8sa1-gcc/gcc/loop-unroll.c
Ben Elliston 628f6a4e7c backport: basic-block.h: Include vec.h, errors.h.
2004-09-24  Ben Elliston  <bje@au.ibm.com>
	    Steven Bosscher  <stevenb@suse.de>
	    Andrew Pinski  <pinskia@physics.uc.edu>

	Merge from edge-vector-branch:
	* basic-block.h: Include vec.h, errors.h. Instantiate a VEC(edge).
	(struct edge_def): Remove pred_next, succ_next members.
	(struct basic_block_def): Remove pred, succ members.  Add preds
	and succs members of type VEC(edge).
	(FALLTHRU_EDGE): Redefine using EDGE_SUCC.
	(BRANCH_EDGE): Likewise.
	(EDGE_CRITICAL_P): Redefine using EDGE_COUNT.
	(EDGE_COUNT, EDGE_I, EDGE_PRED, EDGE_SUCC): New.
	(edge_iterator): New.
	(ei_start, ei_last, ei_end_p, ei_one_before_end_p): New.
	(ei_next, ei_prev, ei_edge, ei_safe_edge): Likewise.
	(FOR_EACH_EDGE): New.
	* bb-reorder.c (find_traces): Use FOR_EACH_EDGE and EDGE_* macros
	where applicable.
	(rotate_loop): Likewise.
	(find_traces_1_route): Likewise.
	(bb_to_key): Likewise.
	(connect_traces): Likewise.
	(copy_bb_p): Likewise.
	(find_rarely_executed_basic_blocks_and_crossing_edges): Likewise.
	(add_labels_and_missing_jumps): Likewise.
	(fix_up_fall_thru_edges): Likewise.
	(find_jump_block): Likewise.
	(fix_crossing_conditional_branches): Likewise.
	(fix_crossing_unconditional_branches): Likewise.
	(add_reg_crossing_jump_notes): Likewise.
	* bt-load.c (augment_live_range): Likewise.
	* cfg.c (clear_edges): Likewise.
	(unchecked_make_edge): Likewise.
	(cached_make_edge): Likewise.
	(make_single_succ_edge): Likewise.
	(remove_edge): Likewise.
	(redirect_edge_succ_nodup): Likewise.
	(check_bb_profile): Likewise.
	(dump_flow_info): Likewise.
	(alloc_aux_for_edges): Likewise.
	(clear_aux_for_edges): Likewise.
	(dump_cfg_bb_info): Likewise.
	* cfganal.c (forwarder_block_p): Likewise.
	(can_fallthru): Likewise.
	(could_fall_through): Likewise.
	(mark_dfs_back_edges): Likewise.
	(set_edge_can_fallthru_flag): Likewise.
	(find_unreachable_blocks): Likewise.
	(create_edge_list): Likewise.
	(verify_edge_list): Likewise.
	(add_noreturn_fake_exit_edges): Likewise.
	(connect_infinite_loops_to_exit): Likewise.
	(flow_reverse_top_sort_order_compute): Likewise.
	(flow_depth_first_order_compute): Likewise.
	(flow_preorder_transversal_compute): Likewise.
	(flow_dfs_compute_reverse_execute): Likewise.
	(dfs_enumerate_from): Likewise.
	(compute_dominance_frontiers_1): Likewise.
	* cfgbuild.c (make_edges): Likewise.
	(compute_outgoing_frequencies): Likewise.
	(find_many_sub_basic_blocks): Likewise.
	(find_sub_basic_blocks): Likewise.
	* cfgcleanup.c (try_simplify_condjump): Likewise.
	(thread_jump): Likewise.
	(try_forward_edges): Likewise.
	(merge_blocks_move): Likewise.
	(outgoing_edges_match): Likewise.
	(try_crossjump_to_edge): Likewise.
	(try_crossjump_bb): Likewise.
	(try_optimize_cfg): Likewise.
	(merge_seq_blocks): Likewise.
	* cfgexpand.c (expand_gimple_tailcall): Likewise.
	(expand_gimple_basic_block): Likewise.
	(construct_init_block): Likewise.
	(construct_exit_block): Likewise.
	* cfghooks.c (verify_flow_info): Likewise.
	(dump_bb): Likewise.
	(delete_basic_block): Likewise.
	(split_edge): Likewise.
	(merge_blocks): Likewise.
	(make_forwarder_block): Likewise.
	(tidy_fallthru_edges): Likewise.
	(can_duplicate_block_p): Likewise.
	(duplicate_block): Likewise.
	* cfglayout.c (fixup_reorder_chain): Likewise.
	(fixup_fallthru_exit_predecessor): Likewise.
	(can_copy_bbs_p): Likewise.
	(copy_bbs): Likewise.
	* cfgloop.c (flow_loops_cfg_dump): Likewise.
	(flow_loop_entry_edges_find): Likewise.
	(flow_loop_exit_edges_find): Likewise.
	(flow_loop_nodes_find): Likewise.
	(mark_single_exit_loops): Likewise.
	(flow_loop_pre_header_scan): Likewise.
	(flow_loop_pre_header_find): Likewise.
	(update_latch_info): Likewise.
	(canonicalize_loop_headers): Likewise.
	(flow_loops_find): Likewise.
	(get_loop_body_in_bfs_order): Likewise.
	(get_loop_exit_edges): Likewise.
	(num_loop_branches): Likewise.
	(verify_loop_structure): Likewise.
	(loop_latch_edge): Likewise.
	(loop_preheader_edge): Likewise.
	* cfgloopanal.c (mark_irreducible_loops): Likewise.
	(expected_loop_iterations): Likewise.
	* cfgloopmanip.c (remove_bbs): Likewise.
	(fix_bb_placement): Likewise.
	(fix_irreducible_loops): Likewise.
	(remove_path): Likewise.
	(scale_bbs_frequencies): Likewise.
	(loopify): Likewise.
	(unloop): Likewise.
	(fix_loop_placement): Likewise.
	(loop_delete_branch_edge): Likewise.
	(duplicate_loop_to_header_edge): Likewise.
	(mfb_keep_just): Likewise.
	(create_preheader): Likewise.
	(force_single_succ_latches): Likewise.
	(loop_split_edge_with): Likewise.
	(create_loop_notes): Likewise.
	* cfgrtl.c (rtl_split_block): Likewise.
	(rtl_merge_blocks): Likewise.
	(rtl_can_merge_blocks): Likewise.
	(try_redirect_by_replacing_jump): Likewise.
	(force_nonfallthru_and_redirect): Likewise.
	(rtl_tidy_fallthru_edge): Likewise.
	(commit_one_edge_insertion): Likewise.
	(commit_edge_insertions): Likewise.
	(commit_edge_insertions_watch_calls): Likewise.
	(rtl_verify_flow_info_1): Likewise.
	(rtl_verify_flow_info): Likewise.
	(purge_dead_edges): Likewise.
	(cfg_layout_redirect_edge_and_branch): Likewise.
	(cfg_layout_can_merge_blocks_p): Likewise.
	(rtl_flow_call_edges_add): Likewise.
	* cse.c (cse_cc_succs): Likewise.
	* df.c (hybrid_search): Likewise.
	* dominance.c (calc_dfs_tree_nonrec): Likewise.
	(calc_dfs_tree): Likewise.
	(calc_idoms): Likewise.
	(recount_dominator): Likewise.
	* domwalk.c (walk_dominator_tree): Likewise.
	* except.c (emit_to_new_bb_before): Likewise.
	(connect_post_landing_pads): Likewise.
	(sjlj_emit_function_enter): Likewise.
	(sjlj_emit_function_exit): Likewise.
	(finish_eh_generation): Likewise.
	* final.c (compute_alignments): Likewise.
	* flow.c (calculate_global_regs_live): Likewise.
	(initialize_uninitialized_subregs): Likewise.
	(init_propagate_block_info): Likewise.
	* function.c (thread_prologue_and_epilogue_insns): Likewise.
	* gcse.c (find_implicit_sets): Likewise.
	(bypass_block): Likewise.
	(bypass_conditional_jumps): Likewise.
	(compute_pre_data): Likewise.
	(insert_insn_end_bb): Likewise.
	(insert_store): Likewise.
	(remove_reachable_equiv_notes): Likewise.
	* global.c (global_conflicts): Likewise.
	(calculate_reg_pav): Likewise.
	* graph.c (print_rtl_graph_with_bb): Likewise.
	* ifcvt.c (mark_loop_exit_edges): Likewise.
	(merge_if_block): Likewise.
	(find_if_header): Likewise.
	(block_jumps_and_fallthru_p): Likewise.
	(find_if_block): Likewise.
	(find_cond_trap): Likewise.
	(block_has_only_trap): Likewise.
	(find_if_case1): Likewise.
	(find_if_case_2): Likewise.
	* lambda-code.c (lambda_loopnest_to_gcc_loopnest): Likewise.
	(perfect_nestify): Likewise.
	* lcm.c (compute_antinout_edge): Likewise.
	(compute_laterin): Likewise.
	(compute_available): Likewise.
	(compute_nearerout): Likewise.
	* loop-doloop.c (doloop_modify): Likewise.
	* loop-init.c (loop_optimizer_init): Likewise.
	* loop-invariant.c (find_exits): Likewise.
	* loop-iv.c (simplify_using_initial_values): Likewise.
	(check_simple_exit): Likewise.
	(find_simple_exit): Likewise.
	* loop-unroll.c (peel_loop_completely): Likewise.
	(unroll_loop_constant_iterations): Likewise.
	(unroll_loop_runtime_iterations): Likewise.
	* loop-unswitch.c (may_unswitch_on): Likewise.
	(unswitch_loop): Likewise.
	* modulo-sched.c (generate_prolog_epilog): Likewise.
	(sms_schedule): Likewise.
	* postreload-gcse.c (eliminate_partially_redundant_load):
	Likewise.
	* predict.c (can_predict_insn_p): Likewise.
	(set_even_probabilities): Likewise.
	(combine_predictions_for_bb): Likewise.
	(predict_loops): Likewise.
	(estimate_probability): Likewise.
	(tree_predict_by_opcode): Likewise.
	(tree_estimate_probability): Likewise.
	(last_basic_block_p): Likewise.
	(propagate_freq): Likewise.
	(estimate_loops_at_level): Likewise.
	(estimate_bb_frequencies): Likewise.
	* profile.c (instrument_edges): Likewise.
	(get_exec_counts): Likewise.
	(compute_branch_probabilities): Likewise.
	(branch_prob): Likewise.
	* ra-build.c (live_in): Likewise.
	* ra-rewrite.c (rewrite_program2): Likewise.
	* ra.c (reg_alloc): Likewise.
	* reg-stack.c (reg_to_stack): Likewise.
	(convert_regs_entry): Likewise.
	(compensate_edge): Likewise.
	(convert_regs_1): Likewise,
	(convert_regs_2): Likewise.
	(convert_regs): Likewise.
	* regrename.c (copyprop_hardreg_forward): Likewise.
	* reload1.c (fixup_abnormal_edges): Likewise.
	* sbitmap.c (sbitmap_intersection_of_succs): Likewise.
	(sbitmap_insersection_of_preds): Likewise.
	(sbitmap_union_of_succs): Likewise.
	(sbitmap_union_of_preds): Likewise.
	* sched-ebb.c (compute_jump_reg_dependencies): Likewise.
	(fix_basic_block_boundaries): Likewise.
	(sched_ebbs): Likewise.
	* sched-rgn.c (build_control_flow): Likewise.
	(find_rgns): Likewise.
	* tracer.c (find_best_successor): Likewise.
	(find_best_predecessor): Likewise.
	(tail_duplicate): Likewise.
	* tree-cfg.c (make_edges): Likewise.
	(make_ctrl_stmt_edges): Likewise.
	(make_goto_expr_edges): Likewise.
	(tree_can_merge_blocks_p): Likewise.
	(tree_merge_blocks): Likewise.
	(cfg_remove_useless_stmts_bb): Likewise.
	(remove_phi_nodes_and_edges_for_unreachable_block): Likewise.
	(tree_block_forwards_to): Likewise.
	(cleanup_control_expr_graph): Likewise.
	(find_taken_edge): Likewise.
	(dump_cfg_stats): Likewise.
	(tree_cfg2vcg): Likewise.
	(disband_implicit_edges): Likewise.
	(tree_find_edge_insert_loc): Likewise.
	(bsi_commit_edge_inserts): Likewise.
	(tree_split_edge): Likewise.
	(tree_verify_flow_info): Likewise.
	(tree_make_forwarder_block): Likewise.
	(tree_forwarder_block_p): Likewise.
	(thread_jumps): Likewise.
	(tree_try_redirect_by_replacing_jump): Likewise.
	(tree_split_block): Likewise.
	(add_phi_args_after_copy_bb): Likewise.
	(rewrite_to_new_ssa_names_bb): Likewise.
	(dump_function_to_file): Likewise.
	(print_pred_bbs): Likewise.
	(print_loop): Likewise.
	(tree_flow_call_edges_add): Likewise.
	(split_critical_edges): Likewise.
	(execute_warn_function_return): Likewise.
	(extract_true_false_edges_from_block): Likewise.
	* tree-if-conv.c (tree_if_conversion): Likewise.
	(if_convertable_bb_p): Likewise.
	(find_phi_replacement_condition): Likewise.
	(combine_blocks): Likewise.
	* tree-into-ssa.c (compute_global_livein): Likewise.
	(ssa_mark_phi_uses): Likewise.
	(ssa_rewrite_initialize_block): Likewise.
	(rewrite_add_phi_arguments): Likewise.
	(ssa_rewrite_phi_arguments): Likewise.
	(insert_phi_nodes_for): Likewise.
	(rewrite_into_ssa): Likewise.
	(rewrite_ssa_into_ssa): Likewise.
	* tree-mudflap.c (mf_build_check_statement_for): Likewise.
	* tree-outof-ssa.c (coalesce_abnormal_edges): Likewise.
	(rewrite_trees): Likewise.
	* tree-pretty-print.c (dump_bb_header): Likewise.
	(dump_implicit_edges): Likewise.
	* tree-sra.c (insert_edge_copies): Likewise.
	(find_obviously_necessary_stmts): Likewise.
	(remove_data_stmt): Likewise.
	* tree-ssa-dom.c (thread_across_edge): Likewise.
	(dom_opt_finalize_block): Likewise.
	(single_incoming_edge_ignoring_loop_edges): Likewise.
	(record_equivalences_from_incoming_edges): Likewise.
	(cprop_into_successor_phis): Likewise.
	* tree-ssa-live.c (live_worklist): Likewise.
	(calculate_live_on_entry): Likewise.
	(calculate_live_on_exit): Likewise.
	* tree-ssa-loop-ch.c (should_duplicate_loop_header_p): Likewise.
	(copy_loop_headers): Likewise.
	* tree-ssa-loop-im.c (loop_commit_inserts): Likewise.
	(fill_always_executed_in): Likewise.
	* tree-ssa-loop-ivcanon.c (create_canonical_iv): Likewise.
	* tree-ssa-loop-ivopts.c (find_interesting_uses): Likewise.
	(compute_phi_arg_on_exit): Likewise.
	* tree-ssa-loop-manip.c (add_exit_phis_edge): Likewise.
	(get_loops_exit): Likewise.
	(split_loop_exit_edge): Likewise.
	(ip_normal_pos): Likewise.
	* tree-ssa-loop-niter.c (simplify_using_initial_conditions):
	Likewise.
	* tree-ssa-phiopt.c (candidate_bb_for_phi_optimization): Likewise.
	(replace_phi_with_stmt): Likewise.
	(value_replacement): Likewise.
	* tree-ssa-pre.c (compute_antic_aux): Likewise.
	(insert_aux): Likewise.
	(init_pre): Likewise.
	* tree-ssa-propagate.c (simulate_stmt): Likewise.
	(simulate_block): Likewise.
	(ssa_prop_init): Likewise.
	* tree-ssa-threadupdate.c (thread_block): Likewise.
	(create_block_for_threading): Likewise.
	(remove_last_stmt_and_useless_edges): Likewise.
	* tree-ssa.c (verify_phi_args): Likewise.
	(verify_ssa): Likewise.
	* tree_tailcall.c (independent_of_stmt_p): Likewise.
	(find_tail_calls): Likewise.
	(eliminate_tail_call): Likewise.
	(tree_optimize_tail_calls_1): Likewise.
	* tree-vectorizer.c (vect_transform_loop): Likewise.
	* var-tracking.c (prologue_stack_adjust): Likewise.
	(vt_stack_adjustments): Likewise.
	(vt_find_locations): Likewise.
	* config/frv/frv.c (frv_ifcvt_modify_tests): Likewise.
	* config/i386/i386.c (ix86_pad_returns): Likewise.
	* config/ia64/ia64.c (ia64_expand_prologue): Likewise.
	* config/rs6000/rs6000.c (rs6000_emit_prologue): Likewise.

Co-Authored-By: Andrew Pinski <pinskia@physics.uc.edu>
Co-Authored-By: Steven Bosscher <stevenb@suse.de>

From-SVN: r88222
2004-09-28 17:59:54 +10:00

1762 lines
47 KiB
C

/* Loop unrolling and peeling.
Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "cfgloop.h"
#include "cfglayout.h"
#include "params.h"
#include "output.h"
#include "expr.h"
#include "hashtab.h"
#include "recog.h"
/* This pass performs loop unrolling and peeling. We only perform these
optimizations on innermost loops (with single exception) because
the impact on performance is greatest here, and we want to avoid
unnecessary code size growth. The gain is caused by greater sequentiality
of code, better code to optimize for further passes and in some cases
by fewer testings of exit conditions. The main problem is code growth,
that impacts performance negatively due to effect of caches.
What we do:
-- complete peeling of once-rolling loops; this is the above mentioned
exception, as this causes loop to be cancelled completely and
does not cause code growth
-- complete peeling of loops that roll (small) constant times.
-- simple peeling of first iterations of loops that do not roll much
(according to profile feedback)
-- unrolling of loops that roll constant times; this is almost always
win, as we get rid of exit condition tests.
-- unrolling of loops that roll number of times that we can compute
in runtime; we also get rid of exit condition tests here, but there
is the extra expense for calculating the number of iterations
-- simple unrolling of remaining loops; this is performed only if we
are asked to, as the gain is questionable in this case and often
it may even slow down the code
For more detailed descriptions of each of those, see comments at
appropriate function below.
There is a lot of parameters (defined and described in params.def) that
control how much we unroll/peel.
??? A great problem is that we don't have a good way how to determine
how many times we should unroll the loop; the experiments I have made
showed that this choice may affect performance in order of several %.
*/
/* Information about induction variables to split. */
struct iv_to_split
{
rtx insn; /* The insn in that the induction variable occurs. */
rtx base_var; /* The variable on that the values in the further
iterations are based. */
rtx step; /* Step of the induction variable. */
unsigned n_loc;
unsigned loc[3]; /* Location where the definition of the induction
variable occurs in the insn. For example if
N_LOC is 2, the expression is located at
XEXP (XEXP (single_set, loc[0]), loc[1]). */
};
struct split_ivs_info
{
htab_t insns_to_split; /* A hashtable of insns to split. */
unsigned first_new_block; /* The first basic block that was
duplicated. */
};
static void decide_unrolling_and_peeling (struct loops *, int);
static void peel_loops_completely (struct loops *, int);
static void decide_peel_simple (struct loop *, int);
static void decide_peel_once_rolling (struct loop *, int);
static void decide_peel_completely (struct loop *, int);
static void decide_unroll_stupid (struct loop *, int);
static void decide_unroll_constant_iterations (struct loop *, int);
static void decide_unroll_runtime_iterations (struct loop *, int);
static void peel_loop_simple (struct loops *, struct loop *);
static void peel_loop_completely (struct loops *, struct loop *);
static void unroll_loop_stupid (struct loops *, struct loop *);
static void unroll_loop_constant_iterations (struct loops *, struct loop *);
static void unroll_loop_runtime_iterations (struct loops *, struct loop *);
static struct split_ivs_info *analyze_ivs_to_split (struct loop *);
static void si_info_start_duplication (struct split_ivs_info *);
static void split_ivs_in_copies (struct split_ivs_info *, unsigned, bool, bool);
static void free_si_info (struct split_ivs_info *);
/* Unroll and/or peel (depending on FLAGS) LOOPS. */
void
unroll_and_peel_loops (struct loops *loops, int flags)
{
struct loop *loop, *next;
bool check;
/* First perform complete loop peeling (it is almost surely a win,
and affects parameters for further decision a lot). */
peel_loops_completely (loops, flags);
/* Now decide rest of unrolling and peeling. */
decide_unrolling_and_peeling (loops, flags);
loop = loops->tree_root;
while (loop->inner)
loop = loop->inner;
/* Scan the loops, inner ones first. */
while (loop != loops->tree_root)
{
if (loop->next)
{
next = loop->next;
while (next->inner)
next = next->inner;
}
else
next = loop->outer;
check = true;
/* And perform the appropriate transformations. */
switch (loop->lpt_decision.decision)
{
case LPT_PEEL_COMPLETELY:
/* Already done. */
gcc_unreachable ();
case LPT_PEEL_SIMPLE:
peel_loop_simple (loops, loop);
break;
case LPT_UNROLL_CONSTANT:
unroll_loop_constant_iterations (loops, loop);
break;
case LPT_UNROLL_RUNTIME:
unroll_loop_runtime_iterations (loops, loop);
break;
case LPT_UNROLL_STUPID:
unroll_loop_stupid (loops, loop);
break;
case LPT_NONE:
check = false;
break;
default:
gcc_unreachable ();
}
if (check)
{
#ifdef ENABLE_CHECKING
verify_dominators (CDI_DOMINATORS);
verify_loop_structure (loops);
#endif
}
loop = next;
}
iv_analysis_done ();
}
/* Check whether exit of the LOOP is at the end of loop body. */
static bool
loop_exit_at_end_p (struct loop *loop)
{
struct niter_desc *desc = get_simple_loop_desc (loop);
rtx insn;
if (desc->in_edge->dest != loop->latch)
return false;
/* Check that the latch is empty. */
FOR_BB_INSNS (loop->latch, insn)
{
if (INSN_P (insn))
return false;
}
return true;
}
/* Check whether to peel LOOPS (depending on FLAGS) completely and do so. */
static void
peel_loops_completely (struct loops *loops, int flags)
{
struct loop *loop, *next;
loop = loops->tree_root;
while (loop->inner)
loop = loop->inner;
while (loop != loops->tree_root)
{
if (loop->next)
{
next = loop->next;
while (next->inner)
next = next->inner;
}
else
next = loop->outer;
loop->lpt_decision.decision = LPT_NONE;
if (dump_file)
fprintf (dump_file,
"\n;; *** Considering loop %d for complete peeling ***\n",
loop->num);
loop->ninsns = num_loop_insns (loop);
decide_peel_once_rolling (loop, flags);
if (loop->lpt_decision.decision == LPT_NONE)
decide_peel_completely (loop, flags);
if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
{
peel_loop_completely (loops, loop);
#ifdef ENABLE_CHECKING
verify_dominators (CDI_DOMINATORS);
verify_loop_structure (loops);
#endif
}
loop = next;
}
}
/* Decide whether unroll or peel LOOPS (depending on FLAGS) and how much. */
static void
decide_unrolling_and_peeling (struct loops *loops, int flags)
{
struct loop *loop = loops->tree_root, *next;
while (loop->inner)
loop = loop->inner;
/* Scan the loops, inner ones first. */
while (loop != loops->tree_root)
{
if (loop->next)
{
next = loop->next;
while (next->inner)
next = next->inner;
}
else
next = loop->outer;
loop->lpt_decision.decision = LPT_NONE;
if (dump_file)
fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
/* Do not peel cold areas. */
if (!maybe_hot_bb_p (loop->header))
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, cold area\n");
loop = next;
continue;
}
/* Can the loop be manipulated? */
if (!can_duplicate_loop_p (loop))
{
if (dump_file)
fprintf (dump_file,
";; Not considering loop, cannot duplicate\n");
loop = next;
continue;
}
/* Skip non-innermost loops. */
if (loop->inner)
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, is not innermost\n");
loop = next;
continue;
}
loop->ninsns = num_loop_insns (loop);
loop->av_ninsns = average_num_loop_insns (loop);
/* Try transformations one by one in decreasing order of
priority. */
decide_unroll_constant_iterations (loop, flags);
if (loop->lpt_decision.decision == LPT_NONE)
decide_unroll_runtime_iterations (loop, flags);
if (loop->lpt_decision.decision == LPT_NONE)
decide_unroll_stupid (loop, flags);
if (loop->lpt_decision.decision == LPT_NONE)
decide_peel_simple (loop, flags);
loop = next;
}
}
/* Decide whether the LOOP is once rolling and suitable for complete
peeling. */
static void
decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
{
struct niter_desc *desc;
if (dump_file)
fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
/* Is the loop small enough? */
if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, is too big\n");
return;
}
/* Check for simple loops. */
desc = get_simple_loop_desc (loop);
/* Check number of iterations. */
if (!desc->simple_p
|| desc->assumptions
|| !desc->const_iter
|| desc->niter != 0)
{
if (dump_file)
fprintf (dump_file,
";; Unable to prove that the loop rolls exactly once\n");
return;
}
/* Success. */
if (dump_file)
fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
}
/* Decide whether the LOOP is suitable for complete peeling. */
static void
decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
{
unsigned npeel;
struct niter_desc *desc;
if (dump_file)
fprintf (dump_file, "\n;; Considering peeling completely\n");
/* Skip non-innermost loops. */
if (loop->inner)
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, is not innermost\n");
return;
}
/* Do not peel cold areas. */
if (!maybe_hot_bb_p (loop->header))
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, cold area\n");
return;
}
/* Can the loop be manipulated? */
if (!can_duplicate_loop_p (loop))
{
if (dump_file)
fprintf (dump_file,
";; Not considering loop, cannot duplicate\n");
return;
}
/* npeel = number of iterations to peel. */
npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
/* Is the loop small enough? */
if (!npeel)
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, is too big\n");
return;
}
/* Check for simple loops. */
desc = get_simple_loop_desc (loop);
/* Check number of iterations. */
if (!desc->simple_p
|| desc->assumptions
|| !desc->const_iter)
{
if (dump_file)
fprintf (dump_file,
";; Unable to prove that the loop iterates constant times\n");
return;
}
if (desc->niter > npeel - 1)
{
if (dump_file)
{
fprintf (dump_file,
";; Not peeling loop completely, rolls too much (");
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
}
return;
}
/* Success. */
if (dump_file)
fprintf (dump_file, ";; Decided to peel loop completely\n");
loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
}
/* Peel all iterations of LOOP, remove exit edges and cancel the loop
completely. The transformation done:
for (i = 0; i < 4; i++)
body;
==>
i = 0;
body; i++;
body; i++;
body; i++;
body; i++;
*/
static void
peel_loop_completely (struct loops *loops, struct loop *loop)
{
sbitmap wont_exit;
unsigned HOST_WIDE_INT npeel;
unsigned n_remove_edges, i;
edge *remove_edges, ein;
struct niter_desc *desc = get_simple_loop_desc (loop);
struct split_ivs_info *si_info = NULL;
npeel = desc->niter;
if (npeel)
{
wont_exit = sbitmap_alloc (npeel + 1);
sbitmap_ones (wont_exit);
RESET_BIT (wont_exit, 0);
if (desc->noloop_assumptions)
RESET_BIT (wont_exit, 1);
remove_edges = xcalloc (npeel, sizeof (edge));
n_remove_edges = 0;
if (flag_split_ivs_in_unroller)
si_info = analyze_ivs_to_split (loop);
si_info_start_duplication (si_info);
if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
loops, npeel,
wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
DLTHE_FLAG_UPDATE_FREQ))
abort ();
free (wont_exit);
if (si_info)
{
split_ivs_in_copies (si_info, npeel, false, true);
free_si_info (si_info);
}
/* Remove the exit edges. */
for (i = 0; i < n_remove_edges; i++)
remove_path (loops, remove_edges[i]);
free (remove_edges);
}
ein = desc->in_edge;
free_simple_loop_desc (loop);
/* Now remove the unreachable part of the last iteration and cancel
the loop. */
remove_path (loops, ein);
if (dump_file)
fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
}
/* Decide whether to unroll LOOP iterating constant number of times
and how much. */
static void
decide_unroll_constant_iterations (struct loop *loop, int flags)
{
unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
struct niter_desc *desc;
if (!(flags & UAP_UNROLL))
{
/* We were not asked to, just return back silently. */
return;
}
if (dump_file)
fprintf (dump_file,
"\n;; Considering unrolling loop with constant "
"number of iterations\n");
/* nunroll = total number of copies of the original loop body in
unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
nunroll_by_av
= PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
if (nunroll > nunroll_by_av)
nunroll = nunroll_by_av;
if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
/* Skip big loops. */
if (nunroll <= 1)
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, is too big\n");
return;
}
/* Check for simple loops. */
desc = get_simple_loop_desc (loop);
/* Check number of iterations. */
if (!desc->simple_p || !desc->const_iter || desc->assumptions)
{
if (dump_file)
fprintf (dump_file,
";; Unable to prove that the loop iterates constant times\n");
return;
}
/* Check whether the loop rolls enough to consider. */
if (desc->niter < 2 * nunroll)
{
if (dump_file)
fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
return;
}
/* Success; now compute number of iterations to unroll. We alter
nunroll so that as few as possible copies of loop body are
necessary, while still not decreasing the number of unrollings
too much (at most by 1). */
best_copies = 2 * nunroll + 10;
i = 2 * nunroll + 2;
if (i - 1 >= desc->niter)
i = desc->niter - 2;
for (; i >= nunroll - 1; i--)
{
unsigned exit_mod = desc->niter % (i + 1);
if (!loop_exit_at_end_p (loop))
n_copies = exit_mod + i + 1;
else if (exit_mod != (unsigned) i
|| desc->noloop_assumptions != NULL_RTX)
n_copies = exit_mod + i + 2;
else
n_copies = i + 1;
if (n_copies < best_copies)
{
best_copies = n_copies;
best_unroll = i;
}
}
if (dump_file)
fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
best_unroll + 1, best_copies, nunroll);
loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
loop->lpt_decision.times = best_unroll;
if (dump_file)
fprintf (dump_file,
";; Decided to unroll the constant times rolling loop, %d times.\n",
loop->lpt_decision.times);
}
/* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
times. The transformation does this:
for (i = 0; i < 102; i++)
body;
==>
i = 0;
body; i++;
body; i++;
while (i < 102)
{
body; i++;
body; i++;
body; i++;
body; i++;
}
*/
static void
unroll_loop_constant_iterations (struct loops *loops, struct loop *loop)
{
unsigned HOST_WIDE_INT niter;
unsigned exit_mod;
sbitmap wont_exit;
unsigned n_remove_edges, i;
edge *remove_edges;
unsigned max_unroll = loop->lpt_decision.times;
struct niter_desc *desc = get_simple_loop_desc (loop);
bool exit_at_end = loop_exit_at_end_p (loop);
struct split_ivs_info *si_info = NULL;
niter = desc->niter;
/* Should not get here (such loop should be peeled instead). */
gcc_assert (niter > max_unroll + 1);
exit_mod = niter % (max_unroll + 1);
wont_exit = sbitmap_alloc (max_unroll + 1);
sbitmap_ones (wont_exit);
remove_edges = xcalloc (max_unroll + exit_mod + 1, sizeof (edge));
n_remove_edges = 0;
if (flag_split_ivs_in_unroller)
si_info = analyze_ivs_to_split (loop);
if (!exit_at_end)
{
/* The exit is not at the end of the loop; leave exit test
in the first copy, so that the loops that start with test
of exit condition have continuous body after unrolling. */
if (dump_file)
fprintf (dump_file, ";; Condition on beginning of loop.\n");
/* Peel exit_mod iterations. */
RESET_BIT (wont_exit, 0);
if (desc->noloop_assumptions)
RESET_BIT (wont_exit, 1);
if (exit_mod)
{
si_info_start_duplication (si_info);
if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
loops, exit_mod,
wont_exit, desc->out_edge,
remove_edges, &n_remove_edges,
DLTHE_FLAG_UPDATE_FREQ))
abort ();
if (si_info && exit_mod > 1)
split_ivs_in_copies (si_info, exit_mod, false, false);
desc->noloop_assumptions = NULL_RTX;
desc->niter -= exit_mod;
desc->niter_max -= exit_mod;
}
SET_BIT (wont_exit, 1);
}
else
{
/* Leave exit test in last copy, for the same reason as above if
the loop tests the condition at the end of loop body. */
if (dump_file)
fprintf (dump_file, ";; Condition on end of loop.\n");
/* We know that niter >= max_unroll + 2; so we do not need to care of
case when we would exit before reaching the loop. So just peel
exit_mod + 1 iterations. */
if (exit_mod != max_unroll
|| desc->noloop_assumptions)
{
RESET_BIT (wont_exit, 0);
if (desc->noloop_assumptions)
RESET_BIT (wont_exit, 1);
si_info_start_duplication (si_info);
if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
loops, exit_mod + 1,
wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
DLTHE_FLAG_UPDATE_FREQ))
abort ();
if (si_info && exit_mod > 0)
split_ivs_in_copies (si_info, exit_mod + 1, false, false);
desc->niter -= exit_mod + 1;
desc->niter_max -= exit_mod + 1;
desc->noloop_assumptions = NULL_RTX;
SET_BIT (wont_exit, 0);
SET_BIT (wont_exit, 1);
}
RESET_BIT (wont_exit, max_unroll);
}
/* Now unroll the loop. */
si_info_start_duplication (si_info);
if (!duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
loops, max_unroll,
wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
DLTHE_FLAG_UPDATE_FREQ))
abort ();
if (si_info)
{
split_ivs_in_copies (si_info, max_unroll, true, true);
free_si_info (si_info);
}
free (wont_exit);
if (exit_at_end)
{
basic_block exit_block = desc->in_edge->src->rbi->copy;
/* Find a new in and out edge; they are in the last copy we have made. */
if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
{
desc->out_edge = EDGE_SUCC (exit_block, 0);
desc->in_edge = EDGE_SUCC (exit_block, 1);
}
else
{
desc->out_edge = EDGE_SUCC (exit_block, 1);
desc->in_edge = EDGE_SUCC (exit_block, 0);
}
}
desc->niter /= max_unroll + 1;
desc->niter_max /= max_unroll + 1;
desc->niter_expr = GEN_INT (desc->niter);
/* Remove the edges. */
for (i = 0; i < n_remove_edges; i++)
remove_path (loops, remove_edges[i]);
free (remove_edges);
if (dump_file)
fprintf (dump_file,
";; Unrolled loop %d times, constant # of iterations %i insns\n",
max_unroll, num_loop_insns (loop));
}
/* Decide whether to unroll LOOP iterating runtime computable number of times
and how much. */
static void
decide_unroll_runtime_iterations (struct loop *loop, int flags)
{
unsigned nunroll, nunroll_by_av, i;
struct niter_desc *desc;
if (!(flags & UAP_UNROLL))
{
/* We were not asked to, just return back silently. */
return;
}
if (dump_file)
fprintf (dump_file,
"\n;; Considering unrolling loop with runtime "
"computable number of iterations\n");
/* nunroll = total number of copies of the original loop body in
unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
if (nunroll > nunroll_by_av)
nunroll = nunroll_by_av;
if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
/* Skip big loops. */
if (nunroll <= 1)
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, is too big\n");
return;
}
/* Check for simple loops. */
desc = get_simple_loop_desc (loop);
/* Check simpleness. */
if (!desc->simple_p || desc->assumptions)
{
if (dump_file)
fprintf (dump_file,
";; Unable to prove that the number of iterations "
"can be counted in runtime\n");
return;
}
if (desc->const_iter)
{
if (dump_file)
fprintf (dump_file, ";; Loop iterates constant times\n");
return;
}
/* If we have profile feedback, check whether the loop rolls. */
if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
{
if (dump_file)
fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
return;
}
/* Success; now force nunroll to be power of 2, as we are unable to
cope with overflows in computation of number of iterations. */
for (i = 1; 2 * i <= nunroll; i *= 2)
continue;
loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
loop->lpt_decision.times = i - 1;
if (dump_file)
fprintf (dump_file,
";; Decided to unroll the runtime computable "
"times rolling loop, %d times.\n",
loop->lpt_decision.times);
}
/* Unroll LOOP for that we are able to count number of iterations in runtime
LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
extra care for case n < 0):
for (i = 0; i < n; i++)
body;
==>
i = 0;
mod = n % 4;
switch (mod)
{
case 3:
body; i++;
case 2:
body; i++;
case 1:
body; i++;
case 0: ;
}
while (i < n)
{
body; i++;
body; i++;
body; i++;
body; i++;
}
*/
static void
unroll_loop_runtime_iterations (struct loops *loops, struct loop *loop)
{
rtx old_niter, niter, init_code, branch_code, tmp;
unsigned i, j, p;
basic_block preheader, *body, *dom_bbs, swtch, ezc_swtch;
unsigned n_dom_bbs;
sbitmap wont_exit;
int may_exit_copy;
unsigned n_peel, n_remove_edges;
edge *remove_edges, e;
bool extra_zero_check, last_may_exit;
unsigned max_unroll = loop->lpt_decision.times;
struct niter_desc *desc = get_simple_loop_desc (loop);
bool exit_at_end = loop_exit_at_end_p (loop);
struct split_ivs_info *si_info = NULL;
if (flag_split_ivs_in_unroller)
si_info = analyze_ivs_to_split (loop);
/* Remember blocks whose dominators will have to be updated. */
dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
n_dom_bbs = 0;
body = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
{
unsigned nldom;
basic_block *ldom;
nldom = get_dominated_by (CDI_DOMINATORS, body[i], &ldom);
for (j = 0; j < nldom; j++)
if (!flow_bb_inside_loop_p (loop, ldom[j]))
dom_bbs[n_dom_bbs++] = ldom[j];
free (ldom);
}
free (body);
if (!exit_at_end)
{
/* Leave exit in first copy (for explanation why see comment in
unroll_loop_constant_iterations). */
may_exit_copy = 0;
n_peel = max_unroll - 1;
extra_zero_check = true;
last_may_exit = false;
}
else
{
/* Leave exit in last copy (for explanation why see comment in
unroll_loop_constant_iterations). */
may_exit_copy = max_unroll;
n_peel = max_unroll;
extra_zero_check = false;
last_may_exit = true;
}
/* Get expression for number of iterations. */
start_sequence ();
old_niter = niter = gen_reg_rtx (desc->mode);
tmp = force_operand (copy_rtx (desc->niter_expr), niter);
if (tmp != niter)
emit_move_insn (niter, tmp);
/* Count modulo by ANDing it with max_unroll; we use the fact that
the number of unrollings is a power of two, and thus this is correct
even if there is overflow in the computation. */
niter = expand_simple_binop (desc->mode, AND,
niter,
GEN_INT (max_unroll),
NULL_RTX, 0, OPTAB_LIB_WIDEN);
init_code = get_insns ();
end_sequence ();
/* Precondition the loop. */
loop_split_edge_with (loop_preheader_edge (loop), init_code);
remove_edges = xcalloc (max_unroll + n_peel + 1, sizeof (edge));
n_remove_edges = 0;
wont_exit = sbitmap_alloc (max_unroll + 2);
/* Peel the first copy of loop body (almost always we must leave exit test
here; the only exception is when we have extra zero check and the number
of iterations is reliable. Also record the place of (possible) extra
zero check. */
sbitmap_zero (wont_exit);
if (extra_zero_check
&& !desc->noloop_assumptions)
SET_BIT (wont_exit, 1);
ezc_swtch = loop_preheader_edge (loop)->src;
if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
loops, 1,
wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
DLTHE_FLAG_UPDATE_FREQ))
abort ();
/* Record the place where switch will be built for preconditioning. */
swtch = loop_split_edge_with (loop_preheader_edge (loop),
NULL_RTX);
for (i = 0; i < n_peel; i++)
{
/* Peel the copy. */
sbitmap_zero (wont_exit);
if (i != n_peel - 1 || !last_may_exit)
SET_BIT (wont_exit, 1);
if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
loops, 1,
wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
DLTHE_FLAG_UPDATE_FREQ))
abort ();
/* Create item for switch. */
j = n_peel - i - (extra_zero_check ? 0 : 1);
p = REG_BR_PROB_BASE / (i + 2);
preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
block_label (preheader), p, NULL_RTX);
swtch = loop_split_edge_with (EDGE_PRED (swtch, 0), branch_code);
set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
EDGE_SUCC (swtch, 0)->probability = REG_BR_PROB_BASE - p;
e = make_edge (swtch, preheader,
EDGE_SUCC (swtch, 0)->flags & EDGE_IRREDUCIBLE_LOOP);
e->probability = p;
}
if (extra_zero_check)
{
/* Add branch for zero iterations. */
p = REG_BR_PROB_BASE / (max_unroll + 1);
swtch = ezc_swtch;
preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
block_label (preheader), p, NULL_RTX);
swtch = loop_split_edge_with (EDGE_SUCC (swtch, 0), branch_code);
set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
EDGE_SUCC (swtch, 0)->probability = REG_BR_PROB_BASE - p;
e = make_edge (swtch, preheader,
EDGE_SUCC (swtch, 0)->flags & EDGE_IRREDUCIBLE_LOOP);
e->probability = p;
}
/* Recount dominators for outer blocks. */
iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
/* And unroll loop. */
sbitmap_ones (wont_exit);
RESET_BIT (wont_exit, may_exit_copy);
si_info_start_duplication (si_info);
if (!duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
loops, max_unroll,
wont_exit, desc->out_edge, remove_edges, &n_remove_edges,
DLTHE_FLAG_UPDATE_FREQ))
abort ();
if (si_info)
{
split_ivs_in_copies (si_info, max_unroll, true, true);
free_si_info (si_info);
}
free (wont_exit);
if (exit_at_end)
{
basic_block exit_block = desc->in_edge->src->rbi->copy;
/* Find a new in and out edge; they are in the last copy we have made. */
if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
{
desc->out_edge = EDGE_SUCC (exit_block, 0);
desc->in_edge = EDGE_SUCC (exit_block, 1);
}
else
{
desc->out_edge = EDGE_SUCC (exit_block, 1);
desc->in_edge = EDGE_SUCC (exit_block, 0);
}
}
/* Remove the edges. */
for (i = 0; i < n_remove_edges; i++)
remove_path (loops, remove_edges[i]);
free (remove_edges);
/* We must be careful when updating the number of iterations due to
preconditioning and the fact that the value must be valid at entry
of the loop. After passing through the above code, we see that
the correct new number of iterations is this: */
gcc_assert (!desc->const_iter);
desc->niter_expr =
simplify_gen_binary (UDIV, desc->mode, old_niter, GEN_INT (max_unroll + 1));
desc->niter_max /= max_unroll + 1;
if (exit_at_end)
{
desc->niter_expr =
simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
desc->noloop_assumptions = NULL_RTX;
desc->niter_max--;
}
if (dump_file)
fprintf (dump_file,
";; Unrolled loop %d times, counting # of iterations "
"in runtime, %i insns\n",
max_unroll, num_loop_insns (loop));
}
/* Decide whether to simply peel LOOP and how much. */
static void
decide_peel_simple (struct loop *loop, int flags)
{
unsigned npeel;
struct niter_desc *desc;
if (!(flags & UAP_PEEL))
{
/* We were not asked to, just return back silently. */
return;
}
if (dump_file)
fprintf (dump_file, "\n;; Considering simply peeling loop\n");
/* npeel = number of iterations to peel. */
npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
/* Skip big loops. */
if (!npeel)
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, is too big\n");
return;
}
/* Check for simple loops. */
desc = get_simple_loop_desc (loop);
/* Check number of iterations. */
if (desc->simple_p && !desc->assumptions && desc->const_iter)
{
if (dump_file)
fprintf (dump_file, ";; Loop iterates constant times\n");
return;
}
/* Do not simply peel loops with branches inside -- it increases number
of mispredicts. */
if (num_loop_branches (loop) > 1)
{
if (dump_file)
fprintf (dump_file, ";; Not peeling, contains branches\n");
return;
}
if (loop->header->count)
{
unsigned niter = expected_loop_iterations (loop);
if (niter + 1 > npeel)
{
if (dump_file)
{
fprintf (dump_file, ";; Not peeling loop, rolls too much (");
fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
(HOST_WIDEST_INT) (niter + 1));
fprintf (dump_file, " iterations > %d [maximum peelings])\n",
npeel);
}
return;
}
npeel = niter + 1;
}
else
{
/* For now we have no good heuristics to decide whether loop peeling
will be effective, so disable it. */
if (dump_file)
fprintf (dump_file,
";; Not peeling loop, no evidence it will be profitable\n");
return;
}
/* Success. */
loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
loop->lpt_decision.times = npeel;
if (dump_file)
fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
loop->lpt_decision.times);
}
/* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
while (cond)
body;
==>
if (!cond) goto end;
body;
if (!cond) goto end;
body;
while (cond)
body;
end: ;
*/
static void
peel_loop_simple (struct loops *loops, struct loop *loop)
{
sbitmap wont_exit;
unsigned npeel = loop->lpt_decision.times;
struct niter_desc *desc = get_simple_loop_desc (loop);
struct split_ivs_info *si_info = NULL;
if (flag_split_ivs_in_unroller && npeel > 1)
si_info = analyze_ivs_to_split (loop);
wont_exit = sbitmap_alloc (npeel + 1);
sbitmap_zero (wont_exit);
si_info_start_duplication (si_info);
if (!duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
loops, npeel, wont_exit, NULL, NULL, NULL,
DLTHE_FLAG_UPDATE_FREQ))
abort ();
free (wont_exit);
if (si_info)
{
split_ivs_in_copies (si_info, npeel, false, false);
free_si_info (si_info);
}
if (desc->simple_p)
{
if (desc->const_iter)
{
desc->niter -= npeel;
desc->niter_expr = GEN_INT (desc->niter);
desc->noloop_assumptions = NULL_RTX;
}
else
{
/* We cannot just update niter_expr, as its value might be clobbered
inside loop. We could handle this by counting the number into
temporary just like we do in runtime unrolling, but it does not
seem worthwhile. */
free_simple_loop_desc (loop);
}
}
if (dump_file)
fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
}
/* Decide whether to unroll LOOP stupidly and how much. */
static void
decide_unroll_stupid (struct loop *loop, int flags)
{
unsigned nunroll, nunroll_by_av, i;
struct niter_desc *desc;
if (!(flags & UAP_UNROLL_ALL))
{
/* We were not asked to, just return back silently. */
return;
}
if (dump_file)
fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
/* nunroll = total number of copies of the original loop body in
unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
nunroll_by_av
= PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
if (nunroll > nunroll_by_av)
nunroll = nunroll_by_av;
if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
/* Skip big loops. */
if (nunroll <= 1)
{
if (dump_file)
fprintf (dump_file, ";; Not considering loop, is too big\n");
return;
}
/* Check for simple loops. */
desc = get_simple_loop_desc (loop);
/* Check simpleness. */
if (desc->simple_p && !desc->assumptions)
{
if (dump_file)
fprintf (dump_file, ";; The loop is simple\n");
return;
}
/* Do not unroll loops with branches inside -- it increases number
of mispredicts. */
if (num_loop_branches (loop) > 1)
{
if (dump_file)
fprintf (dump_file, ";; Not unrolling, contains branches\n");
return;
}
/* If we have profile feedback, check whether the loop rolls. */
if (loop->header->count
&& expected_loop_iterations (loop) < 2 * nunroll)
{
if (dump_file)
fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
return;
}
/* Success. Now force nunroll to be power of 2, as it seems that this
improves results (partially because of better alignments, partially
because of some dark magic). */
for (i = 1; 2 * i <= nunroll; i *= 2)
continue;
loop->lpt_decision.decision = LPT_UNROLL_STUPID;
loop->lpt_decision.times = i - 1;
if (dump_file)
fprintf (dump_file,
";; Decided to unroll the loop stupidly, %d times.\n",
loop->lpt_decision.times);
}
/* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
while (cond)
body;
==>
while (cond)
{
body;
if (!cond) break;
body;
if (!cond) break;
body;
if (!cond) break;
body;
}
*/
static void
unroll_loop_stupid (struct loops *loops, struct loop *loop)
{
sbitmap wont_exit;
unsigned nunroll = loop->lpt_decision.times;
struct niter_desc *desc = get_simple_loop_desc (loop);
struct split_ivs_info *si_info = NULL;
if (flag_split_ivs_in_unroller)
si_info = analyze_ivs_to_split (loop);
wont_exit = sbitmap_alloc (nunroll + 1);
sbitmap_zero (wont_exit);
si_info_start_duplication (si_info);
if (!duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
loops, nunroll, wont_exit, NULL, NULL, NULL,
DLTHE_FLAG_UPDATE_FREQ))
abort ();
if (si_info)
{
split_ivs_in_copies (si_info, nunroll, true, true);
free_si_info (si_info);
}
free (wont_exit);
if (desc->simple_p)
{
/* We indeed may get here provided that there are nontrivial assumptions
for a loop to be really simple. We could update the counts, but the
problem is that we are unable to decide which exit will be taken
(not really true in case the number of iterations is constant,
but noone will do anything with this information, so we do not
worry about it). */
desc->simple_p = false;
}
if (dump_file)
fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
nunroll, num_loop_insns (loop));
}
/* A hash function for information about insns to split. */
static hashval_t
si_info_hash (const void *ivts)
{
return htab_hash_pointer (((struct iv_to_split *) ivts)->insn);
}
/* An equality functions for information about insns to split. */
static int
si_info_eq (const void *ivts1, const void *ivts2)
{
const struct iv_to_split *i1 = ivts1;
const struct iv_to_split *i2 = ivts2;
return i1->insn == i2->insn;
}
/* Determine whether there is an induction variable in INSN that
we would like to split during unrolling. Return NULL if INSN
contains no interesting IVs. Otherwise, allocate an IV_TO_SPLIT
structure, fill it with the relevant information and return a
pointer to it. */
static struct iv_to_split *
analyze_iv_to_split_insn (rtx insn)
{
rtx set, dest;
struct rtx_iv iv;
struct iv_to_split *ivts;
/* For now we just split the basic induction variables. Later this may be
extended for example by selecting also addresses of memory references. */
set = single_set (insn);
if (!set)
return NULL;
dest = SET_DEST (set);
if (!REG_P (dest))
return NULL;
if (!biv_p (insn, dest))
return NULL;
if (!iv_analyze (insn, dest, &iv))
abort ();
if (iv.step == const0_rtx
|| iv.mode != iv.extend_mode)
return NULL;
/* Record the insn to split. */
ivts = xmalloc (sizeof (struct iv_to_split));
ivts->insn = insn;
ivts->base_var = NULL_RTX;
ivts->step = iv.step;
ivts->n_loc = 1;
ivts->loc[0] = 1;
return ivts;
}
/* Determines which of induction variables in LOOP to split.
Return a SPLIT_IVS_INFO struct with the hash table filled
with all insns to split IVs in. The FIRST_NEW_BLOCK field
is undefined for the return value. */
static struct split_ivs_info *
analyze_ivs_to_split (struct loop *loop)
{
basic_block *body, bb;
unsigned i;
struct split_ivs_info *si_info = xcalloc (1, sizeof (struct split_ivs_info));
rtx insn;
struct iv_to_split *ivts;
PTR *slot;
si_info->insns_to_split = htab_create (5 * loop->num_nodes,
si_info_hash, si_info_eq, free);
iv_analysis_loop_init (loop);
body = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
{
bb = body[i];
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
continue;
FOR_BB_INSNS (bb, insn)
{
if (!INSN_P (insn))
continue;
ivts = analyze_iv_to_split_insn (insn);
if (!ivts)
continue;
slot = htab_find_slot (si_info->insns_to_split, ivts, INSERT);
*slot = ivts;
}
}
free (body);
return si_info;
}
/* Called just before loop duplication. Records start of duplicated area
to SI_INFO. */
static void
si_info_start_duplication (struct split_ivs_info *si_info)
{
if (si_info)
si_info->first_new_block = last_basic_block;
}
/* Determine the number of iterations between initialization of the base
variable and the current copy (N_COPY). N_COPIES is the total number
of newly created copies. UNROLLING is true if we are unrolling
(not peeling) the loop. */
static unsigned
determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
{
if (unrolling)
{
/* If we are unrolling, initialization is done in the original loop
body (number 0). */
return n_copy;
}
else
{
/* If we are peeling, the copy in that the initialization occurs has
number 1. The original loop (number 0) is the last. */
if (n_copy)
return n_copy - 1;
else
return n_copies;
}
}
/* Locate in EXPR the expression corresponding to the location recorded
in IVTS, and return a pointer to the RTX for this location. */
static rtx *
get_ivts_expr (rtx expr, struct iv_to_split *ivts)
{
unsigned i;
rtx *ret = &expr;
for (i = 0; i < ivts->n_loc; i++)
ret = &XEXP (*ret, ivts->loc[i]);
return ret;
}
/* Allocate basic variable for the induction variable chain. Callback for
htab_traverse. */
static int
allocate_basic_variable (void **slot, void *data ATTRIBUTE_UNUSED)
{
struct iv_to_split *ivts = *slot;
rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
ivts->base_var = gen_reg_rtx (GET_MODE (expr));
return 1;
}
/* Insert initialization of basic variable of IVTS before INSN, taking
the initial value from INSN. */
static void
insert_base_initialization (struct iv_to_split *ivts, rtx insn)
{
rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
rtx seq;
start_sequence ();
expr = force_operand (expr, ivts->base_var);
if (expr != ivts->base_var)
emit_move_insn (ivts->base_var, expr);
seq = get_insns ();
end_sequence ();
emit_insn_before (seq, insn);
}
/* Replace the use of induction variable described in IVTS in INSN
by base variable + DELTA * step. */
static void
split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
{
rtx expr, *loc, seq, incr, var;
enum machine_mode mode = GET_MODE (ivts->base_var);
rtx src, dest, set;
/* Construct base + DELTA * step. */
if (!delta)
expr = ivts->base_var;
else
{
incr = simplify_gen_binary (MULT, mode,
ivts->step, gen_int_mode (delta, mode));
expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
ivts->base_var, incr);
}
/* Figure out where to do the replacement. */
loc = get_ivts_expr (single_set (insn), ivts);
/* If we can make the replacement right away, we're done. */
if (validate_change (insn, loc, expr, 0))
return;
/* Otherwise, force EXPR into a register and try again. */
start_sequence ();
var = gen_reg_rtx (mode);
expr = force_operand (expr, var);
if (expr != var)
emit_move_insn (var, expr);
seq = get_insns ();
end_sequence ();
emit_insn_before (seq, insn);
if (validate_change (insn, loc, var, 0))
return;
/* The last chance. Try recreating the assignment in insn
completely from scratch. */
set = single_set (insn);
gcc_assert (set);
start_sequence ();
*loc = var;
src = copy_rtx (SET_SRC (set));
dest = copy_rtx (SET_DEST (set));
src = force_operand (src, dest);
if (src != dest)
emit_move_insn (dest, src);
seq = get_insns ();
end_sequence ();
emit_insn_before (seq, insn);
delete_insn (insn);
}
/* Splits induction variables (that are marked in SI_INFO) in copies of loop.
I.e. replace
i = i + 1;
...
i = i + 1;
...
i = i + 1;
...
type chains by
i0 = i + 1
...
i = i0 + 1
...
i = i0 + 2
...
UNROLLING is true if we unrolled (not peeled) the loop.
REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
the loop (as it should happen in complete unrolling, but not in ordinary
peeling of the loop). */
static void
split_ivs_in_copies (struct split_ivs_info *si_info, unsigned n_copies,
bool unrolling, bool rewrite_original_loop)
{
unsigned i, delta;
basic_block bb, orig_bb;
rtx insn, orig_insn, next;
struct iv_to_split ivts_templ, *ivts;
/* Sanity check -- we need to put initialization in the original loop
body. */
gcc_assert (!unrolling || rewrite_original_loop);
/* Allocate the basic variables (i0). */
htab_traverse (si_info->insns_to_split, allocate_basic_variable, NULL);
for (i = si_info->first_new_block; i < (unsigned) last_basic_block; i++)
{
bb = BASIC_BLOCK (i);
orig_bb = bb->rbi->original;
delta = determine_split_iv_delta (bb->rbi->copy_number, n_copies,
unrolling);
orig_insn = BB_HEAD (orig_bb);
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
{
next = NEXT_INSN (insn);
if (!INSN_P (insn))
continue;
while (!INSN_P (orig_insn))
orig_insn = NEXT_INSN (orig_insn);
ivts_templ.insn = orig_insn;
ivts = htab_find (si_info->insns_to_split, &ivts_templ);
if (ivts)
{
#ifdef ENABLE_CHECKING
if (!rtx_equal_p (PATTERN (insn), PATTERN (orig_insn)))
abort ();
#endif
if (!delta)
insert_base_initialization (ivts, insn);
split_iv (ivts, insn, delta);
}
orig_insn = NEXT_INSN (orig_insn);
}
}
if (!rewrite_original_loop)
return;
/* Rewrite also the original loop body. Find them as originals of the blocks
in the last copied iteration, i.e. those that have
bb->rbi->original->copy == bb. */
for (i = si_info->first_new_block; i < (unsigned) last_basic_block; i++)
{
bb = BASIC_BLOCK (i);
orig_bb = bb->rbi->original;
if (orig_bb->rbi->copy != bb)
continue;
delta = determine_split_iv_delta (0, n_copies, unrolling);
for (orig_insn = BB_HEAD (orig_bb);
orig_insn != NEXT_INSN (BB_END (bb));
orig_insn = next)
{
next = NEXT_INSN (orig_insn);
if (!INSN_P (orig_insn))
continue;
ivts_templ.insn = orig_insn;
ivts = htab_find (si_info->insns_to_split, &ivts_templ);
if (!ivts)
continue;
if (!delta)
insert_base_initialization (ivts, orig_insn);
split_iv (ivts, orig_insn, delta);
}
}
}
/* Release SI_INFO. */
static void
free_si_info (struct split_ivs_info *si_info)
{
htab_delete (si_info->insns_to_split);
free (si_info);
}