* Return the statement annotation for T, which must be a statement
|
|
node. Create the statement annotation if it doesn't exist. */
|
|
static inline stmt_ann_t
|
|
get_stmt_ann (tree stmt)
|
|
{
|
|
stmt_ann_t ann = stmt_ann (stmt);
|
|
return (ann) ? ann : create_stmt_ann (stmt);
|
|
}
|
|
|
|
|
|
/* Return the annotation type for annotation ANN. */
|
|
static inline enum tree_ann_type
|
|
ann_type (tree_ann_t ann)
|
|
{
|
|
return ann->common.type;
|
|
}
|
|
|
|
/* Return the basic block for statement T. */
|
|
static inline basic_block
|
|
bb_for_stmt (tree t)
|
|
{
|
|
stmt_ann_t ann;
|
|
|
|
if (TREE_CODE (t) == PHI_NODE)
|
|
return PHI_BB (t);
|
|
|
|
ann = stmt_ann (t);
|
|
return ann ? ann->bb : NULL;
|
|
}
|
|
|
|
/* Return the may_aliases varray for variable VAR, or NULL if it has
|
|
no may aliases. */
|
|
static inline varray_type
|
|
may_aliases (tree var)
|
|
{
|
|
var_ann_t ann = var_ann (var);
|
|
return ann ? ann->may_aliases : NULL;
|
|
}
|
|
|
|
/* Return the line number for EXPR, or return -1 if we have no line
|
|
number information for it. */
|
|
static inline int
|
|
get_lineno (tree expr)
|
|
{
|
|
if (expr == NULL_TREE)
|
|
return -1;
|
|
|
|
if (TREE_CODE (expr) == COMPOUND_EXPR)
|
|
expr = TREE_OPERAND (expr, 0);
|
|
|
|
if (! EXPR_HAS_LOCATION (expr))
|
|
return -1;
|
|
|
|
return EXPR_LINENO (expr);
|
|
}
|
|
|
|
/* Return the file name for EXPR, or return "???" if we have no
|
|
filename information. */
|
|
static inline const char *
|
|
get_filename (tree expr)
|
|
{
|
|
const char *filename;
|
|
if (expr == NULL_TREE)
|
|
return "???";
|
|
|
|
if (TREE_CODE (expr) == COMPOUND_EXPR)
|
|
expr = TREE_OPERAND (expr, 0);
|
|
|
|
if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr)))
|
|
return filename;
|
|
else
|
|
return "???";
|
|
}
|
|
|
|
/* Return true if T is a noreturn call. */
|
|
static inline bool
|
|
noreturn_call_p (tree t)
|
|
{
|
|
tree call = get_call_expr_in (t);
|
|
return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
|
|
}
|
|
|
|
/* Mark statement T as modified. */
|
|
static inline void
|
|
mark_stmt_modified (tree t)
|
|
{
|
|
stmt_ann_t ann;
|
|
if (TREE_CODE (t) == PHI_NODE)
|
|
return;
|
|
|
|
ann = stmt_ann (t);
|
|
if (ann == NULL)
|
|
ann = create_stmt_ann (t);
|
|
else if (noreturn_call_p (t))
|
|
VEC_safe_push (tree, modified_noreturn_calls, t);
|
|
ann->modified = 1;
|
|
}
|
|
|
|
/* Mark statement T as modified, and update it. */
|
|
static inline void
|
|
update_stmt (tree t)
|
|
{
|
|
if (TREE_CODE (t) == PHI_NODE)
|
|
return;
|
|
mark_stmt_modified (t);
|
|
update_stmt_operands (t);
|
|
}
|
|
|
|
static inline void
|
|
update_stmt_if_modified (tree t)
|
|
{
|
|
if (stmt_modified_p (t))
|
|
update_stmt_operands (t);
|
|
}
|
|
|
|
static inline void
|
|
get_stmt_operands (tree stmt ATTRIBUTE_UNUSED)
|
|
{
|
|
#ifdef ENABLE_CHECKING
|
|
stmt_ann_t ann;
|
|
|
|
/* The optimizers cannot handle statements that are nothing but a
|
|
_DECL. This indicates a bug in the gimplifier. */
|
|
gcc_assert (!SSA_VAR_P (stmt));
|
|
|
|
/* Ignore error statements. */
|
|
if (TREE_CODE (stmt) == ERROR_MARK)
|
|
return;
|
|
|
|
ann = get_stmt_ann (stmt);
|
|
gcc_assert (!ann->modified);
|
|
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
/* Return true if T is marked as modified, false otherwise. */
|
|
static inline bool
|
|
stmt_modified_p (tree t)
|
|
{
|
|
stmt_ann_t ann = stmt_ann (t);
|
|
|
|
/* Note that if the statement doesn't yet have an annotation, we consider it
|
|
modified. This will force the next call to update_stmt_operands to scan
|
|
the statement. */
|
|
return ann ? ann->modified : true;
|
|
}
|
|
|
|
/* Delink an immediate_uses node from its chain. */
|
|
static inline void
|
|
delink_imm_use (ssa_imm_use_t *linknode)
|
|
{
|
|
/* Return if this node is not in a list. */
|
|
if (linknode->prev == NULL)
|
|
return;
|
|
|
|
linknode->prev->next = linknode->next;
|
|
linknode->next->prev = linknode->prev;
|
|
linknode->prev = NULL;
|
|
linknode->next = NULL;
|
|
}
|
|
|
|
/* Link ssa_imm_use node LINKNODE into the chain for LIST. */
|
|
static inline void
|
|
link_imm_use_to_list (ssa_imm_use_t *linknode, ssa_imm_use_t *list)
|
|
{
|
|
/* Link the new node at the head of the list. If we are in the process of
|
|
traversing the list, we wont visit any new nodes added to it. */
|
|
linknode->prev = list;
|
|
linknode->next = list->next;
|
|
list->next->prev = linknode;
|
|
list->next = linknode;
|
|
}
|
|
|
|
/* Link ssa_imm_use node LINKNODE into the chain for DEF. */
|
|
static inline void
|
|
link_imm_use (ssa_imm_use_t *linknode, tree def)
|
|
{
|
|
ssa_imm_use_t *root;
|
|
|
|
if (!def || TREE_CODE (def) != SSA_NAME)
|
|
linknode->prev = NULL;
|
|
else
|
|
{
|
|
root = &(SSA_NAME_IMM_USE_NODE (def));
|
|
#ifdef ENABLE_CHECKING
|
|
if (linknode->use)
|
|
gcc_assert (*(linknode->use) == def);
|
|
#endif
|
|
link_imm_use_to_list (linknode, root);
|
|
}
|
|
}
|
|
|
|
/* Set the value of a use pointed by USE to VAL. */
|
|
static inline void
|
|
set_ssa_use_from_ptr (use_operand_p use, tree val)
|
|
{
|
|
delink_imm_use (use);
|
|
*(use->use) = val;
|
|
link_imm_use (use, val);
|
|
}
|
|
|
|
/* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occuring
|
|
in STMT. */
|
|
static inline void
|
|
link_imm_use_stmt (ssa_imm_use_t *linknode, tree def, tree stmt)
|
|
{
|
|
if (stmt)
|
|
link_imm_use (linknode, def);
|
|
else
|
|
link_imm_use (linknode, NULL);
|
|
linknode->stmt = stmt;
|
|
}
|
|
|
|
/* Relink a new node in place of an old node in the list. */
|
|
static inline void
|
|
relink_imm_use (ssa_imm_use_t *node, ssa_imm_use_t *old)
|
|
{
|
|
#ifdef ENABLE_CHECKING
|
|
/* The node one had better be in the same list. */
|
|
if (*(old->use) != *(node->use))
|
|
abort ();
|
|
#endif
|
|
node->prev = old->prev;
|
|
node->next = old->next;
|
|
if (old->prev)
|
|
{
|
|
old->prev->next = node;
|
|
old->next->prev = node;
|
|
/* Remove the old node from the list. */
|
|
old->prev = NULL;
|
|
}
|
|
|
|
}
|
|
|
|
/* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occuring
|
|
in STMT. */
|
|
static inline void
|
|
relink_imm_use_stmt (ssa_imm_use_t *linknode, ssa_imm_use_t *old, tree stmt)
|
|
{
|
|
if (stmt)
|
|
relink_imm_use (linknode, old);
|
|
else
|
|
link_imm_use (linknode, NULL);
|
|
linknode->stmt = stmt;
|
|
}
|
|
|
|
/* Finished the traverse of an immediate use list IMM by removing it from
|
|
the list. */
|
|
static inline void
|
|
end_safe_imm_use_traverse (imm_use_iterator *imm)
|
|
{
|
|
delink_imm_use (&(imm->iter_node));
|
|
}
|
|
|
|
/* Return true if IMM is at the end of the list. */
|
|
static inline bool
|
|
end_safe_imm_use_p (imm_use_iterator *imm)
|
|
{
|
|
return (imm->imm_use == imm->end_p);
|
|
}
|
|
|
|
/* Initialize iterator IMM to process the list for VAR. */
|
|
static inline use_operand_p
|
|
first_safe_imm_use (imm_use_iterator *imm, tree var)
|
|
{
|
|
/* Set up and link the iterator node into the linked list for VAR. */
|
|
imm->iter_node.use = NULL;
|
|
imm->iter_node.stmt = NULL_TREE;
|
|
imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
|
|
/* Check if there are 0 elements. */
|
|
if (imm->end_p->next == imm->end_p)
|
|
{
|
|
imm->imm_use = imm->end_p;
|
|
return NULL_USE_OPERAND_P;
|
|
}
|
|
|
|
link_imm_use (&(imm->iter_node), var);
|
|
imm->imm_use = imm->iter_node.next;
|
|
return imm->imm_use;
|
|
}
|
|
|
|
/* Bump IMM to then next use in the list. */
|
|
static inline use_operand_p
|
|
next_safe_imm_use (imm_use_iterator *imm)
|
|
{
|
|
ssa_imm_use_t *ptr;
|
|
use_operand_p old;
|
|
|
|
old = imm->imm_use;
|
|
/* If the next node following the iter_node is still the one referred to by
|
|
imm_use, then the list hasn't changed, go to the next node. */
|
|
if (imm->iter_node.next == imm->imm_use)
|
|
{
|
|
ptr = &(imm->iter_node);
|
|
/* Remove iternode from the list. */
|
|
delink_imm_use (ptr);
|
|
imm->imm_use = imm->imm_use->next;
|
|
if (! end_safe_imm_use_p (imm))
|
|
{
|
|
/* This isnt the end, link iternode before the next use. */
|
|
ptr->prev = imm->imm_use->prev;
|
|
ptr->next = imm->imm_use;
|
|
imm->imm_use->prev->next = ptr;
|
|
imm->imm_use->prev = ptr;
|
|
}
|
|
else
|
|
return old;
|
|
}
|
|
else
|
|
{
|
|
/* If the 'next' value after the iterator isn't the same as it was, then
|
|
a node has been deleted, so we simply proceed to the node following
|
|
where the iterator is in the list. */
|
|
imm->imm_use = imm->iter_node.next;
|
|
if (end_safe_imm_use_p (imm))
|
|
{
|
|
end_safe_imm_use_traverse (imm);
|
|
return old;
|
|
}
|
|
}
|
|
|
|
return imm->imm_use;
|
|
}
|
|
|
|
/* Return true is IMM has reached the end of the immediate use list. */
|
|
static inline bool
|
|
end_readonly_imm_use_p (imm_use_iterator *imm)
|
|
{
|
|
return (imm->imm_use == imm->end_p);
|
|
}
|
|
|
|
/* Initialize iterator IMM to process the list for VAR. */
|
|
static inline use_operand_p
|
|
first_readonly_imm_use (imm_use_iterator *imm, tree var)
|
|
{
|
|
gcc_assert (TREE_CODE (var) == SSA_NAME);
|
|
|
|
imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
|
|
imm->imm_use = imm->end_p->next;
|
|
#ifdef ENABLE_CHECKING
|
|
imm->iter_node.next = imm->imm_use->next;
|
|
#endif
|
|
if (end_readonly_imm_use_p (imm))
|
|
return NULL_USE_OPERAND_P;
|
|
return imm->imm_use;
|
|
}
|
|
|
|
/* Bump IMM to then next use in the list. */
|
|
static inline use_operand_p
|
|
next_readonly_imm_use (imm_use_iterator *imm)
|
|
{
|
|
use_operand_p old = imm->imm_use;
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
/* If this assertion fails, it indicates the 'next' pointer has changed
|
|
since we the last bump. This indicates that the list is being modified
|
|
via stmt changes, or SET_USE, or somesuch thing, and you need to be
|
|
using the SAFE version of the iterator. */
|
|
gcc_assert (imm->iter_node.next == old->next);
|
|
imm->iter_node.next = old->next->next;
|
|
#endif
|
|
|
|
imm->imm_use = old->next;
|
|
if (end_readonly_imm_use_p (imm))
|
|
return old;
|
|
return imm->imm_use;
|
|
}
|
|
|
|
/* Return true if VAR has no uses. */
|
|
static inline bool
|
|
has_zero_uses (tree var)
|
|
{
|
|
ssa_imm_use_t *ptr;
|
|
ptr = &(SSA_NAME_IMM_USE_NODE (var));
|
|
/* A single use means there is no items in the list. */
|
|
return (ptr == ptr->next);
|
|
}
|
|
|
|
/* Return true if VAR has a single use. */
|
|
static inline bool
|
|
has_single_use (tree var)
|
|
{
|
|
ssa_imm_use_t *ptr;
|
|
ptr = &(SSA_NAME_IMM_USE_NODE (var));
|
|
/* A single use means there is one item in the list. */
|
|
return (ptr != ptr->next && ptr == ptr->next->next);
|
|
}
|
|
|
|
/* If VAR has only a single immediate use, return true, and set USE_P and STMT
|
|
to the use pointer and stmt of occurrence. */
|
|
static inline bool
|
|
single_imm_use (tree var, use_operand_p *use_p, tree *stmt)
|
|
{
|
|
ssa_imm_use_t *ptr;
|
|
|
|
ptr = &(SSA_NAME_IMM_USE_NODE (var));
|
|
if (ptr != ptr->next && ptr == ptr->next->next)
|
|
{
|
|
*use_p = ptr->next;
|
|
*stmt = ptr->next->stmt;
|
|
return true;
|
|
}
|
|
*use_p = NULL_USE_OPERAND_P;
|
|
*stmt = NULL_TREE;
|
|
return false;
|
|
}
|
|
|
|
/* Return the number of immediate uses of VAR. */
|
|
static inline unsigned int
|
|
num_imm_uses (tree var)
|
|
{
|
|
ssa_imm_use_t *ptr, *start;
|
|
unsigned int num;
|
|
|
|
start = &(SSA_NAME_IMM_USE_NODE (var));
|
|
num = 0;
|
|
for (ptr = start->next; ptr != start; ptr = ptr->next)
|
|
num++;
|
|
|
|
return num;
|
|
}
|
|
|
|
/* Return the definitions present in ANN, a statement annotation.
|
|
Return NULL if this annotation contains no definitions. */
|
|
static inline def_optype
|
|
get_def_ops (stmt_ann_t ann)
|
|
{
|
|
return ann ? ann->operands.def_ops : NULL;
|
|
}
|
|
|
|
/* Return the uses present in ANN, a statement annotation.
|
|
Return NULL if this annotation contains no uses. */
|
|
static inline use_optype
|
|
get_use_ops (stmt_ann_t ann)
|
|
{
|
|
return ann ? ann->operands.use_ops : NULL;
|
|
}
|
|
|
|
/* Return the virtual may-defs present in ANN, a statement
|
|
annotation.
|
|
Return NULL if this annotation contains no virtual may-defs. */
|
|
static inline v_may_def_optype
|
|
get_v_may_def_ops (stmt_ann_t ann)
|
|
{
|
|
return ann ? ann->operands.v_may_def_ops : NULL;
|
|
}
|
|
|
|
/* Return the virtual uses present in ANN, a statement annotation.
|
|
Return NULL if this annotation contains no virtual uses. */
|
|
static inline vuse_optype
|
|
get_vuse_ops (stmt_ann_t ann)
|
|
{
|
|
return ann ? ann->operands.vuse_ops : NULL;
|
|
}
|
|
|
|
/* Return the virtual must-defs present in ANN, a statement
|
|
annotation. Return NULL if this annotation contains no must-defs.*/
|
|
static inline v_must_def_optype
|
|
get_v_must_def_ops (stmt_ann_t ann)
|
|
{
|
|
return ann ? ann->operands.v_must_def_ops : NULL;
|
|
}
|
|
|
|
/* Return the tree pointer to by USE. */
|
|
static inline tree
|
|
get_use_from_ptr (use_operand_p use)
|
|
{
|
|
return *(use->use);
|
|
}
|
|
|
|
/* Return the tree pointer to by DEF. */
|
|
static inline tree
|
|
get_def_from_ptr (def_operand_p def)
|
|
{
|
|
return *(def.def);
|
|
}
|
|
|
|
/* Return a pointer to the tree that is at INDEX in the USES array. */
|
|
static inline use_operand_p
|
|
get_use_op_ptr (use_optype uses, unsigned int index)
|
|
{
|
|
gcc_assert (index < uses->num_uses);
|
|
return &(uses->uses[index]);
|
|
}
|
|
|
|
/* Return a def_operand_p pointer for element INDEX of DEFS. */
|
|
static inline def_operand_p
|
|
get_def_op_ptr (def_optype defs, unsigned int index)
|
|
{
|
|
gcc_assert (index < defs->num_defs);
|
|
return defs->defs[index];
|
|
}
|
|
|
|
/* Return the def_operand_p that is the V_MAY_DEF_RESULT for the V_MAY_DEF
|
|
at INDEX in the V_MAY_DEFS array. */
|
|
static inline def_operand_p
|
|
get_v_may_def_result_ptr(v_may_def_optype v_may_defs, unsigned int index)
|
|
{
|
|
def_operand_p op;
|
|
gcc_assert (index < v_may_defs->num_v_may_defs);
|
|
op.def = &(v_may_defs->v_may_defs[index].def);
|
|
return op;
|
|
}
|
|
|
|
/* Return a use_operand_p that is the V_MAY_DEF_OP for the V_MAY_DEF at
|
|
INDEX in the V_MAY_DEFS array. */
|
|
static inline use_operand_p
|
|
get_v_may_def_op_ptr(v_may_def_optype v_may_defs, unsigned int index)
|
|
{
|
|
gcc_assert (index < v_may_defs->num_v_may_defs);
|
|
return &(v_may_defs->v_may_defs[index].imm_use);
|
|
}
|
|
|
|
/* Return a use_operand_p that is at INDEX in the VUSES array. */
|
|
static inline use_operand_p
|
|
get_vuse_op_ptr(vuse_optype vuses, unsigned int index)
|
|
{
|
|
gcc_assert (index < vuses->num_vuses);
|
|
return &(vuses->vuses[index].imm_use);
|
|
}
|
|
|
|
/* Return a def_operand_p that is the V_MUST_DEF_RESULT for the
|
|
V_MUST_DEF at INDEX in the V_MUST_DEFS array. */
|
|
static inline def_operand_p
|
|
get_v_must_def_result_ptr (v_must_def_optype v_must_defs, unsigned int index)
|
|
{
|
|
def_operand_p op;
|
|
gcc_assert (index < v_must_defs->num_v_must_defs);
|
|
op.def = &(v_must_defs->v_must_defs[index].def);
|
|
return op;
|
|
}
|
|
|
|
/* Return a use_operand_p that is the V_MUST_DEF_KILL for the
|
|
V_MUST_DEF at INDEX in the V_MUST_DEFS array. */
|
|
static inline use_operand_p
|
|
get_v_must_def_kill_ptr (v_must_def_optype v_must_defs, unsigned int index)
|
|
{
|
|
gcc_assert (index < v_must_defs->num_v_must_defs);
|
|
return &(v_must_defs->v_must_defs[index].imm_use);
|
|
}
|
|
|
|
/* Return a def_operand_p pointer for the result of PHI. */
|
|
static inline def_operand_p
|
|
get_phi_result_ptr (tree phi)
|
|
{
|
|
def_operand_p op;
|
|
op.def = &(PHI_RESULT_TREE (phi));
|
|
return op;
|
|
}
|
|
|
|
/* Return a use_operand_p pointer for argument I of phinode PHI. */
|
|
static inline use_operand_p
|
|
get_phi_arg_def_ptr (tree phi, int i)
|
|
{
|
|
return &(PHI_ARG_IMM_USE_NODE (phi,i));
|
|
}
|
|
|
|
/* Delink all immediate_use information for STMT. */
|
|
static inline void
|
|
delink_stmt_imm_use (tree stmt)
|
|
{
|
|
unsigned int x;
|
|
use_optype uses = STMT_USE_OPS (stmt);
|
|
vuse_optype vuses = STMT_VUSE_OPS (stmt);
|
|
v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
|
|
v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
|
|
|
|
for (x = 0; x < NUM_USES (uses); x++)
|
|
delink_imm_use (&(uses->uses[x]));
|
|
|
|
for (x = 0; x < NUM_VUSES (vuses); x++)
|
|
delink_imm_use (&(vuses->vuses[x].imm_use));
|
|
|
|
for (x = 0; x < NUM_V_MAY_DEFS (v_may_defs); x++)
|
|
delink_imm_use (&(v_may_defs->v_may_defs[x].imm_use));
|
|
|
|
for (x = 0; x < NUM_V_MUST_DEFS (v_must_defs); x++)
|
|
delink_imm_use (&(v_must_defs->v_must_defs[x].imm_use));
|
|
}
|
|
|
|
|
|
/* Return the bitmap of addresses taken by STMT, or NULL if it takes
|
|
no addresses. */
|
|
static inline bitmap
|
|
addresses_taken (tree stmt)
|
|
{
|
|
stmt_ann_t ann = stmt_ann (stmt);
|
|
return ann ? ann->addresses_taken : NULL;
|
|
}
|
|
|
|
/* Return the basic_block annotation for BB. */
|
|
static inline bb_ann_t
|
|
bb_ann (basic_block bb)
|
|
{
|
|
return (bb_ann_t)bb->tree_annotations;
|
|
}
|
|
|
|
/* Return the PHI nodes for basic block BB, or NULL if there are no
|
|
PHI nodes. */
|
|
static inline tree
|
|
phi_nodes (basic_block bb)
|
|
{
|
|
return bb_ann (bb)->phi_nodes;
|
|
}
|
|
|
|
/* Set list of phi nodes of a basic block BB to L. */
|
|
|
|
static inline void
|
|
set_phi_nodes (basic_block bb, tree l)
|
|
{
|
|
tree phi;
|
|
|
|
bb_ann (bb)->phi_nodes = l;
|
|
for (phi = l; phi; phi = PHI_CHAIN (phi))
|
|
set_bb_for_stmt (phi, bb);
|
|
}
|
|
|
|
/* Return the phi argument which contains the specified use. */
|
|
|
|
static inline int
|
|
phi_arg_index_from_use (use_operand_p use)
|
|
{
|
|
struct phi_arg_d *element, *root;
|
|
int index;
|
|
tree phi;
|
|
|
|
/* Since the use is the first thing in a PHI argument element, we can
|
|
calculate its index based on casting it to an argument, and performing
|
|
pointer arithmetic. */
|
|
|
|
phi = USE_STMT (use);
|
|
gcc_assert (TREE_CODE (phi) == PHI_NODE);
|
|
|
|
element = (struct phi_arg_d *)use;
|
|
root = &(PHI_ARG_ELT (phi, 0));
|
|
index = element - root;
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
/* Make sure the calculation doesn't have any leftover bytes. If it does,
|
|
then imm_use is likely not the first element in phi_arg_d. */
|
|
gcc_assert (
|
|
(((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
|
|
gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
|
|
#endif
|
|
|
|
return index;
|
|
}
|
|
|
|
/* Mark VAR as used, so that it'll be preserved during rtl expansion. */
|
|
|
|
static inline void
|
|
set_is_used (tree var)
|
|
{
|
|
var_ann_t ann = get_var_ann (var);
|
|
ann->used = 1;
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
/* Return true if T is an executable statement. */
|
|
static inline bool
|
|
is_exec_stmt (tree t)
|
|
{
|
|
return (t && !IS_EMPTY_STMT (t) && t != error_mark_node);
|
|
}
|
|
|
|
|
|
/* Return true if this stmt can be the target of a control transfer stmt such
|
|
as a goto. */
|
|
static inline bool
|
|
is_label_stmt (tree t)
|
|
{
|
|
if (t)
|
|
switch (TREE_CODE (t))
|
|
{
|
|
case LABEL_DECL:
|
|
case LABEL_EXPR:
|
|
case CASE_LABEL_EXPR:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Set the default definition for VAR to DEF. */
|
|
static inline void
|
|
set_default_def (tree var, tree def)
|
|
{
|
|
var_ann_t ann = get_var_ann (var);
|
|
ann->default_def = def;
|
|
}
|
|
|
|
/* Return the default definition for variable VAR, or NULL if none
|
|
exists. */
|
|
static inline tree
|
|
default_def (tree var)
|
|
{
|
|
var_ann_t ann = var_ann (var);
|
|
return ann ? ann->default_def : NULL_TREE;
|
|
}
|
|
|
|
/* PHI nodes should contain only ssa_names and invariants. A test
|
|
for ssa_name is definitely simpler; don't let invalid contents
|
|
slip in in the meantime. */
|
|
|
|
static inline bool
|
|
phi_ssa_name_p (tree t)
|
|
{
|
|
if (TREE_CODE (t) == SSA_NAME)
|
|
return true;
|
|
#ifdef ENABLE_CHECKING
|
|
gcc_assert (is_gimple_min_invariant (t));
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
/* Return a block_stmt_iterator that points to beginning of basic
|
|
block BB. */
|
|
static inline block_stmt_iterator
|
|
bsi_start (basic_block bb)
|
|
{
|
|
block_stmt_iterator bsi;
|
|
if (bb->stmt_list)
|
|
bsi.tsi = tsi_start (bb->stmt_list);
|
|
else
|
|
{
|
|
gcc_assert (bb->index < 0);
|
|
bsi.tsi.ptr = NULL;
|
|
bsi.tsi.container = NULL;
|
|
}
|
|
bsi.bb = bb;
|
|
return bsi;
|
|
}
|
|
|
|
/* Return a block statement iterator that points to the last label in
|
|
block BB. */
|
|
|
|
static inline block_stmt_iterator
|
|
bsi_after_labels (basic_block bb)
|
|
{
|
|
block_stmt_iterator bsi;
|
|
tree_stmt_iterator next;
|
|
|
|
bsi.bb = bb;
|
|
|
|
if (!bb->stmt_list)
|
|
{
|
|
gcc_assert (bb->index < 0);
|
|
bsi.tsi.ptr = NULL;
|
|
bsi.tsi.container = NULL;
|
|
return bsi;
|
|
}
|
|
|
|
bsi.tsi = tsi_start (bb->stmt_list);
|
|
if (tsi_end_p (bsi.tsi))
|
|
return bsi;
|
|
|
|
/* Ensure that there are some labels. The rationale is that we want
|
|
to insert after the bsi that is returned, and these insertions should
|
|
be placed at the start of the basic block. This would not work if the
|
|
first statement was not label; rather fail here than enable the user
|
|
proceed in wrong way. */
|
|
gcc_assert (TREE_CODE (tsi_stmt (bsi.tsi)) == LABEL_EXPR);
|
|
|
|
next = bsi.tsi;
|
|
tsi_next (&next);
|
|
|
|
while (!tsi_end_p (next)
|
|
&& TREE_CODE (tsi_stmt (next)) == LABEL_EXPR)
|
|
{
|
|
bsi.tsi = next;
|
|
tsi_next (&next);
|
|
}
|
|
|
|
return bsi;
|
|
}
|
|
|
|
/* Return a block statement iterator that points to the end of basic
|
|
block BB. */
|
|
static inline block_stmt_iterator
|
|
bsi_last (basic_block bb)
|
|
{
|
|
block_stmt_iterator bsi;
|
|
if (bb->stmt_list)
|
|
bsi.tsi = tsi_last (bb->stmt_list);
|
|
else
|
|
{
|
|
gcc_assert (bb->index < 0);
|
|
bsi.tsi.ptr = NULL;
|
|
bsi.tsi.container = NULL;
|
|
}
|
|
bsi.bb = bb;
|
|
return bsi;
|
|
}
|
|
|
|
/* Return true if block statement iterator I has reached the end of
|
|
the basic block. */
|
|
static inline bool
|
|
bsi_end_p (block_stmt_iterator i)
|
|
{
|
|
return tsi_end_p (i.tsi);
|
|
}
|
|
|
|
/* Modify block statement iterator I so that it is at the next
|
|
statement in the basic block. */
|
|
static inline void
|
|
bsi_next (block_stmt_iterator *i)
|
|
{
|
|
tsi_next (&i->tsi);
|
|
}
|
|
|
|
/* Modify block statement iterator I so that it is at the previous
|
|
statement in the basic block. */
|
|
static inline void
|
|
bsi_prev (block_stmt_iterator *i)
|
|
{
|
|
tsi_prev (&i->tsi);
|
|
}
|
|
|
|
/* Return the statement that block statement iterator I is currently
|
|
at. */
|
|
static inline tree
|
|
bsi_stmt (block_stmt_iterator i)
|
|
{
|
|
return tsi_stmt (i.tsi);
|
|
}
|
|
|
|
/* Return a pointer to the statement that block statement iterator I
|
|
is currently at. */
|
|
static inline tree *
|
|
bsi_stmt_ptr (block_stmt_iterator i)
|
|
{
|
|
return tsi_stmt_ptr (i.tsi);
|
|
}
|
|
|
|
/* Returns the loop of the statement STMT. */
|
|
|
|
static inline struct loop *
|
|
loop_containing_stmt (tree stmt)
|
|
{
|
|
basic_block bb = bb_for_stmt (stmt);
|
|
if (!bb)
|
|
return NULL;
|
|
|
|
return bb->loop_father;
|
|
}
|
|
|
|
/* Return true if VAR is a clobbered by function calls. */
|
|
static inline bool
|
|
is_call_clobbered (tree var)
|
|
{
|
|
return is_global_var (var)
|
|
|| bitmap_bit_p (call_clobbered_vars, var_ann (var)->uid);
|
|
}
|
|
|
|
/* Mark variable VAR as being clobbered by function calls. */
|
|
static inline void
|
|
mark_call_clobbered (tree var)
|
|
{
|
|
var_ann_t ann = var_ann (var);
|
|
/* If VAR is a memory tag, then we need to consider it a global
|
|
variable. This is because the pointer that VAR represents has
|
|
been found to point to either an arbitrary location or to a known
|
|
location in global memory. */
|
|
if (ann->mem_tag_kind != NOT_A_TAG && ann->mem_tag_kind != STRUCT_FIELD)
|
|
DECL_EXTERNAL (var) = 1;
|
|
bitmap_set_bit (call_clobbered_vars, ann->uid);
|
|
ssa_call_clobbered_cache_valid = false;
|
|
ssa_ro_call_cache_valid = false;
|
|
}
|
|
|
|
/* Clear the call-clobbered attribute from variable VAR. */
|
|
static inline void
|
|
clear_call_clobbered (tree var)
|
|
{
|
|
var_ann_t ann = var_ann (var);
|
|
if (ann->mem_tag_kind != NOT_A_TAG && ann->mem_tag_kind != STRUCT_FIELD)
|
|
DECL_EXTERNAL (var) = 0;
|
|
bitmap_clear_bit (call_clobbered_vars, ann->uid);
|
|
ssa_call_clobbered_cache_valid = false;
|
|
ssa_ro_call_cache_valid = false;
|
|
}
|
|
|
|
/* Mark variable VAR as being non-addressable. */
|
|
static inline void
|
|
mark_non_addressable (tree var)
|
|
{
|
|
bitmap_clear_bit (call_clobbered_vars, var_ann (var)->uid);
|
|
TREE_ADDRESSABLE (var) = 0;
|
|
ssa_call_clobbered_cache_valid = false;
|
|
ssa_ro_call_cache_valid = false;
|
|
}
|
|
|
|
/* Return the common annotation for T. Return NULL if the annotation
|
|
doesn't already exist. */
|
|
static inline tree_ann_t
|
|
tree_ann (tree t)
|
|
{
|
|
return t->common.ann;
|
|
}
|
|
|
|
/* Return a common annotation for T. Create the constant annotation if it
|
|
doesn't exist. */
|
|
static inline tree_ann_t
|
|
get_tree_ann (tree t)
|
|
{
|
|
tree_ann_t ann = tree_ann (t);
|
|
return (ann) ? ann : create_tree_ann (t);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
/* The following set of routines are used to iterator over various type of
|
|
SSA operands. */
|
|
|
|
/* Return true if PTR is finished iterating. */
|
|
static inline bool
|
|
op_iter_done (ssa_op_iter *ptr)
|
|
{
|
|
return ptr->done;
|
|
}
|
|
|
|
/* Get the next iterator use value for PTR. */
|
|
static inline use_operand_p
|
|
op_iter_next_use (ssa_op_iter *ptr)
|
|
{
|
|
if (ptr->use_i < ptr->num_use)
|
|
{
|
|
return USE_OP_PTR (ptr->ops->use_ops, (ptr->use_i)++);
|
|
}
|
|
if (ptr->vuse_i < ptr->num_vuse)
|
|
{
|
|
return VUSE_OP_PTR (ptr->ops->vuse_ops, (ptr->vuse_i)++);
|
|
}
|
|
if (ptr->v_mayu_i < ptr->num_v_mayu)
|
|
{
|
|
return V_MAY_DEF_OP_PTR (ptr->ops->v_may_def_ops,
|
|
(ptr->v_mayu_i)++);
|
|
}
|
|
if (ptr->v_mustu_i < ptr->num_v_mustu)
|
|
{
|
|
return V_MUST_DEF_KILL_PTR (ptr->ops->v_must_def_ops,
|
|
(ptr->v_mustu_i)++);
|
|
}
|
|
ptr->done = true;
|
|
return NULL_USE_OPERAND_P;
|
|
}
|
|
|
|
/* Get the next iterator def value for PTR. */
|
|
static inline def_operand_p
|
|
op_iter_next_def (ssa_op_iter *ptr)
|
|
{
|
|
if (ptr->def_i < ptr->num_def)
|
|
{
|
|
return DEF_OP_PTR (ptr->ops->def_ops, (ptr->def_i)++);
|
|
}
|
|
if (ptr->v_mustd_i < ptr->num_v_mustd)
|
|
{
|
|
return V_MUST_DEF_RESULT_PTR (ptr->ops->v_must_def_ops,
|
|
(ptr->v_mustd_i)++);
|
|
}
|
|
if (ptr->v_mayd_i < ptr->num_v_mayd)
|
|
{
|
|
return V_MAY_DEF_RESULT_PTR (ptr->ops->v_may_def_ops,
|
|
(ptr->v_mayd_i)++);
|
|
}
|
|
ptr->done = true;
|
|
return NULL_DEF_OPERAND_P;
|
|
}
|
|
|
|
/* Get the next iterator tree value for PTR. */
|
|
static inline tree
|
|
op_iter_next_tree (ssa_op_iter *ptr)
|
|
{
|
|
if (ptr->use_i < ptr->num_use)
|
|
{
|
|
return USE_OP (ptr->ops->use_ops, (ptr->use_i)++);
|
|
}
|
|
if (ptr->vuse_i < ptr->num_vuse)
|
|
{
|
|
return VUSE_OP (ptr->ops->vuse_ops, (ptr->vuse_i)++);
|
|
}
|
|
if (ptr->v_mayu_i < ptr->num_v_mayu)
|
|
{
|
|
return V_MAY_DEF_OP (ptr->ops->v_may_def_ops, (ptr->v_mayu_i)++);
|
|
}
|
|
if (ptr->v_mustu_i < ptr->num_v_mustu)
|
|
{
|
|
return V_MUST_DEF_KILL (ptr->ops->v_must_def_ops, (ptr->v_mustu_i)++);
|
|
}
|
|
if (ptr->def_i < ptr->num_def)
|
|
{
|
|
return DEF_OP (ptr->ops->def_ops, (ptr->def_i)++);
|
|
}
|
|
if (ptr->v_mustd_i < ptr->num_v_mustd)
|
|
{
|
|
return V_MUST_DEF_RESULT (ptr->ops->v_must_def_ops,
|
|
(ptr->v_mustd_i)++);
|
|
}
|
|
if (ptr->v_mayd_i < ptr->num_v_mayd)
|
|
{
|
|
return V_MAY_DEF_RESULT (ptr->ops->v_may_def_ops,
|
|
(ptr->v_mayd_i)++);
|
|
}
|
|
ptr->done = true;
|
|
return NULL;
|
|
}
|
|
|
|
/* Initialize the iterator PTR to the virtual defs in STMT. */
|
|
static inline void
|
|
op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
|
|
{
|
|
stmt_operands_p ops;
|
|
stmt_ann_t ann = get_stmt_ann (stmt);
|
|
|
|
ops = &(ann->operands);
|
|
ptr->done = false;
|
|
ptr->ops = ops;
|
|
ptr->num_def = (flags & SSA_OP_DEF) ? NUM_DEFS (ops->def_ops) : 0;
|
|
ptr->num_use = (flags & SSA_OP_USE) ? NUM_USES (ops->use_ops) : 0;
|
|
ptr->num_vuse = (flags & SSA_OP_VUSE) ? NUM_VUSES (ops->vuse_ops) : 0;
|
|
ptr->num_v_mayu = (flags & SSA_OP_VMAYUSE)
|
|
? NUM_V_MAY_DEFS (ops->v_may_def_ops) : 0;
|
|
ptr->num_v_mayd = (flags & SSA_OP_VMAYDEF)
|
|
? NUM_V_MAY_DEFS (ops->v_may_def_ops) : 0;
|
|
ptr->num_v_mustu = (flags & SSA_OP_VMUSTDEFKILL)
|
|
? NUM_V_MUST_DEFS (ops->v_must_def_ops) : 0;
|
|
ptr->num_v_mustd = (flags & SSA_OP_VMUSTDEF)
|
|
? NUM_V_MUST_DEFS (ops->v_must_def_ops) : 0;
|
|
ptr->def_i = 0;
|
|
ptr->use_i = 0;
|
|
ptr->vuse_i = 0;
|
|
ptr->v_mayu_i = 0;
|
|
ptr->v_mayd_i = 0;
|
|
ptr->v_mustu_i = 0;
|
|
ptr->v_mustd_i = 0;
|
|
}
|
|
|
|
/* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
|
|
the first use. */
|
|
static inline use_operand_p
|
|
op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
|
|
{
|
|
op_iter_init (ptr, stmt, flags);
|
|
return op_iter_next_use (ptr);
|
|
}
|
|
|
|
/* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
|
|
the first def. */
|
|
static inline def_operand_p
|
|
op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
|
|
{
|
|
op_iter_init (ptr, stmt, flags);
|
|
return op_iter_next_def (ptr);
|
|
}
|
|
|
|
/* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
|
|
the first operand as a tree. */
|
|
static inline tree
|
|
op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
|
|
{
|
|
op_iter_init (ptr, stmt, flags);
|
|
return op_iter_next_tree (ptr);
|
|
}
|
|
|
|
/* Get the next iterator mustdef value for PTR, returning the mustdef values in
|
|
KILL and DEF. */
|
|
static inline void
|
|
op_iter_next_mustdef (use_operand_p *kill, def_operand_p *def, ssa_op_iter *ptr)
|
|
{
|
|
if (ptr->v_mustu_i < ptr->num_v_mustu)
|
|
{
|
|
*def = V_MUST_DEF_RESULT_PTR (ptr->ops->v_must_def_ops, ptr->v_mustu_i);
|
|
*kill = V_MUST_DEF_KILL_PTR (ptr->ops->v_must_def_ops, (ptr->v_mustu_i)++);
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
*def = NULL_DEF_OPERAND_P;
|
|
*kill = NULL_USE_OPERAND_P;
|
|
}
|
|
ptr->done = true;
|
|
return;
|
|
}
|
|
/* Get the next iterator maydef value for PTR, returning the maydef values in
|
|
USE and DEF. */
|
|
static inline void
|
|
op_iter_next_maydef (use_operand_p *use, def_operand_p *def, ssa_op_iter *ptr)
|
|
{
|
|
if (ptr->v_mayu_i < ptr->num_v_mayu)
|
|
{
|
|
*def = V_MAY_DEF_RESULT_PTR (ptr->ops->v_may_def_ops, ptr->v_mayu_i);
|
|
*use = V_MAY_DEF_OP_PTR (ptr->ops->v_may_def_ops, (ptr->v_mayu_i)++);
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
*def = NULL_DEF_OPERAND_P;
|
|
*use = NULL_USE_OPERAND_P;
|
|
}
|
|
ptr->done = true;
|
|
return;
|
|
}
|
|
|
|
/* Initialize iterator PTR to the operands in STMT. Return the first operands
|
|
in USE and DEF. */
|
|
static inline void
|
|
op_iter_init_maydef (ssa_op_iter *ptr, tree stmt, use_operand_p *use,
|
|
def_operand_p *def)
|
|
{
|
|
op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
|
|
op_iter_next_maydef (use, def, ptr);
|
|
}
|
|
|
|
/* Return true if VAR cannot be modified by the program. */
|
|
|
|
static inline bool
|
|
unmodifiable_var_p (tree var)
|
|
{
|
|
if (TREE_CODE (var) == SSA_NAME)
|
|
var = SSA_NAME_VAR (var);
|
|
return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
|
|
}
|
|
|
|
|
|
/* Initialize iterator PTR to the operands in STMT. Return the first operands
|
|
in KILL and DEF. */
|
|
static inline void
|
|
op_iter_init_mustdef (ssa_op_iter *ptr, tree stmt, use_operand_p *kill,
|
|
def_operand_p *def)
|
|
{
|
|
op_iter_init (ptr, stmt, SSA_OP_VMUSTDEFKILL);
|
|
op_iter_next_mustdef (kill, def, ptr);
|
|
}
|
|
|
|
/* Return true if REF, a COMPONENT_REF, has an ARRAY_REF somewhere in it. */
|
|
|
|
static inline bool
|
|
ref_contains_array_ref (tree ref)
|
|
{
|
|
while (handled_component_p (ref))
|
|
{
|
|
if (TREE_CODE (ref) == ARRAY_REF)
|
|
return true;
|
|
ref = TREE_OPERAND (ref, 0);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Given a variable VAR, lookup and return a pointer to the list of
|
|
subvariables for it. */
|
|
|
|
static inline subvar_t *
|
|
lookup_subvars_for_var (tree var)
|
|
{
|
|
var_ann_t ann = var_ann (var);
|
|
gcc_assert (ann);
|
|
return &ann->subvars;
|
|
}
|
|
|
|
/* Given a variable VAR, return a linked list of subvariables for VAR, or
|
|
NULL, if there are no subvariables. */
|
|
|
|
static inline subvar_t
|
|
get_subvars_for_var (tree var)
|
|
{
|
|
subvar_t subvars;
|
|
|
|
gcc_assert (SSA_VAR_P (var));
|
|
|
|
if (TREE_CODE (var) == SSA_NAME)
|
|
subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var)));
|
|
else
|
|
subvars = *(lookup_subvars_for_var (var));
|
|
return subvars;
|
|
}
|
|
|
|
/* Return true if V is a tree that we can have subvars for.
|
|
Normally, this is any aggregate type, however, due to implementation
|
|
limitations ATM, we exclude array types as well. */
|
|
|
|
static inline bool
|
|
var_can_have_subvars (tree v)
|
|
{
|
|
return (AGGREGATE_TYPE_P (TREE_TYPE (v)) &&
|
|
TREE_CODE (TREE_TYPE (v)) != ARRAY_TYPE);
|
|
}
|
|
|
|
|
|
/* Return true if OFFSET and SIZE define a range that overlaps with some
|
|
portion of the range of SV, a subvar. If there was an exact overlap,
|
|
*EXACT will be set to true upon return. */
|
|
|
|
static inline bool
|
|
overlap_subvar (HOST_WIDE_INT offset, HOST_WIDE_INT size,
|
|
subvar_t sv, bool *exact)
|
|
{
|
|
/* There are three possible cases of overlap.
|
|
1. We can have an exact overlap, like so:
|
|
|offset, offset + size |
|
|
|sv->offset, sv->offset + sv->size |
|
|
|
|
2. We can have offset starting after sv->offset, like so:
|
|
|
|
|offset, offset + size |
|
|
|sv->offset, sv->offset + sv->size |
|
|
|
|
3. We can have offset starting before sv->offset, like so:
|
|
|
|
|offset, offset + size |
|
|
|sv->offset, sv->offset + sv->size|
|
|
*/
|
|
|
|
if (exact)
|
|
*exact = false;
|
|
if (offset == sv->offset && size == sv->size)
|
|
{
|
|
if (exact)
|
|
*exact = true;
|
|
return true;
|
|
}
|
|
else if (offset >= sv->offset && offset < (sv->offset + sv->size))
|
|
{
|
|
return true;
|
|
}
|
|
else if (offset < sv->offset && (offset + size > sv->offset))
|
|
{
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
}
|
|
|
|
#endif /* _TREE_FLOW_INLINE_H */
|