8sa1-gcc/gcc/tree-ssa-phiopt.c
Andrew MacLeod f430bae872 lambda-code.c (lambda_loopnest_to_gcc_loopnest): Use update_stmt.
2005-04-05  Andrew MacLeod  <amacleod@redhat.com>

	* lambda-code.c (lambda_loopnest_to_gcc_loopnest): Use update_stmt.
	Use immediate use iterator.
	(stmt_is_bumper_for_loop): Use immediate use iterator.
	* predict.c (strip_builtin_expect): Use update_stmt.
	* tree-cfg.c (update_modified_stmts): New. Call update_stmt_if_modified
	on all elements of a STATEMENT_LIST.
	(bsi_insert_before, bsi_insert_after): Call update_modified_stmts.
	(bsi_remove): Remove imm_use links and mark the stmt as modified.
	(bsi_replace): Mark stmt as modified and the update it.
	* tree-complex.c (update_complex_assignment): Call mark_stmt_modified.
	(expand_complex_libcal): Call update_stmt.
	(expand_complex_comparison): Call mark_stmt_modified.
	(expand_complex_operations_1): Call update_stmt_if_modified.
	(expand_vector_operations_1): Call mark_stmt_modified.
	* tree-dfa.c (compute_immediate_uses, free_df_for_stmt, free_df,
	compute_immediate_uses_for_phi, compute_immediate_uses_for_stmt,
	add_immediate_use, redirect_immediate_use,
	redirect_immediate_uses, dump_immediate_uses, debug_immediate_uses,
	dump_immediate_uses_for, debug_immediate_uses_for): Delete.
	(mark_new_vars_to_rename): Call update_stmt.
	* tree-dump.c (dump_option_value_in): Add "stmtaddr".
	* tree-flow-inline.h (modify_stmt): Rename to mark_stmt_modified.
	Ignore PHI nodes.
	(unmodify_stmt): Delete.
	(update_stmt): New.  Force an update of a stmt.
	(update_stmt_if_modified): update a stmt if it is out of date.
	(get_stmt_operands): Verify stmt is NOT modified.
	(stmt_modified_p): Update comment.
	(delink_imm_use): Remove a use node from its immuse list.
	(link_imm_use_to_list): Link a use node to a specific list.
	(link_imm_use): Link a node to the correct list.
	(set_ssa_use_from_ptr): Set a use node to a specific value, and insert
	it in the correct list, if appropriate.
	(link_imm_use_stmt): Link a use node, and set the stmt pointer.
	(relink_imm_use): Link a use node in place of another node in a list.
	(relink_imm_use_stmt): LInk a node in place of another node, and set
	the stmt pointer.
	(end_safe_imm_use_traverse): New.  Terminate a safe immuse iterator.
	(end_safe_imm_use_p): New.  Check for the end of a safe immuse iterator.
	(first_safe_imm_use): New.  Initialize a safe immuse iterator.
	(next_safe_imm_use): New.  Proceed to next safe immuse iterator value.
	(end_readonly_imm_use_p): New.  Check for end of a fast immuse iterator.
	(first_readonly_imm_use): New.  Initialize a fast immuse iterator.
	(next_readonly_imm_use): New.  Get the next fast immuse iterator value.
	(has_zero_uses): New.  Return true if there are no uses of a var.
	(has_single_use): New.  Return true if there is only a single use of a
	variable.
	(single_imm_use): New.  Return the simgle immediate use.
	(num_imm_uses): New.  Return the number of immediate uses.
	(get_v_must_def_ops): Use is now a pointer.
	(use_operand_p, get_v_may_def_op_ptr, get_vuse_op_ptr,
	get_v_must_def_kill_ptr, get_phi_arg_def_ptr): Return the address of
	the use node.
	(get_immediate_uses, num_immediate_uses, immediate_use): Delete.
	(delink_stmt_imm_use): Delink all immuses from a stmt.
	(phi_arg_index_from_use): New.  Return a phi arg index for a use.
	* tree-flow.h (struct dataflow_d): Delete.
	(immediate_use_iterator_d): New.  Immediate use iterator struct.
	(FOR_EACH_IMM_USE_FAST): New.  Macro for read only immuse iteration.
	(FOR_EACH_IMM_USE_SAFE): New.  Macro for write-safe immuse iteration.
	(BREAK_FROM_SAFE_IMM_USE): New.  Macro for earlyu exit from write-safe
	iteration.
	(struct stmt_ann_d): Remove dataflow_t from struct.
	* tree-if-conv.c (tree_if_conversion).  Don't call free_df.
	(if_convertible_phi_p): Use FAST immuse iterator.
	(if_convertible_loop_p): Don't call compute_immediate_uses.
	(replace_phi_with_cond_modify_expr): Call update_stmt.
	* tree-into-ssa.c (mark_def_sites, ssa_mark_def_sites): Call
	update_stmt_if_modified.
	(rewrite_all_into_ssa): Initialize ssa operands.
	* tree-loop-linear.c (linear_transform_loops): Don't call free_df or
	compute_immediate_uses.
	* tree-optimize.c (execute_todo): Call verify_ssa whenever the
	ssa_property is available.
	(execute_one_pass):  Change parameters passed to execute_todo.
	* tree-outof-ssa.c (rewrite_trees): Don't call modify_stmt.
	(remove_ssa_form): Call fini_ssa_operands.
	(insert_backedge_copies): Delete call to modify_stmt.
	* tree-phinodes.c (make_phi_node): Initialize use nodes.
	(release_phi_node): Delink any use nodes before releasing.
	(resize_phi_node): Relink any use nodes.
	(remove_phi_arg_num): Delink the use node.
	(remove_phi_node): Release the ssa_name AFTER releasing the phi node.
	(remove_all_phi_nodes_for): Release phi node first.
	* tree-pretty-print.c (dump_generic_node): Print stmt address.
	* tree-sra.c (mark_all_v_defs): Call update_stmt_if_modified.
	(scalarize_use, scalarize_copy): Call update_stmt.
	* tree-ssa-alias.c (compute_may_aliases): Update all modified stmts.
	(compute_points_to_and_addr_escape): Call mark_stmt_modified.
	* tree-ssa-cpp.c (need_imm_uses_for): Delete.
	(ccp_initialize): Remove call to compute_immediate_uses.
	(substitute_and_fold, execute_fold_all_builtins): Call update_stmt.
	* tree-ssa-dom.c (tree_ssa_dominator_optimize): Update all modified
	stmts.
	(simplify_cond_and_lookup_avail_expr): Call mark_stmt_modified.
	(simplify_switch_and_lookup_avail_expr): Call mark_stmt_modified.
	(eliminate_redundant_computations): Call mark_stmt_modified.
	(cprop_operand): Call mark_stmt_modified.
	(optimize_stmt): Call update_stmt_if_modified and mark_stmt_modified.
	* tree-ssa-dse.c (fix_phi_uses, fix_stmt_v_may_defs): Delete.
	(dse_optimize_stmt): Use new immuse interface.
	(tree_ssa_dse): Remove calls to compute_immediate_uses and free_df.
	* tree-ssa-forwprop.c (need_imm_uses_for): Delete.
	(substitute_single_use_vars): Use new immuse interface.
	(tree_ssa_forward_propagate_single_use_vars): Remove calls to free_df
	and compute_immediate_uses.
	* tree-ssa-loop-im.c (single_reachable_address): Use new immuse
	interface.
	(rewrite_mem_refs): Call update_stmt.
	(determine_lsm): Remove call to compute_imm_uses and free_df.
	* tree-ssa-loop-ivcanon.c (create_canonical_iv): Call update_stmt.
	(try_unroll_loop_completely): Call update_stmt.
	* tree-ssa-loop-ivopts.c (rewrite_address_base): Call update_stmt.
	(rewrite_use_compare): Call update_stmt.
	(compute_phi_arg_on_exit): Insert each stmt before trying to process.
	(rewrite_use) : Call update_stmt.
	* tree-ssa-loop-manip.c (verify_loop_closed_ssa): Add arg to call.
	* tree-ssa-loop-unswitch.c (tree_unswitch_single_loop): Call
	update_stmt.
	* tree-ssa-operands.c (NULL_USE_OPERAND_P): Remove declaration.
	(allocate_use_optype, allocate_vuse_optype): Adjust allocation size.
	(free_uses, free_vuses, free_v_may_defs, free_v_must_defs): Delink
	use nodes.
	(initialize_vuse_operand): New.  Initialize a vuse operand.
	(initialize_v_may_def_operand): New.  Initialize a maydef operand.
	(initialize_v_must_def_operand): New.  Initialize a mustdef operand.
	(finalize_ssa_defs): Use stmt parameter.
	(correct_use_link): Ensure a use node is in the correct list, and has
	the correct stmt pointer.
	(finalize_ssa_uses, finalize_ssa_v_may_defs, finalize_ssa_vuses,
	finalize_ssa_v_must_defs): Also initialize use nodes.
	(finalize_ssa_stmt_operands): Pass extra stmt operands.
	(build_ssa_operands): Seperate parsing from final operand construction.
	(parse_ssa_operands): New.  Parse entry point for operand building.
	(swap_tree_operands): New.  Swap 2 tree operands.
	(update_stmt_operands): Ranamed from get_stmt_operands.  Always builds
	operands.
	(get_expr_operands): Call swap_tree_operands when needed.
	(copy_virtual_operands): Use initialize routines for virtual use ops.
	(create_ssa_artficial_load_stmt): Add extra stmt parameter.
	(verify_abort): New.  Issue imm_use error.
	(verify_imm_links): New Verify imm_use links for a var.
	(dump_immediate_uses_for): New.  Dump imm_uses for a var to file.
	(dump_immediate_uses): New.  Dump imm_uses for all vars to file.
	(debug_immediate_uses): New.  Dump imm_uses for all vars to stderr.
	(debug_immediate_uses_for): New.  Dump imm_uses for a var to stderr.
	* tree-ssa-operands.h (struct use_operand_ptr): Delete.
	(NULL_USE_OPERAND_P) Define.
	(use_optype_d, v_def_use_operand_type, vuse_optype_d): Add immediate
	use node.
	(struct vuse_operand_type): New struct.
	(SET_USE): Call set_ssa_use_from_ptr.
	(USE_STMT): Define.
	(PHI_ARG_INDEX_FROM_USE): Define.
	* tree-ssa-phiopt.c (replace_phi_edge_with_variable): Set the phi
	argument via SET_USE, not PHI_ARG_DEF_TREE.
	* tree-ssa-pre.c (eliminate): Call update_stmt.
	* tree-ssa-propagate.c (cfg_blocks_get): Use imm_use iterators.  Don't
	call free_df.
	* tree-ssa-sink.c (all_immediate_uses_same_place): Use imm_use iterator.
	(nearest_common_dominator_of_uses): Use imm_use iterator.
	(statement_sink_location): Use imm_use iterator and interface.
	(execute_sink_code): Don't call compute_immediate_uses or free-df.
	* tree-ssa-threadupdate.c (create_edge_and_update_destination_phis): Use
	PHI_ARG_DEF, not PHI_ARG_DEF_TREE.
	* tree-ssa.c (verify_use, verify_phi_args): Verify some imm_use info.
	(verify_ssa): Ensure no stmt is marked modify after optimization pass
	if new parameter is true.
	(init_tree_ssa): Don't initialize operand cache here.
	(delete_tree_ssa): Don't destroy operand cache here.
	(propagate_into_addr): Pass in a use pointer, return true if anything
	was changed.
	(replace_immediate_uses): Use imm_use iterator, call update_stmt.
	(check_phi_redundancy): Use imm_use iterator.
	(kill_redundant_phi_nodes): Don't call compute_immediate_uses or
	free_df.
	* tree-ssanames.c (make_ssa_name): Initialize imm_use node.
	(release_ssa_name): Delink node and all elements in its imm_use list.
	* tree-tailcall.c (adjust_return_value): Call update_stmt.
	* tree-vect-analyze.c (vect_stmt_relevant_p): Use imm_use iterator.
	* tree-vectorizer.c (need_imm_uses_for): Delete.
	(vectorize_loops): Dont call compute_immediate_uses or free_df.
	* tree.h (struct ssa_imm_use_d): Define.
	(SSA_NAME_IMM_USE_NODE): Define.
	(struct tree_ssa_name): Add imm_use node.
	(PHI_DF): Delete.
	(PHI_ARG_IMM_USE_NODE): Define.
	(struct phi_arg_d): Add imm_use node.
	(struct tree_phi_node): Remove struct dataflow_d element.
	(TDF_STMTADDR): Define.

From-SVN: r97648
2005-04-05 19:05:20 +00:00

972 lines
27 KiB
C

/* Optimization of PHI nodes by converting them into straightline code.
Copyright (C) 2004, 2005 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "errors.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "flags.h"
#include "tm_p.h"
#include "basic-block.h"
#include "timevar.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "tree-dump.h"
#include "langhooks.h"
static void tree_ssa_phiopt (void);
static bool conditional_replacement (basic_block, basic_block, basic_block,
edge, edge, tree, tree, tree);
static bool value_replacement (basic_block, basic_block, basic_block,
edge, edge, tree, tree, tree);
static bool minmax_replacement (basic_block, basic_block, basic_block,
edge, edge, tree, tree, tree);
static bool abs_replacement (basic_block, basic_block, basic_block,
edge, edge, tree, tree, tree);
static void replace_phi_edge_with_variable (basic_block, basic_block, edge,
tree, tree);
static basic_block *blocks_in_phiopt_order (void);
/* This pass eliminates PHI nodes which can be trivially implemented as
an assignment from a conditional expression. i.e. if we have something
like:
bb0:
if (cond) goto bb2; else goto bb1;
bb1:
bb2:
x = PHI (0 (bb1), 1 (bb0)
We can rewrite that as:
bb0:
bb1:
bb2:
x = cond;
bb1 will become unreachable and bb0 and bb2 will almost always
be merged into a single block. This occurs often due to gimplification
of conditionals.
Also done is the following optimization:
bb0:
if (a != b) goto bb2; else goto bb1;
bb1:
bb2:
x = PHI (a (bb1), b (bb0))
We can rewrite that as:
bb0:
bb1:
bb2:
x = b;
This can sometimes occur as a result of other optimizations. A
similar transformation is done by the ifcvt RTL optimizer.
This pass also eliminates PHI nodes which are really absolute
values. i.e. if we have something like:
bb0:
if (a >= 0) goto bb2; else goto bb1;
bb1:
x = -a;
bb2:
x = PHI (x (bb1), a (bb0));
We can rewrite that as:
bb0:
bb1:
bb2:
x = ABS_EXPR< a >;
Similarly,
bb0:
if (a <= b) goto bb2; else goto bb1;
bb1:
goto bb2;
bb2:
x = PHI (b (bb1), a (bb0));
Becomes
x = MIN_EXPR (a, b)
And the same transformation for MAX_EXPR.
bb1 will become unreachable and bb0 and bb2 will almost always be merged
into a single block. Similar transformations are done by the ifcvt
RTL optimizer. */
static void
tree_ssa_phiopt (void)
{
basic_block bb;
basic_block *bb_order;
unsigned n, i;
/* Search every basic block for COND_EXPR we may be able to optimize.
We walk the blocks in order that guarantees that a block with
a single predecessor is processed before the predecessor.
This ensures that we collapse inner ifs before visiting the
outer ones, and also that we do not try to visit a removed
block. */
bb_order = blocks_in_phiopt_order ();
n = n_basic_blocks;
for (i = 0; i < n; i++)
{
tree cond_expr;
tree phi;
basic_block bb1, bb2;
edge e1, e2;
tree arg0, arg1;
bb = bb_order[i];
cond_expr = last_stmt (bb);
/* Check to see if the last statement is a COND_EXPR. */
if (!cond_expr
|| TREE_CODE (cond_expr) != COND_EXPR)
continue;
e1 = EDGE_SUCC (bb, 0);
bb1 = e1->dest;
e2 = EDGE_SUCC (bb, 1);
bb2 = e2->dest;
/* We cannot do the optimization on abnormal edges. */
if ((e1->flags & EDGE_ABNORMAL) != 0
|| (e2->flags & EDGE_ABNORMAL) != 0)
continue;
/* If either bb1's succ or bb2 or bb2's succ is non NULL. */
if (EDGE_COUNT (bb1->succs) == 0
|| bb2 == NULL
|| EDGE_COUNT (bb2->succs) == 0)
continue;
/* Find the bb which is the fall through to the other. */
if (EDGE_SUCC (bb1, 0)->dest == bb2)
;
else if (EDGE_SUCC (bb2, 0)->dest == bb1)
{
basic_block bb_tmp = bb1;
edge e_tmp = e1;
bb1 = bb2;
bb2 = bb_tmp;
e1 = e2;
e2 = e_tmp;
}
else
continue;
e1 = EDGE_SUCC (bb1, 0);
/* Make sure that bb1 is just a fall through. */
if (!single_succ_p (bb1) > 1
|| (e1->flags & EDGE_FALLTHRU) == 0)
continue;
/* Also make that bb1 only have one pred and it is bb. */
if (!single_pred_p (bb1)
|| single_pred (bb1) != bb)
continue;
phi = phi_nodes (bb2);
/* Check to make sure that there is only one PHI node.
TODO: we could do it with more than one iff the other PHI nodes
have the same elements for these two edges. */
if (!phi || PHI_CHAIN (phi) != NULL)
continue;
arg0 = PHI_ARG_DEF_TREE (phi, e1->dest_idx);
arg1 = PHI_ARG_DEF_TREE (phi, e2->dest_idx);
/* We know something is wrong if we cannot find the edges in the PHI
node. */
gcc_assert (arg0 != NULL && arg1 != NULL);
/* Do the replacement of conditional if it can be done. */
if (conditional_replacement (bb, bb1, bb2, e1, e2, phi, arg0, arg1))
;
else if (value_replacement (bb, bb1, bb2, e1, e2, phi, arg0, arg1))
;
else if (abs_replacement (bb, bb1, bb2, e1, e2, phi, arg0, arg1))
;
else
minmax_replacement (bb, bb1, bb2, e1, e2, phi, arg0, arg1);
}
free (bb_order);
}
/* Returns the list of basic blocks in the function in an order that guarantees
that if a block X has just a single predecessor Y, then Y is after X in the
ordering. */
static basic_block *
blocks_in_phiopt_order (void)
{
basic_block x, y;
basic_block *order = xmalloc (sizeof (basic_block) * n_basic_blocks);
unsigned n = n_basic_blocks, np, i;
sbitmap visited = sbitmap_alloc (last_basic_block + 2);
#define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index + 2))
#define VISITED_P(BB) (TEST_BIT (visited, (BB)->index + 2))
sbitmap_zero (visited);
MARK_VISITED (ENTRY_BLOCK_PTR);
FOR_EACH_BB (x)
{
if (VISITED_P (x))
continue;
/* Walk the predecessors of x as long as they have precisely one
predecessor and add them to the list, so that they get stored
after x. */
for (y = x, np = 1;
single_pred_p (y) && !VISITED_P (single_pred (y));
y = single_pred (y))
np++;
for (y = x, i = n - np;
single_pred_p (y) && !VISITED_P (single_pred (y));
y = single_pred (y), i++)
{
order[i] = y;
MARK_VISITED (y);
}
order[i] = y;
MARK_VISITED (y);
gcc_assert (i == n - 1);
n -= np;
}
sbitmap_free (visited);
gcc_assert (n == 0);
return order;
#undef MARK_VISITED
#undef VISITED_P
}
/* Return TRUE if block BB has no executable statements, otherwise return
FALSE. */
bool
empty_block_p (basic_block bb)
{
block_stmt_iterator bsi;
/* BB must have no executable statements. */
bsi = bsi_start (bb);
while (!bsi_end_p (bsi)
&& (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR
|| IS_EMPTY_STMT (bsi_stmt (bsi))))
bsi_next (&bsi);
if (!bsi_end_p (bsi))
return false;
return true;
}
/* Replace PHI node element whoes edge is E in block BB with variable NEW.
Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
is known to have two edges, one of which must reach BB). */
static void
replace_phi_edge_with_variable (basic_block cond_block, basic_block bb,
edge e, tree phi, tree new)
{
basic_block block_to_remove;
block_stmt_iterator bsi;
/* Change the PHI argument to new. */
SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new);
/* Remove the empty basic block. */
if (EDGE_SUCC (cond_block, 0)->dest == bb)
{
EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
}
else
{
EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
EDGE_SUCC (cond_block, 1)->flags
&= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
}
delete_basic_block (block_to_remove);
/* Eliminate the COND_EXPR at the end of COND_BLOCK. */
bsi = bsi_last (cond_block);
bsi_remove (&bsi);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
cond_block->index,
bb->index);
}
/* The function conditional_replacement does the main work of doing the
conditional replacement. Return true if the replacement is done.
Otherwise return false.
BB is the basic block where the replacement is going to be done on. ARG0
is argument 0 from PHI. Likewise for ARG1. */
static bool
conditional_replacement (basic_block cond_bb, basic_block middle_bb,
basic_block phi_bb, edge e0, edge e1, tree phi,
tree arg0, tree arg1)
{
tree result;
tree old_result = NULL;
tree new, cond;
block_stmt_iterator bsi;
edge true_edge, false_edge;
tree new_var = NULL;
tree new_var1;
/* The PHI arguments have the constants 0 and 1, then convert
it to the conditional. */
if ((integer_zerop (arg0) && integer_onep (arg1))
|| (integer_zerop (arg1) && integer_onep (arg0)))
;
else
return false;
if (!empty_block_p (middle_bb))
return false;
/* If the condition is not a naked SSA_NAME and its type does not
match the type of the result, then we have to create a new
variable to optimize this case as it would likely create
non-gimple code when the condition was converted to the
result's type. */
cond = COND_EXPR_COND (last_stmt (cond_bb));
result = PHI_RESULT (phi);
if (TREE_CODE (cond) != SSA_NAME
&& !lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
{
new_var = make_rename_temp (TREE_TYPE (cond), NULL);
old_result = cond;
cond = new_var;
}
/* If the condition was a naked SSA_NAME and the type is not the
same as the type of the result, then convert the type of the
condition. */
if (!lang_hooks.types_compatible_p (TREE_TYPE (cond), TREE_TYPE (result)))
cond = fold_convert (TREE_TYPE (result), cond);
/* We need to know which is the true edge and which is the false
edge so that we know when to invert the condition below. */
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
/* Insert our new statement at the end of conditional block before the
COND_EXPR. */
bsi = bsi_last (cond_bb);
bsi_insert_before (&bsi, build_empty_stmt (), BSI_NEW_STMT);
if (old_result)
{
tree new1;
if (!COMPARISON_CLASS_P (old_result))
return false;
new1 = build2 (TREE_CODE (old_result), TREE_TYPE (old_result),
TREE_OPERAND (old_result, 0),
TREE_OPERAND (old_result, 1));
new1 = build2 (MODIFY_EXPR, TREE_TYPE (old_result), new_var, new1);
bsi_insert_after (&bsi, new1, BSI_NEW_STMT);
}
new_var1 = duplicate_ssa_name (PHI_RESULT (phi), NULL);
/* At this point we know we have a COND_EXPR with two successors.
One successor is BB, the other successor is an empty block which
falls through into BB.
There is a single PHI node at the join point (BB) and its arguments
are constants (0, 1).
So, given the condition COND, and the two PHI arguments, we can
rewrite this PHI into non-branching code:
dest = (COND) or dest = COND'
We use the condition as-is if the argument associated with the
true edge has the value one or the argument associated with the
false edge as the value zero. Note that those conditions are not
the same since only one of the outgoing edges from the COND_EXPR
will directly reach BB and thus be associated with an argument. */
if ((e0 == true_edge && integer_onep (arg0))
|| (e0 == false_edge && integer_zerop (arg0))
|| (e1 == true_edge && integer_onep (arg1))
|| (e1 == false_edge && integer_zerop (arg1)))
{
new = build2 (MODIFY_EXPR, TREE_TYPE (new_var1), new_var1, cond);
}
else
{
tree cond1 = invert_truthvalue (cond);
cond = cond1;
/* If what we get back is a conditional expression, there is no
way that it can be gimple. */
if (TREE_CODE (cond) == COND_EXPR)
{
release_ssa_name (new_var1);
return false;
}
/* If what we get back is not gimple try to create it as gimple by
using a temporary variable. */
if (is_gimple_cast (cond)
&& !is_gimple_val (TREE_OPERAND (cond, 0)))
{
tree temp = TREE_OPERAND (cond, 0);
tree new_var_1 = make_rename_temp (TREE_TYPE (temp), NULL);
new = build2 (MODIFY_EXPR, TREE_TYPE (new_var_1), new_var_1, temp);
bsi_insert_after (&bsi, new, BSI_NEW_STMT);
cond = fold_convert (TREE_TYPE (result), new_var_1);
}
if (TREE_CODE (cond) == TRUTH_NOT_EXPR
&& !is_gimple_val (TREE_OPERAND (cond, 0)))
{
release_ssa_name (new_var1);
return false;
}
new = build2 (MODIFY_EXPR, TREE_TYPE (new_var1), new_var1, cond);
}
bsi_insert_after (&bsi, new, BSI_NEW_STMT);
SSA_NAME_DEF_STMT (new_var1) = new;
replace_phi_edge_with_variable (cond_bb, phi_bb, e1, phi, new_var1);
/* Note that we optimized this PHI. */
return true;
}
/* The function value_replacement does the main work of doing the value
replacement. Return true if the replacement is done. Otherwise return
false.
BB is the basic block where the replacement is going to be done on. ARG0
is argument 0 from the PHI. Likewise for ARG1. */
static bool
value_replacement (basic_block cond_bb, basic_block middle_bb,
basic_block phi_bb, edge e0, edge e1, tree phi,
tree arg0, tree arg1)
{
tree cond;
edge true_edge, false_edge;
/* If the type says honor signed zeros we cannot do this
optimization. */
if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
return false;
if (!empty_block_p (middle_bb))
return false;
cond = COND_EXPR_COND (last_stmt (cond_bb));
/* This transformation is only valid for equality comparisons. */
if (TREE_CODE (cond) != NE_EXPR && TREE_CODE (cond) != EQ_EXPR)
return false;
/* We need to know which is the true edge and which is the false
edge so that we know if have abs or negative abs. */
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
/* At this point we know we have a COND_EXPR with two successors.
One successor is BB, the other successor is an empty block which
falls through into BB.
The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
There is a single PHI node at the join point (BB) with two arguments.
We now need to verify that the two arguments in the PHI node match
the two arguments to the equality comparison. */
if ((operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 0))
&& operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 1)))
|| (operand_equal_for_phi_arg_p (arg1, TREE_OPERAND (cond, 0))
&& operand_equal_for_phi_arg_p (arg0, TREE_OPERAND (cond, 1))))
{
edge e;
tree arg;
/* For NE_EXPR, we want to build an assignment result = arg where
arg is the PHI argument associated with the true edge. For
EQ_EXPR we want the PHI argument associated with the false edge. */
e = (TREE_CODE (cond) == NE_EXPR ? true_edge : false_edge);
/* Unfortunately, E may not reach BB (it may instead have gone to
OTHER_BLOCK). If that is the case, then we want the single outgoing
edge from OTHER_BLOCK which reaches BB and represents the desired
path from COND_BLOCK. */
if (e->dest == middle_bb)
e = single_succ_edge (e->dest);
/* Now we know the incoming edge to BB that has the argument for the
RHS of our new assignment statement. */
if (e0 == e)
arg = arg0;
else
arg = arg1;
replace_phi_edge_with_variable (cond_bb, phi_bb, e1, phi, arg);
/* Note that we optimized this PHI. */
return true;
}
return false;
}
/* The function minmax_replacement does the main work of doing the minmax
replacement. Return true if the replacement is done. Otherwise return
false.
BB is the basic block where the replacement is going to be done on. ARG0
is argument 0 from the PHI. Likewise for ARG1. */
static bool
minmax_replacement (basic_block cond_bb, basic_block middle_bb,
basic_block phi_bb, edge e0, edge e1, tree phi,
tree arg0, tree arg1)
{
tree result, type;
tree cond, new;
edge true_edge, false_edge;
enum tree_code cmp, minmax, ass_code;
tree smaller, larger, arg_true, arg_false;
block_stmt_iterator bsi, bsi_from;
type = TREE_TYPE (PHI_RESULT (phi));
/* The optimization may be unsafe due to NaNs. */
if (HONOR_NANS (TYPE_MODE (type)))
return false;
cond = COND_EXPR_COND (last_stmt (cond_bb));
cmp = TREE_CODE (cond);
result = PHI_RESULT (phi);
/* This transformation is only valid for order comparisons. Record which
operand is smaller/larger if the result of the comparison is true. */
if (cmp == LT_EXPR || cmp == LE_EXPR)
{
smaller = TREE_OPERAND (cond, 0);
larger = TREE_OPERAND (cond, 1);
}
else if (cmp == GT_EXPR || cmp == GE_EXPR)
{
smaller = TREE_OPERAND (cond, 1);
larger = TREE_OPERAND (cond, 0);
}
else
return false;
/* We need to know which is the true edge and which is the false
edge so that we know if have abs or negative abs. */
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
/* Forward the edges over the middle basic block. */
if (true_edge->dest == middle_bb)
true_edge = EDGE_SUCC (true_edge->dest, 0);
if (false_edge->dest == middle_bb)
false_edge = EDGE_SUCC (false_edge->dest, 0);
if (true_edge == e0)
{
gcc_assert (false_edge == e1);
arg_true = arg0;
arg_false = arg1;
}
else
{
gcc_assert (false_edge == e0);
gcc_assert (true_edge == e1);
arg_true = arg1;
arg_false = arg0;
}
if (empty_block_p (middle_bb))
{
if (operand_equal_for_phi_arg_p (arg_true, smaller)
&& operand_equal_for_phi_arg_p (arg_false, larger))
{
/* Case
if (smaller < larger)
rslt = smaller;
else
rslt = larger; */
minmax = MIN_EXPR;
}
else if (operand_equal_for_phi_arg_p (arg_false, smaller)
&& operand_equal_for_phi_arg_p (arg_true, larger))
minmax = MAX_EXPR;
else
return false;
}
else
{
/* Recognize the following case, assuming d <= u:
if (a <= u)
b = MAX (a, d);
x = PHI <b, u>
This is equivalent to
b = MAX (a, d);
x = MIN (b, u); */
tree assign = last_and_only_stmt (middle_bb);
tree lhs, rhs, op0, op1, bound;
if (!assign
|| TREE_CODE (assign) != MODIFY_EXPR)
return false;
lhs = TREE_OPERAND (assign, 0);
rhs = TREE_OPERAND (assign, 1);
ass_code = TREE_CODE (rhs);
if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
return false;
op0 = TREE_OPERAND (rhs, 0);
op1 = TREE_OPERAND (rhs, 1);
if (true_edge->src == middle_bb)
{
/* We got here if the condition is true, i.e., SMALLER < LARGER. */
if (!operand_equal_for_phi_arg_p (lhs, arg_true))
return false;
if (operand_equal_for_phi_arg_p (arg_false, larger))
{
/* Case
if (smaller < larger)
{
r' = MAX_EXPR (smaller, bound)
}
r = PHI <r', larger> --> to be turned to MIN_EXPR. */
if (ass_code != MAX_EXPR)
return false;
minmax = MIN_EXPR;
if (operand_equal_for_phi_arg_p (op0, smaller))
bound = op1;
else if (operand_equal_for_phi_arg_p (op1, smaller))
bound = op0;
else
return false;
/* We need BOUND <= LARGER. */
if (!integer_nonzerop (fold (build2 (LE_EXPR, boolean_type_node,
bound, larger))))
return false;
}
else if (operand_equal_for_phi_arg_p (arg_false, smaller))
{
/* Case
if (smaller < larger)
{
r' = MIN_EXPR (larger, bound)
}
r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
if (ass_code != MIN_EXPR)
return false;
minmax = MAX_EXPR;
if (operand_equal_for_phi_arg_p (op0, larger))
bound = op1;
else if (operand_equal_for_phi_arg_p (op1, larger))
bound = op0;
else
return false;
/* We need BOUND >= SMALLER. */
if (!integer_nonzerop (fold (build2 (GE_EXPR, boolean_type_node,
bound, smaller))))
return false;
}
else
return false;
}
else
{
/* We got here if the condition is false, i.e., SMALLER > LARGER. */
if (!operand_equal_for_phi_arg_p (lhs, arg_false))
return false;
if (operand_equal_for_phi_arg_p (arg_true, larger))
{
/* Case
if (smaller > larger)
{
r' = MIN_EXPR (smaller, bound)
}
r = PHI <r', larger> --> to be turned to MAX_EXPR. */
if (ass_code != MIN_EXPR)
return false;
minmax = MAX_EXPR;
if (operand_equal_for_phi_arg_p (op0, smaller))
bound = op1;
else if (operand_equal_for_phi_arg_p (op1, smaller))
bound = op0;
else
return false;
/* We need BOUND >= LARGER. */
if (!integer_nonzerop (fold (build2 (GE_EXPR, boolean_type_node,
bound, larger))))
return false;
}
else if (operand_equal_for_phi_arg_p (arg_true, smaller))
{
/* Case
if (smaller > larger)
{
r' = MAX_EXPR (larger, bound)
}
r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
if (ass_code != MAX_EXPR)
return false;
minmax = MIN_EXPR;
if (operand_equal_for_phi_arg_p (op0, larger))
bound = op1;
else if (operand_equal_for_phi_arg_p (op1, larger))
bound = op0;
else
return false;
/* We need BOUND <= SMALLER. */
if (!integer_nonzerop (fold (build2 (LE_EXPR, boolean_type_node,
bound, smaller))))
return false;
}
else
return false;
}
/* Move the statement from the middle block. */
bsi = bsi_last (cond_bb);
bsi_from = bsi_last (middle_bb);
bsi_move_before (&bsi_from, &bsi);
}
/* Emit the statement to compute min/max. */
result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
new = build2 (MODIFY_EXPR, type, result,
build2 (minmax, type, arg0, arg1));
SSA_NAME_DEF_STMT (result) = new;
bsi = bsi_last (cond_bb);
bsi_insert_before (&bsi, new, BSI_NEW_STMT);
replace_phi_edge_with_variable (cond_bb, phi_bb, e1, phi, result);
return true;
}
/* The function absolute_replacement does the main work of doing the absolute
replacement. Return true if the replacement is done. Otherwise return
false.
bb is the basic block where the replacement is going to be done on. arg0
is argument 0 from the phi. Likewise for arg1. */
static bool
abs_replacement (basic_block cond_bb, basic_block middle_bb,
basic_block phi_bb, edge e0 ATTRIBUTE_UNUSED, edge e1,
tree phi, tree arg0, tree arg1)
{
tree result;
tree new, cond;
block_stmt_iterator bsi;
edge true_edge, false_edge;
tree assign;
edge e;
tree rhs, lhs;
bool negate;
enum tree_code cond_code;
/* If the type says honor signed zeros we cannot do this
optimization. */
if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
return false;
/* OTHER_BLOCK must have only one executable statement which must have the
form arg0 = -arg1 or arg1 = -arg0. */
assign = last_and_only_stmt (middle_bb);
/* If we did not find the proper negation assignment, then we can not
optimize. */
if (assign == NULL)
return false;
/* If we got here, then we have found the only executable statement
in OTHER_BLOCK. If it is anything other than arg = -arg1 or
arg1 = -arg0, then we can not optimize. */
if (TREE_CODE (assign) != MODIFY_EXPR)
return false;
lhs = TREE_OPERAND (assign, 0);
rhs = TREE_OPERAND (assign, 1);
if (TREE_CODE (rhs) != NEGATE_EXPR)
return false;
rhs = TREE_OPERAND (rhs, 0);
/* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
if (!(lhs == arg0 && rhs == arg1)
&& !(lhs == arg1 && rhs == arg0))
return false;
cond = COND_EXPR_COND (last_stmt (cond_bb));
result = PHI_RESULT (phi);
/* Only relationals comparing arg[01] against zero are interesting. */
cond_code = TREE_CODE (cond);
if (cond_code != GT_EXPR && cond_code != GE_EXPR
&& cond_code != LT_EXPR && cond_code != LE_EXPR)
return false;
/* Make sure the conditional is arg[01] OP y. */
if (TREE_OPERAND (cond, 0) != rhs)
return false;
if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))
? real_zerop (TREE_OPERAND (cond, 1))
: integer_zerop (TREE_OPERAND (cond, 1)))
;
else
return false;
/* We need to know which is the true edge and which is the false
edge so that we know if have abs or negative abs. */
extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
/* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
the false edge goes to OTHER_BLOCK. */
if (cond_code == GT_EXPR || cond_code == GE_EXPR)
e = true_edge;
else
e = false_edge;
if (e->dest == middle_bb)
negate = true;
else
negate = false;
result = duplicate_ssa_name (result, NULL);
if (negate)
lhs = make_rename_temp (TREE_TYPE (result), NULL);
else
lhs = result;
/* Build the modify expression with abs expression. */
new = build2 (MODIFY_EXPR, TREE_TYPE (lhs),
lhs, build1 (ABS_EXPR, TREE_TYPE (lhs), rhs));
bsi = bsi_last (cond_bb);
bsi_insert_before (&bsi, new, BSI_NEW_STMT);
if (negate)
{
/* Get the right BSI. We want to insert after the recently
added ABS_EXPR statement (which we know is the first statement
in the block. */
new = build2 (MODIFY_EXPR, TREE_TYPE (result),
result, build1 (NEGATE_EXPR, TREE_TYPE (lhs), lhs));
bsi_insert_after (&bsi, new, BSI_NEW_STMT);
}
SSA_NAME_DEF_STMT (result) = new;
replace_phi_edge_with_variable (cond_bb, phi_bb, e1, phi, result);
/* Note that we optimized this PHI. */
return true;
}
/* Always do these optimizations if we have SSA
trees to work on. */
static bool
gate_phiopt (void)
{
return 1;
}
struct tree_opt_pass pass_phiopt =
{
"phiopt", /* name */
gate_phiopt, /* gate */
tree_ssa_phiopt, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_TREE_PHIOPT, /* tv_id */
PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_cleanup_cfg | TODO_dump_func | TODO_ggc_collect /* todo_flags_finish */
| TODO_verify_ssa | TODO_rename_vars
| TODO_verify_flow | TODO_verify_stmts,
0 /* letter */
};