2005-04-05 Andrew MacLeod <amacleod@redhat.com> * lambda-code.c (lambda_loopnest_to_gcc_loopnest): Use update_stmt. Use immediate use iterator. (stmt_is_bumper_for_loop): Use immediate use iterator. * predict.c (strip_builtin_expect): Use update_stmt. * tree-cfg.c (update_modified_stmts): New. Call update_stmt_if_modified on all elements of a STATEMENT_LIST. (bsi_insert_before, bsi_insert_after): Call update_modified_stmts. (bsi_remove): Remove imm_use links and mark the stmt as modified. (bsi_replace): Mark stmt as modified and the update it. * tree-complex.c (update_complex_assignment): Call mark_stmt_modified. (expand_complex_libcal): Call update_stmt. (expand_complex_comparison): Call mark_stmt_modified. (expand_complex_operations_1): Call update_stmt_if_modified. (expand_vector_operations_1): Call mark_stmt_modified. * tree-dfa.c (compute_immediate_uses, free_df_for_stmt, free_df, compute_immediate_uses_for_phi, compute_immediate_uses_for_stmt, add_immediate_use, redirect_immediate_use, redirect_immediate_uses, dump_immediate_uses, debug_immediate_uses, dump_immediate_uses_for, debug_immediate_uses_for): Delete. (mark_new_vars_to_rename): Call update_stmt. * tree-dump.c (dump_option_value_in): Add "stmtaddr". * tree-flow-inline.h (modify_stmt): Rename to mark_stmt_modified. Ignore PHI nodes. (unmodify_stmt): Delete. (update_stmt): New. Force an update of a stmt. (update_stmt_if_modified): update a stmt if it is out of date. (get_stmt_operands): Verify stmt is NOT modified. (stmt_modified_p): Update comment. (delink_imm_use): Remove a use node from its immuse list. (link_imm_use_to_list): Link a use node to a specific list. (link_imm_use): Link a node to the correct list. (set_ssa_use_from_ptr): Set a use node to a specific value, and insert it in the correct list, if appropriate. (link_imm_use_stmt): Link a use node, and set the stmt pointer. (relink_imm_use): Link a use node in place of another node in a list. (relink_imm_use_stmt): LInk a node in place of another node, and set the stmt pointer. (end_safe_imm_use_traverse): New. Terminate a safe immuse iterator. (end_safe_imm_use_p): New. Check for the end of a safe immuse iterator. (first_safe_imm_use): New. Initialize a safe immuse iterator. (next_safe_imm_use): New. Proceed to next safe immuse iterator value. (end_readonly_imm_use_p): New. Check for end of a fast immuse iterator. (first_readonly_imm_use): New. Initialize a fast immuse iterator. (next_readonly_imm_use): New. Get the next fast immuse iterator value. (has_zero_uses): New. Return true if there are no uses of a var. (has_single_use): New. Return true if there is only a single use of a variable. (single_imm_use): New. Return the simgle immediate use. (num_imm_uses): New. Return the number of immediate uses. (get_v_must_def_ops): Use is now a pointer. (use_operand_p, get_v_may_def_op_ptr, get_vuse_op_ptr, get_v_must_def_kill_ptr, get_phi_arg_def_ptr): Return the address of the use node. (get_immediate_uses, num_immediate_uses, immediate_use): Delete. (delink_stmt_imm_use): Delink all immuses from a stmt. (phi_arg_index_from_use): New. Return a phi arg index for a use. * tree-flow.h (struct dataflow_d): Delete. (immediate_use_iterator_d): New. Immediate use iterator struct. (FOR_EACH_IMM_USE_FAST): New. Macro for read only immuse iteration. (FOR_EACH_IMM_USE_SAFE): New. Macro for write-safe immuse iteration. (BREAK_FROM_SAFE_IMM_USE): New. Macro for earlyu exit from write-safe iteration. (struct stmt_ann_d): Remove dataflow_t from struct. * tree-if-conv.c (tree_if_conversion). Don't call free_df. (if_convertible_phi_p): Use FAST immuse iterator. (if_convertible_loop_p): Don't call compute_immediate_uses. (replace_phi_with_cond_modify_expr): Call update_stmt. * tree-into-ssa.c (mark_def_sites, ssa_mark_def_sites): Call update_stmt_if_modified. (rewrite_all_into_ssa): Initialize ssa operands. * tree-loop-linear.c (linear_transform_loops): Don't call free_df or compute_immediate_uses. * tree-optimize.c (execute_todo): Call verify_ssa whenever the ssa_property is available. (execute_one_pass): Change parameters passed to execute_todo. * tree-outof-ssa.c (rewrite_trees): Don't call modify_stmt. (remove_ssa_form): Call fini_ssa_operands. (insert_backedge_copies): Delete call to modify_stmt. * tree-phinodes.c (make_phi_node): Initialize use nodes. (release_phi_node): Delink any use nodes before releasing. (resize_phi_node): Relink any use nodes. (remove_phi_arg_num): Delink the use node. (remove_phi_node): Release the ssa_name AFTER releasing the phi node. (remove_all_phi_nodes_for): Release phi node first. * tree-pretty-print.c (dump_generic_node): Print stmt address. * tree-sra.c (mark_all_v_defs): Call update_stmt_if_modified. (scalarize_use, scalarize_copy): Call update_stmt. * tree-ssa-alias.c (compute_may_aliases): Update all modified stmts. (compute_points_to_and_addr_escape): Call mark_stmt_modified. * tree-ssa-cpp.c (need_imm_uses_for): Delete. (ccp_initialize): Remove call to compute_immediate_uses. (substitute_and_fold, execute_fold_all_builtins): Call update_stmt. * tree-ssa-dom.c (tree_ssa_dominator_optimize): Update all modified stmts. (simplify_cond_and_lookup_avail_expr): Call mark_stmt_modified. (simplify_switch_and_lookup_avail_expr): Call mark_stmt_modified. (eliminate_redundant_computations): Call mark_stmt_modified. (cprop_operand): Call mark_stmt_modified. (optimize_stmt): Call update_stmt_if_modified and mark_stmt_modified. * tree-ssa-dse.c (fix_phi_uses, fix_stmt_v_may_defs): Delete. (dse_optimize_stmt): Use new immuse interface. (tree_ssa_dse): Remove calls to compute_immediate_uses and free_df. * tree-ssa-forwprop.c (need_imm_uses_for): Delete. (substitute_single_use_vars): Use new immuse interface. (tree_ssa_forward_propagate_single_use_vars): Remove calls to free_df and compute_immediate_uses. * tree-ssa-loop-im.c (single_reachable_address): Use new immuse interface. (rewrite_mem_refs): Call update_stmt. (determine_lsm): Remove call to compute_imm_uses and free_df. * tree-ssa-loop-ivcanon.c (create_canonical_iv): Call update_stmt. (try_unroll_loop_completely): Call update_stmt. * tree-ssa-loop-ivopts.c (rewrite_address_base): Call update_stmt. (rewrite_use_compare): Call update_stmt. (compute_phi_arg_on_exit): Insert each stmt before trying to process. (rewrite_use) : Call update_stmt. * tree-ssa-loop-manip.c (verify_loop_closed_ssa): Add arg to call. * tree-ssa-loop-unswitch.c (tree_unswitch_single_loop): Call update_stmt. * tree-ssa-operands.c (NULL_USE_OPERAND_P): Remove declaration. (allocate_use_optype, allocate_vuse_optype): Adjust allocation size. (free_uses, free_vuses, free_v_may_defs, free_v_must_defs): Delink use nodes. (initialize_vuse_operand): New. Initialize a vuse operand. (initialize_v_may_def_operand): New. Initialize a maydef operand. (initialize_v_must_def_operand): New. Initialize a mustdef operand. (finalize_ssa_defs): Use stmt parameter. (correct_use_link): Ensure a use node is in the correct list, and has the correct stmt pointer. (finalize_ssa_uses, finalize_ssa_v_may_defs, finalize_ssa_vuses, finalize_ssa_v_must_defs): Also initialize use nodes. (finalize_ssa_stmt_operands): Pass extra stmt operands. (build_ssa_operands): Seperate parsing from final operand construction. (parse_ssa_operands): New. Parse entry point for operand building. (swap_tree_operands): New. Swap 2 tree operands. (update_stmt_operands): Ranamed from get_stmt_operands. Always builds operands. (get_expr_operands): Call swap_tree_operands when needed. (copy_virtual_operands): Use initialize routines for virtual use ops. (create_ssa_artficial_load_stmt): Add extra stmt parameter. (verify_abort): New. Issue imm_use error. (verify_imm_links): New Verify imm_use links for a var. (dump_immediate_uses_for): New. Dump imm_uses for a var to file. (dump_immediate_uses): New. Dump imm_uses for all vars to file. (debug_immediate_uses): New. Dump imm_uses for all vars to stderr. (debug_immediate_uses_for): New. Dump imm_uses for a var to stderr. * tree-ssa-operands.h (struct use_operand_ptr): Delete. (NULL_USE_OPERAND_P) Define. (use_optype_d, v_def_use_operand_type, vuse_optype_d): Add immediate use node. (struct vuse_operand_type): New struct. (SET_USE): Call set_ssa_use_from_ptr. (USE_STMT): Define. (PHI_ARG_INDEX_FROM_USE): Define. * tree-ssa-phiopt.c (replace_phi_edge_with_variable): Set the phi argument via SET_USE, not PHI_ARG_DEF_TREE. * tree-ssa-pre.c (eliminate): Call update_stmt. * tree-ssa-propagate.c (cfg_blocks_get): Use imm_use iterators. Don't call free_df. * tree-ssa-sink.c (all_immediate_uses_same_place): Use imm_use iterator. (nearest_common_dominator_of_uses): Use imm_use iterator. (statement_sink_location): Use imm_use iterator and interface. (execute_sink_code): Don't call compute_immediate_uses or free-df. * tree-ssa-threadupdate.c (create_edge_and_update_destination_phis): Use PHI_ARG_DEF, not PHI_ARG_DEF_TREE. * tree-ssa.c (verify_use, verify_phi_args): Verify some imm_use info. (verify_ssa): Ensure no stmt is marked modify after optimization pass if new parameter is true. (init_tree_ssa): Don't initialize operand cache here. (delete_tree_ssa): Don't destroy operand cache here. (propagate_into_addr): Pass in a use pointer, return true if anything was changed. (replace_immediate_uses): Use imm_use iterator, call update_stmt. (check_phi_redundancy): Use imm_use iterator. (kill_redundant_phi_nodes): Don't call compute_immediate_uses or free_df. * tree-ssanames.c (make_ssa_name): Initialize imm_use node. (release_ssa_name): Delink node and all elements in its imm_use list. * tree-tailcall.c (adjust_return_value): Call update_stmt. * tree-vect-analyze.c (vect_stmt_relevant_p): Use imm_use iterator. * tree-vectorizer.c (need_imm_uses_for): Delete. (vectorize_loops): Dont call compute_immediate_uses or free_df. * tree.h (struct ssa_imm_use_d): Define. (SSA_NAME_IMM_USE_NODE): Define. (struct tree_ssa_name): Add imm_use node. (PHI_DF): Delete. (PHI_ARG_IMM_USE_NODE): Define. (struct phi_arg_d): Add imm_use node. (struct tree_phi_node): Remove struct dataflow_d element. (TDF_STMTADDR): Define. From-SVN: r97648
1288 lines
33 KiB
C
1288 lines
33 KiB
C
/* Inline functions for tree-flow.h
|
|
Copyright (C) 2001, 2003, 2005 Free Software Foundation, Inc.
|
|
Contributed by Diego Novillo <dnovillo@redhat.com>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#ifndef _TREE_FLOW_INLINE_H
|
|
#define _TREE_FLOW_INLINE_H 1
|
|
|
|
/* Inline functions for manipulating various data structures defined in
|
|
tree-flow.h. See tree-flow.h for documentation. */
|
|
|
|
/* Return the variable annotation for T, which must be a _DECL node.
|
|
Return NULL if the variable annotation doesn't already exist. */
|
|
static inline var_ann_t
|
|
var_ann (tree t)
|
|
{
|
|
gcc_assert (t);
|
|
gcc_assert (DECL_P (t));
|
|
gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN);
|
|
|
|
return (var_ann_t) t->common.ann;
|
|
}
|
|
|
|
/* Return the variable annotation for T, which must be a _DECL node.
|
|
Create the variable annotation if it doesn't exist. */
|
|
static inline var_ann_t
|
|
get_var_ann (tree var)
|
|
{
|
|
var_ann_t ann = var_ann (var);
|
|
return (ann) ? ann : create_var_ann (var);
|
|
}
|
|
|
|
/* Return the statement annotation for T, which must be a statement
|
|
node. Return NULL if the statement annotation doesn't exist. */
|
|
static inline stmt_ann_t
|
|
stmt_ann (tree t)
|
|
{
|
|
#ifdef ENABLE_CHECKING
|
|
gcc_assert (is_gimple_stmt (t));
|
|
#endif
|
|
return (stmt_ann_t) t->common.ann;
|
|
}
|
|
|
|
/* Return the statement annotation for T, which must be a statement
|
|
node. Create the statement annotation if it doesn't exist. */
|
|
static inline stmt_ann_t
|
|
get_stmt_ann (tree stmt)
|
|
{
|
|
stmt_ann_t ann = stmt_ann (stmt);
|
|
return (ann) ? ann : create_stmt_ann (stmt);
|
|
}
|
|
|
|
|
|
/* Return the annotation type for annotation ANN. */
|
|
static inline enum tree_ann_type
|
|
ann_type (tree_ann_t ann)
|
|
{
|
|
return ann->common.type;
|
|
}
|
|
|
|
/* Return the basic block for statement T. */
|
|
static inline basic_block
|
|
bb_for_stmt (tree t)
|
|
{
|
|
stmt_ann_t ann;
|
|
|
|
if (TREE_CODE (t) == PHI_NODE)
|
|
return PHI_BB (t);
|
|
|
|
ann = stmt_ann (t);
|
|
return ann ? ann->bb : NULL;
|
|
}
|
|
|
|
/* Return the may_aliases varray for variable VAR, or NULL if it has
|
|
no may aliases. */
|
|
static inline varray_type
|
|
may_aliases (tree var)
|
|
{
|
|
var_ann_t ann = var_ann (var);
|
|
return ann ? ann->may_aliases : NULL;
|
|
}
|
|
|
|
/* Return the line number for EXPR, or return -1 if we have no line
|
|
number information for it. */
|
|
static inline int
|
|
get_lineno (tree expr)
|
|
{
|
|
if (expr == NULL_TREE)
|
|
return -1;
|
|
|
|
if (TREE_CODE (expr) == COMPOUND_EXPR)
|
|
expr = TREE_OPERAND (expr, 0);
|
|
|
|
if (! EXPR_HAS_LOCATION (expr))
|
|
return -1;
|
|
|
|
return EXPR_LINENO (expr);
|
|
}
|
|
|
|
/* Return the file name for EXPR, or return "???" if we have no
|
|
filename information. */
|
|
static inline const char *
|
|
get_filename (tree expr)
|
|
{
|
|
const char *filename;
|
|
if (expr == NULL_TREE)
|
|
return "???";
|
|
|
|
if (TREE_CODE (expr) == COMPOUND_EXPR)
|
|
expr = TREE_OPERAND (expr, 0);
|
|
|
|
if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr)))
|
|
return filename;
|
|
else
|
|
return "???";
|
|
}
|
|
|
|
/* Return true if T is a noreturn call. */
|
|
static inline bool
|
|
noreturn_call_p (tree t)
|
|
{
|
|
tree call = get_call_expr_in (t);
|
|
return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
|
|
}
|
|
|
|
/* Mark statement T as modified. */
|
|
static inline void
|
|
mark_stmt_modified (tree t)
|
|
{
|
|
stmt_ann_t ann;
|
|
if (TREE_CODE (t) == PHI_NODE)
|
|
return;
|
|
|
|
ann = stmt_ann (t);
|
|
if (ann == NULL)
|
|
ann = create_stmt_ann (t);
|
|
else if (noreturn_call_p (t))
|
|
VEC_safe_push (tree, modified_noreturn_calls, t);
|
|
ann->modified = 1;
|
|
}
|
|
|
|
/* Mark statement T as modified, and update it. */
|
|
static inline void
|
|
update_stmt (tree t)
|
|
{
|
|
if (TREE_CODE (t) == PHI_NODE)
|
|
return;
|
|
mark_stmt_modified (t);
|
|
update_stmt_operands (t);
|
|
}
|
|
|
|
static inline void
|
|
update_stmt_if_modified (tree t)
|
|
{
|
|
if (stmt_modified_p (t))
|
|
update_stmt_operands (t);
|
|
}
|
|
|
|
static inline void
|
|
get_stmt_operands (tree stmt ATTRIBUTE_UNUSED)
|
|
{
|
|
#ifdef ENABLE_CHECKING
|
|
stmt_ann_t ann;
|
|
|
|
/* The optimizers cannot handle statements that are nothing but a
|
|
_DECL. This indicates a bug in the gimplifier. */
|
|
gcc_assert (!SSA_VAR_P (stmt));
|
|
|
|
/* Ignore error statements. */
|
|
if (TREE_CODE (stmt) == ERROR_MARK)
|
|
return;
|
|
|
|
ann = get_stmt_ann (stmt);
|
|
gcc_assert (!ann->modified);
|
|
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
/* Return true if T is marked as modified, false otherwise. */
|
|
static inline bool
|
|
stmt_modified_p (tree t)
|
|
{
|
|
stmt_ann_t ann = stmt_ann (t);
|
|
|
|
/* Note that if the statement doesn't yet have an annotation, we consider it
|
|
modified. This will force the next call to update_stmt_operands to scan
|
|
the statement. */
|
|
return ann ? ann->modified : true;
|
|
}
|
|
|
|
/* Delink an immediate_uses node from its chain. */
|
|
static inline void
|
|
delink_imm_use (ssa_imm_use_t *linknode)
|
|
{
|
|
/* Return if this node is not in a list. */
|
|
if (linknode->prev == NULL)
|
|
return;
|
|
|
|
linknode->prev->next = linknode->next;
|
|
linknode->next->prev = linknode->prev;
|
|
linknode->prev = NULL;
|
|
linknode->next = NULL;
|
|
}
|
|
|
|
/* Link ssa_imm_use node LINKNODE into the chain for LIST. */
|
|
static inline void
|
|
link_imm_use_to_list (ssa_imm_use_t *linknode, ssa_imm_use_t *list)
|
|
{
|
|
/* Link the new node at the head of the list. If we are in the process of
|
|
traversing the list, we wont visit any new nodes added to it. */
|
|
linknode->prev = list;
|
|
linknode->next = list->next;
|
|
list->next->prev = linknode;
|
|
list->next = linknode;
|
|
}
|
|
|
|
/* Link ssa_imm_use node LINKNODE into the chain for DEF. */
|
|
static inline void
|
|
link_imm_use (ssa_imm_use_t *linknode, tree def)
|
|
{
|
|
ssa_imm_use_t *root;
|
|
|
|
if (!def || TREE_CODE (def) != SSA_NAME)
|
|
linknode->prev = NULL;
|
|
else
|
|
{
|
|
root = &(SSA_NAME_IMM_USE_NODE (def));
|
|
#ifdef ENABLE_CHECKING
|
|
if (linknode->use)
|
|
gcc_assert (*(linknode->use) == def);
|
|
#endif
|
|
link_imm_use_to_list (linknode, root);
|
|
}
|
|
}
|
|
|
|
/* Set the value of a use pointed by USE to VAL. */
|
|
static inline void
|
|
set_ssa_use_from_ptr (use_operand_p use, tree val)
|
|
{
|
|
delink_imm_use (use);
|
|
*(use->use) = val;
|
|
link_imm_use (use, val);
|
|
}
|
|
|
|
/* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occuring
|
|
in STMT. */
|
|
static inline void
|
|
link_imm_use_stmt (ssa_imm_use_t *linknode, tree def, tree stmt)
|
|
{
|
|
if (stmt)
|
|
link_imm_use (linknode, def);
|
|
else
|
|
link_imm_use (linknode, NULL);
|
|
linknode->stmt = stmt;
|
|
}
|
|
|
|
/* Relink a new node in place of an old node in the list. */
|
|
static inline void
|
|
relink_imm_use (ssa_imm_use_t *node, ssa_imm_use_t *old)
|
|
{
|
|
#ifdef ENABLE_CHECKING
|
|
/* The node one had better be in the same list. */
|
|
if (*(old->use) != *(node->use))
|
|
abort ();
|
|
#endif
|
|
node->prev = old->prev;
|
|
node->next = old->next;
|
|
if (old->prev)
|
|
{
|
|
old->prev->next = node;
|
|
old->next->prev = node;
|
|
/* Remove the old node from the list. */
|
|
old->prev = NULL;
|
|
}
|
|
|
|
}
|
|
|
|
/* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occuring
|
|
in STMT. */
|
|
static inline void
|
|
relink_imm_use_stmt (ssa_imm_use_t *linknode, ssa_imm_use_t *old, tree stmt)
|
|
{
|
|
if (stmt)
|
|
relink_imm_use (linknode, old);
|
|
else
|
|
link_imm_use (linknode, NULL);
|
|
linknode->stmt = stmt;
|
|
}
|
|
|
|
/* Finished the traverse of an immediate use list IMM by removing it from
|
|
the list. */
|
|
static inline void
|
|
end_safe_imm_use_traverse (imm_use_iterator *imm)
|
|
{
|
|
delink_imm_use (&(imm->iter_node));
|
|
}
|
|
|
|
/* Return true if IMM is at the end of the list. */
|
|
static inline bool
|
|
end_safe_imm_use_p (imm_use_iterator *imm)
|
|
{
|
|
return (imm->imm_use == imm->end_p);
|
|
}
|
|
|
|
/* Initialize iterator IMM to process the list for VAR. */
|
|
static inline use_operand_p
|
|
first_safe_imm_use (imm_use_iterator *imm, tree var)
|
|
{
|
|
/* Set up and link the iterator node into the linked list for VAR. */
|
|
imm->iter_node.use = NULL;
|
|
imm->iter_node.stmt = NULL_TREE;
|
|
imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
|
|
/* Check if there are 0 elements. */
|
|
if (imm->end_p->next == imm->end_p)
|
|
{
|
|
imm->imm_use = imm->end_p;
|
|
return NULL_USE_OPERAND_P;
|
|
}
|
|
|
|
link_imm_use (&(imm->iter_node), var);
|
|
imm->imm_use = imm->iter_node.next;
|
|
return imm->imm_use;
|
|
}
|
|
|
|
/* Bump IMM to then next use in the list. */
|
|
static inline use_operand_p
|
|
next_safe_imm_use (imm_use_iterator *imm)
|
|
{
|
|
ssa_imm_use_t *ptr;
|
|
use_operand_p old;
|
|
|
|
old = imm->imm_use;
|
|
/* If the next node following the iter_node is still the one refered to by
|
|
imm_use, then the list hasnt changed, go to the next node. */
|
|
if (imm->iter_node.next == imm->imm_use)
|
|
{
|
|
ptr = &(imm->iter_node);
|
|
/* Remove iternode fromn the list. */
|
|
delink_imm_use (ptr);
|
|
imm->imm_use = imm->imm_use->next;
|
|
if (! end_safe_imm_use_p (imm))
|
|
{
|
|
/* This isnt the end, link iternode before the next use. */
|
|
ptr->prev = imm->imm_use->prev;
|
|
ptr->next = imm->imm_use;
|
|
imm->imm_use->prev->next = ptr;
|
|
imm->imm_use->prev = ptr;
|
|
}
|
|
else
|
|
return old;
|
|
}
|
|
else
|
|
{
|
|
/* If the 'next' value after the iterator isn't the same as it was, then
|
|
a node has been deleted, so we sinply proceed to the node following
|
|
where the iterator is in the list. */
|
|
imm->imm_use = imm->iter_node.next;
|
|
if (end_safe_imm_use_p (imm))
|
|
{
|
|
end_safe_imm_use_traverse (imm);
|
|
return old;
|
|
}
|
|
}
|
|
|
|
return imm->imm_use;
|
|
}
|
|
|
|
/* Return true is IMM has reached the end of the immeidate use list. */
|
|
static inline bool
|
|
end_readonly_imm_use_p (imm_use_iterator *imm)
|
|
{
|
|
return (imm->imm_use == imm->end_p);
|
|
}
|
|
|
|
/* Initialize iterator IMM to process the list for VAR. */
|
|
static inline use_operand_p
|
|
first_readonly_imm_use (imm_use_iterator *imm, tree var)
|
|
{
|
|
gcc_assert (TREE_CODE (var) == SSA_NAME);
|
|
|
|
imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
|
|
imm->imm_use = imm->end_p->next;
|
|
#ifdef ENABLE_CHECKING
|
|
imm->iter_node.next = imm->imm_use->next;
|
|
#endif
|
|
if (end_readonly_imm_use_p (imm))
|
|
return NULL_USE_OPERAND_P;
|
|
return imm->imm_use;
|
|
}
|
|
|
|
/* Bump IMM to then next use in the list. */
|
|
static inline use_operand_p
|
|
next_readonly_imm_use (imm_use_iterator *imm)
|
|
{
|
|
use_operand_p old = imm->imm_use;
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
/* If this assertion fails, it indicates the 'next' pointer has changed
|
|
since we the last bump. This indicates that the list is being modified
|
|
via stmt changes, or SET_USE, or somesuch thing, and you need to be
|
|
using the SAFE version of the iterator. */
|
|
gcc_assert (imm->iter_node.next == old->next);
|
|
imm->iter_node.next = old->next->next;
|
|
#endif
|
|
|
|
imm->imm_use = old->next;
|
|
if (end_readonly_imm_use_p (imm))
|
|
return old;
|
|
return imm->imm_use;
|
|
}
|
|
|
|
/* Return true if VAR has no uses. */
|
|
static inline bool
|
|
has_zero_uses (tree var)
|
|
{
|
|
ssa_imm_use_t *ptr;
|
|
ptr = &(SSA_NAME_IMM_USE_NODE (var));
|
|
/* A single use means there is no items in the list. */
|
|
return (ptr == ptr->next);
|
|
}
|
|
|
|
/* Return true if VAR has a single use. */
|
|
static inline bool
|
|
has_single_use (tree var)
|
|
{
|
|
ssa_imm_use_t *ptr;
|
|
ptr = &(SSA_NAME_IMM_USE_NODE (var));
|
|
/* A single use means there is one item in the list. */
|
|
return (ptr != ptr->next && ptr == ptr->next->next);
|
|
}
|
|
|
|
/* If VAR has only a single immediate use, return true, and set USE_P and STMT
|
|
to the use pointer and stmt of occurence. */
|
|
static inline bool
|
|
single_imm_use (tree var, use_operand_p *use_p, tree *stmt)
|
|
{
|
|
ssa_imm_use_t *ptr;
|
|
|
|
ptr = &(SSA_NAME_IMM_USE_NODE (var));
|
|
if (ptr != ptr->next && ptr == ptr->next->next)
|
|
{
|
|
*use_p = ptr->next;
|
|
*stmt = ptr->next->stmt;
|
|
return true;
|
|
}
|
|
*use_p = NULL_USE_OPERAND_P;
|
|
*stmt = NULL_TREE;
|
|
return false;
|
|
}
|
|
|
|
/* Return the number of immediate uses of VAR. */
|
|
static inline unsigned int
|
|
num_imm_uses (tree var)
|
|
{
|
|
ssa_imm_use_t *ptr, *start;
|
|
unsigned int num;
|
|
|
|
start = &(SSA_NAME_IMM_USE_NODE (var));
|
|
num = 0;
|
|
for (ptr = start->next; ptr != start; ptr = ptr->next)
|
|
num++;
|
|
|
|
return num;
|
|
}
|
|
|
|
/* Return the definitions present in ANN, a statement annotation.
|
|
Return NULL if this annotation contains no definitions. */
|
|
static inline def_optype
|
|
get_def_ops (stmt_ann_t ann)
|
|
{
|
|
return ann ? ann->operands.def_ops : NULL;
|
|
}
|
|
|
|
/* Return the uses present in ANN, a statement annotation.
|
|
Return NULL if this annotation contains no uses. */
|
|
static inline use_optype
|
|
get_use_ops (stmt_ann_t ann)
|
|
{
|
|
return ann ? ann->operands.use_ops : NULL;
|
|
}
|
|
|
|
/* Return the virtual may-defs present in ANN, a statement
|
|
annotation.
|
|
Return NULL if this annotation contains no virtual may-defs. */
|
|
static inline v_may_def_optype
|
|
get_v_may_def_ops (stmt_ann_t ann)
|
|
{
|
|
return ann ? ann->operands.v_may_def_ops : NULL;
|
|
}
|
|
|
|
/* Return the virtual uses present in ANN, a statement annotation.
|
|
Return NULL if this annotation contains no virtual uses. */
|
|
static inline vuse_optype
|
|
get_vuse_ops (stmt_ann_t ann)
|
|
{
|
|
return ann ? ann->operands.vuse_ops : NULL;
|
|
}
|
|
|
|
/* Return the virtual must-defs present in ANN, a statement
|
|
annotation. Return NULL if this annotation contains no must-defs.*/
|
|
static inline v_must_def_optype
|
|
get_v_must_def_ops (stmt_ann_t ann)
|
|
{
|
|
return ann ? ann->operands.v_must_def_ops : NULL;
|
|
}
|
|
|
|
/* Return the tree pointer to by USE. */
|
|
static inline tree
|
|
get_use_from_ptr (use_operand_p use)
|
|
{
|
|
return *(use->use);
|
|
}
|
|
|
|
/* Return the tree pointer to by DEF. */
|
|
static inline tree
|
|
get_def_from_ptr (def_operand_p def)
|
|
{
|
|
return *(def.def);
|
|
}
|
|
|
|
/* Return a pointer to the tree that is at INDEX in the USES array. */
|
|
static inline use_operand_p
|
|
get_use_op_ptr (use_optype uses, unsigned int index)
|
|
{
|
|
gcc_assert (index < uses->num_uses);
|
|
return &(uses->uses[index]);
|
|
}
|
|
|
|
/* Return a def_operand_p pointer for element INDEX of DEFS. */
|
|
static inline def_operand_p
|
|
get_def_op_ptr (def_optype defs, unsigned int index)
|
|
{
|
|
gcc_assert (index < defs->num_defs);
|
|
return defs->defs[index];
|
|
}
|
|
|
|
/* Return the def_operand_p that is the V_MAY_DEF_RESULT for the V_MAY_DEF
|
|
at INDEX in the V_MAY_DEFS array. */
|
|
static inline def_operand_p
|
|
get_v_may_def_result_ptr(v_may_def_optype v_may_defs, unsigned int index)
|
|
{
|
|
def_operand_p op;
|
|
gcc_assert (index < v_may_defs->num_v_may_defs);
|
|
op.def = &(v_may_defs->v_may_defs[index].def);
|
|
return op;
|
|
}
|
|
|
|
/* Return a use_operand_p that is the V_MAY_DEF_OP for the V_MAY_DEF at
|
|
INDEX in the V_MAY_DEFS array. */
|
|
static inline use_operand_p
|
|
get_v_may_def_op_ptr(v_may_def_optype v_may_defs, unsigned int index)
|
|
{
|
|
gcc_assert (index < v_may_defs->num_v_may_defs);
|
|
return &(v_may_defs->v_may_defs[index].imm_use);
|
|
}
|
|
|
|
/* Return a use_operand_p that is at INDEX in the VUSES array. */
|
|
static inline use_operand_p
|
|
get_vuse_op_ptr(vuse_optype vuses, unsigned int index)
|
|
{
|
|
gcc_assert (index < vuses->num_vuses);
|
|
return &(vuses->vuses[index].imm_use);
|
|
}
|
|
|
|
/* Return a def_operand_p that is the V_MUST_DEF_RESULT for the
|
|
V_MUST_DEF at INDEX in the V_MUST_DEFS array. */
|
|
static inline def_operand_p
|
|
get_v_must_def_result_ptr (v_must_def_optype v_must_defs, unsigned int index)
|
|
{
|
|
def_operand_p op;
|
|
gcc_assert (index < v_must_defs->num_v_must_defs);
|
|
op.def = &(v_must_defs->v_must_defs[index].def);
|
|
return op;
|
|
}
|
|
|
|
/* Return a use_operand_p that is the V_MUST_DEF_KILL for the
|
|
V_MUST_DEF at INDEX in the V_MUST_DEFS array. */
|
|
static inline use_operand_p
|
|
get_v_must_def_kill_ptr (v_must_def_optype v_must_defs, unsigned int index)
|
|
{
|
|
gcc_assert (index < v_must_defs->num_v_must_defs);
|
|
return &(v_must_defs->v_must_defs[index].imm_use);
|
|
}
|
|
|
|
/* Return a def_operand_p pointer for the result of PHI. */
|
|
static inline def_operand_p
|
|
get_phi_result_ptr (tree phi)
|
|
{
|
|
def_operand_p op;
|
|
op.def = &(PHI_RESULT_TREE (phi));
|
|
return op;
|
|
}
|
|
|
|
/* Return a use_operand_p pointer for argument I of phinode PHI. */
|
|
static inline use_operand_p
|
|
get_phi_arg_def_ptr (tree phi, int i)
|
|
{
|
|
return &(PHI_ARG_IMM_USE_NODE (phi,i));
|
|
}
|
|
|
|
/* Delink all immediate_use information for STMT. */
|
|
static inline void
|
|
delink_stmt_imm_use (tree stmt)
|
|
{
|
|
unsigned int x;
|
|
use_optype uses = STMT_USE_OPS (stmt);
|
|
vuse_optype vuses = STMT_VUSE_OPS (stmt);
|
|
v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
|
|
v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
|
|
|
|
for (x = 0; x < NUM_USES (uses); x++)
|
|
delink_imm_use (&(uses->uses[x]));
|
|
|
|
for (x = 0; x < NUM_VUSES (vuses); x++)
|
|
delink_imm_use (&(vuses->vuses[x].imm_use));
|
|
|
|
for (x = 0; x < NUM_V_MAY_DEFS (v_may_defs); x++)
|
|
delink_imm_use (&(v_may_defs->v_may_defs[x].imm_use));
|
|
|
|
for (x = 0; x < NUM_V_MUST_DEFS (v_must_defs); x++)
|
|
delink_imm_use (&(v_must_defs->v_must_defs[x].imm_use));
|
|
}
|
|
|
|
|
|
/* Return the bitmap of addresses taken by STMT, or NULL if it takes
|
|
no addresses. */
|
|
static inline bitmap
|
|
addresses_taken (tree stmt)
|
|
{
|
|
stmt_ann_t ann = stmt_ann (stmt);
|
|
return ann ? ann->addresses_taken : NULL;
|
|
}
|
|
|
|
/* Return the basic_block annotation for BB. */
|
|
static inline bb_ann_t
|
|
bb_ann (basic_block bb)
|
|
{
|
|
return (bb_ann_t)bb->tree_annotations;
|
|
}
|
|
|
|
/* Return the PHI nodes for basic block BB, or NULL if there are no
|
|
PHI nodes. */
|
|
static inline tree
|
|
phi_nodes (basic_block bb)
|
|
{
|
|
return bb_ann (bb)->phi_nodes;
|
|
}
|
|
|
|
/* Set list of phi nodes of a basic block BB to L. */
|
|
|
|
static inline void
|
|
set_phi_nodes (basic_block bb, tree l)
|
|
{
|
|
tree phi;
|
|
|
|
bb_ann (bb)->phi_nodes = l;
|
|
for (phi = l; phi; phi = PHI_CHAIN (phi))
|
|
set_bb_for_stmt (phi, bb);
|
|
}
|
|
|
|
/* Return the phi argument which contains the specified use. */
|
|
|
|
static inline int
|
|
phi_arg_index_from_use (use_operand_p use)
|
|
{
|
|
struct phi_arg_d *element, *root;
|
|
int index;
|
|
tree phi;
|
|
|
|
/* Since the use is the first thing in a PHI arguemnt element, we can
|
|
calculate its index based on casting it to an argument, and performing
|
|
pointer arithmetic. */
|
|
|
|
phi = USE_STMT (use);
|
|
gcc_assert (TREE_CODE (phi) == PHI_NODE);
|
|
|
|
element = (struct phi_arg_d *)use;
|
|
root = &(PHI_ARG_ELT (phi, 0));
|
|
index = element - root;
|
|
|
|
#ifdef ENABLE_CHECKING
|
|
/* Make sure the calculation doesn't have any leftover bytes. If it does,
|
|
then imm_use is liekly not the first element in phi_arg_d. */
|
|
gcc_assert (
|
|
(((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
|
|
gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
|
|
#endif
|
|
|
|
return index;
|
|
}
|
|
|
|
/* Mark VAR as used, so that it'll be preserved during rtl expansion. */
|
|
|
|
static inline void
|
|
set_is_used (tree var)
|
|
{
|
|
var_ann_t ann = get_var_ann (var);
|
|
ann->used = 1;
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
/* Return true if T is an executable statement. */
|
|
static inline bool
|
|
is_exec_stmt (tree t)
|
|
{
|
|
return (t && !IS_EMPTY_STMT (t) && t != error_mark_node);
|
|
}
|
|
|
|
|
|
/* Return true if this stmt can be the target of a control transfer stmt such
|
|
as a goto. */
|
|
static inline bool
|
|
is_label_stmt (tree t)
|
|
{
|
|
if (t)
|
|
switch (TREE_CODE (t))
|
|
{
|
|
case LABEL_DECL:
|
|
case LABEL_EXPR:
|
|
case CASE_LABEL_EXPR:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Set the default definition for VAR to DEF. */
|
|
static inline void
|
|
set_default_def (tree var, tree def)
|
|
{
|
|
var_ann_t ann = get_var_ann (var);
|
|
ann->default_def = def;
|
|
}
|
|
|
|
/* Return the default definition for variable VAR, or NULL if none
|
|
exists. */
|
|
static inline tree
|
|
default_def (tree var)
|
|
{
|
|
var_ann_t ann = var_ann (var);
|
|
return ann ? ann->default_def : NULL_TREE;
|
|
}
|
|
|
|
/* PHI nodes should contain only ssa_names and invariants. A test
|
|
for ssa_name is definitely simpler; don't let invalid contents
|
|
slip in in the meantime. */
|
|
|
|
static inline bool
|
|
phi_ssa_name_p (tree t)
|
|
{
|
|
if (TREE_CODE (t) == SSA_NAME)
|
|
return true;
|
|
#ifdef ENABLE_CHECKING
|
|
gcc_assert (is_gimple_min_invariant (t));
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
/* Return a block_stmt_iterator that points to beginning of basic
|
|
block BB. */
|
|
static inline block_stmt_iterator
|
|
bsi_start (basic_block bb)
|
|
{
|
|
block_stmt_iterator bsi;
|
|
if (bb->stmt_list)
|
|
bsi.tsi = tsi_start (bb->stmt_list);
|
|
else
|
|
{
|
|
gcc_assert (bb->index < 0);
|
|
bsi.tsi.ptr = NULL;
|
|
bsi.tsi.container = NULL;
|
|
}
|
|
bsi.bb = bb;
|
|
return bsi;
|
|
}
|
|
|
|
/* Return a block statement iterator that points to the last label in
|
|
block BB. */
|
|
|
|
static inline block_stmt_iterator
|
|
bsi_after_labels (basic_block bb)
|
|
{
|
|
block_stmt_iterator bsi;
|
|
tree_stmt_iterator next;
|
|
|
|
bsi.bb = bb;
|
|
|
|
if (!bb->stmt_list)
|
|
{
|
|
gcc_assert (bb->index < 0);
|
|
bsi.tsi.ptr = NULL;
|
|
bsi.tsi.container = NULL;
|
|
return bsi;
|
|
}
|
|
|
|
bsi.tsi = tsi_start (bb->stmt_list);
|
|
if (tsi_end_p (bsi.tsi))
|
|
return bsi;
|
|
|
|
/* Ensure that there are some labels. The rationale is that we want
|
|
to insert after the bsi that is returned, and these insertions should
|
|
be placed at the start of the basic block. This would not work if the
|
|
first statement was not label; rather fail here than enable the user
|
|
proceed in wrong way. */
|
|
gcc_assert (TREE_CODE (tsi_stmt (bsi.tsi)) == LABEL_EXPR);
|
|
|
|
next = bsi.tsi;
|
|
tsi_next (&next);
|
|
|
|
while (!tsi_end_p (next)
|
|
&& TREE_CODE (tsi_stmt (next)) == LABEL_EXPR)
|
|
{
|
|
bsi.tsi = next;
|
|
tsi_next (&next);
|
|
}
|
|
|
|
return bsi;
|
|
}
|
|
|
|
/* Return a block statement iterator that points to the end of basic
|
|
block BB. */
|
|
static inline block_stmt_iterator
|
|
bsi_last (basic_block bb)
|
|
{
|
|
block_stmt_iterator bsi;
|
|
if (bb->stmt_list)
|
|
bsi.tsi = tsi_last (bb->stmt_list);
|
|
else
|
|
{
|
|
gcc_assert (bb->index < 0);
|
|
bsi.tsi.ptr = NULL;
|
|
bsi.tsi.container = NULL;
|
|
}
|
|
bsi.bb = bb;
|
|
return bsi;
|
|
}
|
|
|
|
/* Return true if block statement iterator I has reached the end of
|
|
the basic block. */
|
|
static inline bool
|
|
bsi_end_p (block_stmt_iterator i)
|
|
{
|
|
return tsi_end_p (i.tsi);
|
|
}
|
|
|
|
/* Modify block statement iterator I so that it is at the next
|
|
statement in the basic block. */
|
|
static inline void
|
|
bsi_next (block_stmt_iterator *i)
|
|
{
|
|
tsi_next (&i->tsi);
|
|
}
|
|
|
|
/* Modify block statement iterator I so that it is at the previous
|
|
statement in the basic block. */
|
|
static inline void
|
|
bsi_prev (block_stmt_iterator *i)
|
|
{
|
|
tsi_prev (&i->tsi);
|
|
}
|
|
|
|
/* Return the statement that block statement iterator I is currently
|
|
at. */
|
|
static inline tree
|
|
bsi_stmt (block_stmt_iterator i)
|
|
{
|
|
return tsi_stmt (i.tsi);
|
|
}
|
|
|
|
/* Return a pointer to the statement that block statement iterator I
|
|
is currently at. */
|
|
static inline tree *
|
|
bsi_stmt_ptr (block_stmt_iterator i)
|
|
{
|
|
return tsi_stmt_ptr (i.tsi);
|
|
}
|
|
|
|
/* Returns the loop of the statement STMT. */
|
|
|
|
static inline struct loop *
|
|
loop_containing_stmt (tree stmt)
|
|
{
|
|
basic_block bb = bb_for_stmt (stmt);
|
|
if (!bb)
|
|
return NULL;
|
|
|
|
return bb->loop_father;
|
|
}
|
|
|
|
/* Return true if VAR is a clobbered by function calls. */
|
|
static inline bool
|
|
is_call_clobbered (tree var)
|
|
{
|
|
return is_global_var (var)
|
|
|| bitmap_bit_p (call_clobbered_vars, var_ann (var)->uid);
|
|
}
|
|
|
|
/* Mark variable VAR as being clobbered by function calls. */
|
|
static inline void
|
|
mark_call_clobbered (tree var)
|
|
{
|
|
var_ann_t ann = var_ann (var);
|
|
/* If VAR is a memory tag, then we need to consider it a global
|
|
variable. This is because the pointer that VAR represents has
|
|
been found to point to either an arbitrary location or to a known
|
|
location in global memory. */
|
|
if (ann->mem_tag_kind != NOT_A_TAG && ann->mem_tag_kind != STRUCT_FIELD)
|
|
DECL_EXTERNAL (var) = 1;
|
|
bitmap_set_bit (call_clobbered_vars, ann->uid);
|
|
ssa_call_clobbered_cache_valid = false;
|
|
ssa_ro_call_cache_valid = false;
|
|
}
|
|
|
|
/* Clear the call-clobbered attribute from variable VAR. */
|
|
static inline void
|
|
clear_call_clobbered (tree var)
|
|
{
|
|
var_ann_t ann = var_ann (var);
|
|
if (ann->mem_tag_kind != NOT_A_TAG && ann->mem_tag_kind != STRUCT_FIELD)
|
|
DECL_EXTERNAL (var) = 0;
|
|
bitmap_clear_bit (call_clobbered_vars, ann->uid);
|
|
ssa_call_clobbered_cache_valid = false;
|
|
ssa_ro_call_cache_valid = false;
|
|
}
|
|
|
|
/* Mark variable VAR as being non-addressable. */
|
|
static inline void
|
|
mark_non_addressable (tree var)
|
|
{
|
|
bitmap_clear_bit (call_clobbered_vars, var_ann (var)->uid);
|
|
TREE_ADDRESSABLE (var) = 0;
|
|
ssa_call_clobbered_cache_valid = false;
|
|
ssa_ro_call_cache_valid = false;
|
|
}
|
|
|
|
/* Return the common annotation for T. Return NULL if the annotation
|
|
doesn't already exist. */
|
|
static inline tree_ann_t
|
|
tree_ann (tree t)
|
|
{
|
|
return t->common.ann;
|
|
}
|
|
|
|
/* Return a common annotation for T. Create the constant annotation if it
|
|
doesn't exist. */
|
|
static inline tree_ann_t
|
|
get_tree_ann (tree t)
|
|
{
|
|
tree_ann_t ann = tree_ann (t);
|
|
return (ann) ? ann : create_tree_ann (t);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
/* The following set of routines are used to iterator over various type of
|
|
SSA operands. */
|
|
|
|
/* Return true if PTR is finished iterating. */
|
|
static inline bool
|
|
op_iter_done (ssa_op_iter *ptr)
|
|
{
|
|
return ptr->done;
|
|
}
|
|
|
|
/* Get the next iterator use value for PTR. */
|
|
static inline use_operand_p
|
|
op_iter_next_use (ssa_op_iter *ptr)
|
|
{
|
|
if (ptr->use_i < ptr->num_use)
|
|
{
|
|
return USE_OP_PTR (ptr->ops->use_ops, (ptr->use_i)++);
|
|
}
|
|
if (ptr->vuse_i < ptr->num_vuse)
|
|
{
|
|
return VUSE_OP_PTR (ptr->ops->vuse_ops, (ptr->vuse_i)++);
|
|
}
|
|
if (ptr->v_mayu_i < ptr->num_v_mayu)
|
|
{
|
|
return V_MAY_DEF_OP_PTR (ptr->ops->v_may_def_ops,
|
|
(ptr->v_mayu_i)++);
|
|
}
|
|
if (ptr->v_mustu_i < ptr->num_v_mustu)
|
|
{
|
|
return V_MUST_DEF_KILL_PTR (ptr->ops->v_must_def_ops,
|
|
(ptr->v_mustu_i)++);
|
|
}
|
|
ptr->done = true;
|
|
return NULL_USE_OPERAND_P;
|
|
}
|
|
|
|
/* Get the next iterator def value for PTR. */
|
|
static inline def_operand_p
|
|
op_iter_next_def (ssa_op_iter *ptr)
|
|
{
|
|
if (ptr->def_i < ptr->num_def)
|
|
{
|
|
return DEF_OP_PTR (ptr->ops->def_ops, (ptr->def_i)++);
|
|
}
|
|
if (ptr->v_mustd_i < ptr->num_v_mustd)
|
|
{
|
|
return V_MUST_DEF_RESULT_PTR (ptr->ops->v_must_def_ops,
|
|
(ptr->v_mustd_i)++);
|
|
}
|
|
if (ptr->v_mayd_i < ptr->num_v_mayd)
|
|
{
|
|
return V_MAY_DEF_RESULT_PTR (ptr->ops->v_may_def_ops,
|
|
(ptr->v_mayd_i)++);
|
|
}
|
|
ptr->done = true;
|
|
return NULL_DEF_OPERAND_P;
|
|
}
|
|
|
|
/* Get the next iterator tree value for PTR. */
|
|
static inline tree
|
|
op_iter_next_tree (ssa_op_iter *ptr)
|
|
{
|
|
if (ptr->use_i < ptr->num_use)
|
|
{
|
|
return USE_OP (ptr->ops->use_ops, (ptr->use_i)++);
|
|
}
|
|
if (ptr->vuse_i < ptr->num_vuse)
|
|
{
|
|
return VUSE_OP (ptr->ops->vuse_ops, (ptr->vuse_i)++);
|
|
}
|
|
if (ptr->v_mayu_i < ptr->num_v_mayu)
|
|
{
|
|
return V_MAY_DEF_OP (ptr->ops->v_may_def_ops, (ptr->v_mayu_i)++);
|
|
}
|
|
if (ptr->v_mustu_i < ptr->num_v_mustu)
|
|
{
|
|
return V_MUST_DEF_KILL (ptr->ops->v_must_def_ops, (ptr->v_mustu_i)++);
|
|
}
|
|
if (ptr->def_i < ptr->num_def)
|
|
{
|
|
return DEF_OP (ptr->ops->def_ops, (ptr->def_i)++);
|
|
}
|
|
if (ptr->v_mustd_i < ptr->num_v_mustd)
|
|
{
|
|
return V_MUST_DEF_RESULT (ptr->ops->v_must_def_ops,
|
|
(ptr->v_mustd_i)++);
|
|
}
|
|
if (ptr->v_mayd_i < ptr->num_v_mayd)
|
|
{
|
|
return V_MAY_DEF_RESULT (ptr->ops->v_may_def_ops,
|
|
(ptr->v_mayd_i)++);
|
|
}
|
|
ptr->done = true;
|
|
return NULL;
|
|
}
|
|
|
|
/* Initialize the iterator PTR to the virtual defs in STMT. */
|
|
static inline void
|
|
op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
|
|
{
|
|
stmt_operands_p ops;
|
|
stmt_ann_t ann = get_stmt_ann (stmt);
|
|
|
|
ops = &(ann->operands);
|
|
ptr->done = false;
|
|
ptr->ops = ops;
|
|
ptr->num_def = (flags & SSA_OP_DEF) ? NUM_DEFS (ops->def_ops) : 0;
|
|
ptr->num_use = (flags & SSA_OP_USE) ? NUM_USES (ops->use_ops) : 0;
|
|
ptr->num_vuse = (flags & SSA_OP_VUSE) ? NUM_VUSES (ops->vuse_ops) : 0;
|
|
ptr->num_v_mayu = (flags & SSA_OP_VMAYUSE)
|
|
? NUM_V_MAY_DEFS (ops->v_may_def_ops) : 0;
|
|
ptr->num_v_mayd = (flags & SSA_OP_VMAYDEF)
|
|
? NUM_V_MAY_DEFS (ops->v_may_def_ops) : 0;
|
|
ptr->num_v_mustu = (flags & SSA_OP_VMUSTDEFKILL)
|
|
? NUM_V_MUST_DEFS (ops->v_must_def_ops) : 0;
|
|
ptr->num_v_mustd = (flags & SSA_OP_VMUSTDEF)
|
|
? NUM_V_MUST_DEFS (ops->v_must_def_ops) : 0;
|
|
ptr->def_i = 0;
|
|
ptr->use_i = 0;
|
|
ptr->vuse_i = 0;
|
|
ptr->v_mayu_i = 0;
|
|
ptr->v_mayd_i = 0;
|
|
ptr->v_mustu_i = 0;
|
|
ptr->v_mustd_i = 0;
|
|
}
|
|
|
|
/* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
|
|
the first use. */
|
|
static inline use_operand_p
|
|
op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
|
|
{
|
|
op_iter_init (ptr, stmt, flags);
|
|
return op_iter_next_use (ptr);
|
|
}
|
|
|
|
/* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
|
|
the first def. */
|
|
static inline def_operand_p
|
|
op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
|
|
{
|
|
op_iter_init (ptr, stmt, flags);
|
|
return op_iter_next_def (ptr);
|
|
}
|
|
|
|
/* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
|
|
the first operand as a tree. */
|
|
static inline tree
|
|
op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
|
|
{
|
|
op_iter_init (ptr, stmt, flags);
|
|
return op_iter_next_tree (ptr);
|
|
}
|
|
|
|
/* Get the next iterator mustdef value for PTR, returning the mustdef values in
|
|
KILL and DEF. */
|
|
static inline void
|
|
op_iter_next_mustdef (use_operand_p *kill, def_operand_p *def, ssa_op_iter *ptr)
|
|
{
|
|
if (ptr->v_mustu_i < ptr->num_v_mustu)
|
|
{
|
|
*def = V_MUST_DEF_RESULT_PTR (ptr->ops->v_must_def_ops, ptr->v_mustu_i);
|
|
*kill = V_MUST_DEF_KILL_PTR (ptr->ops->v_must_def_ops, (ptr->v_mustu_i)++);
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
*def = NULL_DEF_OPERAND_P;
|
|
*kill = NULL_USE_OPERAND_P;
|
|
}
|
|
ptr->done = true;
|
|
return;
|
|
}
|
|
/* Get the next iterator maydef value for PTR, returning the maydef values in
|
|
USE and DEF. */
|
|
static inline void
|
|
op_iter_next_maydef (use_operand_p *use, def_operand_p *def, ssa_op_iter *ptr)
|
|
{
|
|
if (ptr->v_mayu_i < ptr->num_v_mayu)
|
|
{
|
|
*def = V_MAY_DEF_RESULT_PTR (ptr->ops->v_may_def_ops, ptr->v_mayu_i);
|
|
*use = V_MAY_DEF_OP_PTR (ptr->ops->v_may_def_ops, (ptr->v_mayu_i)++);
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
*def = NULL_DEF_OPERAND_P;
|
|
*use = NULL_USE_OPERAND_P;
|
|
}
|
|
ptr->done = true;
|
|
return;
|
|
}
|
|
|
|
/* Initialize iterator PTR to the operands in STMT. Return the first operands
|
|
in USE and DEF. */
|
|
static inline void
|
|
op_iter_init_maydef (ssa_op_iter *ptr, tree stmt, use_operand_p *use,
|
|
def_operand_p *def)
|
|
{
|
|
op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
|
|
op_iter_next_maydef (use, def, ptr);
|
|
}
|
|
|
|
/* Initialize iterator PTR to the operands in STMT. Return the first operands
|
|
in KILL and DEF. */
|
|
static inline void
|
|
op_iter_init_mustdef (ssa_op_iter *ptr, tree stmt, use_operand_p *kill,
|
|
def_operand_p *def)
|
|
{
|
|
op_iter_init (ptr, stmt, SSA_OP_VMUSTDEFKILL);
|
|
op_iter_next_mustdef (kill, def, ptr);
|
|
}
|
|
|
|
/* Return true if REF, a COMPONENT_REF, has an ARRAY_REF somewhere in it. */
|
|
|
|
static inline bool
|
|
ref_contains_array_ref (tree ref)
|
|
{
|
|
while (handled_component_p (ref))
|
|
{
|
|
if (TREE_CODE (ref) == ARRAY_REF)
|
|
return true;
|
|
ref = TREE_OPERAND (ref, 0);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Given a variable VAR, lookup and return a pointer to the list of
|
|
subvariables for it. */
|
|
|
|
static inline subvar_t *
|
|
lookup_subvars_for_var (tree var)
|
|
{
|
|
var_ann_t ann = var_ann (var);
|
|
gcc_assert (ann);
|
|
return &ann->subvars;
|
|
}
|
|
|
|
/* Given a variable VAR, return a linked list of subvariables for VAR, or
|
|
NULL, if there are no subvariables. */
|
|
|
|
static inline subvar_t
|
|
get_subvars_for_var (tree var)
|
|
{
|
|
subvar_t subvars;
|
|
|
|
gcc_assert (SSA_VAR_P (var));
|
|
|
|
if (TREE_CODE (var) == SSA_NAME)
|
|
subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var)));
|
|
else
|
|
subvars = *(lookup_subvars_for_var (var));
|
|
return subvars;
|
|
}
|
|
|
|
/* Return true if V is a tree that we can have subvars for.
|
|
Normally, this is any aggregate type, however, due to implementation
|
|
limitations ATM, we exclude array types as well. */
|
|
|
|
static inline bool
|
|
var_can_have_subvars (tree v)
|
|
{
|
|
return (AGGREGATE_TYPE_P (TREE_TYPE (v)) &&
|
|
TREE_CODE (TREE_TYPE (v)) != ARRAY_TYPE);
|
|
}
|
|
|
|
|
|
/* Return true if OFFSET and SIZE define a range that overlaps with some
|
|
portion of the range of SV, a subvar. If there was an exact overlap,
|
|
*EXACT will be set to true upon return. */
|
|
|
|
static inline bool
|
|
overlap_subvar (HOST_WIDE_INT offset, HOST_WIDE_INT size,
|
|
subvar_t sv, bool *exact)
|
|
{
|
|
/* There are three possible cases of overlap.
|
|
1. We can have an exact overlap, like so:
|
|
|offset, offset + size |
|
|
|sv->offset, sv->offset + sv->size |
|
|
|
|
2. We can have offset starting after sv->offset, like so:
|
|
|
|
|offset, offset + size |
|
|
|sv->offset, sv->offset + sv->size |
|
|
|
|
3. We can have offset starting before sv->offset, like so:
|
|
|
|
|offset, offset + size |
|
|
|sv->offset, sv->offset + sv->size|
|
|
*/
|
|
|
|
if (exact)
|
|
*exact = false;
|
|
if (offset == sv->offset && size == sv->size)
|
|
{
|
|
if (exact)
|
|
*exact = true;
|
|
return true;
|
|
}
|
|
else if (offset >= sv->offset && offset < (sv->offset + sv->size))
|
|
{
|
|
return true;
|
|
}
|
|
else if (offset < sv->offset && (offset + size > sv->offset))
|
|
{
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
}
|
|
|
|
#endif /* _TREE_FLOW_INLINE_H */
|