8sa1-gcc/gcc/sbitmap.c
Ben Elliston 628f6a4e7c backport: basic-block.h: Include vec.h, errors.h.
2004-09-24  Ben Elliston  <bje@au.ibm.com>
	    Steven Bosscher  <stevenb@suse.de>
	    Andrew Pinski  <pinskia@physics.uc.edu>

	Merge from edge-vector-branch:
	* basic-block.h: Include vec.h, errors.h. Instantiate a VEC(edge).
	(struct edge_def): Remove pred_next, succ_next members.
	(struct basic_block_def): Remove pred, succ members.  Add preds
	and succs members of type VEC(edge).
	(FALLTHRU_EDGE): Redefine using EDGE_SUCC.
	(BRANCH_EDGE): Likewise.
	(EDGE_CRITICAL_P): Redefine using EDGE_COUNT.
	(EDGE_COUNT, EDGE_I, EDGE_PRED, EDGE_SUCC): New.
	(edge_iterator): New.
	(ei_start, ei_last, ei_end_p, ei_one_before_end_p): New.
	(ei_next, ei_prev, ei_edge, ei_safe_edge): Likewise.
	(FOR_EACH_EDGE): New.
	* bb-reorder.c (find_traces): Use FOR_EACH_EDGE and EDGE_* macros
	where applicable.
	(rotate_loop): Likewise.
	(find_traces_1_route): Likewise.
	(bb_to_key): Likewise.
	(connect_traces): Likewise.
	(copy_bb_p): Likewise.
	(find_rarely_executed_basic_blocks_and_crossing_edges): Likewise.
	(add_labels_and_missing_jumps): Likewise.
	(fix_up_fall_thru_edges): Likewise.
	(find_jump_block): Likewise.
	(fix_crossing_conditional_branches): Likewise.
	(fix_crossing_unconditional_branches): Likewise.
	(add_reg_crossing_jump_notes): Likewise.
	* bt-load.c (augment_live_range): Likewise.
	* cfg.c (clear_edges): Likewise.
	(unchecked_make_edge): Likewise.
	(cached_make_edge): Likewise.
	(make_single_succ_edge): Likewise.
	(remove_edge): Likewise.
	(redirect_edge_succ_nodup): Likewise.
	(check_bb_profile): Likewise.
	(dump_flow_info): Likewise.
	(alloc_aux_for_edges): Likewise.
	(clear_aux_for_edges): Likewise.
	(dump_cfg_bb_info): Likewise.
	* cfganal.c (forwarder_block_p): Likewise.
	(can_fallthru): Likewise.
	(could_fall_through): Likewise.
	(mark_dfs_back_edges): Likewise.
	(set_edge_can_fallthru_flag): Likewise.
	(find_unreachable_blocks): Likewise.
	(create_edge_list): Likewise.
	(verify_edge_list): Likewise.
	(add_noreturn_fake_exit_edges): Likewise.
	(connect_infinite_loops_to_exit): Likewise.
	(flow_reverse_top_sort_order_compute): Likewise.
	(flow_depth_first_order_compute): Likewise.
	(flow_preorder_transversal_compute): Likewise.
	(flow_dfs_compute_reverse_execute): Likewise.
	(dfs_enumerate_from): Likewise.
	(compute_dominance_frontiers_1): Likewise.
	* cfgbuild.c (make_edges): Likewise.
	(compute_outgoing_frequencies): Likewise.
	(find_many_sub_basic_blocks): Likewise.
	(find_sub_basic_blocks): Likewise.
	* cfgcleanup.c (try_simplify_condjump): Likewise.
	(thread_jump): Likewise.
	(try_forward_edges): Likewise.
	(merge_blocks_move): Likewise.
	(outgoing_edges_match): Likewise.
	(try_crossjump_to_edge): Likewise.
	(try_crossjump_bb): Likewise.
	(try_optimize_cfg): Likewise.
	(merge_seq_blocks): Likewise.
	* cfgexpand.c (expand_gimple_tailcall): Likewise.
	(expand_gimple_basic_block): Likewise.
	(construct_init_block): Likewise.
	(construct_exit_block): Likewise.
	* cfghooks.c (verify_flow_info): Likewise.
	(dump_bb): Likewise.
	(delete_basic_block): Likewise.
	(split_edge): Likewise.
	(merge_blocks): Likewise.
	(make_forwarder_block): Likewise.
	(tidy_fallthru_edges): Likewise.
	(can_duplicate_block_p): Likewise.
	(duplicate_block): Likewise.
	* cfglayout.c (fixup_reorder_chain): Likewise.
	(fixup_fallthru_exit_predecessor): Likewise.
	(can_copy_bbs_p): Likewise.
	(copy_bbs): Likewise.
	* cfgloop.c (flow_loops_cfg_dump): Likewise.
	(flow_loop_entry_edges_find): Likewise.
	(flow_loop_exit_edges_find): Likewise.
	(flow_loop_nodes_find): Likewise.
	(mark_single_exit_loops): Likewise.
	(flow_loop_pre_header_scan): Likewise.
	(flow_loop_pre_header_find): Likewise.
	(update_latch_info): Likewise.
	(canonicalize_loop_headers): Likewise.
	(flow_loops_find): Likewise.
	(get_loop_body_in_bfs_order): Likewise.
	(get_loop_exit_edges): Likewise.
	(num_loop_branches): Likewise.
	(verify_loop_structure): Likewise.
	(loop_latch_edge): Likewise.
	(loop_preheader_edge): Likewise.
	* cfgloopanal.c (mark_irreducible_loops): Likewise.
	(expected_loop_iterations): Likewise.
	* cfgloopmanip.c (remove_bbs): Likewise.
	(fix_bb_placement): Likewise.
	(fix_irreducible_loops): Likewise.
	(remove_path): Likewise.
	(scale_bbs_frequencies): Likewise.
	(loopify): Likewise.
	(unloop): Likewise.
	(fix_loop_placement): Likewise.
	(loop_delete_branch_edge): Likewise.
	(duplicate_loop_to_header_edge): Likewise.
	(mfb_keep_just): Likewise.
	(create_preheader): Likewise.
	(force_single_succ_latches): Likewise.
	(loop_split_edge_with): Likewise.
	(create_loop_notes): Likewise.
	* cfgrtl.c (rtl_split_block): Likewise.
	(rtl_merge_blocks): Likewise.
	(rtl_can_merge_blocks): Likewise.
	(try_redirect_by_replacing_jump): Likewise.
	(force_nonfallthru_and_redirect): Likewise.
	(rtl_tidy_fallthru_edge): Likewise.
	(commit_one_edge_insertion): Likewise.
	(commit_edge_insertions): Likewise.
	(commit_edge_insertions_watch_calls): Likewise.
	(rtl_verify_flow_info_1): Likewise.
	(rtl_verify_flow_info): Likewise.
	(purge_dead_edges): Likewise.
	(cfg_layout_redirect_edge_and_branch): Likewise.
	(cfg_layout_can_merge_blocks_p): Likewise.
	(rtl_flow_call_edges_add): Likewise.
	* cse.c (cse_cc_succs): Likewise.
	* df.c (hybrid_search): Likewise.
	* dominance.c (calc_dfs_tree_nonrec): Likewise.
	(calc_dfs_tree): Likewise.
	(calc_idoms): Likewise.
	(recount_dominator): Likewise.
	* domwalk.c (walk_dominator_tree): Likewise.
	* except.c (emit_to_new_bb_before): Likewise.
	(connect_post_landing_pads): Likewise.
	(sjlj_emit_function_enter): Likewise.
	(sjlj_emit_function_exit): Likewise.
	(finish_eh_generation): Likewise.
	* final.c (compute_alignments): Likewise.
	* flow.c (calculate_global_regs_live): Likewise.
	(initialize_uninitialized_subregs): Likewise.
	(init_propagate_block_info): Likewise.
	* function.c (thread_prologue_and_epilogue_insns): Likewise.
	* gcse.c (find_implicit_sets): Likewise.
	(bypass_block): Likewise.
	(bypass_conditional_jumps): Likewise.
	(compute_pre_data): Likewise.
	(insert_insn_end_bb): Likewise.
	(insert_store): Likewise.
	(remove_reachable_equiv_notes): Likewise.
	* global.c (global_conflicts): Likewise.
	(calculate_reg_pav): Likewise.
	* graph.c (print_rtl_graph_with_bb): Likewise.
	* ifcvt.c (mark_loop_exit_edges): Likewise.
	(merge_if_block): Likewise.
	(find_if_header): Likewise.
	(block_jumps_and_fallthru_p): Likewise.
	(find_if_block): Likewise.
	(find_cond_trap): Likewise.
	(block_has_only_trap): Likewise.
	(find_if_case1): Likewise.
	(find_if_case_2): Likewise.
	* lambda-code.c (lambda_loopnest_to_gcc_loopnest): Likewise.
	(perfect_nestify): Likewise.
	* lcm.c (compute_antinout_edge): Likewise.
	(compute_laterin): Likewise.
	(compute_available): Likewise.
	(compute_nearerout): Likewise.
	* loop-doloop.c (doloop_modify): Likewise.
	* loop-init.c (loop_optimizer_init): Likewise.
	* loop-invariant.c (find_exits): Likewise.
	* loop-iv.c (simplify_using_initial_values): Likewise.
	(check_simple_exit): Likewise.
	(find_simple_exit): Likewise.
	* loop-unroll.c (peel_loop_completely): Likewise.
	(unroll_loop_constant_iterations): Likewise.
	(unroll_loop_runtime_iterations): Likewise.
	* loop-unswitch.c (may_unswitch_on): Likewise.
	(unswitch_loop): Likewise.
	* modulo-sched.c (generate_prolog_epilog): Likewise.
	(sms_schedule): Likewise.
	* postreload-gcse.c (eliminate_partially_redundant_load):
	Likewise.
	* predict.c (can_predict_insn_p): Likewise.
	(set_even_probabilities): Likewise.
	(combine_predictions_for_bb): Likewise.
	(predict_loops): Likewise.
	(estimate_probability): Likewise.
	(tree_predict_by_opcode): Likewise.
	(tree_estimate_probability): Likewise.
	(last_basic_block_p): Likewise.
	(propagate_freq): Likewise.
	(estimate_loops_at_level): Likewise.
	(estimate_bb_frequencies): Likewise.
	* profile.c (instrument_edges): Likewise.
	(get_exec_counts): Likewise.
	(compute_branch_probabilities): Likewise.
	(branch_prob): Likewise.
	* ra-build.c (live_in): Likewise.
	* ra-rewrite.c (rewrite_program2): Likewise.
	* ra.c (reg_alloc): Likewise.
	* reg-stack.c (reg_to_stack): Likewise.
	(convert_regs_entry): Likewise.
	(compensate_edge): Likewise.
	(convert_regs_1): Likewise,
	(convert_regs_2): Likewise.
	(convert_regs): Likewise.
	* regrename.c (copyprop_hardreg_forward): Likewise.
	* reload1.c (fixup_abnormal_edges): Likewise.
	* sbitmap.c (sbitmap_intersection_of_succs): Likewise.
	(sbitmap_insersection_of_preds): Likewise.
	(sbitmap_union_of_succs): Likewise.
	(sbitmap_union_of_preds): Likewise.
	* sched-ebb.c (compute_jump_reg_dependencies): Likewise.
	(fix_basic_block_boundaries): Likewise.
	(sched_ebbs): Likewise.
	* sched-rgn.c (build_control_flow): Likewise.
	(find_rgns): Likewise.
	* tracer.c (find_best_successor): Likewise.
	(find_best_predecessor): Likewise.
	(tail_duplicate): Likewise.
	* tree-cfg.c (make_edges): Likewise.
	(make_ctrl_stmt_edges): Likewise.
	(make_goto_expr_edges): Likewise.
	(tree_can_merge_blocks_p): Likewise.
	(tree_merge_blocks): Likewise.
	(cfg_remove_useless_stmts_bb): Likewise.
	(remove_phi_nodes_and_edges_for_unreachable_block): Likewise.
	(tree_block_forwards_to): Likewise.
	(cleanup_control_expr_graph): Likewise.
	(find_taken_edge): Likewise.
	(dump_cfg_stats): Likewise.
	(tree_cfg2vcg): Likewise.
	(disband_implicit_edges): Likewise.
	(tree_find_edge_insert_loc): Likewise.
	(bsi_commit_edge_inserts): Likewise.
	(tree_split_edge): Likewise.
	(tree_verify_flow_info): Likewise.
	(tree_make_forwarder_block): Likewise.
	(tree_forwarder_block_p): Likewise.
	(thread_jumps): Likewise.
	(tree_try_redirect_by_replacing_jump): Likewise.
	(tree_split_block): Likewise.
	(add_phi_args_after_copy_bb): Likewise.
	(rewrite_to_new_ssa_names_bb): Likewise.
	(dump_function_to_file): Likewise.
	(print_pred_bbs): Likewise.
	(print_loop): Likewise.
	(tree_flow_call_edges_add): Likewise.
	(split_critical_edges): Likewise.
	(execute_warn_function_return): Likewise.
	(extract_true_false_edges_from_block): Likewise.
	* tree-if-conv.c (tree_if_conversion): Likewise.
	(if_convertable_bb_p): Likewise.
	(find_phi_replacement_condition): Likewise.
	(combine_blocks): Likewise.
	* tree-into-ssa.c (compute_global_livein): Likewise.
	(ssa_mark_phi_uses): Likewise.
	(ssa_rewrite_initialize_block): Likewise.
	(rewrite_add_phi_arguments): Likewise.
	(ssa_rewrite_phi_arguments): Likewise.
	(insert_phi_nodes_for): Likewise.
	(rewrite_into_ssa): Likewise.
	(rewrite_ssa_into_ssa): Likewise.
	* tree-mudflap.c (mf_build_check_statement_for): Likewise.
	* tree-outof-ssa.c (coalesce_abnormal_edges): Likewise.
	(rewrite_trees): Likewise.
	* tree-pretty-print.c (dump_bb_header): Likewise.
	(dump_implicit_edges): Likewise.
	* tree-sra.c (insert_edge_copies): Likewise.
	(find_obviously_necessary_stmts): Likewise.
	(remove_data_stmt): Likewise.
	* tree-ssa-dom.c (thread_across_edge): Likewise.
	(dom_opt_finalize_block): Likewise.
	(single_incoming_edge_ignoring_loop_edges): Likewise.
	(record_equivalences_from_incoming_edges): Likewise.
	(cprop_into_successor_phis): Likewise.
	* tree-ssa-live.c (live_worklist): Likewise.
	(calculate_live_on_entry): Likewise.
	(calculate_live_on_exit): Likewise.
	* tree-ssa-loop-ch.c (should_duplicate_loop_header_p): Likewise.
	(copy_loop_headers): Likewise.
	* tree-ssa-loop-im.c (loop_commit_inserts): Likewise.
	(fill_always_executed_in): Likewise.
	* tree-ssa-loop-ivcanon.c (create_canonical_iv): Likewise.
	* tree-ssa-loop-ivopts.c (find_interesting_uses): Likewise.
	(compute_phi_arg_on_exit): Likewise.
	* tree-ssa-loop-manip.c (add_exit_phis_edge): Likewise.
	(get_loops_exit): Likewise.
	(split_loop_exit_edge): Likewise.
	(ip_normal_pos): Likewise.
	* tree-ssa-loop-niter.c (simplify_using_initial_conditions):
	Likewise.
	* tree-ssa-phiopt.c (candidate_bb_for_phi_optimization): Likewise.
	(replace_phi_with_stmt): Likewise.
	(value_replacement): Likewise.
	* tree-ssa-pre.c (compute_antic_aux): Likewise.
	(insert_aux): Likewise.
	(init_pre): Likewise.
	* tree-ssa-propagate.c (simulate_stmt): Likewise.
	(simulate_block): Likewise.
	(ssa_prop_init): Likewise.
	* tree-ssa-threadupdate.c (thread_block): Likewise.
	(create_block_for_threading): Likewise.
	(remove_last_stmt_and_useless_edges): Likewise.
	* tree-ssa.c (verify_phi_args): Likewise.
	(verify_ssa): Likewise.
	* tree_tailcall.c (independent_of_stmt_p): Likewise.
	(find_tail_calls): Likewise.
	(eliminate_tail_call): Likewise.
	(tree_optimize_tail_calls_1): Likewise.
	* tree-vectorizer.c (vect_transform_loop): Likewise.
	* var-tracking.c (prologue_stack_adjust): Likewise.
	(vt_stack_adjustments): Likewise.
	(vt_find_locations): Likewise.
	* config/frv/frv.c (frv_ifcvt_modify_tests): Likewise.
	* config/i386/i386.c (ix86_pad_returns): Likewise.
	* config/ia64/ia64.c (ia64_expand_prologue): Likewise.
	* config/rs6000/rs6000.c (rs6000_emit_prologue): Likewise.

Co-Authored-By: Andrew Pinski <pinskia@physics.uc.edu>
Co-Authored-By: Steven Bosscher <stevenb@suse.de>

From-SVN: r88222
2004-09-28 17:59:54 +10:00

776 lines
17 KiB
C

/* Simple bitmaps.
Copyright (C) 1999, 2000, 2002, 2003 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "flags.h"
#include "hard-reg-set.h"
#include "basic-block.h"
/* Bitmap manipulation routines. */
/* Allocate a simple bitmap of N_ELMS bits. */
sbitmap
sbitmap_alloc (unsigned int n_elms)
{
unsigned int bytes, size, amt;
sbitmap bmap;
size = SBITMAP_SET_SIZE (n_elms);
bytes = size * sizeof (SBITMAP_ELT_TYPE);
amt = (sizeof (struct simple_bitmap_def)
+ bytes - sizeof (SBITMAP_ELT_TYPE));
bmap = xmalloc (amt);
bmap->n_bits = n_elms;
bmap->size = size;
bmap->bytes = bytes;
return bmap;
}
/* Resize a simple bitmap BMAP to N_ELMS bits. If increasing the
size of BMAP, clear the new bits to zero if the DEF argument
is zero, and set them to one otherwise. */
sbitmap
sbitmap_resize (sbitmap bmap, unsigned int n_elms, int def)
{
unsigned int bytes, size, amt;
unsigned int last_bit;
size = SBITMAP_SET_SIZE (n_elms);
bytes = size * sizeof (SBITMAP_ELT_TYPE);
if (bytes > bmap->bytes)
{
amt = (sizeof (struct simple_bitmap_def)
+ bytes - sizeof (SBITMAP_ELT_TYPE));
bmap = xrealloc (bmap, amt);
}
if (n_elms > bmap->n_bits)
{
if (def)
{
memset (bmap->elms + bmap->size, -1, bytes - bmap->bytes);
/* Set the new bits if the original last element. */
last_bit = bmap->n_bits % SBITMAP_ELT_BITS;
if (last_bit)
bmap->elms[bmap->size - 1]
|= ~((SBITMAP_ELT_TYPE)-1 >> (SBITMAP_ELT_BITS - last_bit));
/* Clear the unused bit in the new last element. */
last_bit = n_elms % SBITMAP_ELT_BITS;
if (last_bit)
bmap->elms[size - 1]
&= (SBITMAP_ELT_TYPE)-1 >> (SBITMAP_ELT_BITS - last_bit);
}
else
memset (bmap->elms + bmap->size, 0, bytes - bmap->bytes);
}
else if (n_elms < bmap->n_bits)
{
/* Clear the surplus bits in the last word. */
last_bit = n_elms % SBITMAP_ELT_BITS;
if (last_bit)
bmap->elms[size - 1]
&= (SBITMAP_ELT_TYPE)-1 >> (SBITMAP_ELT_BITS - last_bit);
}
bmap->n_bits = n_elms;
bmap->size = size;
bmap->bytes = bytes;
return bmap;
}
/* Re-allocate a simple bitmap of N_ELMS bits. New storage is uninitialized. */
sbitmap
sbitmap_realloc (sbitmap src, unsigned int n_elms)
{
unsigned int bytes, size, amt;
sbitmap bmap;
size = SBITMAP_SET_SIZE (n_elms);
bytes = size * sizeof (SBITMAP_ELT_TYPE);
amt = (sizeof (struct simple_bitmap_def)
+ bytes - sizeof (SBITMAP_ELT_TYPE));
if (src->bytes >= bytes)
{
src->n_bits = n_elms;
return src;
}
bmap = (sbitmap) xrealloc (src, amt);
bmap->n_bits = n_elms;
bmap->size = size;
bmap->bytes = bytes;
return bmap;
}
/* Allocate a vector of N_VECS bitmaps of N_ELMS bits. */
sbitmap *
sbitmap_vector_alloc (unsigned int n_vecs, unsigned int n_elms)
{
unsigned int i, bytes, offset, elm_bytes, size, amt, vector_bytes;
sbitmap *bitmap_vector;
size = SBITMAP_SET_SIZE (n_elms);
bytes = size * sizeof (SBITMAP_ELT_TYPE);
elm_bytes = (sizeof (struct simple_bitmap_def)
+ bytes - sizeof (SBITMAP_ELT_TYPE));
vector_bytes = n_vecs * sizeof (sbitmap *);
/* Round up `vector_bytes' to account for the alignment requirements
of an sbitmap. One could allocate the vector-table and set of sbitmaps
separately, but that requires maintaining two pointers or creating
a cover struct to hold both pointers (so our result is still just
one pointer). Neither is a bad idea, but this is simpler for now. */
{
/* Based on DEFAULT_ALIGNMENT computation in obstack.c. */
struct { char x; SBITMAP_ELT_TYPE y; } align;
int alignment = (char *) & align.y - & align.x;
vector_bytes = (vector_bytes + alignment - 1) & ~ (alignment - 1);
}
amt = vector_bytes + (n_vecs * elm_bytes);
bitmap_vector = xmalloc (amt);
for (i = 0, offset = vector_bytes; i < n_vecs; i++, offset += elm_bytes)
{
sbitmap b = (sbitmap) ((char *) bitmap_vector + offset);
bitmap_vector[i] = b;
b->n_bits = n_elms;
b->size = size;
b->bytes = bytes;
}
return bitmap_vector;
}
/* Copy sbitmap SRC to DST. */
void
sbitmap_copy (sbitmap dst, sbitmap src)
{
memcpy (dst->elms, src->elms, sizeof (SBITMAP_ELT_TYPE) * dst->size);
}
/* Determine if a == b. */
int
sbitmap_equal (sbitmap a, sbitmap b)
{
return !memcmp (a->elms, b->elms, sizeof (SBITMAP_ELT_TYPE) * a->size);
}
/* Zero all elements in a bitmap. */
void
sbitmap_zero (sbitmap bmap)
{
memset (bmap->elms, 0, bmap->bytes);
}
/* Set all elements in a bitmap to ones. */
void
sbitmap_ones (sbitmap bmap)
{
unsigned int last_bit;
memset (bmap->elms, -1, bmap->bytes);
last_bit = bmap->n_bits % SBITMAP_ELT_BITS;
if (last_bit)
bmap->elms[bmap->size - 1]
= (SBITMAP_ELT_TYPE)-1 >> (SBITMAP_ELT_BITS - last_bit);
}
/* Zero a vector of N_VECS bitmaps. */
void
sbitmap_vector_zero (sbitmap *bmap, unsigned int n_vecs)
{
unsigned int i;
for (i = 0; i < n_vecs; i++)
sbitmap_zero (bmap[i]);
}
/* Set a vector of N_VECS bitmaps to ones. */
void
sbitmap_vector_ones (sbitmap *bmap, unsigned int n_vecs)
{
unsigned int i;
for (i = 0; i < n_vecs; i++)
sbitmap_ones (bmap[i]);
}
/* Set DST to be A union (B - C).
DST = A | (B & ~C).
Returns true if any change is made. */
bool
sbitmap_union_of_diff_cg (sbitmap dst, sbitmap a, sbitmap b, sbitmap c)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
sbitmap_ptr cp = c->elms;
SBITMAP_ELT_TYPE changed = 0;
for (i = 0; i < n; i++)
{
SBITMAP_ELT_TYPE tmp = *ap++ | (*bp++ & ~*cp++);
changed |= *dstp ^ tmp;
*dstp++ = tmp;
}
return changed != 0;
}
void
sbitmap_union_of_diff (sbitmap dst, sbitmap a, sbitmap b, sbitmap c)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
sbitmap_ptr cp = c->elms;
for (i = 0; i < n; i++)
*dstp++ = *ap++ | (*bp++ & ~*cp++);
}
/* Set bitmap DST to the bitwise negation of the bitmap SRC. */
void
sbitmap_not (sbitmap dst, sbitmap src)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr srcp = src->elms;
unsigned int last_bit;
for (i = 0; i < n; i++)
*dstp++ = ~*srcp++;
/* Zero all bits past n_bits, by ANDing dst with sbitmap_ones. */
last_bit = src->n_bits % SBITMAP_ELT_BITS;
if (last_bit)
dst->elms[n-1] = dst->elms[n-1]
& ((SBITMAP_ELT_TYPE)-1 >> (SBITMAP_ELT_BITS - last_bit));
}
/* Set the bits in DST to be the difference between the bits
in A and the bits in B. i.e. dst = a & (~b). */
void
sbitmap_difference (sbitmap dst, sbitmap a, sbitmap b)
{
unsigned int i, dst_size = dst->size;
unsigned int min_size = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
/* A should be at least as large as DEST, to have a defined source. */
gcc_assert (a->size >= dst_size);
/* If minuend is smaller, we simply pretend it to be zero bits, i.e.
only copy the subtrahend into dest. */
if (b->size < min_size)
min_size = b->size;
for (i = 0; i < min_size; i++)
*dstp++ = *ap++ & (~*bp++);
/* Now fill the rest of dest from A, if B was too short.
This makes sense only when destination and A differ. */
if (dst != a && i != dst_size)
for (; i < dst_size; i++)
*dstp++ = *ap++;
}
/* Set DST to be (A and B).
Return nonzero if any change is made. */
bool
sbitmap_a_and_b_cg (sbitmap dst, sbitmap a, sbitmap b)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
SBITMAP_ELT_TYPE changed = 0;
for (i = 0; i < n; i++)
{
SBITMAP_ELT_TYPE tmp = *ap++ & *bp++;
changed |= *dstp ^ tmp;
*dstp++ = tmp;
}
return changed != 0;
}
void
sbitmap_a_and_b (sbitmap dst, sbitmap a, sbitmap b)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
for (i = 0; i < n; i++)
*dstp++ = *ap++ & *bp++;
}
/* Set DST to be (A xor B)).
Return nonzero if any change is made. */
bool
sbitmap_a_xor_b_cg (sbitmap dst, sbitmap a, sbitmap b)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
SBITMAP_ELT_TYPE changed = 0;
for (i = 0; i < n; i++)
{
SBITMAP_ELT_TYPE tmp = *ap++ ^ *bp++;
changed |= *dstp ^ tmp;
*dstp++ = tmp;
}
return changed != 0;
}
void
sbitmap_a_xor_b (sbitmap dst, sbitmap a, sbitmap b)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
for (i = 0; i < n; i++)
*dstp++ = *ap++ ^ *bp++;
}
/* Set DST to be (A or B)).
Return nonzero if any change is made. */
bool
sbitmap_a_or_b_cg (sbitmap dst, sbitmap a, sbitmap b)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
SBITMAP_ELT_TYPE changed = 0;
for (i = 0; i < n; i++)
{
SBITMAP_ELT_TYPE tmp = *ap++ | *bp++;
changed |= *dstp ^ tmp;
*dstp++ = tmp;
}
return changed != 0;
}
void
sbitmap_a_or_b (sbitmap dst, sbitmap a, sbitmap b)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
for (i = 0; i < n; i++)
*dstp++ = *ap++ | *bp++;
}
/* Return nonzero if A is a subset of B. */
bool
sbitmap_a_subset_b_p (sbitmap a, sbitmap b)
{
unsigned int i, n = a->size;
sbitmap_ptr ap, bp;
for (ap = a->elms, bp = b->elms, i = 0; i < n; i++, ap++, bp++)
if ((*ap | *bp) != *bp)
return false;
return true;
}
/* Set DST to be (A or (B and C)).
Return nonzero if any change is made. */
bool
sbitmap_a_or_b_and_c_cg (sbitmap dst, sbitmap a, sbitmap b, sbitmap c)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
sbitmap_ptr cp = c->elms;
SBITMAP_ELT_TYPE changed = 0;
for (i = 0; i < n; i++)
{
SBITMAP_ELT_TYPE tmp = *ap++ | (*bp++ & *cp++);
changed |= *dstp ^ tmp;
*dstp++ = tmp;
}
return changed != 0;
}
void
sbitmap_a_or_b_and_c (sbitmap dst, sbitmap a, sbitmap b, sbitmap c)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
sbitmap_ptr cp = c->elms;
for (i = 0; i < n; i++)
*dstp++ = *ap++ | (*bp++ & *cp++);
}
/* Set DST to be (A and (B or C)).
Return nonzero if any change is made. */
bool
sbitmap_a_and_b_or_c_cg (sbitmap dst, sbitmap a, sbitmap b, sbitmap c)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
sbitmap_ptr cp = c->elms;
SBITMAP_ELT_TYPE changed = 0;
for (i = 0; i < n; i++)
{
SBITMAP_ELT_TYPE tmp = *ap++ & (*bp++ | *cp++);
changed |= *dstp ^ tmp;
*dstp++ = tmp;
}
return changed != 0;
}
void
sbitmap_a_and_b_or_c (sbitmap dst, sbitmap a, sbitmap b, sbitmap c)
{
unsigned int i, n = dst->size;
sbitmap_ptr dstp = dst->elms;
sbitmap_ptr ap = a->elms;
sbitmap_ptr bp = b->elms;
sbitmap_ptr cp = c->elms;
for (i = 0; i < n; i++)
*dstp++ = *ap++ & (*bp++ | *cp++);
}
#ifdef IN_GCC
/* Set the bitmap DST to the intersection of SRC of successors of
block number BB, using the new flow graph structures. */
void
sbitmap_intersection_of_succs (sbitmap dst, sbitmap *src, int bb)
{
basic_block b = BASIC_BLOCK (bb);
unsigned int set_size = dst->size;
edge e;
unsigned ix;
for (e = NULL, ix = 0; ix < EDGE_COUNT (b->succs); ix++)
{
e = EDGE_SUCC (b, ix);
if (e->dest == EXIT_BLOCK_PTR)
continue;
sbitmap_copy (dst, src[e->dest->index]);
break;
}
if (e == 0)
sbitmap_ones (dst);
else
for (++ix; ix < EDGE_COUNT (b->succs); ix++)
{
unsigned int i;
sbitmap_ptr p, r;
e = EDGE_SUCC (b, ix);
if (e->dest == EXIT_BLOCK_PTR)
continue;
p = src[e->dest->index]->elms;
r = dst->elms;
for (i = 0; i < set_size; i++)
*r++ &= *p++;
}
}
/* Set the bitmap DST to the intersection of SRC of predecessors of
block number BB, using the new flow graph structures. */
void
sbitmap_intersection_of_preds (sbitmap dst, sbitmap *src, int bb)
{
basic_block b = BASIC_BLOCK (bb);
unsigned int set_size = dst->size;
edge e;
unsigned ix;
for (e = NULL, ix = 0; ix < EDGE_COUNT (b->preds); ix++)
{
e = EDGE_PRED (b, ix);
if (e->src == ENTRY_BLOCK_PTR)
continue;
sbitmap_copy (dst, src[e->src->index]);
break;
}
if (e == 0)
sbitmap_ones (dst);
else
for (++ix; ix < EDGE_COUNT (b->preds); ix++)
{
unsigned int i;
sbitmap_ptr p, r;
e = EDGE_PRED (b, ix);
if (e->src == ENTRY_BLOCK_PTR)
continue;
p = src[e->src->index]->elms;
r = dst->elms;
for (i = 0; i < set_size; i++)
*r++ &= *p++;
}
}
/* Set the bitmap DST to the union of SRC of successors of
block number BB, using the new flow graph structures. */
void
sbitmap_union_of_succs (sbitmap dst, sbitmap *src, int bb)
{
basic_block b = BASIC_BLOCK (bb);
unsigned int set_size = dst->size;
edge e;
unsigned ix;
for (ix = 0; ix < EDGE_COUNT (b->succs); ix++)
{
e = EDGE_SUCC (b, ix);
if (e->dest == EXIT_BLOCK_PTR)
continue;
sbitmap_copy (dst, src[e->dest->index]);
break;
}
if (ix == EDGE_COUNT (b->succs))
sbitmap_zero (dst);
else
for (ix++; ix < EDGE_COUNT (b->succs); ix++)
{
unsigned int i;
sbitmap_ptr p, r;
e = EDGE_SUCC (b, ix);
if (e->dest == EXIT_BLOCK_PTR)
continue;
p = src[e->dest->index]->elms;
r = dst->elms;
for (i = 0; i < set_size; i++)
*r++ |= *p++;
}
}
/* Set the bitmap DST to the union of SRC of predecessors of
block number BB, using the new flow graph structures. */
void
sbitmap_union_of_preds (sbitmap dst, sbitmap *src, int bb)
{
basic_block b = BASIC_BLOCK (bb);
unsigned int set_size = dst->size;
edge e;
unsigned ix;
for (e = NULL, ix = 0; ix < EDGE_COUNT (b->preds); ix++)
{
if (e->src== ENTRY_BLOCK_PTR)
continue;
sbitmap_copy (dst, src[e->src->index]);
break;
}
if (ix == EDGE_COUNT (b->preds))
sbitmap_zero (dst);
else
for (ix++; ix < EDGE_COUNT (b->preds); ix++)
{
unsigned int i;
sbitmap_ptr p, r;
e = EDGE_PRED (b, ix);
if (e->src == ENTRY_BLOCK_PTR)
continue;
p = src[e->src->index]->elms;
r = dst->elms;
for (i = 0; i < set_size; i++)
*r++ |= *p++;
}
}
#endif
/* Return number of first bit set in the bitmap, -1 if none. */
int
sbitmap_first_set_bit (sbitmap bmap)
{
unsigned int n;
EXECUTE_IF_SET_IN_SBITMAP (bmap, 0, n, { return n; });
return -1;
}
/* Return number of last bit set in the bitmap, -1 if none. */
int
sbitmap_last_set_bit (sbitmap bmap)
{
int i;
SBITMAP_ELT_TYPE *ptr = bmap->elms;
for (i = bmap->size - 1; i >= 0; i--)
{
SBITMAP_ELT_TYPE word = ptr[i];
if (word != 0)
{
unsigned int index = (i + 1) * SBITMAP_ELT_BITS - 1;
SBITMAP_ELT_TYPE mask
= (SBITMAP_ELT_TYPE) 1 << (SBITMAP_ELT_BITS - 1);
while (1)
{
if ((word & mask) != 0)
return index;
mask >>= 1;
index--;
}
}
}
return -1;
}
void
dump_sbitmap (FILE *file, sbitmap bmap)
{
unsigned int i, n, j;
unsigned int set_size = bmap->size;
unsigned int total_bits = bmap->n_bits;
fprintf (file, " ");
for (i = n = 0; i < set_size && n < total_bits; i++)
for (j = 0; j < SBITMAP_ELT_BITS && n < total_bits; j++, n++)
{
if (n != 0 && n % 10 == 0)
fprintf (file, " ");
fprintf (file, "%d",
(bmap->elms[i] & ((SBITMAP_ELT_TYPE) 1 << j)) != 0);
}
fprintf (file, "\n");
}
void
dump_sbitmap_file (FILE *file, sbitmap bmap)
{
unsigned int i, pos;
fprintf (file, "n_bits = %d, set = {", bmap->n_bits);
for (pos = 30, i = 0; i < bmap->n_bits; i++)
if (TEST_BIT (bmap, i))
{
if (pos > 70)
{
fprintf (file, "\n ");
pos = 0;
}
fprintf (file, "%d ", i);
pos += 2 + (i >= 10) + (i >= 100) + (i >= 1000);
}
fprintf (file, "}\n");
}
void
debug_sbitmap (sbitmap bmap)
{
dump_sbitmap_file (stderr, bmap);
}
void
dump_sbitmap_vector (FILE *file, const char *title, const char *subtitle,
sbitmap *bmaps, int n_maps)
{
int bb;
fprintf (file, "%s\n", title);
for (bb = 0; bb < n_maps; bb++)
{
fprintf (file, "%s %d\n", subtitle, bb);
dump_sbitmap (file, bmaps[bb]);
}
fprintf (file, "\n");
}