2013-01-02 Robert Dewar <dewar@adacore.com> * checks.adb, exp_ch4.adb, exp_ch6.adb, exp_ch7.adb, exp_ch9.adb, exp_disp.adb, exp_dist.adb, exp_intr.adb, exp_prag.adb, exp_util.adb, freeze.adb, gnat1drv.adb, inline.adb, layout.adb, lib-xref.adb, par-ch10.adb, par-labl.adb, par-load.adb, par-util.adb, restrict.adb, sem_ch13.adb, sem_ch4.adb, sem_ch6.adb, sem_dim.adb, sem_elab.adb, sem_res.adb, sem_warn.adb, sinput-l.adb: Add tags to warning messages. * sem_ch6.ads, warnsw.ads, opt.ads: Minor comment updates. 2013-01-02 Robert Dewar <dewar@adacore.com> * err_vars.ads: Minor comment fix. 2013-01-02 Ed Schonberg <schonberg@adacore.com> * sem_ch12.adb: Refine predicate. From-SVN: r194787
1209 lines
41 KiB
Ada
1209 lines
41 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT COMPILER COMPONENTS --
|
|
-- --
|
|
-- I N L I N E --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- Copyright (C) 1992-2012, Free Software Foundation, Inc. --
|
|
-- --
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 3, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
|
-- for more details. You should have received a copy of the GNU General --
|
|
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
|
|
-- http://www.gnu.org/licenses for a complete copy of the license. --
|
|
-- --
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
with Atree; use Atree;
|
|
with Einfo; use Einfo;
|
|
with Elists; use Elists;
|
|
with Errout; use Errout;
|
|
with Exp_Ch7; use Exp_Ch7;
|
|
with Exp_Tss; use Exp_Tss;
|
|
with Fname; use Fname;
|
|
with Fname.UF; use Fname.UF;
|
|
with Lib; use Lib;
|
|
with Namet; use Namet;
|
|
with Nlists; use Nlists;
|
|
with Sem_Aux; use Sem_Aux;
|
|
with Sem_Ch8; use Sem_Ch8;
|
|
with Sem_Ch10; use Sem_Ch10;
|
|
with Sem_Ch12; use Sem_Ch12;
|
|
with Sem_Util; use Sem_Util;
|
|
with Sinfo; use Sinfo;
|
|
with Snames; use Snames;
|
|
with Stand; use Stand;
|
|
with Uname; use Uname;
|
|
|
|
package body Inline is
|
|
|
|
--------------------
|
|
-- Inlined Bodies --
|
|
--------------------
|
|
|
|
-- Inlined functions are actually placed in line by the backend if the
|
|
-- corresponding bodies are available (i.e. compiled). Whenever we find
|
|
-- a call to an inlined subprogram, we add the name of the enclosing
|
|
-- compilation unit to a worklist. After all compilation, and after
|
|
-- expansion of generic bodies, we traverse the list of pending bodies
|
|
-- and compile them as well.
|
|
|
|
package Inlined_Bodies is new Table.Table (
|
|
Table_Component_Type => Entity_Id,
|
|
Table_Index_Type => Int,
|
|
Table_Low_Bound => 0,
|
|
Table_Initial => Alloc.Inlined_Bodies_Initial,
|
|
Table_Increment => Alloc.Inlined_Bodies_Increment,
|
|
Table_Name => "Inlined_Bodies");
|
|
|
|
-----------------------
|
|
-- Inline Processing --
|
|
-----------------------
|
|
|
|
-- For each call to an inlined subprogram, we make entries in a table
|
|
-- that stores caller and callee, and indicates the call direction from
|
|
-- one to the other. We also record the compilation unit that contains
|
|
-- the callee. After analyzing the bodies of all such compilation units,
|
|
-- we compute the transitive closure of inlined subprograms called from
|
|
-- the main compilation unit and make it available to the code generator
|
|
-- in no particular order, thus allowing cycles in the call graph.
|
|
|
|
Last_Inlined : Entity_Id := Empty;
|
|
|
|
-- For each entry in the table we keep a list of successors in topological
|
|
-- order, i.e. callers of the current subprogram.
|
|
|
|
type Subp_Index is new Nat;
|
|
No_Subp : constant Subp_Index := 0;
|
|
|
|
-- The subprogram entities are hashed into the Inlined table
|
|
|
|
Num_Hash_Headers : constant := 512;
|
|
|
|
Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
|
|
of Subp_Index;
|
|
|
|
type Succ_Index is new Nat;
|
|
No_Succ : constant Succ_Index := 0;
|
|
|
|
type Succ_Info is record
|
|
Subp : Subp_Index;
|
|
Next : Succ_Index;
|
|
end record;
|
|
|
|
-- The following table stores list elements for the successor lists.
|
|
-- These lists cannot be chained directly through entries in the Inlined
|
|
-- table, because a given subprogram can appear in several such lists.
|
|
|
|
package Successors is new Table.Table (
|
|
Table_Component_Type => Succ_Info,
|
|
Table_Index_Type => Succ_Index,
|
|
Table_Low_Bound => 1,
|
|
Table_Initial => Alloc.Successors_Initial,
|
|
Table_Increment => Alloc.Successors_Increment,
|
|
Table_Name => "Successors");
|
|
|
|
type Subp_Info is record
|
|
Name : Entity_Id := Empty;
|
|
Next : Subp_Index := No_Subp;
|
|
First_Succ : Succ_Index := No_Succ;
|
|
Listed : Boolean := False;
|
|
Main_Call : Boolean := False;
|
|
Processed : Boolean := False;
|
|
end record;
|
|
|
|
package Inlined is new Table.Table (
|
|
Table_Component_Type => Subp_Info,
|
|
Table_Index_Type => Subp_Index,
|
|
Table_Low_Bound => 1,
|
|
Table_Initial => Alloc.Inlined_Initial,
|
|
Table_Increment => Alloc.Inlined_Increment,
|
|
Table_Name => "Inlined");
|
|
|
|
-----------------------
|
|
-- Local Subprograms --
|
|
-----------------------
|
|
|
|
function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id;
|
|
pragma Inline (Get_Code_Unit_Entity);
|
|
-- Return the entity node for the unit containing E. Always return
|
|
-- the spec for a package.
|
|
|
|
function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean;
|
|
-- Return True if E is in the main unit or its spec or in a subunit
|
|
|
|
procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
|
|
-- Make two entries in Inlined table, for an inlined subprogram being
|
|
-- called, and for the inlined subprogram that contains the call. If
|
|
-- the call is in the main compilation unit, Caller is Empty.
|
|
|
|
function Add_Subp (E : Entity_Id) return Subp_Index;
|
|
-- Make entry in Inlined table for subprogram E, or return table index
|
|
-- that already holds E.
|
|
|
|
function Has_Initialized_Type (E : Entity_Id) return Boolean;
|
|
-- If a candidate for inlining contains type declarations for types with
|
|
-- non-trivial initialization procedures, they are not worth inlining.
|
|
|
|
function Is_Nested (E : Entity_Id) return Boolean;
|
|
-- If the function is nested inside some other function, it will
|
|
-- always be compiled if that function is, so don't add it to the
|
|
-- inline list. We cannot compile a nested function outside the
|
|
-- scope of the containing function anyway. This is also the case if
|
|
-- the function is defined in a task body or within an entry (for
|
|
-- example, an initialization procedure).
|
|
|
|
procedure Add_Inlined_Subprogram (Index : Subp_Index);
|
|
-- Add the subprogram to the list of inlined subprogram for the unit
|
|
|
|
------------------------------
|
|
-- Deferred Cleanup Actions --
|
|
------------------------------
|
|
|
|
-- The cleanup actions for scopes that contain instantiations is delayed
|
|
-- until after expansion of those instantiations, because they may
|
|
-- contain finalizable objects or tasks that affect the cleanup code.
|
|
-- A scope that contains instantiations only needs to be finalized once,
|
|
-- even if it contains more than one instance. We keep a list of scopes
|
|
-- that must still be finalized, and call cleanup_actions after all the
|
|
-- instantiations have been completed.
|
|
|
|
To_Clean : Elist_Id;
|
|
|
|
procedure Add_Scope_To_Clean (Inst : Entity_Id);
|
|
-- Build set of scopes on which cleanup actions must be performed
|
|
|
|
procedure Cleanup_Scopes;
|
|
-- Complete cleanup actions on scopes that need it
|
|
|
|
--------------
|
|
-- Add_Call --
|
|
--------------
|
|
|
|
procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
|
|
P1 : constant Subp_Index := Add_Subp (Called);
|
|
P2 : Subp_Index;
|
|
J : Succ_Index;
|
|
|
|
begin
|
|
if Present (Caller) then
|
|
P2 := Add_Subp (Caller);
|
|
|
|
-- Add P1 to the list of successors of P2, if not already there.
|
|
-- Note that P2 may contain more than one call to P1, and only
|
|
-- one needs to be recorded.
|
|
|
|
J := Inlined.Table (P2).First_Succ;
|
|
while J /= No_Succ loop
|
|
if Successors.Table (J).Subp = P1 then
|
|
return;
|
|
end if;
|
|
|
|
J := Successors.Table (J).Next;
|
|
end loop;
|
|
|
|
-- On exit, make a successor entry for P1
|
|
|
|
Successors.Increment_Last;
|
|
Successors.Table (Successors.Last).Subp := P1;
|
|
Successors.Table (Successors.Last).Next :=
|
|
Inlined.Table (P2).First_Succ;
|
|
Inlined.Table (P2).First_Succ := Successors.Last;
|
|
else
|
|
Inlined.Table (P1).Main_Call := True;
|
|
end if;
|
|
end Add_Call;
|
|
|
|
----------------------
|
|
-- Add_Inlined_Body --
|
|
----------------------
|
|
|
|
procedure Add_Inlined_Body (E : Entity_Id) is
|
|
|
|
type Inline_Level_Type is (Dont_Inline, Inline_Call, Inline_Package);
|
|
-- Level of inlining for the call: Dont_Inline means no inlining,
|
|
-- Inline_Call means that only the call is considered for inlining,
|
|
-- Inline_Package means that the call is considered for inlining and
|
|
-- its package compiled and scanned for more inlining opportunities.
|
|
|
|
function Must_Inline return Inline_Level_Type;
|
|
-- Inlining is only done if the call statement N is in the main unit,
|
|
-- or within the body of another inlined subprogram.
|
|
|
|
-----------------
|
|
-- Must_Inline --
|
|
-----------------
|
|
|
|
function Must_Inline return Inline_Level_Type is
|
|
Scop : Entity_Id;
|
|
Comp : Node_Id;
|
|
|
|
begin
|
|
-- Check if call is in main unit
|
|
|
|
Scop := Current_Scope;
|
|
|
|
-- Do not try to inline if scope is standard. This could happen, for
|
|
-- example, for a call to Add_Global_Declaration, and it causes
|
|
-- trouble to try to inline at this level.
|
|
|
|
if Scop = Standard_Standard then
|
|
return Dont_Inline;
|
|
end if;
|
|
|
|
-- Otherwise lookup scope stack to outer scope
|
|
|
|
while Scope (Scop) /= Standard_Standard
|
|
and then not Is_Child_Unit (Scop)
|
|
loop
|
|
Scop := Scope (Scop);
|
|
end loop;
|
|
|
|
Comp := Parent (Scop);
|
|
while Nkind (Comp) /= N_Compilation_Unit loop
|
|
Comp := Parent (Comp);
|
|
end loop;
|
|
|
|
-- If the call is in the main unit, inline the call and compile the
|
|
-- package of the subprogram to find more calls to be inlined.
|
|
|
|
if Comp = Cunit (Main_Unit)
|
|
or else Comp = Library_Unit (Cunit (Main_Unit))
|
|
then
|
|
Add_Call (E);
|
|
return Inline_Package;
|
|
end if;
|
|
|
|
-- The call is not in the main unit. See if it is in some inlined
|
|
-- subprogram. If so, inline the call and, if the inlining level is
|
|
-- set to 1, stop there; otherwise also compile the package as above.
|
|
|
|
Scop := Current_Scope;
|
|
while Scope (Scop) /= Standard_Standard
|
|
and then not Is_Child_Unit (Scop)
|
|
loop
|
|
if Is_Overloadable (Scop)
|
|
and then Is_Inlined (Scop)
|
|
then
|
|
Add_Call (E, Scop);
|
|
|
|
if Inline_Level = 1 then
|
|
return Inline_Call;
|
|
else
|
|
return Inline_Package;
|
|
end if;
|
|
end if;
|
|
|
|
Scop := Scope (Scop);
|
|
end loop;
|
|
|
|
return Dont_Inline;
|
|
end Must_Inline;
|
|
|
|
Level : Inline_Level_Type;
|
|
|
|
-- Start of processing for Add_Inlined_Body
|
|
|
|
begin
|
|
-- Find unit containing E, and add to list of inlined bodies if needed.
|
|
-- If the body is already present, no need to load any other unit. This
|
|
-- is the case for an initialization procedure, which appears in the
|
|
-- package declaration that contains the type. It is also the case if
|
|
-- the body has already been analyzed. Finally, if the unit enclosing
|
|
-- E is an instance, the instance body will be analyzed in any case,
|
|
-- and there is no need to add the enclosing unit (whose body might not
|
|
-- be available).
|
|
|
|
-- Library-level functions must be handled specially, because there is
|
|
-- no enclosing package to retrieve. In this case, it is the body of
|
|
-- the function that will have to be loaded.
|
|
|
|
if Is_Abstract_Subprogram (E)
|
|
or else Is_Nested (E)
|
|
or else Convention (E) = Convention_Protected
|
|
then
|
|
return;
|
|
end if;
|
|
|
|
Level := Must_Inline;
|
|
if Level /= Dont_Inline then
|
|
declare
|
|
Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
|
|
|
|
begin
|
|
if Pack = E then
|
|
|
|
-- Library-level inlined function. Add function itself to
|
|
-- list of needed units.
|
|
|
|
Set_Is_Called (E);
|
|
Inlined_Bodies.Increment_Last;
|
|
Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
|
|
|
|
elsif Ekind (Pack) = E_Package then
|
|
Set_Is_Called (E);
|
|
|
|
if Is_Generic_Instance (Pack) then
|
|
null;
|
|
|
|
-- Do not inline the package if the subprogram is an init proc
|
|
-- or other internally generated subprogram, because in that
|
|
-- case the subprogram body appears in the same unit that
|
|
-- declares the type, and that body is visible to the back end.
|
|
-- Do not inline it either if it is in the main unit.
|
|
|
|
elsif Level = Inline_Package
|
|
and then not Is_Inlined (Pack)
|
|
and then Comes_From_Source (E)
|
|
and then not In_Main_Unit_Or_Subunit (Pack)
|
|
then
|
|
Set_Is_Inlined (Pack);
|
|
Inlined_Bodies.Increment_Last;
|
|
Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
|
|
end if;
|
|
end if;
|
|
end;
|
|
end if;
|
|
end Add_Inlined_Body;
|
|
|
|
----------------------------
|
|
-- Add_Inlined_Subprogram --
|
|
----------------------------
|
|
|
|
procedure Add_Inlined_Subprogram (Index : Subp_Index) is
|
|
E : constant Entity_Id := Inlined.Table (Index).Name;
|
|
Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
|
|
|
|
function Back_End_Cannot_Inline (Subp : Entity_Id) return Boolean;
|
|
-- There are various conditions under which back-end inlining cannot
|
|
-- be done reliably:
|
|
--
|
|
-- a) If a body has handlers, it must not be inlined, because this
|
|
-- may violate program semantics, and because in zero-cost exception
|
|
-- mode it will lead to undefined symbols at link time.
|
|
--
|
|
-- b) If a body contains inlined function instances, it cannot be
|
|
-- inlined under ZCX because the numeric suffix generated by gigi
|
|
-- will be different in the body and the place of the inlined call.
|
|
--
|
|
-- This procedure must be carefully coordinated with the back end.
|
|
|
|
----------------------------
|
|
-- Back_End_Cannot_Inline --
|
|
----------------------------
|
|
|
|
function Back_End_Cannot_Inline (Subp : Entity_Id) return Boolean is
|
|
Decl : constant Node_Id := Unit_Declaration_Node (Subp);
|
|
Body_Ent : Entity_Id;
|
|
Ent : Entity_Id;
|
|
|
|
begin
|
|
if Nkind (Decl) = N_Subprogram_Declaration
|
|
and then Present (Corresponding_Body (Decl))
|
|
then
|
|
Body_Ent := Corresponding_Body (Decl);
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
-- If subprogram is marked Inline_Always, inlining is mandatory
|
|
|
|
if Has_Pragma_Inline_Always (Subp) then
|
|
return False;
|
|
end if;
|
|
|
|
if Present
|
|
(Exception_Handlers
|
|
(Handled_Statement_Sequence
|
|
(Unit_Declaration_Node (Corresponding_Body (Decl)))))
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
Ent := First_Entity (Body_Ent);
|
|
while Present (Ent) loop
|
|
if Is_Subprogram (Ent)
|
|
and then Is_Generic_Instance (Ent)
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
Next_Entity (Ent);
|
|
end loop;
|
|
|
|
return False;
|
|
end Back_End_Cannot_Inline;
|
|
|
|
-- Start of processing for Add_Inlined_Subprogram
|
|
|
|
begin
|
|
-- If the subprogram is to be inlined, and if its unit is known to be
|
|
-- inlined or is an instance whose body will be analyzed anyway or the
|
|
-- subprogram has been generated by the compiler, and if it is declared
|
|
-- at the library level not in the main unit, and if it can be inlined
|
|
-- by the back-end, then insert it in the list of inlined subprograms.
|
|
|
|
if Is_Inlined (E)
|
|
and then (Is_Inlined (Pack)
|
|
or else Is_Generic_Instance (Pack)
|
|
or else Is_Internal (E))
|
|
and then not In_Main_Unit_Or_Subunit (E)
|
|
and then not Is_Nested (E)
|
|
and then not Has_Initialized_Type (E)
|
|
then
|
|
if Back_End_Cannot_Inline (E) then
|
|
Set_Is_Inlined (E, False);
|
|
|
|
else
|
|
if No (Last_Inlined) then
|
|
Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
|
|
else
|
|
Set_Next_Inlined_Subprogram (Last_Inlined, E);
|
|
end if;
|
|
|
|
Last_Inlined := E;
|
|
end if;
|
|
end if;
|
|
|
|
Inlined.Table (Index).Listed := True;
|
|
end Add_Inlined_Subprogram;
|
|
|
|
------------------------
|
|
-- Add_Scope_To_Clean --
|
|
------------------------
|
|
|
|
procedure Add_Scope_To_Clean (Inst : Entity_Id) is
|
|
Scop : constant Entity_Id := Enclosing_Dynamic_Scope (Inst);
|
|
Elmt : Elmt_Id;
|
|
|
|
begin
|
|
-- If the instance appears in a library-level package declaration,
|
|
-- all finalization is global, and nothing needs doing here.
|
|
|
|
if Scop = Standard_Standard then
|
|
return;
|
|
end if;
|
|
|
|
-- If the instance is within a generic unit, no finalization code
|
|
-- can be generated. Note that at this point all bodies have been
|
|
-- analyzed, and the scope stack itself is not present, and the flag
|
|
-- Inside_A_Generic is not set.
|
|
|
|
declare
|
|
S : Entity_Id;
|
|
|
|
begin
|
|
S := Scope (Inst);
|
|
while Present (S) and then S /= Standard_Standard loop
|
|
if Is_Generic_Unit (S) then
|
|
return;
|
|
end if;
|
|
|
|
S := Scope (S);
|
|
end loop;
|
|
end;
|
|
|
|
Elmt := First_Elmt (To_Clean);
|
|
while Present (Elmt) loop
|
|
if Node (Elmt) = Scop then
|
|
return;
|
|
end if;
|
|
|
|
Elmt := Next_Elmt (Elmt);
|
|
end loop;
|
|
|
|
Append_Elmt (Scop, To_Clean);
|
|
end Add_Scope_To_Clean;
|
|
|
|
--------------
|
|
-- Add_Subp --
|
|
--------------
|
|
|
|
function Add_Subp (E : Entity_Id) return Subp_Index is
|
|
Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
|
|
J : Subp_Index;
|
|
|
|
procedure New_Entry;
|
|
-- Initialize entry in Inlined table
|
|
|
|
procedure New_Entry is
|
|
begin
|
|
Inlined.Increment_Last;
|
|
Inlined.Table (Inlined.Last).Name := E;
|
|
Inlined.Table (Inlined.Last).Next := No_Subp;
|
|
Inlined.Table (Inlined.Last).First_Succ := No_Succ;
|
|
Inlined.Table (Inlined.Last).Listed := False;
|
|
Inlined.Table (Inlined.Last).Main_Call := False;
|
|
Inlined.Table (Inlined.Last).Processed := False;
|
|
end New_Entry;
|
|
|
|
-- Start of processing for Add_Subp
|
|
|
|
begin
|
|
if Hash_Headers (Index) = No_Subp then
|
|
New_Entry;
|
|
Hash_Headers (Index) := Inlined.Last;
|
|
return Inlined.Last;
|
|
|
|
else
|
|
J := Hash_Headers (Index);
|
|
while J /= No_Subp loop
|
|
if Inlined.Table (J).Name = E then
|
|
return J;
|
|
else
|
|
Index := J;
|
|
J := Inlined.Table (J).Next;
|
|
end if;
|
|
end loop;
|
|
|
|
-- On exit, subprogram was not found. Enter in table. Index is
|
|
-- the current last entry on the hash chain.
|
|
|
|
New_Entry;
|
|
Inlined.Table (Index).Next := Inlined.Last;
|
|
return Inlined.Last;
|
|
end if;
|
|
end Add_Subp;
|
|
|
|
----------------------------
|
|
-- Analyze_Inlined_Bodies --
|
|
----------------------------
|
|
|
|
procedure Analyze_Inlined_Bodies is
|
|
Comp_Unit : Node_Id;
|
|
J : Int;
|
|
Pack : Entity_Id;
|
|
Subp : Subp_Index;
|
|
S : Succ_Index;
|
|
|
|
type Pending_Index is new Nat;
|
|
|
|
package Pending_Inlined is new Table.Table (
|
|
Table_Component_Type => Subp_Index,
|
|
Table_Index_Type => Pending_Index,
|
|
Table_Low_Bound => 1,
|
|
Table_Initial => Alloc.Inlined_Initial,
|
|
Table_Increment => Alloc.Inlined_Increment,
|
|
Table_Name => "Pending_Inlined");
|
|
-- The workpile used to compute the transitive closure
|
|
|
|
function Is_Ancestor_Of_Main
|
|
(U_Name : Entity_Id;
|
|
Nam : Node_Id) return Boolean;
|
|
-- Determine whether the unit whose body is loaded is an ancestor of
|
|
-- the main unit, and has a with_clause on it. The body is not
|
|
-- analyzed yet, so the check is purely lexical: the name of the with
|
|
-- clause is a selected component, and names of ancestors must match.
|
|
|
|
-------------------------
|
|
-- Is_Ancestor_Of_Main --
|
|
-------------------------
|
|
|
|
function Is_Ancestor_Of_Main
|
|
(U_Name : Entity_Id;
|
|
Nam : Node_Id) return Boolean
|
|
is
|
|
Pref : Node_Id;
|
|
|
|
begin
|
|
if Nkind (Nam) /= N_Selected_Component then
|
|
return False;
|
|
|
|
else
|
|
if Chars (Selector_Name (Nam)) /=
|
|
Chars (Cunit_Entity (Main_Unit))
|
|
then
|
|
return False;
|
|
end if;
|
|
|
|
Pref := Prefix (Nam);
|
|
if Nkind (Pref) = N_Identifier then
|
|
|
|
-- Par is an ancestor of Par.Child.
|
|
|
|
return Chars (Pref) = Chars (U_Name);
|
|
|
|
elsif Nkind (Pref) = N_Selected_Component
|
|
and then Chars (Selector_Name (Pref)) = Chars (U_Name)
|
|
then
|
|
-- Par.Child is an ancestor of Par.Child.Grand.
|
|
|
|
return True; -- should check that ancestor match
|
|
|
|
else
|
|
-- A is an ancestor of A.B.C if it is an ancestor of A.B
|
|
|
|
return Is_Ancestor_Of_Main (U_Name, Pref);
|
|
end if;
|
|
end if;
|
|
end Is_Ancestor_Of_Main;
|
|
|
|
-- Start of processing for Analyze_Inlined_Bodies
|
|
|
|
begin
|
|
if Serious_Errors_Detected = 0 then
|
|
Push_Scope (Standard_Standard);
|
|
|
|
J := 0;
|
|
while J <= Inlined_Bodies.Last
|
|
and then Serious_Errors_Detected = 0
|
|
loop
|
|
Pack := Inlined_Bodies.Table (J);
|
|
while Present (Pack)
|
|
and then Scope (Pack) /= Standard_Standard
|
|
and then not Is_Child_Unit (Pack)
|
|
loop
|
|
Pack := Scope (Pack);
|
|
end loop;
|
|
|
|
Comp_Unit := Parent (Pack);
|
|
while Present (Comp_Unit)
|
|
and then Nkind (Comp_Unit) /= N_Compilation_Unit
|
|
loop
|
|
Comp_Unit := Parent (Comp_Unit);
|
|
end loop;
|
|
|
|
-- Load the body, unless it is the main unit, or is an instance
|
|
-- whose body has already been analyzed.
|
|
|
|
if Present (Comp_Unit)
|
|
and then Comp_Unit /= Cunit (Main_Unit)
|
|
and then Body_Required (Comp_Unit)
|
|
and then (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
|
|
or else No (Corresponding_Body (Unit (Comp_Unit))))
|
|
then
|
|
declare
|
|
Bname : constant Unit_Name_Type :=
|
|
Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
|
|
|
|
OK : Boolean;
|
|
|
|
begin
|
|
if not Is_Loaded (Bname) then
|
|
Style_Check := False;
|
|
Load_Needed_Body (Comp_Unit, OK, Do_Analyze => False);
|
|
|
|
if not OK then
|
|
|
|
-- Warn that a body was not available for inlining
|
|
-- by the back-end.
|
|
|
|
Error_Msg_Unit_1 := Bname;
|
|
Error_Msg_N
|
|
("one or more inlined subprograms accessed in $!??",
|
|
Comp_Unit);
|
|
Error_Msg_File_1 :=
|
|
Get_File_Name (Bname, Subunit => False);
|
|
Error_Msg_N ("\but file{ was not found!??", Comp_Unit);
|
|
|
|
else
|
|
-- If the package to be inlined is an ancestor unit of
|
|
-- the main unit, and it has a semantic dependence on
|
|
-- it, the inlining cannot take place to prevent an
|
|
-- elaboration circularity. The desired body is not
|
|
-- analyzed yet, to prevent the completion of Taft
|
|
-- amendment types that would lead to elaboration
|
|
-- circularities in gigi.
|
|
|
|
declare
|
|
U_Id : constant Entity_Id :=
|
|
Defining_Entity (Unit (Comp_Unit));
|
|
Body_Unit : constant Node_Id :=
|
|
Library_Unit (Comp_Unit);
|
|
Item : Node_Id;
|
|
|
|
begin
|
|
Item := First (Context_Items (Body_Unit));
|
|
while Present (Item) loop
|
|
if Nkind (Item) = N_With_Clause
|
|
and then
|
|
Is_Ancestor_Of_Main (U_Id, Name (Item))
|
|
then
|
|
Set_Is_Inlined (U_Id, False);
|
|
exit;
|
|
end if;
|
|
|
|
Next (Item);
|
|
end loop;
|
|
|
|
-- If no suspicious with_clauses, analyze the body.
|
|
|
|
if Is_Inlined (U_Id) then
|
|
Semantics (Body_Unit);
|
|
end if;
|
|
end;
|
|
end if;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
J := J + 1;
|
|
end loop;
|
|
|
|
-- The analysis of required bodies may have produced additional
|
|
-- generic instantiations. To obtain further inlining, we perform
|
|
-- another round of generic body instantiations. Establishing a
|
|
-- fully recursive loop between inlining and generic instantiations
|
|
-- is unlikely to yield more than this one additional pass.
|
|
|
|
Instantiate_Bodies;
|
|
|
|
-- The list of inlined subprograms is an overestimate, because it
|
|
-- includes inlined functions called from functions that are compiled
|
|
-- as part of an inlined package, but are not themselves called. An
|
|
-- accurate computation of just those subprograms that are needed
|
|
-- requires that we perform a transitive closure over the call graph,
|
|
-- starting from calls in the main program.
|
|
|
|
for Index in Inlined.First .. Inlined.Last loop
|
|
if not Is_Called (Inlined.Table (Index).Name) then
|
|
|
|
-- This means that Add_Inlined_Body added the subprogram to the
|
|
-- table but wasn't able to handle its code unit. Do nothing.
|
|
|
|
Inlined.Table (Index).Processed := True;
|
|
|
|
elsif Inlined.Table (Index).Main_Call then
|
|
Pending_Inlined.Increment_Last;
|
|
Pending_Inlined.Table (Pending_Inlined.Last) := Index;
|
|
Inlined.Table (Index).Processed := True;
|
|
|
|
else
|
|
Set_Is_Called (Inlined.Table (Index).Name, False);
|
|
end if;
|
|
end loop;
|
|
|
|
-- Iterate over the workpile until it is emptied, propagating the
|
|
-- Is_Called flag to the successors of the processed subprogram.
|
|
|
|
while Pending_Inlined.Last >= Pending_Inlined.First loop
|
|
Subp := Pending_Inlined.Table (Pending_Inlined.Last);
|
|
Pending_Inlined.Decrement_Last;
|
|
|
|
S := Inlined.Table (Subp).First_Succ;
|
|
|
|
while S /= No_Succ loop
|
|
Subp := Successors.Table (S).Subp;
|
|
|
|
if not Inlined.Table (Subp).Processed then
|
|
Set_Is_Called (Inlined.Table (Subp).Name);
|
|
Pending_Inlined.Increment_Last;
|
|
Pending_Inlined.Table (Pending_Inlined.Last) := Subp;
|
|
Inlined.Table (Subp).Processed := True;
|
|
end if;
|
|
|
|
S := Successors.Table (S).Next;
|
|
end loop;
|
|
end loop;
|
|
|
|
-- Finally add the called subprograms to the list of inlined
|
|
-- subprograms for the unit.
|
|
|
|
for Index in Inlined.First .. Inlined.Last loop
|
|
if Is_Called (Inlined.Table (Index).Name)
|
|
and then not Inlined.Table (Index).Listed
|
|
then
|
|
Add_Inlined_Subprogram (Index);
|
|
end if;
|
|
end loop;
|
|
|
|
Pop_Scope;
|
|
end if;
|
|
end Analyze_Inlined_Bodies;
|
|
|
|
-----------------------------
|
|
-- Check_Body_For_Inlining --
|
|
-----------------------------
|
|
|
|
procedure Check_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
|
|
Bname : Unit_Name_Type;
|
|
E : Entity_Id;
|
|
OK : Boolean;
|
|
|
|
begin
|
|
if Is_Compilation_Unit (P)
|
|
and then not Is_Generic_Instance (P)
|
|
then
|
|
Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
|
|
|
|
E := First_Entity (P);
|
|
while Present (E) loop
|
|
if Has_Pragma_Inline_Always (E)
|
|
or else (Front_End_Inlining and then Has_Pragma_Inline (E))
|
|
then
|
|
if not Is_Loaded (Bname) then
|
|
Load_Needed_Body (N, OK);
|
|
|
|
if OK then
|
|
|
|
-- Check we are not trying to inline a parent whose body
|
|
-- depends on a child, when we are compiling the body of
|
|
-- the child. Otherwise we have a potential elaboration
|
|
-- circularity with inlined subprograms and with
|
|
-- Taft-Amendment types.
|
|
|
|
declare
|
|
Comp : Node_Id; -- Body just compiled
|
|
Child_Spec : Entity_Id; -- Spec of main unit
|
|
Ent : Entity_Id; -- For iteration
|
|
With_Clause : Node_Id; -- Context of body.
|
|
|
|
begin
|
|
if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
|
|
and then Present (Body_Entity (P))
|
|
then
|
|
Child_Spec :=
|
|
Defining_Entity
|
|
((Unit (Library_Unit (Cunit (Main_Unit)))));
|
|
|
|
Comp :=
|
|
Parent (Unit_Declaration_Node (Body_Entity (P)));
|
|
|
|
-- Check whether the context of the body just
|
|
-- compiled includes a child of itself, and that
|
|
-- child is the spec of the main compilation.
|
|
|
|
With_Clause := First (Context_Items (Comp));
|
|
while Present (With_Clause) loop
|
|
if Nkind (With_Clause) = N_With_Clause
|
|
and then
|
|
Scope (Entity (Name (With_Clause))) = P
|
|
and then
|
|
Entity (Name (With_Clause)) = Child_Spec
|
|
then
|
|
Error_Msg_Node_2 := Child_Spec;
|
|
Error_Msg_NE
|
|
("body of & depends on child unit&??",
|
|
With_Clause, P);
|
|
Error_Msg_N
|
|
("\subprograms in body cannot be inlined??",
|
|
With_Clause);
|
|
|
|
-- Disable further inlining from this unit,
|
|
-- and keep Taft-amendment types incomplete.
|
|
|
|
Ent := First_Entity (P);
|
|
while Present (Ent) loop
|
|
if Is_Type (Ent)
|
|
and then Has_Completion_In_Body (Ent)
|
|
then
|
|
Set_Full_View (Ent, Empty);
|
|
|
|
elsif Is_Subprogram (Ent) then
|
|
Set_Is_Inlined (Ent, False);
|
|
end if;
|
|
|
|
Next_Entity (Ent);
|
|
end loop;
|
|
|
|
return;
|
|
end if;
|
|
|
|
Next (With_Clause);
|
|
end loop;
|
|
end if;
|
|
end;
|
|
|
|
elsif Ineffective_Inline_Warnings then
|
|
Error_Msg_Unit_1 := Bname;
|
|
Error_Msg_N
|
|
("unable to inline subprograms defined in $??", P);
|
|
Error_Msg_N ("\body not found??", P);
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
|
|
Next_Entity (E);
|
|
end loop;
|
|
end if;
|
|
end Check_Body_For_Inlining;
|
|
|
|
--------------------
|
|
-- Cleanup_Scopes --
|
|
--------------------
|
|
|
|
procedure Cleanup_Scopes is
|
|
Elmt : Elmt_Id;
|
|
Decl : Node_Id;
|
|
Scop : Entity_Id;
|
|
|
|
begin
|
|
Elmt := First_Elmt (To_Clean);
|
|
while Present (Elmt) loop
|
|
Scop := Node (Elmt);
|
|
|
|
if Ekind (Scop) = E_Entry then
|
|
Scop := Protected_Body_Subprogram (Scop);
|
|
|
|
elsif Is_Subprogram (Scop)
|
|
and then Is_Protected_Type (Scope (Scop))
|
|
and then Present (Protected_Body_Subprogram (Scop))
|
|
then
|
|
-- If a protected operation contains an instance, its
|
|
-- cleanup operations have been delayed, and the subprogram
|
|
-- has been rewritten in the expansion of the enclosing
|
|
-- protected body. It is the corresponding subprogram that
|
|
-- may require the cleanup operations, so propagate the
|
|
-- information that triggers cleanup activity.
|
|
|
|
Set_Uses_Sec_Stack
|
|
(Protected_Body_Subprogram (Scop),
|
|
Uses_Sec_Stack (Scop));
|
|
|
|
Scop := Protected_Body_Subprogram (Scop);
|
|
end if;
|
|
|
|
if Ekind (Scop) = E_Block then
|
|
Decl := Parent (Block_Node (Scop));
|
|
|
|
else
|
|
Decl := Unit_Declaration_Node (Scop);
|
|
|
|
if Nkind (Decl) = N_Subprogram_Declaration
|
|
or else Nkind (Decl) = N_Task_Type_Declaration
|
|
or else Nkind (Decl) = N_Subprogram_Body_Stub
|
|
then
|
|
Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
|
|
end if;
|
|
end if;
|
|
|
|
Push_Scope (Scop);
|
|
Expand_Cleanup_Actions (Decl);
|
|
End_Scope;
|
|
|
|
Elmt := Next_Elmt (Elmt);
|
|
end loop;
|
|
end Cleanup_Scopes;
|
|
|
|
--------------------------
|
|
-- Get_Code_Unit_Entity --
|
|
--------------------------
|
|
|
|
function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id is
|
|
Unit : Entity_Id := Cunit_Entity (Get_Code_Unit (E));
|
|
|
|
begin
|
|
if Ekind (Unit) = E_Package_Body then
|
|
Unit := Spec_Entity (Unit);
|
|
end if;
|
|
|
|
return Unit;
|
|
end Get_Code_Unit_Entity;
|
|
|
|
--------------------------
|
|
-- Has_Initialized_Type --
|
|
--------------------------
|
|
|
|
function Has_Initialized_Type (E : Entity_Id) return Boolean is
|
|
E_Body : constant Node_Id := Get_Subprogram_Body (E);
|
|
Decl : Node_Id;
|
|
|
|
begin
|
|
if No (E_Body) then -- imported subprogram
|
|
return False;
|
|
|
|
else
|
|
Decl := First (Declarations (E_Body));
|
|
while Present (Decl) loop
|
|
|
|
if Nkind (Decl) = N_Full_Type_Declaration
|
|
and then Present (Init_Proc (Defining_Identifier (Decl)))
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
Next (Decl);
|
|
end loop;
|
|
end if;
|
|
|
|
return False;
|
|
end Has_Initialized_Type;
|
|
|
|
-----------------------------
|
|
-- In_Main_Unit_Or_Subunit --
|
|
-----------------------------
|
|
|
|
function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean is
|
|
Comp : Node_Id := Cunit (Get_Code_Unit (E));
|
|
|
|
begin
|
|
-- Check whether the subprogram or package to inline is within the main
|
|
-- unit or its spec or within a subunit. In either case there are no
|
|
-- additional bodies to process. If the subprogram appears in a parent
|
|
-- of the current unit, the check on whether inlining is possible is
|
|
-- done in Analyze_Inlined_Bodies.
|
|
|
|
while Nkind (Unit (Comp)) = N_Subunit loop
|
|
Comp := Library_Unit (Comp);
|
|
end loop;
|
|
|
|
return Comp = Cunit (Main_Unit)
|
|
or else Comp = Library_Unit (Cunit (Main_Unit));
|
|
end In_Main_Unit_Or_Subunit;
|
|
|
|
----------------
|
|
-- Initialize --
|
|
----------------
|
|
|
|
procedure Initialize is
|
|
begin
|
|
Pending_Descriptor.Init;
|
|
Pending_Instantiations.Init;
|
|
Inlined_Bodies.Init;
|
|
Successors.Init;
|
|
Inlined.Init;
|
|
|
|
for J in Hash_Headers'Range loop
|
|
Hash_Headers (J) := No_Subp;
|
|
end loop;
|
|
end Initialize;
|
|
|
|
------------------------
|
|
-- Instantiate_Bodies --
|
|
------------------------
|
|
|
|
-- Generic bodies contain all the non-local references, so an
|
|
-- instantiation does not need any more context than Standard
|
|
-- itself, even if the instantiation appears in an inner scope.
|
|
-- Generic associations have verified that the contract model is
|
|
-- satisfied, so that any error that may occur in the analysis of
|
|
-- the body is an internal error.
|
|
|
|
procedure Instantiate_Bodies is
|
|
J : Int;
|
|
Info : Pending_Body_Info;
|
|
|
|
begin
|
|
if Serious_Errors_Detected = 0 then
|
|
Expander_Active := (Operating_Mode = Opt.Generate_Code);
|
|
Push_Scope (Standard_Standard);
|
|
To_Clean := New_Elmt_List;
|
|
|
|
if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
|
|
Start_Generic;
|
|
end if;
|
|
|
|
-- A body instantiation may generate additional instantiations, so
|
|
-- the following loop must scan to the end of a possibly expanding
|
|
-- set (that's why we can't simply use a FOR loop here).
|
|
|
|
J := 0;
|
|
while J <= Pending_Instantiations.Last
|
|
and then Serious_Errors_Detected = 0
|
|
loop
|
|
Info := Pending_Instantiations.Table (J);
|
|
|
|
-- If the instantiation node is absent, it has been removed
|
|
-- as part of unreachable code.
|
|
|
|
if No (Info.Inst_Node) then
|
|
null;
|
|
|
|
elsif Nkind (Info.Act_Decl) = N_Package_Declaration then
|
|
Instantiate_Package_Body (Info);
|
|
Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl));
|
|
|
|
else
|
|
Instantiate_Subprogram_Body (Info);
|
|
end if;
|
|
|
|
J := J + 1;
|
|
end loop;
|
|
|
|
-- Reset the table of instantiations. Additional instantiations
|
|
-- may be added through inlining, when additional bodies are
|
|
-- analyzed.
|
|
|
|
Pending_Instantiations.Init;
|
|
|
|
-- We can now complete the cleanup actions of scopes that contain
|
|
-- pending instantiations (skipped for generic units, since we
|
|
-- never need any cleanups in generic units).
|
|
-- pending instantiations.
|
|
|
|
if Expander_Active
|
|
and then not Is_Generic_Unit (Main_Unit_Entity)
|
|
then
|
|
Cleanup_Scopes;
|
|
elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
|
|
End_Generic;
|
|
end if;
|
|
|
|
Pop_Scope;
|
|
end if;
|
|
end Instantiate_Bodies;
|
|
|
|
---------------
|
|
-- Is_Nested --
|
|
---------------
|
|
|
|
function Is_Nested (E : Entity_Id) return Boolean is
|
|
Scop : Entity_Id;
|
|
|
|
begin
|
|
Scop := Scope (E);
|
|
while Scop /= Standard_Standard loop
|
|
if Ekind (Scop) in Subprogram_Kind then
|
|
return True;
|
|
|
|
elsif Ekind (Scop) = E_Task_Type
|
|
or else Ekind (Scop) = E_Entry
|
|
or else Ekind (Scop) = E_Entry_Family then
|
|
return True;
|
|
end if;
|
|
|
|
Scop := Scope (Scop);
|
|
end loop;
|
|
|
|
return False;
|
|
end Is_Nested;
|
|
|
|
----------
|
|
-- Lock --
|
|
----------
|
|
|
|
procedure Lock is
|
|
begin
|
|
Pending_Instantiations.Locked := True;
|
|
Inlined_Bodies.Locked := True;
|
|
Successors.Locked := True;
|
|
Inlined.Locked := True;
|
|
Pending_Instantiations.Release;
|
|
Inlined_Bodies.Release;
|
|
Successors.Release;
|
|
Inlined.Release;
|
|
end Lock;
|
|
|
|
--------------------------
|
|
-- Remove_Dead_Instance --
|
|
--------------------------
|
|
|
|
procedure Remove_Dead_Instance (N : Node_Id) is
|
|
J : Int;
|
|
|
|
begin
|
|
J := 0;
|
|
while J <= Pending_Instantiations.Last loop
|
|
if Pending_Instantiations.Table (J).Inst_Node = N then
|
|
Pending_Instantiations.Table (J).Inst_Node := Empty;
|
|
return;
|
|
end if;
|
|
|
|
J := J + 1;
|
|
end loop;
|
|
end Remove_Dead_Instance;
|
|
|
|
end Inline;
|