8sa1-gcc/gcc/fortran/class.c
Tobias Burnus 5cfa7039f3 re PR fortran/51995 ([OOP] Polymorphic class fails at runtime)
2012-01-25  Tobias Burnus  <burnus@net-b.de>

        PR fortran/51995
        * class.c (gfc_build_class_symbol): Fix invalid freeing
        issue with fclass->f2k_derived.

From-SVN: r183541
2012-01-25 23:21:14 +01:00

940 lines
26 KiB
C

/* Implementation of Fortran 2003 Polymorphism.
Copyright (C) 2009, 2010
Free Software Foundation, Inc.
Contributed by Paul Richard Thomas <pault@gcc.gnu.org>
and Janus Weil <janus@gcc.gnu.org>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* class.c -- This file contains the front end functions needed to service
the implementation of Fortran 2003 polymorphism and other
object-oriented features. */
/* Outline of the internal representation:
Each CLASS variable is encapsulated by a class container, which is a
structure with two fields:
* _data: A pointer to the actual data of the variable. This field has the
declared type of the class variable and its attributes
(pointer/allocatable/dimension/...).
* _vptr: A pointer to the vtable entry (see below) of the dynamic type.
For each derived type we set up a "vtable" entry, i.e. a structure with the
following fields:
* _hash: A hash value serving as a unique identifier for this type.
* _size: The size in bytes of the derived type.
* _extends: A pointer to the vtable entry of the parent derived type.
* _def_init: A pointer to a default initialized variable of this type.
* _copy: A procedure pointer to a copying procedure.
After these follow procedure pointer components for the specific
type-bound procedures. */
#include "config.h"
#include "system.h"
#include "gfortran.h"
#include "constructor.h"
/* Insert a reference to the component of the given name.
Only to be used with CLASS containers and vtables. */
void
gfc_add_component_ref (gfc_expr *e, const char *name)
{
gfc_ref **tail = &(e->ref);
gfc_ref *next = NULL;
gfc_symbol *derived = e->symtree->n.sym->ts.u.derived;
while (*tail != NULL)
{
if ((*tail)->type == REF_COMPONENT)
{
if (strcmp ((*tail)->u.c.component->name, "_data") == 0
&& (*tail)->next
&& (*tail)->next->type == REF_ARRAY
&& (*tail)->next->next == NULL)
return;
derived = (*tail)->u.c.component->ts.u.derived;
}
if ((*tail)->type == REF_ARRAY && (*tail)->next == NULL)
break;
tail = &((*tail)->next);
}
if (*tail != NULL && strcmp (name, "_data") == 0)
next = *tail;
(*tail) = gfc_get_ref();
(*tail)->next = next;
(*tail)->type = REF_COMPONENT;
(*tail)->u.c.sym = derived;
(*tail)->u.c.component = gfc_find_component (derived, name, true, true);
gcc_assert((*tail)->u.c.component);
if (!next)
e->ts = (*tail)->u.c.component->ts;
}
/* This is used to add both the _data component reference and an array
reference to class expressions. Used in translation of intrinsic
array inquiry functions. */
void
gfc_add_class_array_ref (gfc_expr *e)
{
int rank = CLASS_DATA (e)->as->rank;
gfc_array_spec *as = CLASS_DATA (e)->as;
gfc_ref *ref = NULL;
gfc_add_component_ref (e, "_data");
e->rank = rank;
for (ref = e->ref; ref; ref = ref->next)
if (!ref->next)
break;
if (ref->type != REF_ARRAY)
{
ref->next = gfc_get_ref ();
ref = ref->next;
ref->type = REF_ARRAY;
ref->u.ar.type = AR_FULL;
ref->u.ar.as = as;
}
}
/* Unfortunately, class array expressions can appear in various conditions;
with and without both _data component and an arrayspec. This function
deals with that variability. The previous reference to 'ref' is to a
class array. */
static bool
class_array_ref_detected (gfc_ref *ref, bool *full_array)
{
bool no_data = false;
bool with_data = false;
/* An array reference with no _data component. */
if (ref && ref->type == REF_ARRAY
&& !ref->next
&& ref->u.ar.type != AR_ELEMENT)
{
if (full_array)
*full_array = ref->u.ar.type == AR_FULL;
no_data = true;
}
/* Cover cases where _data appears, with or without an array ref. */
if (ref && ref->type == REF_COMPONENT
&& strcmp (ref->u.c.component->name, "_data") == 0)
{
if (!ref->next)
{
with_data = true;
if (full_array)
*full_array = true;
}
else if (ref->next && ref->next->type == REF_ARRAY
&& !ref->next->next
&& ref->type == REF_COMPONENT
&& ref->next->type == REF_ARRAY
&& ref->next->u.ar.type != AR_ELEMENT)
{
with_data = true;
if (full_array)
*full_array = ref->next->u.ar.type == AR_FULL;
}
}
return no_data || with_data;
}
/* Returns true if the expression contains a reference to a class
array. Notice that class array elements return false. */
bool
gfc_is_class_array_ref (gfc_expr *e, bool *full_array)
{
gfc_ref *ref;
if (!e->rank)
return false;
if (full_array)
*full_array= false;
/* Is this a class array object? ie. Is the symbol of type class? */
if (e->symtree
&& e->symtree->n.sym->ts.type == BT_CLASS
&& CLASS_DATA (e->symtree->n.sym)
&& CLASS_DATA (e->symtree->n.sym)->attr.dimension
&& class_array_ref_detected (e->ref, full_array))
return true;
/* Or is this a class array component reference? */
for (ref = e->ref; ref; ref = ref->next)
{
if (ref->type == REF_COMPONENT
&& ref->u.c.component->ts.type == BT_CLASS
&& CLASS_DATA (ref->u.c.component)->attr.dimension
&& class_array_ref_detected (ref->next, full_array))
return true;
}
return false;
}
/* Returns true if the expression is a reference to a class
scalar. This function is necessary because such expressions
can be dressed with a reference to the _data component and so
have a type other than BT_CLASS. */
bool
gfc_is_class_scalar_expr (gfc_expr *e)
{
gfc_ref *ref;
if (e->rank)
return false;
/* Is this a class object? */
if (e->symtree
&& e->symtree->n.sym->ts.type == BT_CLASS
&& CLASS_DATA (e->symtree->n.sym)
&& !CLASS_DATA (e->symtree->n.sym)->attr.dimension
&& (e->ref == NULL
|| (strcmp (e->ref->u.c.component->name, "_data") == 0
&& e->ref->next == NULL)))
return true;
/* Or is the final reference BT_CLASS or _data? */
for (ref = e->ref; ref; ref = ref->next)
{
if (ref->type == REF_COMPONENT
&& ref->u.c.component->ts.type == BT_CLASS
&& CLASS_DATA (ref->u.c.component)
&& !CLASS_DATA (ref->u.c.component)->attr.dimension
&& (ref->next == NULL
|| (strcmp (ref->next->u.c.component->name, "_data") == 0
&& ref->next->next == NULL)))
return true;
}
return false;
}
/* Build a NULL initializer for CLASS pointers,
initializing the _data component to NULL and
the _vptr component to the declared type. */
gfc_expr *
gfc_class_null_initializer (gfc_typespec *ts)
{
gfc_expr *init;
gfc_component *comp;
init = gfc_get_structure_constructor_expr (ts->type, ts->kind,
&ts->u.derived->declared_at);
init->ts = *ts;
for (comp = ts->u.derived->components; comp; comp = comp->next)
{
gfc_constructor *ctor = gfc_constructor_get();
if (strcmp (comp->name, "_vptr") == 0)
ctor->expr = gfc_lval_expr_from_sym (gfc_find_derived_vtab (ts->u.derived));
else
ctor->expr = gfc_get_null_expr (NULL);
gfc_constructor_append (&init->value.constructor, ctor);
}
return init;
}
/* Create a unique string identifier for a derived type, composed of its name
and module name. This is used to construct unique names for the class
containers and vtab symbols. */
static void
get_unique_type_string (char *string, gfc_symbol *derived)
{
char dt_name[GFC_MAX_SYMBOL_LEN+1];
sprintf (dt_name, "%s", derived->name);
dt_name[0] = TOUPPER (dt_name[0]);
if (derived->module)
sprintf (string, "%s_%s", derived->module, dt_name);
else if (derived->ns->proc_name)
sprintf (string, "%s_%s", derived->ns->proc_name->name, dt_name);
else
sprintf (string, "_%s", dt_name);
}
/* A relative of 'get_unique_type_string' which makes sure the generated
string will not be too long (replacing it by a hash string if needed). */
static void
get_unique_hashed_string (char *string, gfc_symbol *derived)
{
char tmp[2*GFC_MAX_SYMBOL_LEN+2];
get_unique_type_string (&tmp[0], derived);
/* If string is too long, use hash value in hex representation (allow for
extra decoration, cf. gfc_build_class_symbol & gfc_find_derived_vtab). */
if (strlen (tmp) > GFC_MAX_SYMBOL_LEN - 11)
{
int h = gfc_hash_value (derived);
sprintf (string, "%X", h);
}
else
strcpy (string, tmp);
}
/* Assign a hash value for a derived type. The algorithm is that of SDBM. */
unsigned int
gfc_hash_value (gfc_symbol *sym)
{
unsigned int hash = 0;
char c[2*(GFC_MAX_SYMBOL_LEN+1)];
int i, len;
get_unique_type_string (&c[0], sym);
len = strlen (c);
for (i = 0; i < len; i++)
hash = (hash << 6) + (hash << 16) - hash + c[i];
/* Return the hash but take the modulus for the sake of module read,
even though this slightly increases the chance of collision. */
return (hash % 100000000);
}
/* Build a polymorphic CLASS entity, using the symbol that comes from
build_sym. A CLASS entity is represented by an encapsulating type,
which contains the declared type as '_data' component, plus a pointer
component '_vptr' which determines the dynamic type. */
gfc_try
gfc_build_class_symbol (gfc_typespec *ts, symbol_attribute *attr,
gfc_array_spec **as, bool delayed_vtab)
{
char name[GFC_MAX_SYMBOL_LEN+1], tname[GFC_MAX_SYMBOL_LEN+1];
gfc_symbol *fclass;
gfc_symbol *vtab;
gfc_component *c;
if (as && *as && (*as)->type == AS_ASSUMED_SIZE)
{
gfc_error ("Assumed size polymorphic objects or components, such "
"as that at %C, have not yet been implemented");
return FAILURE;
}
if (attr->class_ok)
/* Class container has already been built. */
return SUCCESS;
attr->class_ok = attr->dummy || attr->pointer || attr->allocatable
|| attr->select_type_temporary;
if (!attr->class_ok)
/* We can not build the class container yet. */
return SUCCESS;
/* Determine the name of the encapsulating type. */
get_unique_hashed_string (tname, ts->u.derived);
if ((*as) && (*as)->rank && attr->allocatable)
sprintf (name, "__class_%s_%d_a", tname, (*as)->rank);
else if ((*as) && (*as)->rank)
sprintf (name, "__class_%s_%d", tname, (*as)->rank);
else if (attr->pointer)
sprintf (name, "__class_%s_p", tname);
else if (attr->allocatable)
sprintf (name, "__class_%s_a", tname);
else
sprintf (name, "__class_%s", tname);
gfc_find_symbol (name, ts->u.derived->ns, 0, &fclass);
if (fclass == NULL)
{
gfc_symtree *st;
/* If not there, create a new symbol. */
fclass = gfc_new_symbol (name, ts->u.derived->ns);
st = gfc_new_symtree (&ts->u.derived->ns->sym_root, name);
st->n.sym = fclass;
gfc_set_sym_referenced (fclass);
fclass->refs++;
fclass->ts.type = BT_UNKNOWN;
fclass->attr.abstract = ts->u.derived->attr.abstract;
if (ts->u.derived->f2k_derived)
fclass->f2k_derived = gfc_get_namespace (NULL, 0);
if (gfc_add_flavor (&fclass->attr, FL_DERIVED,
NULL, &gfc_current_locus) == FAILURE)
return FAILURE;
/* Add component '_data'. */
if (gfc_add_component (fclass, "_data", &c) == FAILURE)
return FAILURE;
c->ts = *ts;
c->ts.type = BT_DERIVED;
c->attr.access = ACCESS_PRIVATE;
c->ts.u.derived = ts->u.derived;
c->attr.class_pointer = attr->pointer;
c->attr.pointer = attr->pointer || (attr->dummy && !attr->allocatable)
|| attr->select_type_temporary;
c->attr.allocatable = attr->allocatable;
c->attr.dimension = attr->dimension;
c->attr.codimension = attr->codimension;
c->attr.abstract = ts->u.derived->attr.abstract;
c->as = (*as);
c->initializer = NULL;
/* Add component '_vptr'. */
if (gfc_add_component (fclass, "_vptr", &c) == FAILURE)
return FAILURE;
c->ts.type = BT_DERIVED;
if (delayed_vtab)
c->ts.u.derived = NULL;
else
{
vtab = gfc_find_derived_vtab (ts->u.derived);
gcc_assert (vtab);
c->ts.u.derived = vtab->ts.u.derived;
}
c->attr.access = ACCESS_PRIVATE;
c->attr.pointer = 1;
}
else if (!fclass->f2k_derived)
fclass->f2k_derived = gfc_get_namespace (NULL, 0);
/* Since the extension field is 8 bit wide, we can only have
up to 255 extension levels. */
if (ts->u.derived->attr.extension == 255)
{
gfc_error ("Maximum extension level reached with type '%s' at %L",
ts->u.derived->name, &ts->u.derived->declared_at);
return FAILURE;
}
fclass->attr.extension = ts->u.derived->attr.extension + 1;
fclass->attr.alloc_comp = ts->u.derived->attr.alloc_comp;
fclass->attr.is_class = 1;
ts->u.derived = fclass;
attr->allocatable = attr->pointer = attr->dimension = attr->codimension = 0;
(*as) = NULL;
return SUCCESS;
}
/* Add a procedure pointer component to the vtype
to represent a specific type-bound procedure. */
static void
add_proc_comp (gfc_symbol *vtype, const char *name, gfc_typebound_proc *tb)
{
gfc_component *c;
if (tb->non_overridable)
return;
c = gfc_find_component (vtype, name, true, true);
if (c == NULL)
{
/* Add procedure component. */
if (gfc_add_component (vtype, name, &c) == FAILURE)
return;
if (!c->tb)
c->tb = XCNEW (gfc_typebound_proc);
*c->tb = *tb;
c->tb->ppc = 1;
c->attr.procedure = 1;
c->attr.proc_pointer = 1;
c->attr.flavor = FL_PROCEDURE;
c->attr.access = ACCESS_PRIVATE;
c->attr.external = 1;
c->attr.untyped = 1;
c->attr.if_source = IFSRC_IFBODY;
}
else if (c->attr.proc_pointer && c->tb)
{
*c->tb = *tb;
c->tb->ppc = 1;
}
if (tb->u.specific)
{
c->ts.interface = tb->u.specific->n.sym;
if (!tb->deferred)
c->initializer = gfc_get_variable_expr (tb->u.specific);
}
}
/* Add all specific type-bound procedures in the symtree 'st' to a vtype. */
static void
add_procs_to_declared_vtab1 (gfc_symtree *st, gfc_symbol *vtype)
{
if (!st)
return;
if (st->left)
add_procs_to_declared_vtab1 (st->left, vtype);
if (st->right)
add_procs_to_declared_vtab1 (st->right, vtype);
if (st->n.tb && !st->n.tb->error
&& !st->n.tb->is_generic && st->n.tb->u.specific)
add_proc_comp (vtype, st->name, st->n.tb);
}
/* Copy procedure pointers components from the parent type. */
static void
copy_vtab_proc_comps (gfc_symbol *declared, gfc_symbol *vtype)
{
gfc_component *cmp;
gfc_symbol *vtab;
vtab = gfc_find_derived_vtab (declared);
for (cmp = vtab->ts.u.derived->components; cmp; cmp = cmp->next)
{
if (gfc_find_component (vtype, cmp->name, true, true))
continue;
add_proc_comp (vtype, cmp->name, cmp->tb);
}
}
/* Add procedure pointers for all type-bound procedures to a vtab. */
static void
add_procs_to_declared_vtab (gfc_symbol *derived, gfc_symbol *vtype)
{
gfc_symbol* super_type;
super_type = gfc_get_derived_super_type (derived);
if (super_type && (super_type != derived))
{
/* Make sure that the PPCs appear in the same order as in the parent. */
copy_vtab_proc_comps (super_type, vtype);
/* Only needed to get the PPC initializers right. */
add_procs_to_declared_vtab (super_type, vtype);
}
if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
add_procs_to_declared_vtab1 (derived->f2k_derived->tb_sym_root, vtype);
if (derived->f2k_derived && derived->f2k_derived->tb_uop_root)
add_procs_to_declared_vtab1 (derived->f2k_derived->tb_uop_root, vtype);
}
/* Find (or generate) the symbol for a derived type's vtab. */
gfc_symbol *
gfc_find_derived_vtab (gfc_symbol *derived)
{
gfc_namespace *ns;
gfc_symbol *vtab = NULL, *vtype = NULL, *found_sym = NULL, *def_init = NULL;
gfc_symbol *copy = NULL, *src = NULL, *dst = NULL;
/* Find the top-level namespace (MODULE or PROGRAM). */
for (ns = gfc_current_ns; ns; ns = ns->parent)
if (!ns->parent)
break;
/* If the type is a class container, use the underlying derived type. */
if (derived->attr.is_class)
derived = gfc_get_derived_super_type (derived);
if (ns)
{
char name[GFC_MAX_SYMBOL_LEN+1], tname[GFC_MAX_SYMBOL_LEN+1];
get_unique_hashed_string (tname, derived);
sprintf (name, "__vtab_%s", tname);
/* Look for the vtab symbol in various namespaces. */
gfc_find_symbol (name, gfc_current_ns, 0, &vtab);
if (vtab == NULL)
gfc_find_symbol (name, ns, 0, &vtab);
if (vtab == NULL)
gfc_find_symbol (name, derived->ns, 0, &vtab);
if (vtab == NULL)
{
gfc_get_symbol (name, ns, &vtab);
vtab->ts.type = BT_DERIVED;
if (gfc_add_flavor (&vtab->attr, FL_VARIABLE, NULL,
&gfc_current_locus) == FAILURE)
goto cleanup;
vtab->attr.target = 1;
vtab->attr.save = SAVE_IMPLICIT;
vtab->attr.vtab = 1;
vtab->attr.access = ACCESS_PUBLIC;
gfc_set_sym_referenced (vtab);
sprintf (name, "__vtype_%s", tname);
gfc_find_symbol (name, ns, 0, &vtype);
if (vtype == NULL)
{
gfc_component *c;
gfc_symbol *parent = NULL, *parent_vtab = NULL;
gfc_get_symbol (name, ns, &vtype);
if (gfc_add_flavor (&vtype->attr, FL_DERIVED,
NULL, &gfc_current_locus) == FAILURE)
goto cleanup;
vtype->attr.access = ACCESS_PUBLIC;
vtype->attr.vtype = 1;
gfc_set_sym_referenced (vtype);
/* Add component '_hash'. */
if (gfc_add_component (vtype, "_hash", &c) == FAILURE)
goto cleanup;
c->ts.type = BT_INTEGER;
c->ts.kind = 4;
c->attr.access = ACCESS_PRIVATE;
c->initializer = gfc_get_int_expr (gfc_default_integer_kind,
NULL, derived->hash_value);
/* Add component '_size'. */
if (gfc_add_component (vtype, "_size", &c) == FAILURE)
goto cleanup;
c->ts.type = BT_INTEGER;
c->ts.kind = 4;
c->attr.access = ACCESS_PRIVATE;
/* Remember the derived type in ts.u.derived,
so that the correct initializer can be set later on
(in gfc_conv_structure). */
c->ts.u.derived = derived;
c->initializer = gfc_get_int_expr (gfc_default_integer_kind,
NULL, 0);
/* Add component _extends. */
if (gfc_add_component (vtype, "_extends", &c) == FAILURE)
goto cleanup;
c->attr.pointer = 1;
c->attr.access = ACCESS_PRIVATE;
parent = gfc_get_derived_super_type (derived);
if (parent)
{
parent_vtab = gfc_find_derived_vtab (parent);
c->ts.type = BT_DERIVED;
c->ts.u.derived = parent_vtab->ts.u.derived;
c->initializer = gfc_get_expr ();
c->initializer->expr_type = EXPR_VARIABLE;
gfc_find_sym_tree (parent_vtab->name, parent_vtab->ns,
0, &c->initializer->symtree);
}
else
{
c->ts.type = BT_DERIVED;
c->ts.u.derived = vtype;
c->initializer = gfc_get_null_expr (NULL);
}
if (derived->components == NULL && !derived->attr.zero_comp)
{
/* At this point an error must have occurred.
Prevent further errors on the vtype components. */
found_sym = vtab;
goto have_vtype;
}
/* Add component _def_init. */
if (gfc_add_component (vtype, "_def_init", &c) == FAILURE)
goto cleanup;
c->attr.pointer = 1;
c->attr.access = ACCESS_PRIVATE;
c->ts.type = BT_DERIVED;
c->ts.u.derived = derived;
if (derived->attr.abstract)
c->initializer = gfc_get_null_expr (NULL);
else
{
/* Construct default initialization variable. */
sprintf (name, "__def_init_%s", tname);
gfc_get_symbol (name, ns, &def_init);
def_init->attr.target = 1;
def_init->attr.save = SAVE_IMPLICIT;
def_init->attr.access = ACCESS_PUBLIC;
def_init->attr.flavor = FL_VARIABLE;
gfc_set_sym_referenced (def_init);
def_init->ts.type = BT_DERIVED;
def_init->ts.u.derived = derived;
def_init->value = gfc_default_initializer (&def_init->ts);
c->initializer = gfc_lval_expr_from_sym (def_init);
}
/* Add component _copy. */
if (gfc_add_component (vtype, "_copy", &c) == FAILURE)
goto cleanup;
c->attr.proc_pointer = 1;
c->attr.access = ACCESS_PRIVATE;
c->tb = XCNEW (gfc_typebound_proc);
c->tb->ppc = 1;
if (derived->attr.abstract)
c->initializer = gfc_get_null_expr (NULL);
else
{
/* Set up namespace. */
gfc_namespace *sub_ns = gfc_get_namespace (ns, 0);
sub_ns->sibling = ns->contained;
ns->contained = sub_ns;
sub_ns->resolved = 1;
/* Set up procedure symbol. */
sprintf (name, "__copy_%s", tname);
gfc_get_symbol (name, sub_ns, &copy);
sub_ns->proc_name = copy;
copy->attr.flavor = FL_PROCEDURE;
copy->attr.subroutine = 1;
copy->attr.if_source = IFSRC_DECL;
/* This is elemental so that arrays are automatically
treated correctly by the scalarizer. */
copy->attr.elemental = 1;
if (ns->proc_name->attr.flavor == FL_MODULE)
copy->module = ns->proc_name->name;
gfc_set_sym_referenced (copy);
/* Set up formal arguments. */
gfc_get_symbol ("src", sub_ns, &src);
src->ts.type = BT_DERIVED;
src->ts.u.derived = derived;
src->attr.flavor = FL_VARIABLE;
src->attr.dummy = 1;
src->attr.intent = INTENT_IN;
gfc_set_sym_referenced (src);
copy->formal = gfc_get_formal_arglist ();
copy->formal->sym = src;
gfc_get_symbol ("dst", sub_ns, &dst);
dst->ts.type = BT_DERIVED;
dst->ts.u.derived = derived;
dst->attr.flavor = FL_VARIABLE;
dst->attr.dummy = 1;
dst->attr.intent = INTENT_OUT;
gfc_set_sym_referenced (dst);
copy->formal->next = gfc_get_formal_arglist ();
copy->formal->next->sym = dst;
/* Set up code. */
sub_ns->code = gfc_get_code ();
sub_ns->code->op = EXEC_INIT_ASSIGN;
sub_ns->code->expr1 = gfc_lval_expr_from_sym (dst);
sub_ns->code->expr2 = gfc_lval_expr_from_sym (src);
/* Set initializer. */
c->initializer = gfc_lval_expr_from_sym (copy);
c->ts.interface = copy;
}
/* Add procedure pointers for type-bound procedures. */
add_procs_to_declared_vtab (derived, vtype);
}
have_vtype:
vtab->ts.u.derived = vtype;
vtab->value = gfc_default_initializer (&vtab->ts);
}
}
found_sym = vtab;
cleanup:
/* It is unexpected to have some symbols added at resolution or code
generation time. We commit the changes in order to keep a clean state. */
if (found_sym)
{
gfc_commit_symbol (vtab);
if (vtype)
gfc_commit_symbol (vtype);
if (def_init)
gfc_commit_symbol (def_init);
if (copy)
gfc_commit_symbol (copy);
if (src)
gfc_commit_symbol (src);
if (dst)
gfc_commit_symbol (dst);
}
else
gfc_undo_symbols ();
return found_sym;
}
/* General worker function to find either a type-bound procedure or a
type-bound user operator. */
static gfc_symtree*
find_typebound_proc_uop (gfc_symbol* derived, gfc_try* t,
const char* name, bool noaccess, bool uop,
locus* where)
{
gfc_symtree* res;
gfc_symtree* root;
/* Set correct symbol-root. */
gcc_assert (derived->f2k_derived);
root = (uop ? derived->f2k_derived->tb_uop_root
: derived->f2k_derived->tb_sym_root);
/* Set default to failure. */
if (t)
*t = FAILURE;
/* Try to find it in the current type's namespace. */
res = gfc_find_symtree (root, name);
if (res && res->n.tb && !res->n.tb->error)
{
/* We found one. */
if (t)
*t = SUCCESS;
if (!noaccess && derived->attr.use_assoc
&& res->n.tb->access == ACCESS_PRIVATE)
{
if (where)
gfc_error ("'%s' of '%s' is PRIVATE at %L",
name, derived->name, where);
if (t)
*t = FAILURE;
}
return res;
}
/* Otherwise, recurse on parent type if derived is an extension. */
if (derived->attr.extension)
{
gfc_symbol* super_type;
super_type = gfc_get_derived_super_type (derived);
gcc_assert (super_type);
return find_typebound_proc_uop (super_type, t, name,
noaccess, uop, where);
}
/* Nothing found. */
return NULL;
}
/* Find a type-bound procedure or user operator by name for a derived-type
(looking recursively through the super-types). */
gfc_symtree*
gfc_find_typebound_proc (gfc_symbol* derived, gfc_try* t,
const char* name, bool noaccess, locus* where)
{
return find_typebound_proc_uop (derived, t, name, noaccess, false, where);
}
gfc_symtree*
gfc_find_typebound_user_op (gfc_symbol* derived, gfc_try* t,
const char* name, bool noaccess, locus* where)
{
return find_typebound_proc_uop (derived, t, name, noaccess, true, where);
}
/* Find a type-bound intrinsic operator looking recursively through the
super-type hierarchy. */
gfc_typebound_proc*
gfc_find_typebound_intrinsic_op (gfc_symbol* derived, gfc_try* t,
gfc_intrinsic_op op, bool noaccess,
locus* where)
{
gfc_typebound_proc* res;
/* Set default to failure. */
if (t)
*t = FAILURE;
/* Try to find it in the current type's namespace. */
if (derived->f2k_derived)
res = derived->f2k_derived->tb_op[op];
else
res = NULL;
/* Check access. */
if (res && !res->error)
{
/* We found one. */
if (t)
*t = SUCCESS;
if (!noaccess && derived->attr.use_assoc
&& res->access == ACCESS_PRIVATE)
{
if (where)
gfc_error ("'%s' of '%s' is PRIVATE at %L",
gfc_op2string (op), derived->name, where);
if (t)
*t = FAILURE;
}
return res;
}
/* Otherwise, recurse on parent type if derived is an extension. */
if (derived->attr.extension)
{
gfc_symbol* super_type;
super_type = gfc_get_derived_super_type (derived);
gcc_assert (super_type);
return gfc_find_typebound_intrinsic_op (super_type, t, op,
noaccess, where);
}
/* Nothing found. */
return NULL;
}
/* Get a typebound-procedure symtree or create and insert it if not yet
present. This is like a very simplified version of gfc_get_sym_tree for
tbp-symtrees rather than regular ones. */
gfc_symtree*
gfc_get_tbp_symtree (gfc_symtree **root, const char *name)
{
gfc_symtree *result;
result = gfc_find_symtree (*root, name);
if (!result)
{
result = gfc_new_symtree (root, name);
gcc_assert (result);
result->n.tb = NULL;
}
return result;
}