2004-09-24 Ben Elliston <bje@au.ibm.com> Steven Bosscher <stevenb@suse.de> Andrew Pinski <pinskia@physics.uc.edu> Merge from edge-vector-branch: * basic-block.h: Include vec.h, errors.h. Instantiate a VEC(edge). (struct edge_def): Remove pred_next, succ_next members. (struct basic_block_def): Remove pred, succ members. Add preds and succs members of type VEC(edge). (FALLTHRU_EDGE): Redefine using EDGE_SUCC. (BRANCH_EDGE): Likewise. (EDGE_CRITICAL_P): Redefine using EDGE_COUNT. (EDGE_COUNT, EDGE_I, EDGE_PRED, EDGE_SUCC): New. (edge_iterator): New. (ei_start, ei_last, ei_end_p, ei_one_before_end_p): New. (ei_next, ei_prev, ei_edge, ei_safe_edge): Likewise. (FOR_EACH_EDGE): New. * bb-reorder.c (find_traces): Use FOR_EACH_EDGE and EDGE_* macros where applicable. (rotate_loop): Likewise. (find_traces_1_route): Likewise. (bb_to_key): Likewise. (connect_traces): Likewise. (copy_bb_p): Likewise. (find_rarely_executed_basic_blocks_and_crossing_edges): Likewise. (add_labels_and_missing_jumps): Likewise. (fix_up_fall_thru_edges): Likewise. (find_jump_block): Likewise. (fix_crossing_conditional_branches): Likewise. (fix_crossing_unconditional_branches): Likewise. (add_reg_crossing_jump_notes): Likewise. * bt-load.c (augment_live_range): Likewise. * cfg.c (clear_edges): Likewise. (unchecked_make_edge): Likewise. (cached_make_edge): Likewise. (make_single_succ_edge): Likewise. (remove_edge): Likewise. (redirect_edge_succ_nodup): Likewise. (check_bb_profile): Likewise. (dump_flow_info): Likewise. (alloc_aux_for_edges): Likewise. (clear_aux_for_edges): Likewise. (dump_cfg_bb_info): Likewise. * cfganal.c (forwarder_block_p): Likewise. (can_fallthru): Likewise. (could_fall_through): Likewise. (mark_dfs_back_edges): Likewise. (set_edge_can_fallthru_flag): Likewise. (find_unreachable_blocks): Likewise. (create_edge_list): Likewise. (verify_edge_list): Likewise. (add_noreturn_fake_exit_edges): Likewise. (connect_infinite_loops_to_exit): Likewise. (flow_reverse_top_sort_order_compute): Likewise. (flow_depth_first_order_compute): Likewise. (flow_preorder_transversal_compute): Likewise. (flow_dfs_compute_reverse_execute): Likewise. (dfs_enumerate_from): Likewise. (compute_dominance_frontiers_1): Likewise. * cfgbuild.c (make_edges): Likewise. (compute_outgoing_frequencies): Likewise. (find_many_sub_basic_blocks): Likewise. (find_sub_basic_blocks): Likewise. * cfgcleanup.c (try_simplify_condjump): Likewise. (thread_jump): Likewise. (try_forward_edges): Likewise. (merge_blocks_move): Likewise. (outgoing_edges_match): Likewise. (try_crossjump_to_edge): Likewise. (try_crossjump_bb): Likewise. (try_optimize_cfg): Likewise. (merge_seq_blocks): Likewise. * cfgexpand.c (expand_gimple_tailcall): Likewise. (expand_gimple_basic_block): Likewise. (construct_init_block): Likewise. (construct_exit_block): Likewise. * cfghooks.c (verify_flow_info): Likewise. (dump_bb): Likewise. (delete_basic_block): Likewise. (split_edge): Likewise. (merge_blocks): Likewise. (make_forwarder_block): Likewise. (tidy_fallthru_edges): Likewise. (can_duplicate_block_p): Likewise. (duplicate_block): Likewise. * cfglayout.c (fixup_reorder_chain): Likewise. (fixup_fallthru_exit_predecessor): Likewise. (can_copy_bbs_p): Likewise. (copy_bbs): Likewise. * cfgloop.c (flow_loops_cfg_dump): Likewise. (flow_loop_entry_edges_find): Likewise. (flow_loop_exit_edges_find): Likewise. (flow_loop_nodes_find): Likewise. (mark_single_exit_loops): Likewise. (flow_loop_pre_header_scan): Likewise. (flow_loop_pre_header_find): Likewise. (update_latch_info): Likewise. (canonicalize_loop_headers): Likewise. (flow_loops_find): Likewise. (get_loop_body_in_bfs_order): Likewise. (get_loop_exit_edges): Likewise. (num_loop_branches): Likewise. (verify_loop_structure): Likewise. (loop_latch_edge): Likewise. (loop_preheader_edge): Likewise. * cfgloopanal.c (mark_irreducible_loops): Likewise. (expected_loop_iterations): Likewise. * cfgloopmanip.c (remove_bbs): Likewise. (fix_bb_placement): Likewise. (fix_irreducible_loops): Likewise. (remove_path): Likewise. (scale_bbs_frequencies): Likewise. (loopify): Likewise. (unloop): Likewise. (fix_loop_placement): Likewise. (loop_delete_branch_edge): Likewise. (duplicate_loop_to_header_edge): Likewise. (mfb_keep_just): Likewise. (create_preheader): Likewise. (force_single_succ_latches): Likewise. (loop_split_edge_with): Likewise. (create_loop_notes): Likewise. * cfgrtl.c (rtl_split_block): Likewise. (rtl_merge_blocks): Likewise. (rtl_can_merge_blocks): Likewise. (try_redirect_by_replacing_jump): Likewise. (force_nonfallthru_and_redirect): Likewise. (rtl_tidy_fallthru_edge): Likewise. (commit_one_edge_insertion): Likewise. (commit_edge_insertions): Likewise. (commit_edge_insertions_watch_calls): Likewise. (rtl_verify_flow_info_1): Likewise. (rtl_verify_flow_info): Likewise. (purge_dead_edges): Likewise. (cfg_layout_redirect_edge_and_branch): Likewise. (cfg_layout_can_merge_blocks_p): Likewise. (rtl_flow_call_edges_add): Likewise. * cse.c (cse_cc_succs): Likewise. * df.c (hybrid_search): Likewise. * dominance.c (calc_dfs_tree_nonrec): Likewise. (calc_dfs_tree): Likewise. (calc_idoms): Likewise. (recount_dominator): Likewise. * domwalk.c (walk_dominator_tree): Likewise. * except.c (emit_to_new_bb_before): Likewise. (connect_post_landing_pads): Likewise. (sjlj_emit_function_enter): Likewise. (sjlj_emit_function_exit): Likewise. (finish_eh_generation): Likewise. * final.c (compute_alignments): Likewise. * flow.c (calculate_global_regs_live): Likewise. (initialize_uninitialized_subregs): Likewise. (init_propagate_block_info): Likewise. * function.c (thread_prologue_and_epilogue_insns): Likewise. * gcse.c (find_implicit_sets): Likewise. (bypass_block): Likewise. (bypass_conditional_jumps): Likewise. (compute_pre_data): Likewise. (insert_insn_end_bb): Likewise. (insert_store): Likewise. (remove_reachable_equiv_notes): Likewise. * global.c (global_conflicts): Likewise. (calculate_reg_pav): Likewise. * graph.c (print_rtl_graph_with_bb): Likewise. * ifcvt.c (mark_loop_exit_edges): Likewise. (merge_if_block): Likewise. (find_if_header): Likewise. (block_jumps_and_fallthru_p): Likewise. (find_if_block): Likewise. (find_cond_trap): Likewise. (block_has_only_trap): Likewise. (find_if_case1): Likewise. (find_if_case_2): Likewise. * lambda-code.c (lambda_loopnest_to_gcc_loopnest): Likewise. (perfect_nestify): Likewise. * lcm.c (compute_antinout_edge): Likewise. (compute_laterin): Likewise. (compute_available): Likewise. (compute_nearerout): Likewise. * loop-doloop.c (doloop_modify): Likewise. * loop-init.c (loop_optimizer_init): Likewise. * loop-invariant.c (find_exits): Likewise. * loop-iv.c (simplify_using_initial_values): Likewise. (check_simple_exit): Likewise. (find_simple_exit): Likewise. * loop-unroll.c (peel_loop_completely): Likewise. (unroll_loop_constant_iterations): Likewise. (unroll_loop_runtime_iterations): Likewise. * loop-unswitch.c (may_unswitch_on): Likewise. (unswitch_loop): Likewise. * modulo-sched.c (generate_prolog_epilog): Likewise. (sms_schedule): Likewise. * postreload-gcse.c (eliminate_partially_redundant_load): Likewise. * predict.c (can_predict_insn_p): Likewise. (set_even_probabilities): Likewise. (combine_predictions_for_bb): Likewise. (predict_loops): Likewise. (estimate_probability): Likewise. (tree_predict_by_opcode): Likewise. (tree_estimate_probability): Likewise. (last_basic_block_p): Likewise. (propagate_freq): Likewise. (estimate_loops_at_level): Likewise. (estimate_bb_frequencies): Likewise. * profile.c (instrument_edges): Likewise. (get_exec_counts): Likewise. (compute_branch_probabilities): Likewise. (branch_prob): Likewise. * ra-build.c (live_in): Likewise. * ra-rewrite.c (rewrite_program2): Likewise. * ra.c (reg_alloc): Likewise. * reg-stack.c (reg_to_stack): Likewise. (convert_regs_entry): Likewise. (compensate_edge): Likewise. (convert_regs_1): Likewise, (convert_regs_2): Likewise. (convert_regs): Likewise. * regrename.c (copyprop_hardreg_forward): Likewise. * reload1.c (fixup_abnormal_edges): Likewise. * sbitmap.c (sbitmap_intersection_of_succs): Likewise. (sbitmap_insersection_of_preds): Likewise. (sbitmap_union_of_succs): Likewise. (sbitmap_union_of_preds): Likewise. * sched-ebb.c (compute_jump_reg_dependencies): Likewise. (fix_basic_block_boundaries): Likewise. (sched_ebbs): Likewise. * sched-rgn.c (build_control_flow): Likewise. (find_rgns): Likewise. * tracer.c (find_best_successor): Likewise. (find_best_predecessor): Likewise. (tail_duplicate): Likewise. * tree-cfg.c (make_edges): Likewise. (make_ctrl_stmt_edges): Likewise. (make_goto_expr_edges): Likewise. (tree_can_merge_blocks_p): Likewise. (tree_merge_blocks): Likewise. (cfg_remove_useless_stmts_bb): Likewise. (remove_phi_nodes_and_edges_for_unreachable_block): Likewise. (tree_block_forwards_to): Likewise. (cleanup_control_expr_graph): Likewise. (find_taken_edge): Likewise. (dump_cfg_stats): Likewise. (tree_cfg2vcg): Likewise. (disband_implicit_edges): Likewise. (tree_find_edge_insert_loc): Likewise. (bsi_commit_edge_inserts): Likewise. (tree_split_edge): Likewise. (tree_verify_flow_info): Likewise. (tree_make_forwarder_block): Likewise. (tree_forwarder_block_p): Likewise. (thread_jumps): Likewise. (tree_try_redirect_by_replacing_jump): Likewise. (tree_split_block): Likewise. (add_phi_args_after_copy_bb): Likewise. (rewrite_to_new_ssa_names_bb): Likewise. (dump_function_to_file): Likewise. (print_pred_bbs): Likewise. (print_loop): Likewise. (tree_flow_call_edges_add): Likewise. (split_critical_edges): Likewise. (execute_warn_function_return): Likewise. (extract_true_false_edges_from_block): Likewise. * tree-if-conv.c (tree_if_conversion): Likewise. (if_convertable_bb_p): Likewise. (find_phi_replacement_condition): Likewise. (combine_blocks): Likewise. * tree-into-ssa.c (compute_global_livein): Likewise. (ssa_mark_phi_uses): Likewise. (ssa_rewrite_initialize_block): Likewise. (rewrite_add_phi_arguments): Likewise. (ssa_rewrite_phi_arguments): Likewise. (insert_phi_nodes_for): Likewise. (rewrite_into_ssa): Likewise. (rewrite_ssa_into_ssa): Likewise. * tree-mudflap.c (mf_build_check_statement_for): Likewise. * tree-outof-ssa.c (coalesce_abnormal_edges): Likewise. (rewrite_trees): Likewise. * tree-pretty-print.c (dump_bb_header): Likewise. (dump_implicit_edges): Likewise. * tree-sra.c (insert_edge_copies): Likewise. (find_obviously_necessary_stmts): Likewise. (remove_data_stmt): Likewise. * tree-ssa-dom.c (thread_across_edge): Likewise. (dom_opt_finalize_block): Likewise. (single_incoming_edge_ignoring_loop_edges): Likewise. (record_equivalences_from_incoming_edges): Likewise. (cprop_into_successor_phis): Likewise. * tree-ssa-live.c (live_worklist): Likewise. (calculate_live_on_entry): Likewise. (calculate_live_on_exit): Likewise. * tree-ssa-loop-ch.c (should_duplicate_loop_header_p): Likewise. (copy_loop_headers): Likewise. * tree-ssa-loop-im.c (loop_commit_inserts): Likewise. (fill_always_executed_in): Likewise. * tree-ssa-loop-ivcanon.c (create_canonical_iv): Likewise. * tree-ssa-loop-ivopts.c (find_interesting_uses): Likewise. (compute_phi_arg_on_exit): Likewise. * tree-ssa-loop-manip.c (add_exit_phis_edge): Likewise. (get_loops_exit): Likewise. (split_loop_exit_edge): Likewise. (ip_normal_pos): Likewise. * tree-ssa-loop-niter.c (simplify_using_initial_conditions): Likewise. * tree-ssa-phiopt.c (candidate_bb_for_phi_optimization): Likewise. (replace_phi_with_stmt): Likewise. (value_replacement): Likewise. * tree-ssa-pre.c (compute_antic_aux): Likewise. (insert_aux): Likewise. (init_pre): Likewise. * tree-ssa-propagate.c (simulate_stmt): Likewise. (simulate_block): Likewise. (ssa_prop_init): Likewise. * tree-ssa-threadupdate.c (thread_block): Likewise. (create_block_for_threading): Likewise. (remove_last_stmt_and_useless_edges): Likewise. * tree-ssa.c (verify_phi_args): Likewise. (verify_ssa): Likewise. * tree_tailcall.c (independent_of_stmt_p): Likewise. (find_tail_calls): Likewise. (eliminate_tail_call): Likewise. (tree_optimize_tail_calls_1): Likewise. * tree-vectorizer.c (vect_transform_loop): Likewise. * var-tracking.c (prologue_stack_adjust): Likewise. (vt_stack_adjustments): Likewise. (vt_find_locations): Likewise. * config/frv/frv.c (frv_ifcvt_modify_tests): Likewise. * config/i386/i386.c (ix86_pad_returns): Likewise. * config/ia64/ia64.c (ia64_expand_prologue): Likewise. * config/rs6000/rs6000.c (rs6000_emit_prologue): Likewise. Co-Authored-By: Andrew Pinski <pinskia@physics.uc.edu> Co-Authored-By: Steven Bosscher <stevenb@suse.de> From-SVN: r88222
494 lines
13 KiB
C
494 lines
13 KiB
C
/* Loop unswitching for GNU compiler.
|
|
Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING. If not, write to the Free
|
|
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
|
02111-1307, USA. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "rtl.h"
|
|
#include "hard-reg-set.h"
|
|
#include "basic-block.h"
|
|
#include "cfgloop.h"
|
|
#include "cfglayout.h"
|
|
#include "params.h"
|
|
#include "output.h"
|
|
#include "expr.h"
|
|
|
|
/* This pass moves constant conditions out of loops, duplicating the loop
|
|
in progress, i.e. this code:
|
|
|
|
while (loop_cond)
|
|
{
|
|
A;
|
|
if (cond)
|
|
branch1;
|
|
else
|
|
branch2;
|
|
B;
|
|
if (cond)
|
|
branch3;
|
|
C;
|
|
}
|
|
where nothing inside the loop alters cond is transformed
|
|
into
|
|
|
|
if (cond)
|
|
{
|
|
while (loop_cond)
|
|
{
|
|
A;
|
|
branch1;
|
|
B;
|
|
branch3;
|
|
C;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
while (loop_cond)
|
|
{
|
|
A;
|
|
branch2;
|
|
B;
|
|
C;
|
|
}
|
|
}
|
|
|
|
Duplicating the loop might lead to code growth exponential in number of
|
|
branches inside loop, so we limit the number of unswitchings performed
|
|
in a single loop to PARAM_MAX_UNSWITCH_LEVEL. We only perform the
|
|
transformation on innermost loops, as the benefit of doing it on loops
|
|
containing subloops would not be very large compared to complications
|
|
with handling this case. */
|
|
|
|
static struct loop *unswitch_loop (struct loops *, struct loop *,
|
|
basic_block, rtx, rtx);
|
|
static void unswitch_single_loop (struct loops *, struct loop *, rtx, int);
|
|
static rtx may_unswitch_on (basic_block, struct loop *, rtx *);
|
|
|
|
/* Prepare a sequence comparing OP0 with OP1 using COMP and jumping to LABEL if
|
|
true, with probability PROB. If CINSN is not NULL, it is the insn to copy
|
|
in order to create a jump. */
|
|
|
|
rtx
|
|
compare_and_jump_seq (rtx op0, rtx op1, enum rtx_code comp, rtx label, int prob,
|
|
rtx cinsn)
|
|
{
|
|
rtx seq, jump, cond;
|
|
enum machine_mode mode;
|
|
|
|
mode = GET_MODE (op0);
|
|
if (mode == VOIDmode)
|
|
mode = GET_MODE (op1);
|
|
|
|
start_sequence ();
|
|
if (GET_MODE_CLASS (mode) == MODE_CC)
|
|
{
|
|
/* A hack -- there seems to be no easy generic way how to make a
|
|
conditional jump from a ccmode comparison. */
|
|
if (!cinsn)
|
|
abort ();
|
|
cond = XEXP (SET_SRC (pc_set (cinsn)), 0);
|
|
if (GET_CODE (cond) != comp
|
|
|| !rtx_equal_p (op0, XEXP (cond, 0))
|
|
|| !rtx_equal_p (op1, XEXP (cond, 1)))
|
|
abort ();
|
|
emit_jump_insn (copy_insn (PATTERN (cinsn)));
|
|
jump = get_last_insn ();
|
|
JUMP_LABEL (jump) = JUMP_LABEL (cinsn);
|
|
LABEL_NUSES (JUMP_LABEL (jump))++;
|
|
redirect_jump (jump, label, 0);
|
|
}
|
|
else
|
|
{
|
|
if (cinsn)
|
|
abort ();
|
|
|
|
op0 = force_operand (op0, NULL_RTX);
|
|
op1 = force_operand (op1, NULL_RTX);
|
|
do_compare_rtx_and_jump (op0, op1, comp, 0,
|
|
mode, NULL_RTX, NULL_RTX, label);
|
|
jump = get_last_insn ();
|
|
JUMP_LABEL (jump) = label;
|
|
LABEL_NUSES (label)++;
|
|
}
|
|
REG_NOTES (jump) = gen_rtx_EXPR_LIST (REG_BR_PROB, GEN_INT (prob),
|
|
REG_NOTES (jump));
|
|
seq = get_insns ();
|
|
end_sequence ();
|
|
|
|
return seq;
|
|
}
|
|
|
|
/* Main entry point. Perform loop unswitching on all suitable LOOPS. */
|
|
void
|
|
unswitch_loops (struct loops *loops)
|
|
{
|
|
int i, num;
|
|
struct loop *loop;
|
|
|
|
/* Go through inner loops (only original ones). */
|
|
num = loops->num;
|
|
|
|
for (i = 1; i < num; i++)
|
|
{
|
|
/* Removed loop? */
|
|
loop = loops->parray[i];
|
|
if (!loop)
|
|
continue;
|
|
|
|
if (loop->inner)
|
|
continue;
|
|
|
|
unswitch_single_loop (loops, loop, NULL_RTX, 0);
|
|
#ifdef ENABLE_CHECKING
|
|
verify_dominators (CDI_DOMINATORS);
|
|
verify_loop_structure (loops);
|
|
#endif
|
|
}
|
|
|
|
iv_analysis_done ();
|
|
}
|
|
|
|
/* Checks whether we can unswitch LOOP on condition at end of BB -- one of its
|
|
basic blocks (for what it means see comments below). In case condition
|
|
compares loop invariant cc mode register, return the jump in CINSN. */
|
|
|
|
static rtx
|
|
may_unswitch_on (basic_block bb, struct loop *loop, rtx *cinsn)
|
|
{
|
|
rtx test, at, insn, op[2], stest;
|
|
struct rtx_iv iv;
|
|
unsigned i;
|
|
enum machine_mode mode;
|
|
|
|
/* BB must end in a simple conditional jump. */
|
|
if (EDGE_COUNT (bb->succs) != 2)
|
|
return NULL_RTX;
|
|
if (!any_condjump_p (BB_END (bb)))
|
|
return NULL_RTX;
|
|
|
|
/* With branches inside loop. */
|
|
if (!flow_bb_inside_loop_p (loop, EDGE_SUCC (bb, 0)->dest)
|
|
|| !flow_bb_inside_loop_p (loop, EDGE_SUCC (bb, 1)->dest))
|
|
return NULL_RTX;
|
|
|
|
/* It must be executed just once each iteration (because otherwise we
|
|
are unable to update dominator/irreducible loop information correctly). */
|
|
if (!just_once_each_iteration_p (loop, bb))
|
|
return NULL_RTX;
|
|
|
|
/* Condition must be invariant. */
|
|
test = get_condition (BB_END (bb), &at, true, false);
|
|
if (!test)
|
|
return NULL_RTX;
|
|
|
|
for (i = 0; i < 2; i++)
|
|
{
|
|
op[i] = XEXP (test, i);
|
|
|
|
if (CONSTANT_P (op[i]))
|
|
continue;
|
|
|
|
insn = iv_get_reaching_def (at, op[i]);
|
|
if (!iv_analyze (insn, op[i], &iv))
|
|
return NULL_RTX;
|
|
if (iv.step != const0_rtx
|
|
|| iv.first_special)
|
|
return NULL_RTX;
|
|
|
|
op[i] = get_iv_value (&iv, const0_rtx);
|
|
}
|
|
|
|
mode = GET_MODE (op[0]);
|
|
if (mode == VOIDmode)
|
|
mode = GET_MODE (op[1]);
|
|
if (GET_MODE_CLASS (mode) == MODE_CC)
|
|
{
|
|
if (at != BB_END (bb))
|
|
return NULL_RTX;
|
|
|
|
*cinsn = BB_END (bb);
|
|
if (!rtx_equal_p (op[0], XEXP (test, 0))
|
|
|| !rtx_equal_p (op[1], XEXP (test, 1)))
|
|
return NULL_RTX;
|
|
|
|
return test;
|
|
}
|
|
|
|
stest = simplify_gen_relational (GET_CODE (test), SImode,
|
|
mode, op[0], op[1]);
|
|
if (stest == const0_rtx
|
|
|| stest == const_true_rtx)
|
|
return stest;
|
|
|
|
return canon_condition (gen_rtx_fmt_ee (GET_CODE (test), SImode,
|
|
op[0], op[1]));
|
|
}
|
|
|
|
/* Reverses CONDition; returns NULL if we cannot. */
|
|
rtx
|
|
reversed_condition (rtx cond)
|
|
{
|
|
enum rtx_code reversed;
|
|
reversed = reversed_comparison_code (cond, NULL);
|
|
if (reversed == UNKNOWN)
|
|
return NULL_RTX;
|
|
else
|
|
return gen_rtx_fmt_ee (reversed,
|
|
GET_MODE (cond), XEXP (cond, 0),
|
|
XEXP (cond, 1));
|
|
}
|
|
|
|
/* Unswitch single LOOP. COND_CHECKED holds list of conditions we already
|
|
unswitched on and are therefore known to be true in this LOOP. NUM is
|
|
number of unswitchings done; do not allow it to grow too much, it is too
|
|
easy to create example on that the code would grow exponentially. */
|
|
static void
|
|
unswitch_single_loop (struct loops *loops, struct loop *loop,
|
|
rtx cond_checked, int num)
|
|
{
|
|
basic_block *bbs;
|
|
struct loop *nloop;
|
|
unsigned i;
|
|
rtx cond, rcond = NULL_RTX, conds, rconds, acond, cinsn = NULL_RTX;
|
|
int repeat;
|
|
edge e;
|
|
|
|
/* Do not unswitch too much. */
|
|
if (num > PARAM_VALUE (PARAM_MAX_UNSWITCH_LEVEL))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, ";; Not unswitching anymore, hit max level\n");
|
|
return;
|
|
}
|
|
|
|
/* Only unswitch innermost loops. */
|
|
if (loop->inner)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, ";; Not unswitching, not innermost loop\n");
|
|
return;
|
|
}
|
|
|
|
/* We must be able to duplicate loop body. */
|
|
if (!can_duplicate_loop_p (loop))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, ";; Not unswitching, can't duplicate loop\n");
|
|
return;
|
|
}
|
|
|
|
/* The loop should not be too large, to limit code growth. */
|
|
if (num_loop_insns (loop) > PARAM_VALUE (PARAM_MAX_UNSWITCH_INSNS))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, ";; Not unswitching, loop too big\n");
|
|
return;
|
|
}
|
|
|
|
/* Do not unswitch in cold areas. */
|
|
if (!maybe_hot_bb_p (loop->header))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, ";; Not unswitching, not hot area\n");
|
|
return;
|
|
}
|
|
|
|
/* Nor if the loop usually does not roll. */
|
|
if (expected_loop_iterations (loop) < 1)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, ";; Not unswitching, loop iterations < 1\n");
|
|
return;
|
|
}
|
|
|
|
do
|
|
{
|
|
repeat = 0;
|
|
|
|
/* Find a bb to unswitch on. */
|
|
bbs = get_loop_body (loop);
|
|
iv_analysis_loop_init (loop);
|
|
for (i = 0; i < loop->num_nodes; i++)
|
|
if ((cond = may_unswitch_on (bbs[i], loop, &cinsn)))
|
|
break;
|
|
|
|
if (i == loop->num_nodes)
|
|
{
|
|
free (bbs);
|
|
return;
|
|
}
|
|
|
|
if (cond != const0_rtx
|
|
&& cond != const_true_rtx)
|
|
{
|
|
rcond = reversed_condition (cond);
|
|
if (rcond)
|
|
rcond = canon_condition (rcond);
|
|
|
|
/* Check whether the result can be predicted. */
|
|
for (acond = cond_checked; acond; acond = XEXP (acond, 1))
|
|
simplify_using_condition (XEXP (acond, 0), &cond, NULL);
|
|
}
|
|
|
|
if (cond == const_true_rtx)
|
|
{
|
|
/* Remove false path. */
|
|
e = FALLTHRU_EDGE (bbs[i]);
|
|
remove_path (loops, e);
|
|
free (bbs);
|
|
repeat = 1;
|
|
}
|
|
else if (cond == const0_rtx)
|
|
{
|
|
/* Remove true path. */
|
|
e = BRANCH_EDGE (bbs[i]);
|
|
remove_path (loops, e);
|
|
free (bbs);
|
|
repeat = 1;
|
|
}
|
|
} while (repeat);
|
|
|
|
/* We found the condition we can unswitch on. */
|
|
conds = alloc_EXPR_LIST (0, cond, cond_checked);
|
|
if (rcond)
|
|
rconds = alloc_EXPR_LIST (0, rcond, cond_checked);
|
|
else
|
|
rconds = cond_checked;
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, ";; Unswitching loop\n");
|
|
|
|
/* Unswitch the loop on this condition. */
|
|
nloop = unswitch_loop (loops, loop, bbs[i], cond, cinsn);
|
|
if (!nloop)
|
|
abort ();
|
|
|
|
/* Invoke itself on modified loops. */
|
|
unswitch_single_loop (loops, nloop, rconds, num + 1);
|
|
unswitch_single_loop (loops, loop, conds, num + 1);
|
|
|
|
free_EXPR_LIST_node (conds);
|
|
if (rcond)
|
|
free_EXPR_LIST_node (rconds);
|
|
|
|
free (bbs);
|
|
}
|
|
|
|
/* Unswitch a LOOP w.r. to given basic block UNSWITCH_ON. We only support
|
|
unswitching of innermost loops. UNSWITCH_ON must be executed in every
|
|
iteration, i.e. it must dominate LOOP latch. COND is the condition
|
|
determining which loop is entered. Returns NULL if impossible, new loop
|
|
otherwise. The new loop is entered if COND is true. If CINSN is not
|
|
NULL, it is the insn in that COND is compared. */
|
|
|
|
static struct loop *
|
|
unswitch_loop (struct loops *loops, struct loop *loop, basic_block unswitch_on,
|
|
rtx cond, rtx cinsn)
|
|
{
|
|
edge entry, latch_edge, true_edge, false_edge, e;
|
|
basic_block switch_bb, unswitch_on_alt, src;
|
|
struct loop *nloop;
|
|
sbitmap zero_bitmap;
|
|
int irred_flag, prob;
|
|
rtx seq;
|
|
|
|
/* Some sanity checking. */
|
|
if (!flow_bb_inside_loop_p (loop, unswitch_on))
|
|
abort ();
|
|
if (EDGE_COUNT (unswitch_on->succs) != 2)
|
|
abort ();
|
|
if (!just_once_each_iteration_p (loop, unswitch_on))
|
|
abort ();
|
|
if (loop->inner)
|
|
abort ();
|
|
if (!flow_bb_inside_loop_p (loop, EDGE_SUCC (unswitch_on, 0)->dest))
|
|
abort ();
|
|
if (!flow_bb_inside_loop_p (loop, EDGE_SUCC (unswitch_on, 1)->dest))
|
|
abort ();
|
|
|
|
entry = loop_preheader_edge (loop);
|
|
|
|
/* Make a copy. */
|
|
src = entry->src;
|
|
irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
|
|
entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
|
|
zero_bitmap = sbitmap_alloc (2);
|
|
sbitmap_zero (zero_bitmap);
|
|
if (!duplicate_loop_to_header_edge (loop, entry, loops, 1,
|
|
zero_bitmap, NULL, NULL, NULL, 0))
|
|
return NULL;
|
|
free (zero_bitmap);
|
|
entry->flags |= irred_flag;
|
|
|
|
/* Record the block with condition we unswitch on. */
|
|
unswitch_on_alt = unswitch_on->rbi->copy;
|
|
true_edge = BRANCH_EDGE (unswitch_on_alt);
|
|
false_edge = FALLTHRU_EDGE (unswitch_on);
|
|
latch_edge = EDGE_SUCC (loop->latch->rbi->copy, 0);
|
|
|
|
/* Create a block with the condition. */
|
|
prob = true_edge->probability;
|
|
switch_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
|
|
seq = compare_and_jump_seq (XEXP (cond, 0), XEXP (cond, 1), GET_CODE (cond),
|
|
block_label (true_edge->dest),
|
|
prob, cinsn);
|
|
emit_insn_after (seq, BB_END (switch_bb));
|
|
e = make_edge (switch_bb, true_edge->dest, 0);
|
|
e->probability = prob;
|
|
e->count = latch_edge->count * prob / REG_BR_PROB_BASE;
|
|
e = make_edge (switch_bb, FALLTHRU_EDGE (unswitch_on)->dest, EDGE_FALLTHRU);
|
|
e->probability = false_edge->probability;
|
|
e->count = latch_edge->count * (false_edge->probability) / REG_BR_PROB_BASE;
|
|
|
|
if (irred_flag)
|
|
{
|
|
switch_bb->flags |= BB_IRREDUCIBLE_LOOP;
|
|
EDGE_SUCC (switch_bb, 0)->flags |= EDGE_IRREDUCIBLE_LOOP;
|
|
EDGE_SUCC (switch_bb, 1)->flags |= EDGE_IRREDUCIBLE_LOOP;
|
|
}
|
|
else
|
|
{
|
|
switch_bb->flags &= ~BB_IRREDUCIBLE_LOOP;
|
|
EDGE_SUCC (switch_bb, 0)->flags &= ~EDGE_IRREDUCIBLE_LOOP;
|
|
EDGE_SUCC (switch_bb, 1)->flags &= ~EDGE_IRREDUCIBLE_LOOP;
|
|
}
|
|
|
|
/* Loopify from the copy of LOOP body, constructing the new loop. */
|
|
nloop = loopify (loops, latch_edge,
|
|
EDGE_PRED (loop->header->rbi->copy, 0), switch_bb, true);
|
|
|
|
/* Remove branches that are now unreachable in new loops. */
|
|
remove_path (loops, true_edge);
|
|
remove_path (loops, false_edge);
|
|
|
|
/* One of created loops do not have to be subloop of the outer loop now,
|
|
so fix its placement in loop data structure. */
|
|
fix_loop_placement (loop);
|
|
fix_loop_placement (nloop);
|
|
|
|
/* Preserve the simple loop preheaders. */
|
|
loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
|
|
loop_split_edge_with (loop_preheader_edge (nloop), NULL_RTX);
|
|
|
|
return nloop;
|
|
}
|