8sa1-gcc/gcc/ada/uintp.adb
Arnaud Charlet fbf5a39b3e 3psoccon.ads, [...]: Files added.
2003-10-21  Arnaud Charlet  <charlet@act-europe.fr>

	* 3psoccon.ads, 3veacodu.adb, 3vexpect.adb, 3vsoccon.ads,
	3vsocthi.adb, 3vsocthi.ads, 3vtrasym.adb, 3zsoccon.ads,
	3zsocthi.adb, 3zsocthi.ads, 50system.ads, 51system.ads,
	55system.ads, 56osinte.adb, 56osinte.ads, 56taprop.adb,
	56taspri.ads, 56tpopsp.adb, 57system.ads, 58system.ads,
	59system.ads, 5aml-tgt.adb, 5bml-tgt.adb, 5csystem.ads,
	5dsystem.ads, 5fosinte.adb, 5gml-tgt.adb, 5hml-tgt.adb,
	5isystem.ads, 5lparame.adb, 5msystem.ads, 5psystem.ads,
	5sml-tgt.adb, 5sosprim.adb, 5stpopsp.adb, 5tsystem.ads,
	5usystem.ads, 5vml-tgt.adb, 5vsymbol.adb, 5vtraent.adb,
	5vtraent.ads, 5wml-tgt.adb, 5xparame.ads, 5xsystem.ads,
	5xvxwork.ads, 5yparame.ads, 5ytiitho.adb, 5zinit.adb,
	5zml-tgt.adb, 5zparame.ads, 5ztaspri.ads, 5ztfsetr.adb,
	5zthrini.adb, 5ztiitho.adb, 5ztpopsp.adb, 7stfsetr.adb,
	7straces.adb, 7strafor.adb, 7strafor.ads, 7stratas.adb,
	a-excach.adb, a-exexda.adb, a-exexpr.adb, a-exextr.adb,
	a-exstat.adb, a-strsup.adb, a-strsup.ads, a-stwisu.adb,
	a-stwisu.ads, bld.adb, bld.ads, bld-io.adb,
	bld-io.ads, clean.adb, clean.ads, ctrl_c.c,
	erroutc.adb, erroutc.ads, errutil.adb, errutil.ads,
	err_vars.ads, final.c, g-arrspl.adb, g-arrspl.ads,
	g-boubuf.adb, g-boubuf.ads, g-boumai.ads, g-bubsor.adb,
	g-bubsor.ads, g-comver.adb, g-comver.ads, g-ctrl_c.ads,
	g-dynhta.adb, g-dynhta.ads, g-eacodu.adb, g-excact.adb,
	g-excact.ads, g-heasor.adb, g-heasor.ads, g-memdum.adb,
	g-memdum.ads, gnatclean.adb, gnatsym.adb, g-pehage.adb,
	g-pehage.ads, g-perhas.ads, gpr2make.adb, gpr2make.ads,
	gprcmd.adb, gprep.adb, gprep.ads, g-semaph.adb,
	g-semaph.ads, g-string.adb, g-string.ads, g-strspl.ads,
	g-wistsp.ads, i-vthrea.adb, i-vthrea.ads, i-vxwoio.adb,
	i-vxwoio.ads, Makefile.generic, Makefile.prolog, Makefile.rtl,
	prep.adb, prep.ads, prepcomp.adb, prepcomp.ads,
	prj-err.adb, prj-err.ads, s-boarop.ads, s-carsi8.adb,
	s-carsi8.ads, s-carun8.adb, s-carun8.ads, s-casi16.adb,
	s-casi16.ads, s-casi32.adb, s-casi32.ads, s-casi64.adb,
	s-casi64.ads, s-casuti.adb, s-casuti.ads, s-caun16.adb,
	s-caun16.ads, s-caun32.adb, s-caun32.ads, s-caun64.adb,
	s-caun64.ads, scng.adb, scng.ads, s-exnint.adb,
	s-exnllf.adb, s-exnlli.adb, s-expint.adb, s-explli.adb,
	s-geveop.adb, s-geveop.ads, s-hibaen.ads, s-htable.adb,
	s-htable.ads, sinput-c.adb, sinput-c.ads, s-memcop.ads,
	socket.c, s-purexc.ads, s-scaval.adb, s-stopoo.adb,
	s-strcom.adb, s-strcom.ads, s-strxdr.adb, s-rident.ads,
	s-thread.adb, s-thread.ads, s-tpae65.adb, s-tpae65.ads,
	s-tporft.adb, s-traent.adb, s-traent.ads, styleg.adb,
	styleg.ads, styleg-c.adb, styleg-c.ads, s-veboop.adb,
	s-veboop.ads, s-vector.ads, symbols.adb, symbols.ads,
	tb-alvms.c, tb-alvxw.c, tempdir.adb, tempdir.ads,
	vms_conv.ads, vms_conv.adb, vms_data.ads,
	vxaddr2line.adb: Files added. Merge with ACT tree.

	* 4dintnam.ads, 4mintnam.ads, 4uintnam.ads, 52system.ads,
	5dosinte.ads, 5etpopse.adb, 5mosinte.ads, 5qosinte.adb,
	5qosinte.ads, 5qstache.adb, 5qtaprop.adb, 5qtaspri.ads,
	5stpopse.adb, 5uintman.adb, 5uosinte.ads, adafinal.c,
	g-enblsp.adb, io-aux.c, scn-nlit.adb, scn-slit.adb,
	s-exnflt.ads, s-exngen.adb, s-exngen.ads, s-exnlfl.ads,
	s-exnlin.ads, s-exnsfl.ads, s-exnsin.ads, s-exnssi.ads,
	s-expflt.ads, s-expgen.adb, s-expgen.ads, s-explfl.ads,
	s-explin.ads, s-expllf.ads, s-expsfl.ads, s-expsin.ads,
	s-expssi.ads, style.adb: Files removed. Merge with ACT tree.

	* 1ic.ads, 31soccon.ads, 31soliop.ads, 3asoccon.ads,
	3bsoccon.ads, 3gsoccon.ads, 3hsoccon.ads, 3ssoccon.ads,
	3ssoliop.ads, 3wsoccon.ads, 3wsocthi.adb, 3wsocthi.ads,
	3wsoliop.ads, 41intnam.ads, 42intnam.ads, 4aintnam.ads,
	4cintnam.ads, 4gintnam.ads, 4hexcpol.adb, 4hintnam.ads,
	4lintnam.ads, 4nintnam.ads, 4ointnam.ads, 4onumaux.ads,
	4pintnam.ads, 4sintnam.ads, 4vcaldel.adb, 4vcalend.adb,
	4vintnam.ads, 4wexcpol.adb, 4wintnam.ads, 4zintnam.ads,
	51osinte.adb, 51osinte.ads, 52osinte.adb, 52osinte.ads,
	53osinte.ads, 54osinte.ads, 5aosinte.adb, 5aosinte.ads,
	5asystem.ads, 5ataprop.adb, 5atasinf.ads, 5ataspri.ads,
	5atpopsp.adb, 5avxwork.ads, 5bosinte.adb, 5bosinte.ads,
	5bsystem.ads, 5cosinte.ads, 5esystem.ads, 5fintman.adb,
	5fosinte.ads, 5fsystem.ads, 5ftaprop.adb, 5ftasinf.ads,
	5ginterr.adb, 5gintman.adb, 5gmastop.adb, 5gosinte.ads,
	5gproinf.ads, 5gsystem.ads, 5gtaprop.adb, 5gtasinf.ads,
	5gtpgetc.adb, 5hosinte.adb, 5hosinte.ads, 5hsystem.ads,
	5htaprop.adb, 5htaspri.ads, 5htraceb.adb, 5iosinte.adb,
	5itaprop.adb, 5itaspri.ads, 5ksystem.ads, 5kvxwork.ads,
	5lintman.adb, 5lml-tgt.adb, 5losinte.ads, 5lsystem.ads,
	5mvxwork.ads, 5ninmaop.adb, 5nintman.adb, 5nosinte.ads,
	5ntaprop.adb, 5ntaspri.ads, 5ointerr.adb, 5omastop.adb,
	5oosinte.adb, 5oosinte.ads, 5oosprim.adb, 5oparame.adb,
	5osystem.ads, 5otaprop.adb, 5otaspri.ads, 5posinte.ads,
	5posprim.adb, 5pvxwork.ads, 5sintman.adb, 5sosinte.adb,
	5sosinte.ads, 5ssystem.ads, 5staprop.adb, 5stasinf.ads,
	5staspri.ads, 5svxwork.ads, 5tosinte.ads, 5vasthan.adb,
	5vinmaop.adb, 5vinterr.adb, 5vintman.adb, 5vintman.ads,
	5vmastop.adb, 5vosinte.adb, 5vosinte.ads, 5vosprim.adb,
	5vsystem.ads, 5vtaprop.adb, 5vtaspri.ads, 5vtpopde.adb,
	5vtpopde.ads, 5wgloloc.adb, 5wintman.adb, 5wmemory.adb,
	5wosprim.adb, 5wsystem.ads, 5wtaprop.adb, 5wtaspri.ads,
	5ysystem.ads, 5zinterr.adb, 5zintman.adb, 5zosinte.adb,
	5zosinte.ads, 5zosprim.adb, 5zsystem.ads, 5ztaprop.adb,
	6vcpp.adb, 6vcstrea.adb, 6vinterf.ads, 7sinmaop.adb,
	7sintman.adb, 7sosinte.adb, 7sosprim.adb, 7staprop.adb,
	7staspri.ads, 7stpopsp.adb, 7straceb.adb, 9drpc.adb,
	a-caldel.adb, a-caldel.ads, a-charac.ads, a-colien.ads,
	a-comlin.adb, adaint.c, adaint.h, ada-tree.def,
	a-diocst.adb, a-diocst.ads, a-direio.adb, a-except.adb,
	a-except.ads, a-excpol.adb, a-exctra.adb, a-exctra.ads,
	a-filico.adb, a-interr.adb, a-intsig.adb, a-intsig.ads,
	ali.adb, ali.ads, ali-util.adb, ali-util.ads,
	a-ngcefu.adb, a-ngcoty.adb, a-ngelfu.adb, a-nudira.adb,
	a-nudira.ads, a-nuflra.adb, a-nuflra.ads, a-reatim.adb,
	a-reatim.ads, a-retide.ads, a-sequio.adb, a-siocst.adb,
	a-siocst.ads, a-ssicst.adb, a-ssicst.ads, a-strbou.adb,
	a-strbou.ads, a-strfix.adb, a-strmap.adb, a-strsea.ads,
	a-strunb.adb, a-strunb.ads, a-ststio.adb, a-stunau.adb,
	a-stunau.ads, a-stwibo.adb, a-stwibo.ads, a-stwifi.adb,
	a-stwima.adb, a-stwiun.adb, a-stwiun.ads, a-tags.adb,
	a-tags.ads, a-tasatt.adb, a-taside.adb, a-teioed.adb,
	a-textio.adb, a-textio.ads, a-tienau.adb, a-tifiio.adb,
	a-tiflau.adb, a-tiflio.adb, a-tigeau.adb, a-tigeau.ads,
	a-tiinau.adb, a-timoau.adb, a-tiocst.adb, a-tiocst.ads,
	atree.adb, atree.ads, a-witeio.adb, a-witeio.ads,
	a-wtcstr.adb, a-wtcstr.ads, a-wtdeio.adb, a-wtedit.adb,
	a-wtenau.adb, a-wtflau.adb, a-wtinau.adb, a-wtmoau.adb,
	bcheck.adb, binde.adb, bindgen.adb, bindusg.adb,
	checks.adb, checks.ads, cio.c, comperr.adb,
	comperr.ads, csets.adb, cstand.adb, cstreams.c,
	debug_a.adb, debug_a.ads, debug.adb, decl.c,
	einfo.adb, einfo.ads, errout.adb, errout.ads,
	eval_fat.adb, eval_fat.ads, exp_aggr.adb, expander.adb,
	expander.ads, exp_attr.adb, exp_ch11.adb, exp_ch13.adb,
	exp_ch2.adb, exp_ch3.adb, exp_ch3.ads, exp_ch4.adb,
	exp_ch5.adb, exp_ch6.adb, exp_ch7.adb, exp_ch7.ads,
	exp_ch8.adb, exp_ch9.adb, exp_code.adb, exp_dbug.adb,
	exp_dbug.ads, exp_disp.adb, exp_dist.adb, expect.c,
	exp_fixd.adb, exp_imgv.adb, exp_intr.adb, exp_pakd.adb,
	exp_prag.adb, exp_strm.adb, exp_strm.ads, exp_tss.adb,
	exp_tss.ads, exp_util.adb, exp_util.ads, exp_vfpt.adb,
	fe.h, fmap.adb, fmap.ads, fname.adb,
	fname.ads, fname-uf.adb, fname-uf.ads, freeze.adb,
	freeze.ads, frontend.adb, g-awk.adb, g-awk.ads,
	g-busora.adb, g-busora.ads, g-busorg.adb, g-busorg.ads,
	g-casuti.adb, g-casuti.ads, g-catiio.adb, g-catiio.ads,
	g-cgi.adb, g-cgi.ads, g-cgicoo.adb, g-cgicoo.ads,
	g-cgideb.adb, g-cgideb.ads, g-comlin.adb, g-comlin.ads,
	g-crc32.adb, g-crc32.ads, g-debpoo.adb, g-debpoo.ads,
	g-debuti.adb, g-debuti.ads, g-diopit.adb, g-diopit.ads,
	g-dirope.adb, g-dirope.ads, g-dyntab.adb, g-dyntab.ads,
	g-except.ads, g-exctra.adb, g-exctra.ads, g-expect.adb,
	g-expect.ads, g-hesora.adb, g-hesora.ads, g-hesorg.adb,
	g-hesorg.ads, g-htable.adb, g-htable.ads, gigi.h,
	g-io.adb, g-io.ads, g-io_aux.adb, g-io_aux.ads,
	g-locfil.adb, g-locfil.ads, g-md5.adb, g-md5.ads,
	gmem.c, gnat1drv.adb, gnatbind.adb, gnatchop.adb,
	gnatcmd.adb, gnatfind.adb, gnatkr.adb, gnatlbr.adb,
	gnatlink.adb, gnatls.adb, gnatmake.adb, gnatmem.adb,
	gnatname.adb, gnatprep.adb, gnatprep.ads, gnatpsta.adb,
	gnatxref.adb, g-os_lib.adb, g-os_lib.ads, g-regexp.adb,
	g-regexp.ads, g-regist.adb, g-regist.ads, g-regpat.adb,
	g-regpat.ads, g-soccon.ads, g-socket.adb, g-socket.ads,
	g-socthi.adb, g-socthi.ads, g-soliop.ads, g-souinf.ads,
	g-speche.adb, g-speche.ads, g-spipat.adb, g-spipat.ads,
	g-spitbo.adb, g-spitbo.ads, g-sptabo.ads, g-sptain.ads,
	g-sptavs.ads, g-table.adb, g-table.ads, g-tasloc.adb,
	g-tasloc.ads, g-thread.adb, g-thread.ads, g-traceb.adb,
	g-traceb.ads, g-trasym.adb, g-trasym.ads, hostparm.ads,
	i-c.ads, i-cobol.adb, i-cpp.adb, i-cstrea.ads,
	i-cstrin.adb, i-cstrin.ads, impunit.adb, init.c,
	inline.adb, interfac.ads, i-pacdec.ads, itypes.adb,
	itypes.ads, i-vxwork.ads, lang.opt, lang-specs.h,
	layout.adb, lib.adb, lib.ads, lib-list.adb,
	lib-load.adb, lib-load.ads, lib-sort.adb, lib-util.adb,
	lib-writ.adb, lib-writ.ads, lib-xref.adb, lib-xref.ads,
	link.c, live.adb, make.adb, make.ads,
	Makefile.adalib, Makefile.in, Make-lang.in, makeusg.adb,
	mdll.adb, mdll-fil.adb, mdll-fil.ads, mdll-utl.adb,
	mdll-utl.ads, memroot.adb, memroot.ads, memtrack.adb,
	misc.c, mkdir.c, mlib.adb, mlib.ads,
	mlib-fil.adb, mlib-fil.ads, mlib-prj.adb, mlib-prj.ads,
	mlib-tgt.adb, mlib-tgt.ads, mlib-utl.adb, mlib-utl.ads,
	namet.adb, namet.ads, namet.h, nlists.ads,
	nlists.h, nmake.adt, opt.adb, opt.ads,
	osint.adb, osint.ads, osint-b.adb, osint-c.adb,
	par.adb, par-ch10.adb, par-ch11.adb, par-ch2.adb,
	par-ch3.adb, par-ch4.adb, par-ch5.adb, par-ch6.adb,
	par-ch9.adb, par-endh.adb, par-labl.adb, par-load.adb,
	par-prag.adb, par-sync.adb, par-tchk.adb, par-util.adb,
	prj.adb, prj.ads, prj-attr.adb, prj-attr.ads,
	prj-com.adb, prj-com.ads, prj-dect.adb, prj-dect.ads,
	prj-env.adb, prj-env.ads, prj-ext.adb, prj-ext.ads,
	prj-makr.adb, prj-makr.ads, prj-nmsc.adb, prj-nmsc.ads,
	prj-pars.adb, prj-pars.ads, prj-part.adb, prj-part.ads,
	prj-pp.adb, prj-pp.ads, prj-proc.adb, prj-proc.ads,
	prj-strt.adb, prj-strt.ads, prj-tree.adb, prj-tree.ads,
	prj-util.adb, prj-util.ads, raise.c, raise.h,
	repinfo.adb, repinfo.h, restrict.adb, restrict.ads,
	rident.ads, rtsfind.adb, rtsfind.ads, s-addima.ads,
	s-arit64.adb, s-assert.adb, s-assert.ads, s-atacco.adb,
	s-atacco.ads, s-auxdec.adb, s-auxdec.ads, s-bitops.adb,
	scans.ads, scn.adb, scn.ads, s-crc32.adb,
	s-crc32.ads, s-direio.adb, sem.adb, sem.ads,
	sem_aggr.adb, sem_attr.adb, sem_attr.ads, sem_case.adb,
	sem_case.ads, sem_cat.adb, sem_cat.ads, sem_ch10.adb,
	sem_ch11.adb, sem_ch12.adb, sem_ch12.ads, sem_ch13.adb,
	sem_ch13.ads, sem_ch3.adb, sem_ch3.ads, sem_ch4.adb,
	sem_ch5.adb, sem_ch5.ads, sem_ch6.adb, sem_ch6.ads,
	sem_ch7.adb, sem_ch7.ads, sem_ch8.adb, sem_ch8.ads,
	sem_ch9.adb, sem_disp.adb, sem_disp.ads, sem_dist.adb,
	sem_elab.adb, sem_eval.adb, sem_eval.ads, sem_intr.adb,
	sem_maps.adb, sem_mech.adb, sem_prag.adb, sem_prag.ads,
	sem_res.adb, sem_res.ads, sem_type.adb, sem_type.ads,
	sem_util.adb, sem_util.ads, sem_warn.adb, s-errrep.adb,
	s-errrep.ads, s-exctab.adb, s-exctab.ads, s-exnint.ads,
	s-exnllf.ads, s-exnlli.ads, s-expint.ads, s-explli.ads,
	s-expuns.ads, s-fatflt.ads, s-fatgen.adb, s-fatgen.ads,
	s-fatlfl.ads, s-fatllf.ads, s-fatsfl.ads, s-fileio.adb,
	s-fileio.ads, s-finimp.adb, s-finimp.ads, s-finroo.adb,
	s-finroo.ads, sfn_scan.adb, s-gloloc.adb, s-gloloc.ads,
	s-imgdec.adb, s-imgenu.adb, s-imgrea.adb, s-imgwch.adb,
	sinfo.adb, sinfo.ads, s-inmaop.ads, sinput.adb,
	sinput.ads, sinput-d.adb, sinput-l.adb, sinput-l.ads,
	sinput-p.adb, sinput-p.ads, s-interr.adb, s-interr.ads,
	s-intman.ads, s-maccod.ads, s-mastop.adb, s-mastop.ads,
	s-memory.adb, s-memory.ads, snames.adb, snames.ads,
	snames.h, s-osprim.ads, s-parame.ads, s-parint.ads,
	s-pooloc.adb, s-pooloc.ads, s-poosiz.adb, sprint.adb,
	s-proinf.ads, s-scaval.ads, s-secsta.adb, s-secsta.ads,
	s-sequio.adb, s-shasto.adb, s-shasto.ads, s-soflin.ads,
	s-stache.adb, s-stache.ads, s-stalib.adb, s-stalib.ads,
	s-stoele.ads, s-stopoo.ads, s-stratt.adb, s-stratt.ads,
	s-strops.adb, s-strops.ads, s-taasde.adb, s-taasde.ads,
	s-tadeca.adb, s-tadeca.ads, s-tadert.adb, s-tadert.ads,
	s-taenca.adb, s-taenca.ads, s-taprob.adb, s-taprob.ads,
	s-taprop.ads, s-tarest.adb, s-tarest.ads, s-tasdeb.adb,
	s-tasdeb.ads, s-tasinf.adb, s-tasinf.ads, s-tasini.adb,
	s-tasini.ads, s-taskin.adb, s-taskin.ads, s-tasque.adb,
	s-tasque.ads, s-tasren.adb, s-tasren.ads, s-tasres.ads,
	s-tassta.adb, s-tassta.ads, s-tasuti.adb, s-tasuti.ads,
	s-tataat.adb, s-tataat.ads, s-tpinop.adb, s-tpinop.ads,
	s-tpoben.adb, s-tpoben.ads, s-tpobop.adb, s-tpobop.ads,
	s-tposen.adb, s-tposen.ads, s-traceb.adb, s-traceb.ads,
	stringt.adb, stringt.ads, stringt.h, style.ads,
	stylesw.adb, stylesw.ads, s-unstyp.ads, s-vaflop.ads,
	s-valrea.adb, s-valuti.adb, s-vercon.adb, s-vmexta.adb,
	s-wchcnv.ads, s-wchcon.ads, s-widcha.adb, switch.adb,
	switch.ads, switch-b.adb, switch-c.adb, switch-m.adb,
	s-wwdcha.adb, s-wwdwch.adb, sysdep.c, system.ads,
	table.adb, table.ads, targparm.adb, targparm.ads,
	targtyps.c, tbuild.adb, tbuild.ads, tracebak.c,
	trans.c, tree_io.adb, treepr.adb, treeprs.adt,
	ttypes.ads, types.ads, types.h, uintp.adb,
	uintp.ads, uintp.h, uname.adb, urealp.adb,
	urealp.ads, urealp.h, usage.adb, utils2.c,
	utils.c, validsw.adb, validsw.ads, widechar.adb,
	xeinfo.adb, xnmake.adb, xref_lib.adb, xref_lib.ads,
	xr_tabls.adb, xr_tabls.ads, xtreeprs.adb, xsnames.adb,
	einfo.h, sinfo.h, treeprs.ads, nmake.ads, nmake.adb,
	gnatvsn.ads: Merge with ACT tree.

	* gnatvsn.adb: Rewritten in a simpler and more efficient way.

From-SVN: r72751
2003-10-21 15:42:24 +02:00

2516 lines
71 KiB
Ada

------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- U I N T P --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2003 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Output; use Output;
with Tree_IO; use Tree_IO;
with GNAT.HTable; use GNAT.HTable;
package body Uintp is
------------------------
-- Local Declarations --
------------------------
Uint_Int_First : Uint := Uint_0;
-- Uint value containing Int'First value, set by Initialize. The initial
-- value of Uint_0 is used for an assertion check that ensures that this
-- value is not used before it is initialized. This value is used in the
-- UI_Is_In_Int_Range predicate, and it is right that this is a host
-- value, since the issue is host representation of integer values.
Uint_Int_Last : Uint;
-- Uint value containing Int'Last value set by Initialize.
UI_Power_2 : array (Int range 0 .. 64) of Uint;
-- This table is used to memoize exponentiations by powers of 2. The Nth
-- entry, if set, contains the Uint value 2 ** N. Initially UI_Power_2_Set
-- is zero and only the 0'th entry is set, the invariant being that all
-- entries in the range 0 .. UI_Power_2_Set are initialized.
UI_Power_2_Set : Nat;
-- Number of entries set in UI_Power_2;
UI_Power_10 : array (Int range 0 .. 64) of Uint;
-- This table is used to memoize exponentiations by powers of 10 in the
-- same manner as described above for UI_Power_2.
UI_Power_10_Set : Nat;
-- Number of entries set in UI_Power_10;
Uints_Min : Uint;
Udigits_Min : Int;
-- These values are used to make sure that the mark/release mechanism
-- does not destroy values saved in the U_Power tables or in the hash
-- table used by UI_From_Int. Whenever an entry is made in either of
-- these tabls, Uints_Min and Udigits_Min are updated to protect the
-- entry, and Release never cuts back beyond these minimum values.
Int_0 : constant Int := 0;
Int_1 : constant Int := 1;
Int_2 : constant Int := 2;
-- These values are used in some cases where the use of numeric literals
-- would cause ambiguities (integer vs Uint).
----------------------------
-- UI_From_Int Hash Table --
----------------------------
-- UI_From_Int uses a hash table to avoid duplicating entries and
-- wasting storage. This is particularly important for complex cases
-- of back annotation.
subtype Hnum is Nat range 0 .. 1022;
function Hash_Num (F : Int) return Hnum;
-- Hashing function
package UI_Ints is new Simple_HTable (
Header_Num => Hnum,
Element => Uint,
No_Element => No_Uint,
Key => Int,
Hash => Hash_Num,
Equal => "=");
-----------------------
-- Local Subprograms --
-----------------------
function Direct (U : Uint) return Boolean;
pragma Inline (Direct);
-- Returns True if U is represented directly
function Direct_Val (U : Uint) return Int;
-- U is a Uint for is represented directly. The returned result
-- is the value represented.
function GCD (Jin, Kin : Int) return Int;
-- Compute GCD of two integers. Assumes that Jin >= Kin >= 0
procedure Image_Out
(Input : Uint;
To_Buffer : Boolean;
Format : UI_Format);
-- Common processing for UI_Image and UI_Write, To_Buffer is set
-- True for UI_Image, and false for UI_Write, and Format is copied
-- from the Format parameter to UI_Image or UI_Write.
procedure Init_Operand (UI : Uint; Vec : out UI_Vector);
pragma Inline (Init_Operand);
-- This procedure puts the value of UI into the vector in canonical
-- multiple precision format. The parameter should be of the correct
-- size as determined by a previous call to N_Digits (UI). The first
-- digit of Vec contains the sign, all other digits are always non-
-- negative. Note that the input may be directly represented, and in
-- this case Vec will contain the corresponding one or two digit value.
function Least_Sig_Digit (Arg : Uint) return Int;
pragma Inline (Least_Sig_Digit);
-- Returns the Least Significant Digit of Arg quickly. When the given
-- Uint is less than 2**15, the value returned is the input value, in
-- this case the result may be negative. It is expected that any use
-- will mask off unnecessary bits. This is used for finding Arg mod B
-- where B is a power of two. Hence the actual base is irrelevent as
-- long as it is a power of two.
procedure Most_Sig_2_Digits
(Left : Uint;
Right : Uint;
Left_Hat : out Int;
Right_Hat : out Int);
-- Returns leading two significant digits from the given pair of Uint's.
-- Mathematically: returns Left / (Base ** K) and Right / (Base ** K)
-- where K is as small as possible S.T. Right_Hat < Base * Base.
-- It is required that Left > Right for the algorithm to work.
function N_Digits (Input : Uint) return Int;
pragma Inline (N_Digits);
-- Returns number of "digits" in a Uint
function Sum_Digits (Left : Uint; Sign : Int) return Int;
-- If Sign = 1 return the sum of the "digits" of Abs (Left). If the
-- total has more then one digit then return Sum_Digits of total.
function Sum_Double_Digits (Left : Uint; Sign : Int) return Int;
-- Same as above but work in New_Base = Base * Base
function Vector_To_Uint
(In_Vec : UI_Vector;
Negative : Boolean)
return Uint;
-- Functions that calculate values in UI_Vectors, call this function
-- to create and return the Uint value. In_Vec contains the multiple
-- precision (Base) representation of a non-negative value. Leading
-- zeroes are permitted. Negative is set if the desired result is
-- the negative of the given value. The result will be either the
-- appropriate directly represented value, or a table entry in the
-- proper canonical format is created and returned.
--
-- Note that Init_Operand puts a signed value in the result vector,
-- but Vector_To_Uint is always presented with a non-negative value.
-- The processing of signs is something that is done by the caller
-- before calling Vector_To_Uint.
------------
-- Direct --
------------
function Direct (U : Uint) return Boolean is
begin
return Int (U) <= Int (Uint_Direct_Last);
end Direct;
----------------
-- Direct_Val --
----------------
function Direct_Val (U : Uint) return Int is
begin
pragma Assert (Direct (U));
return Int (U) - Int (Uint_Direct_Bias);
end Direct_Val;
---------
-- GCD --
---------
function GCD (Jin, Kin : Int) return Int is
J, K, Tmp : Int;
begin
pragma Assert (Jin >= Kin);
pragma Assert (Kin >= Int_0);
J := Jin;
K := Kin;
while K /= Uint_0 loop
Tmp := J mod K;
J := K;
K := Tmp;
end loop;
return J;
end GCD;
--------------
-- Hash_Num --
--------------
function Hash_Num (F : Int) return Hnum is
begin
return Standard."mod" (F, Hnum'Range_Length);
end Hash_Num;
---------------
-- Image_Out --
---------------
procedure Image_Out
(Input : Uint;
To_Buffer : Boolean;
Format : UI_Format)
is
Marks : constant Uintp.Save_Mark := Uintp.Mark;
Base : Uint;
Ainput : Uint;
Digs_Output : Natural := 0;
-- Counts digits output. In hex mode, but not in decimal mode, we
-- put an underline after every four hex digits that are output.
Exponent : Natural := 0;
-- If the number is too long to fit in the buffer, we switch to an
-- approximate output format with an exponent. This variable records
-- the exponent value.
function Better_In_Hex return Boolean;
-- Determines if it is better to generate digits in base 16 (result
-- is true) or base 10 (result is false). The choice is purely a
-- matter of convenience and aesthetics, so it does not matter which
-- value is returned from a correctness point of view.
procedure Image_Char (C : Character);
-- Internal procedure to output one character
procedure Image_Exponent (N : Natural);
-- Output non-zero exponent. Note that we only use the exponent
-- form in the buffer case, so we know that To_Buffer is true.
procedure Image_Uint (U : Uint);
-- Internal procedure to output characters of non-negative Uint
-------------------
-- Better_In_Hex --
-------------------
function Better_In_Hex return Boolean is
T16 : constant Uint := Uint_2 ** Int'(16);
A : Uint;
begin
A := UI_Abs (Input);
-- Small values up to 2**16 can always be in decimal
if A < T16 then
return False;
end if;
-- Otherwise, see if we are a power of 2 or one less than a power
-- of 2. For the moment these are the only cases printed in hex.
if A mod Uint_2 = Uint_1 then
A := A + Uint_1;
end if;
loop
if A mod T16 /= Uint_0 then
return False;
else
A := A / T16;
end if;
exit when A < T16;
end loop;
while A > Uint_2 loop
if A mod Uint_2 /= Uint_0 then
return False;
else
A := A / Uint_2;
end if;
end loop;
return True;
end Better_In_Hex;
----------------
-- Image_Char --
----------------
procedure Image_Char (C : Character) is
begin
if To_Buffer then
if UI_Image_Length + 6 > UI_Image_Max then
Exponent := Exponent + 1;
else
UI_Image_Length := UI_Image_Length + 1;
UI_Image_Buffer (UI_Image_Length) := C;
end if;
else
Write_Char (C);
end if;
end Image_Char;
--------------------
-- Image_Exponent --
--------------------
procedure Image_Exponent (N : Natural) is
begin
if N >= 10 then
Image_Exponent (N / 10);
end if;
UI_Image_Length := UI_Image_Length + 1;
UI_Image_Buffer (UI_Image_Length) :=
Character'Val (Character'Pos ('0') + N mod 10);
end Image_Exponent;
----------------
-- Image_Uint --
----------------
procedure Image_Uint (U : Uint) is
H : constant array (Int range 0 .. 15) of Character :=
"0123456789ABCDEF";
begin
if U >= Base then
Image_Uint (U / Base);
end if;
if Digs_Output = 4 and then Base = Uint_16 then
Image_Char ('_');
Digs_Output := 0;
end if;
Image_Char (H (UI_To_Int (U rem Base)));
Digs_Output := Digs_Output + 1;
end Image_Uint;
-- Start of processing for Image_Out
begin
if Input = No_Uint then
Image_Char ('?');
return;
end if;
UI_Image_Length := 0;
if Input < Uint_0 then
Image_Char ('-');
Ainput := -Input;
else
Ainput := Input;
end if;
if Format = Hex
or else (Format = Auto and then Better_In_Hex)
then
Base := Uint_16;
Image_Char ('1');
Image_Char ('6');
Image_Char ('#');
Image_Uint (Ainput);
Image_Char ('#');
else
Base := Uint_10;
Image_Uint (Ainput);
end if;
if Exponent /= 0 then
UI_Image_Length := UI_Image_Length + 1;
UI_Image_Buffer (UI_Image_Length) := 'E';
Image_Exponent (Exponent);
end if;
Uintp.Release (Marks);
end Image_Out;
-------------------
-- Init_Operand --
-------------------
procedure Init_Operand (UI : Uint; Vec : out UI_Vector) is
Loc : Int;
begin
if Direct (UI) then
Vec (1) := Direct_Val (UI);
if Vec (1) >= Base then
Vec (2) := Vec (1) rem Base;
Vec (1) := Vec (1) / Base;
end if;
else
Loc := Uints.Table (UI).Loc;
for J in 1 .. Uints.Table (UI).Length loop
Vec (J) := Udigits.Table (Loc + J - 1);
end loop;
end if;
end Init_Operand;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Uints.Init;
Udigits.Init;
Uint_Int_First := UI_From_Int (Int'First);
Uint_Int_Last := UI_From_Int (Int'Last);
UI_Power_2 (0) := Uint_1;
UI_Power_2_Set := 0;
UI_Power_10 (0) := Uint_1;
UI_Power_10_Set := 0;
Uints_Min := Uints.Last;
Udigits_Min := Udigits.Last;
UI_Ints.Reset;
end Initialize;
---------------------
-- Least_Sig_Digit --
---------------------
function Least_Sig_Digit (Arg : Uint) return Int is
V : Int;
begin
if Direct (Arg) then
V := Direct_Val (Arg);
if V >= Base then
V := V mod Base;
end if;
-- Note that this result may be negative
return V;
else
return
Udigits.Table
(Uints.Table (Arg).Loc + Uints.Table (Arg).Length - 1);
end if;
end Least_Sig_Digit;
----------
-- Mark --
----------
function Mark return Save_Mark is
begin
return (Save_Uint => Uints.Last, Save_Udigit => Udigits.Last);
end Mark;
-----------------------
-- Most_Sig_2_Digits --
-----------------------
procedure Most_Sig_2_Digits
(Left : Uint;
Right : Uint;
Left_Hat : out Int;
Right_Hat : out Int)
is
begin
pragma Assert (Left >= Right);
if Direct (Left) then
Left_Hat := Direct_Val (Left);
Right_Hat := Direct_Val (Right);
return;
else
declare
L1 : constant Int :=
Udigits.Table (Uints.Table (Left).Loc);
L2 : constant Int :=
Udigits.Table (Uints.Table (Left).Loc + 1);
begin
-- It is not so clear what to return when Arg is negative???
Left_Hat := abs (L1) * Base + L2;
end;
end if;
declare
Length_L : constant Int := Uints.Table (Left).Length;
Length_R : Int;
R1 : Int;
R2 : Int;
T : Int;
begin
if Direct (Right) then
T := Direct_Val (Left);
R1 := abs (T / Base);
R2 := T rem Base;
Length_R := 2;
else
R1 := abs (Udigits.Table (Uints.Table (Right).Loc));
R2 := Udigits.Table (Uints.Table (Right).Loc + 1);
Length_R := Uints.Table (Right).Length;
end if;
if Length_L = Length_R then
Right_Hat := R1 * Base + R2;
elsif Length_L = Length_R + Int_1 then
Right_Hat := R1;
else
Right_Hat := 0;
end if;
end;
end Most_Sig_2_Digits;
---------------
-- N_Digits --
---------------
-- Note: N_Digits returns 1 for No_Uint
function N_Digits (Input : Uint) return Int is
begin
if Direct (Input) then
if Direct_Val (Input) >= Base then
return 2;
else
return 1;
end if;
else
return Uints.Table (Input).Length;
end if;
end N_Digits;
--------------
-- Num_Bits --
--------------
function Num_Bits (Input : Uint) return Nat is
Bits : Nat;
Num : Nat;
begin
if UI_Is_In_Int_Range (Input) then
Num := abs (UI_To_Int (Input));
Bits := 0;
else
Bits := Base_Bits * (Uints.Table (Input).Length - 1);
Num := abs (Udigits.Table (Uints.Table (Input).Loc));
end if;
while Types.">" (Num, 0) loop
Num := Num / 2;
Bits := Bits + 1;
end loop;
return Bits;
end Num_Bits;
---------
-- pid --
---------
procedure pid (Input : Uint) is
begin
UI_Write (Input, Decimal);
Write_Eol;
end pid;
---------
-- pih --
---------
procedure pih (Input : Uint) is
begin
UI_Write (Input, Hex);
Write_Eol;
end pih;
-------------
-- Release --
-------------
procedure Release (M : Save_Mark) is
begin
Uints.Set_Last (Uint'Max (M.Save_Uint, Uints_Min));
Udigits.Set_Last (Int'Max (M.Save_Udigit, Udigits_Min));
end Release;
----------------------
-- Release_And_Save --
----------------------
procedure Release_And_Save (M : Save_Mark; UI : in out Uint) is
begin
if Direct (UI) then
Release (M);
else
declare
UE_Len : constant Pos := Uints.Table (UI).Length;
UE_Loc : constant Int := Uints.Table (UI).Loc;
UD : constant Udigits.Table_Type (1 .. UE_Len) :=
Udigits.Table (UE_Loc .. UE_Loc + UE_Len - 1);
begin
Release (M);
Uints.Increment_Last;
UI := Uints.Last;
Uints.Table (UI) := (UE_Len, Udigits.Last + 1);
for J in 1 .. UE_Len loop
Udigits.Increment_Last;
Udigits.Table (Udigits.Last) := UD (J);
end loop;
end;
end if;
end Release_And_Save;
procedure Release_And_Save (M : Save_Mark; UI1, UI2 : in out Uint) is
begin
if Direct (UI1) then
Release_And_Save (M, UI2);
elsif Direct (UI2) then
Release_And_Save (M, UI1);
else
declare
UE1_Len : constant Pos := Uints.Table (UI1).Length;
UE1_Loc : constant Int := Uints.Table (UI1).Loc;
UD1 : constant Udigits.Table_Type (1 .. UE1_Len) :=
Udigits.Table (UE1_Loc .. UE1_Loc + UE1_Len - 1);
UE2_Len : constant Pos := Uints.Table (UI2).Length;
UE2_Loc : constant Int := Uints.Table (UI2).Loc;
UD2 : constant Udigits.Table_Type (1 .. UE2_Len) :=
Udigits.Table (UE2_Loc .. UE2_Loc + UE2_Len - 1);
begin
Release (M);
Uints.Increment_Last;
UI1 := Uints.Last;
Uints.Table (UI1) := (UE1_Len, Udigits.Last + 1);
for J in 1 .. UE1_Len loop
Udigits.Increment_Last;
Udigits.Table (Udigits.Last) := UD1 (J);
end loop;
Uints.Increment_Last;
UI2 := Uints.Last;
Uints.Table (UI2) := (UE2_Len, Udigits.Last + 1);
for J in 1 .. UE2_Len loop
Udigits.Increment_Last;
Udigits.Table (Udigits.Last) := UD2 (J);
end loop;
end;
end if;
end Release_And_Save;
----------------
-- Sum_Digits --
----------------
-- This is done in one pass
-- Mathematically: assume base congruent to 1 and compute an equivelent
-- integer to Left.
-- If Sign = -1 return the alternating sum of the "digits".
-- D1 - D2 + D3 - D4 + D5 . . .
-- (where D1 is Least Significant Digit)
-- Mathematically: assume base congruent to -1 and compute an equivelent
-- integer to Left.
-- This is used in Rem and Base is assumed to be 2 ** 15
-- Note: The next two functions are very similar, any style changes made
-- to one should be reflected in both. These would be simpler if we
-- worked base 2 ** 32.
function Sum_Digits (Left : Uint; Sign : Int) return Int is
begin
pragma Assert (Sign = Int_1 or Sign = Int (-1));
-- First try simple case;
if Direct (Left) then
declare
Tmp_Int : Int := Direct_Val (Left);
begin
if Tmp_Int >= Base then
Tmp_Int := (Tmp_Int / Base) +
Sign * (Tmp_Int rem Base);
-- Now Tmp_Int is in [-(Base - 1) .. 2 * (Base - 1)]
if Tmp_Int >= Base then
-- Sign must be 1.
Tmp_Int := (Tmp_Int / Base) + 1;
end if;
-- Now Tmp_Int is in [-(Base - 1) .. (Base - 1)]
end if;
return Tmp_Int;
end;
-- Otherwise full circuit is needed
else
declare
L_Length : constant Int := N_Digits (Left);
L_Vec : UI_Vector (1 .. L_Length);
Tmp_Int : Int;
Carry : Int;
Alt : Int;
begin
Init_Operand (Left, L_Vec);
L_Vec (1) := abs L_Vec (1);
Tmp_Int := 0;
Carry := 0;
Alt := 1;
for J in reverse 1 .. L_Length loop
Tmp_Int := Tmp_Int + Alt * (L_Vec (J) + Carry);
-- Tmp_Int is now between [-2 * Base + 1 .. 2 * Base - 1],
-- since old Tmp_Int is between [-(Base - 1) .. Base - 1]
-- and L_Vec is in [0 .. Base - 1] and Carry in [-1 .. 1]
if Tmp_Int >= Base then
Tmp_Int := Tmp_Int - Base;
Carry := 1;
elsif Tmp_Int <= -Base then
Tmp_Int := Tmp_Int + Base;
Carry := -1;
else
Carry := 0;
end if;
-- Tmp_Int is now between [-Base + 1 .. Base - 1]
Alt := Alt * Sign;
end loop;
Tmp_Int := Tmp_Int + Alt * Carry;
-- Tmp_Int is now between [-Base .. Base]
if Tmp_Int >= Base then
Tmp_Int := Tmp_Int - Base + Alt * Sign * 1;
elsif Tmp_Int <= -Base then
Tmp_Int := Tmp_Int + Base + Alt * Sign * (-1);
end if;
-- Now Tmp_Int is in [-(Base - 1) .. (Base - 1)]
return Tmp_Int;
end;
end if;
end Sum_Digits;
-----------------------
-- Sum_Double_Digits --
-----------------------
-- Note: This is used in Rem, Base is assumed to be 2 ** 15
function Sum_Double_Digits (Left : Uint; Sign : Int) return Int is
begin
-- First try simple case;
pragma Assert (Sign = Int_1 or Sign = Int (-1));
if Direct (Left) then
return Direct_Val (Left);
-- Otherwise full circuit is needed
else
declare
L_Length : constant Int := N_Digits (Left);
L_Vec : UI_Vector (1 .. L_Length);
Most_Sig_Int : Int;
Least_Sig_Int : Int;
Carry : Int;
J : Int;
Alt : Int;
begin
Init_Operand (Left, L_Vec);
L_Vec (1) := abs L_Vec (1);
Most_Sig_Int := 0;
Least_Sig_Int := 0;
Carry := 0;
Alt := 1;
J := L_Length;
while J > Int_1 loop
Least_Sig_Int := Least_Sig_Int + Alt * (L_Vec (J) + Carry);
-- Least is in [-2 Base + 1 .. 2 * Base - 1]
-- Since L_Vec in [0 .. Base - 1] and Carry in [-1 .. 1]
-- and old Least in [-Base + 1 .. Base - 1]
if Least_Sig_Int >= Base then
Least_Sig_Int := Least_Sig_Int - Base;
Carry := 1;
elsif Least_Sig_Int <= -Base then
Least_Sig_Int := Least_Sig_Int + Base;
Carry := -1;
else
Carry := 0;
end if;
-- Least is now in [-Base + 1 .. Base - 1]
Most_Sig_Int := Most_Sig_Int + Alt * (L_Vec (J - 1) + Carry);
-- Most is in [-2 Base + 1 .. 2 * Base - 1]
-- Since L_Vec in [0 .. Base - 1] and Carry in [-1 .. 1]
-- and old Most in [-Base + 1 .. Base - 1]
if Most_Sig_Int >= Base then
Most_Sig_Int := Most_Sig_Int - Base;
Carry := 1;
elsif Most_Sig_Int <= -Base then
Most_Sig_Int := Most_Sig_Int + Base;
Carry := -1;
else
Carry := 0;
end if;
-- Most is now in [-Base + 1 .. Base - 1]
J := J - 2;
Alt := Alt * Sign;
end loop;
if J = Int_1 then
Least_Sig_Int := Least_Sig_Int + Alt * (L_Vec (J) + Carry);
else
Least_Sig_Int := Least_Sig_Int + Alt * Carry;
end if;
if Least_Sig_Int >= Base then
Least_Sig_Int := Least_Sig_Int - Base;
Most_Sig_Int := Most_Sig_Int + Alt * 1;
elsif Least_Sig_Int <= -Base then
Least_Sig_Int := Least_Sig_Int + Base;
Most_Sig_Int := Most_Sig_Int + Alt * (-1);
end if;
if Most_Sig_Int >= Base then
Most_Sig_Int := Most_Sig_Int - Base;
Alt := Alt * Sign;
Least_Sig_Int :=
Least_Sig_Int + Alt * 1; -- cannot overflow again
elsif Most_Sig_Int <= -Base then
Most_Sig_Int := Most_Sig_Int + Base;
Alt := Alt * Sign;
Least_Sig_Int :=
Least_Sig_Int + Alt * (-1); -- cannot overflow again.
end if;
return Most_Sig_Int * Base + Least_Sig_Int;
end;
end if;
end Sum_Double_Digits;
---------------
-- Tree_Read --
---------------
procedure Tree_Read is
begin
Uints.Tree_Read;
Udigits.Tree_Read;
Tree_Read_Int (Int (Uint_Int_First));
Tree_Read_Int (Int (Uint_Int_Last));
Tree_Read_Int (UI_Power_2_Set);
Tree_Read_Int (UI_Power_10_Set);
Tree_Read_Int (Int (Uints_Min));
Tree_Read_Int (Udigits_Min);
for J in 0 .. UI_Power_2_Set loop
Tree_Read_Int (Int (UI_Power_2 (J)));
end loop;
for J in 0 .. UI_Power_10_Set loop
Tree_Read_Int (Int (UI_Power_10 (J)));
end loop;
end Tree_Read;
----------------
-- Tree_Write --
----------------
procedure Tree_Write is
begin
Uints.Tree_Write;
Udigits.Tree_Write;
Tree_Write_Int (Int (Uint_Int_First));
Tree_Write_Int (Int (Uint_Int_Last));
Tree_Write_Int (UI_Power_2_Set);
Tree_Write_Int (UI_Power_10_Set);
Tree_Write_Int (Int (Uints_Min));
Tree_Write_Int (Udigits_Min);
for J in 0 .. UI_Power_2_Set loop
Tree_Write_Int (Int (UI_Power_2 (J)));
end loop;
for J in 0 .. UI_Power_10_Set loop
Tree_Write_Int (Int (UI_Power_10 (J)));
end loop;
end Tree_Write;
-------------
-- UI_Abs --
-------------
function UI_Abs (Right : Uint) return Uint is
begin
if Right < Uint_0 then
return -Right;
else
return Right;
end if;
end UI_Abs;
-------------
-- UI_Add --
-------------
function UI_Add (Left : Int; Right : Uint) return Uint is
begin
return UI_Add (UI_From_Int (Left), Right);
end UI_Add;
function UI_Add (Left : Uint; Right : Int) return Uint is
begin
return UI_Add (Left, UI_From_Int (Right));
end UI_Add;
function UI_Add (Left : Uint; Right : Uint) return Uint is
begin
-- Simple cases of direct operands and addition of zero
if Direct (Left) then
if Direct (Right) then
return UI_From_Int (Direct_Val (Left) + Direct_Val (Right));
elsif Int (Left) = Int (Uint_0) then
return Right;
end if;
elsif Direct (Right) and then Int (Right) = Int (Uint_0) then
return Left;
end if;
-- Otherwise full circuit is needed
declare
L_Length : constant Int := N_Digits (Left);
R_Length : constant Int := N_Digits (Right);
L_Vec : UI_Vector (1 .. L_Length);
R_Vec : UI_Vector (1 .. R_Length);
Sum_Length : Int;
Tmp_Int : Int;
Carry : Int;
Borrow : Int;
X_Bigger : Boolean := False;
Y_Bigger : Boolean := False;
Result_Neg : Boolean := False;
begin
Init_Operand (Left, L_Vec);
Init_Operand (Right, R_Vec);
-- At least one of the two operands is in multi-digit form.
-- Calculate the number of digits sufficient to hold result.
if L_Length > R_Length then
Sum_Length := L_Length + 1;
X_Bigger := True;
else
Sum_Length := R_Length + 1;
if R_Length > L_Length then Y_Bigger := True; end if;
end if;
-- Make copies of the absolute values of L_Vec and R_Vec into
-- X and Y both with lengths equal to the maximum possibly
-- needed. This makes looping over the digits much simpler.
declare
X : UI_Vector (1 .. Sum_Length);
Y : UI_Vector (1 .. Sum_Length);
Tmp_UI : UI_Vector (1 .. Sum_Length);
begin
for J in 1 .. Sum_Length - L_Length loop
X (J) := 0;
end loop;
X (Sum_Length - L_Length + 1) := abs L_Vec (1);
for J in 2 .. L_Length loop
X (J + (Sum_Length - L_Length)) := L_Vec (J);
end loop;
for J in 1 .. Sum_Length - R_Length loop
Y (J) := 0;
end loop;
Y (Sum_Length - R_Length + 1) := abs R_Vec (1);
for J in 2 .. R_Length loop
Y (J + (Sum_Length - R_Length)) := R_Vec (J);
end loop;
if (L_Vec (1) < Int_0) = (R_Vec (1) < Int_0) then
-- Same sign so just add
Carry := 0;
for J in reverse 1 .. Sum_Length loop
Tmp_Int := X (J) + Y (J) + Carry;
if Tmp_Int >= Base then
Tmp_Int := Tmp_Int - Base;
Carry := 1;
else
Carry := 0;
end if;
X (J) := Tmp_Int;
end loop;
return Vector_To_Uint (X, L_Vec (1) < Int_0);
else
-- Find which one has bigger magnitude
if not (X_Bigger or Y_Bigger) then
for J in L_Vec'Range loop
if abs L_Vec (J) > abs R_Vec (J) then
X_Bigger := True;
exit;
elsif abs R_Vec (J) > abs L_Vec (J) then
Y_Bigger := True;
exit;
end if;
end loop;
end if;
-- If they have identical magnitude, just return 0, else
-- swap if necessary so that X had the bigger magnitude.
-- Determine if result is negative at this time.
Result_Neg := False;
if not (X_Bigger or Y_Bigger) then
return Uint_0;
elsif Y_Bigger then
if R_Vec (1) < Int_0 then
Result_Neg := True;
end if;
Tmp_UI := X;
X := Y;
Y := Tmp_UI;
else
if L_Vec (1) < Int_0 then
Result_Neg := True;
end if;
end if;
-- Subtract Y from the bigger X
Borrow := 0;
for J in reverse 1 .. Sum_Length loop
Tmp_Int := X (J) - Y (J) + Borrow;
if Tmp_Int < Int_0 then
Tmp_Int := Tmp_Int + Base;
Borrow := -1;
else
Borrow := 0;
end if;
X (J) := Tmp_Int;
end loop;
return Vector_To_Uint (X, Result_Neg);
end if;
end;
end;
end UI_Add;
--------------------------
-- UI_Decimal_Digits_Hi --
--------------------------
function UI_Decimal_Digits_Hi (U : Uint) return Nat is
begin
-- The maximum value of a "digit" is 32767, which is 5 decimal
-- digits, so an N_Digit number could take up to 5 times this
-- number of digits. This is certainly too high for large
-- numbers but it is not worth worrying about.
return 5 * N_Digits (U);
end UI_Decimal_Digits_Hi;
--------------------------
-- UI_Decimal_Digits_Lo --
--------------------------
function UI_Decimal_Digits_Lo (U : Uint) return Nat is
begin
-- The maximum value of a "digit" is 32767, which is more than four
-- decimal digits, but not a full five digits. The easily computed
-- minimum number of decimal digits is thus 1 + 4 * the number of
-- digits. This is certainly too low for large numbers but it is
-- not worth worrying about.
return 1 + 4 * (N_Digits (U) - 1);
end UI_Decimal_Digits_Lo;
------------
-- UI_Div --
------------
function UI_Div (Left : Int; Right : Uint) return Uint is
begin
return UI_Div (UI_From_Int (Left), Right);
end UI_Div;
function UI_Div (Left : Uint; Right : Int) return Uint is
begin
return UI_Div (Left, UI_From_Int (Right));
end UI_Div;
function UI_Div (Left, Right : Uint) return Uint is
begin
pragma Assert (Right /= Uint_0);
-- Cases where both operands are represented directly
if Direct (Left) and then Direct (Right) then
return UI_From_Int (Direct_Val (Left) / Direct_Val (Right));
end if;
declare
L_Length : constant Int := N_Digits (Left);
R_Length : constant Int := N_Digits (Right);
Q_Length : constant Int := L_Length - R_Length + 1;
L_Vec : UI_Vector (1 .. L_Length);
R_Vec : UI_Vector (1 .. R_Length);
D : Int;
Remainder : Int;
Tmp_Divisor : Int;
Carry : Int;
Tmp_Int : Int;
Tmp_Dig : Int;
begin
-- Result is zero if left operand is shorter than right
if L_Length < R_Length then
return Uint_0;
end if;
Init_Operand (Left, L_Vec);
Init_Operand (Right, R_Vec);
-- Case of right operand is single digit. Here we can simply divide
-- each digit of the left operand by the divisor, from most to least
-- significant, carrying the remainder to the next digit (just like
-- ordinary long division by hand).
if R_Length = Int_1 then
Remainder := 0;
Tmp_Divisor := abs R_Vec (1);
declare
Quotient : UI_Vector (1 .. L_Length);
begin
for J in L_Vec'Range loop
Tmp_Int := Remainder * Base + abs L_Vec (J);
Quotient (J) := Tmp_Int / Tmp_Divisor;
Remainder := Tmp_Int rem Tmp_Divisor;
end loop;
return
Vector_To_Uint
(Quotient, (L_Vec (1) < Int_0 xor R_Vec (1) < Int_0));
end;
end if;
-- The possible simple cases have been exhausted. Now turn to the
-- algorithm D from the section of Knuth mentioned at the top of
-- this package.
Algorithm_D : declare
Dividend : UI_Vector (1 .. L_Length + 1);
Divisor : UI_Vector (1 .. R_Length);
Quotient : UI_Vector (1 .. Q_Length);
Divisor_Dig1 : Int;
Divisor_Dig2 : Int;
Q_Guess : Int;
begin
-- [ NORMALIZE ] (step D1 in the algorithm). First calculate the
-- scale d, and then multiply Left and Right (u and v in the book)
-- by d to get the dividend and divisor to work with.
D := Base / (abs R_Vec (1) + 1);
Dividend (1) := 0;
Dividend (2) := abs L_Vec (1);
for J in 3 .. L_Length + Int_1 loop
Dividend (J) := L_Vec (J - 1);
end loop;
Divisor (1) := abs R_Vec (1);
for J in Int_2 .. R_Length loop
Divisor (J) := R_Vec (J);
end loop;
if D > Int_1 then
-- Multiply Dividend by D
Carry := 0;
for J in reverse Dividend'Range loop
Tmp_Int := Dividend (J) * D + Carry;
Dividend (J) := Tmp_Int rem Base;
Carry := Tmp_Int / Base;
end loop;
-- Multiply Divisor by d.
Carry := 0;
for J in reverse Divisor'Range loop
Tmp_Int := Divisor (J) * D + Carry;
Divisor (J) := Tmp_Int rem Base;
Carry := Tmp_Int / Base;
end loop;
end if;
-- Main loop of long division algorithm.
Divisor_Dig1 := Divisor (1);
Divisor_Dig2 := Divisor (2);
for J in Quotient'Range loop
-- [ CALCULATE Q (hat) ] (step D3 in the algorithm).
Tmp_Int := Dividend (J) * Base + Dividend (J + 1);
-- Initial guess
if Dividend (J) = Divisor_Dig1 then
Q_Guess := Base - 1;
else
Q_Guess := Tmp_Int / Divisor_Dig1;
end if;
-- Refine the guess
while Divisor_Dig2 * Q_Guess >
(Tmp_Int - Q_Guess * Divisor_Dig1) * Base +
Dividend (J + 2)
loop
Q_Guess := Q_Guess - 1;
end loop;
-- [ MULTIPLY & SUBTRACT] (step D4). Q_Guess * Divisor is
-- subtracted from the remaining dividend.
Carry := 0;
for K in reverse Divisor'Range loop
Tmp_Int := Dividend (J + K) - Q_Guess * Divisor (K) + Carry;
Tmp_Dig := Tmp_Int rem Base;
Carry := Tmp_Int / Base;
if Tmp_Dig < Int_0 then
Tmp_Dig := Tmp_Dig + Base;
Carry := Carry - 1;
end if;
Dividend (J + K) := Tmp_Dig;
end loop;
Dividend (J) := Dividend (J) + Carry;
-- [ TEST REMAINDER ] & [ ADD BACK ] (steps D5 and D6)
-- Here there is a slight difference from the book: the last
-- carry is always added in above and below (cancelling each
-- other). In fact the dividend going negative is used as
-- the test.
-- If the Dividend went negative, then Q_Guess was off by
-- one, so it is decremented, and the divisor is added back
-- into the relevant portion of the dividend.
if Dividend (J) < Int_0 then
Q_Guess := Q_Guess - 1;
Carry := 0;
for K in reverse Divisor'Range loop
Tmp_Int := Dividend (J + K) + Divisor (K) + Carry;
if Tmp_Int >= Base then
Tmp_Int := Tmp_Int - Base;
Carry := 1;
else
Carry := 0;
end if;
Dividend (J + K) := Tmp_Int;
end loop;
Dividend (J) := Dividend (J) + Carry;
end if;
-- Finally we can get the next quotient digit
Quotient (J) := Q_Guess;
end loop;
return Vector_To_Uint
(Quotient, (L_Vec (1) < Int_0 xor R_Vec (1) < Int_0));
end Algorithm_D;
end;
end UI_Div;
------------
-- UI_Eq --
------------
function UI_Eq (Left : Int; Right : Uint) return Boolean is
begin
return not UI_Ne (UI_From_Int (Left), Right);
end UI_Eq;
function UI_Eq (Left : Uint; Right : Int) return Boolean is
begin
return not UI_Ne (Left, UI_From_Int (Right));
end UI_Eq;
function UI_Eq (Left : Uint; Right : Uint) return Boolean is
begin
return not UI_Ne (Left, Right);
end UI_Eq;
--------------
-- UI_Expon --
--------------
function UI_Expon (Left : Int; Right : Uint) return Uint is
begin
return UI_Expon (UI_From_Int (Left), Right);
end UI_Expon;
function UI_Expon (Left : Uint; Right : Int) return Uint is
begin
return UI_Expon (Left, UI_From_Int (Right));
end UI_Expon;
function UI_Expon (Left : Int; Right : Int) return Uint is
begin
return UI_Expon (UI_From_Int (Left), UI_From_Int (Right));
end UI_Expon;
function UI_Expon (Left : Uint; Right : Uint) return Uint is
begin
pragma Assert (Right >= Uint_0);
-- Any value raised to power of 0 is 1
if Right = Uint_0 then
return Uint_1;
-- 0 to any positive power is 0.
elsif Left = Uint_0 then
return Uint_0;
-- 1 to any power is 1
elsif Left = Uint_1 then
return Uint_1;
-- Any value raised to power of 1 is that value
elsif Right = Uint_1 then
return Left;
-- Cases which can be done by table lookup
elsif Right <= Uint_64 then
-- 2 ** N for N in 2 .. 64
if Left = Uint_2 then
declare
Right_Int : constant Int := Direct_Val (Right);
begin
if Right_Int > UI_Power_2_Set then
for J in UI_Power_2_Set + Int_1 .. Right_Int loop
UI_Power_2 (J) := UI_Power_2 (J - Int_1) * Int_2;
Uints_Min := Uints.Last;
Udigits_Min := Udigits.Last;
end loop;
UI_Power_2_Set := Right_Int;
end if;
return UI_Power_2 (Right_Int);
end;
-- 10 ** N for N in 2 .. 64
elsif Left = Uint_10 then
declare
Right_Int : constant Int := Direct_Val (Right);
begin
if Right_Int > UI_Power_10_Set then
for J in UI_Power_10_Set + Int_1 .. Right_Int loop
UI_Power_10 (J) := UI_Power_10 (J - Int_1) * Int (10);
Uints_Min := Uints.Last;
Udigits_Min := Udigits.Last;
end loop;
UI_Power_10_Set := Right_Int;
end if;
return UI_Power_10 (Right_Int);
end;
end if;
end if;
-- If we fall through, then we have the general case (see Knuth 4.6.3)
declare
N : Uint := Right;
Squares : Uint := Left;
Result : Uint := Uint_1;
M : constant Uintp.Save_Mark := Uintp.Mark;
begin
loop
if (Least_Sig_Digit (N) mod Int_2) = Int_1 then
Result := Result * Squares;
end if;
N := N / Uint_2;
exit when N = Uint_0;
Squares := Squares * Squares;
end loop;
Uintp.Release_And_Save (M, Result);
return Result;
end;
end UI_Expon;
------------------
-- UI_From_Dint --
------------------
function UI_From_Dint (Input : Dint) return Uint is
begin
if Dint (Min_Direct) <= Input and then Input <= Dint (Max_Direct) then
return Uint (Dint (Uint_Direct_Bias) + Input);
-- For values of larger magnitude, compute digits into a vector and
-- call Vector_To_Uint.
else
declare
Max_For_Dint : constant := 5;
-- Base is defined so that 5 Uint digits is sufficient
-- to hold the largest possible Dint value.
V : UI_Vector (1 .. Max_For_Dint);
Temp_Integer : Dint;
begin
for J in V'Range loop
V (J) := 0;
end loop;
Temp_Integer := Input;
for J in reverse V'Range loop
V (J) := Int (abs (Temp_Integer rem Dint (Base)));
Temp_Integer := Temp_Integer / Dint (Base);
end loop;
return Vector_To_Uint (V, Input < Dint'(0));
end;
end if;
end UI_From_Dint;
-----------------
-- UI_From_Int --
-----------------
function UI_From_Int (Input : Int) return Uint is
U : Uint;
begin
if Min_Direct <= Input and then Input <= Max_Direct then
return Uint (Int (Uint_Direct_Bias) + Input);
end if;
-- If already in the hash table, return entry
U := UI_Ints.Get (Input);
if U /= No_Uint then
return U;
end if;
-- For values of larger magnitude, compute digits into a vector and
-- call Vector_To_Uint.
declare
Max_For_Int : constant := 3;
-- Base is defined so that 3 Uint digits is sufficient
-- to hold the largest possible Int value.
V : UI_Vector (1 .. Max_For_Int);
Temp_Integer : Int;
begin
for J in V'Range loop
V (J) := 0;
end loop;
Temp_Integer := Input;
for J in reverse V'Range loop
V (J) := abs (Temp_Integer rem Base);
Temp_Integer := Temp_Integer / Base;
end loop;
U := Vector_To_Uint (V, Input < Int_0);
UI_Ints.Set (Input, U);
Uints_Min := Uints.Last;
Udigits_Min := Udigits.Last;
return U;
end;
end UI_From_Int;
------------
-- UI_GCD --
------------
-- Lehmer's algorithm for GCD.
-- The idea is to avoid using multiple precision arithmetic wherever
-- possible, substituting Int arithmetic instead. See Knuth volume II,
-- Algorithm L (page 329).
-- We use the same notation as Knuth (U_Hat standing for the obvious!)
function UI_GCD (Uin, Vin : Uint) return Uint is
U, V : Uint;
-- Copies of Uin and Vin
U_Hat, V_Hat : Int;
-- The most Significant digits of U,V
A, B, C, D, T, Q, Den1, Den2 : Int;
Tmp_UI : Uint;
Marks : constant Uintp.Save_Mark := Uintp.Mark;
Iterations : Integer := 0;
begin
pragma Assert (Uin >= Vin);
pragma Assert (Vin >= Uint_0);
U := Uin;
V := Vin;
loop
Iterations := Iterations + 1;
if Direct (V) then
if V = Uint_0 then
return U;
else
return
UI_From_Int (GCD (Direct_Val (V), UI_To_Int (U rem V)));
end if;
end if;
Most_Sig_2_Digits (U, V, U_Hat, V_Hat);
A := 1;
B := 0;
C := 0;
D := 1;
loop
-- We might overflow and get division by zero here. This just
-- means we can not take the single precision step
Den1 := V_Hat + C;
Den2 := V_Hat + D;
exit when (Den1 * Den2) = Int_0;
-- Compute Q, the trial quotient
Q := (U_Hat + A) / Den1;
exit when Q /= ((U_Hat + B) / Den2);
-- A single precision step Euclid step will give same answer as
-- a multiprecision one.
T := A - (Q * C);
A := C;
C := T;
T := B - (Q * D);
B := D;
D := T;
T := U_Hat - (Q * V_Hat);
U_Hat := V_Hat;
V_Hat := T;
end loop;
-- Take a multiprecision Euclid step
if B = Int_0 then
-- No single precision steps take a regular Euclid step.
Tmp_UI := U rem V;
U := V;
V := Tmp_UI;
else
-- Use prior single precision steps to compute this Euclid step.
-- Fixed bug 1415-008 spends 80% of its time working on this
-- step. Perhaps we need a special case Int / Uint dot
-- product to speed things up. ???
-- Alternatively we could increase the single precision
-- iterations to handle Uint's of some small size ( <5
-- digits?). Then we would have more iterations on small Uint.
-- Fixed bug 1415-008 only gets 5 (on average) single
-- precision iterations per large iteration. ???
Tmp_UI := (UI_From_Int (A) * U) + (UI_From_Int (B) * V);
V := (UI_From_Int (C) * U) + (UI_From_Int (D) * V);
U := Tmp_UI;
end if;
-- If the operands are very different in magnitude, the loop
-- will generate large amounts of short-lived data, which it is
-- worth removing periodically.
if Iterations > 100 then
Release_And_Save (Marks, U, V);
Iterations := 0;
end if;
end loop;
end UI_GCD;
------------
-- UI_Ge --
------------
function UI_Ge (Left : Int; Right : Uint) return Boolean is
begin
return not UI_Lt (UI_From_Int (Left), Right);
end UI_Ge;
function UI_Ge (Left : Uint; Right : Int) return Boolean is
begin
return not UI_Lt (Left, UI_From_Int (Right));
end UI_Ge;
function UI_Ge (Left : Uint; Right : Uint) return Boolean is
begin
return not UI_Lt (Left, Right);
end UI_Ge;
------------
-- UI_Gt --
------------
function UI_Gt (Left : Int; Right : Uint) return Boolean is
begin
return UI_Lt (Right, UI_From_Int (Left));
end UI_Gt;
function UI_Gt (Left : Uint; Right : Int) return Boolean is
begin
return UI_Lt (UI_From_Int (Right), Left);
end UI_Gt;
function UI_Gt (Left : Uint; Right : Uint) return Boolean is
begin
return UI_Lt (Right, Left);
end UI_Gt;
---------------
-- UI_Image --
---------------
procedure UI_Image (Input : Uint; Format : UI_Format := Auto) is
begin
Image_Out (Input, True, Format);
end UI_Image;
-------------------------
-- UI_Is_In_Int_Range --
-------------------------
function UI_Is_In_Int_Range (Input : Uint) return Boolean is
begin
-- Make sure we don't get called before Initialize
pragma Assert (Uint_Int_First /= Uint_0);
if Direct (Input) then
return True;
else
return Input >= Uint_Int_First
and then Input <= Uint_Int_Last;
end if;
end UI_Is_In_Int_Range;
------------
-- UI_Le --
------------
function UI_Le (Left : Int; Right : Uint) return Boolean is
begin
return not UI_Lt (Right, UI_From_Int (Left));
end UI_Le;
function UI_Le (Left : Uint; Right : Int) return Boolean is
begin
return not UI_Lt (UI_From_Int (Right), Left);
end UI_Le;
function UI_Le (Left : Uint; Right : Uint) return Boolean is
begin
return not UI_Lt (Right, Left);
end UI_Le;
------------
-- UI_Lt --
------------
function UI_Lt (Left : Int; Right : Uint) return Boolean is
begin
return UI_Lt (UI_From_Int (Left), Right);
end UI_Lt;
function UI_Lt (Left : Uint; Right : Int) return Boolean is
begin
return UI_Lt (Left, UI_From_Int (Right));
end UI_Lt;
function UI_Lt (Left : Uint; Right : Uint) return Boolean is
begin
-- Quick processing for identical arguments
if Int (Left) = Int (Right) then
return False;
-- Quick processing for both arguments directly represented
elsif Direct (Left) and then Direct (Right) then
return Int (Left) < Int (Right);
-- At least one argument is more than one digit long
else
declare
L_Length : constant Int := N_Digits (Left);
R_Length : constant Int := N_Digits (Right);
L_Vec : UI_Vector (1 .. L_Length);
R_Vec : UI_Vector (1 .. R_Length);
begin
Init_Operand (Left, L_Vec);
Init_Operand (Right, R_Vec);
if L_Vec (1) < Int_0 then
-- First argument negative, second argument non-negative
if R_Vec (1) >= Int_0 then
return True;
-- Both arguments negative
else
if L_Length /= R_Length then
return L_Length > R_Length;
elsif L_Vec (1) /= R_Vec (1) then
return L_Vec (1) < R_Vec (1);
else
for J in 2 .. L_Vec'Last loop
if L_Vec (J) /= R_Vec (J) then
return L_Vec (J) > R_Vec (J);
end if;
end loop;
return False;
end if;
end if;
else
-- First argument non-negative, second argument negative
if R_Vec (1) < Int_0 then
return False;
-- Both arguments non-negative
else
if L_Length /= R_Length then
return L_Length < R_Length;
else
for J in L_Vec'Range loop
if L_Vec (J) /= R_Vec (J) then
return L_Vec (J) < R_Vec (J);
end if;
end loop;
return False;
end if;
end if;
end if;
end;
end if;
end UI_Lt;
------------
-- UI_Max --
------------
function UI_Max (Left : Int; Right : Uint) return Uint is
begin
return UI_Max (UI_From_Int (Left), Right);
end UI_Max;
function UI_Max (Left : Uint; Right : Int) return Uint is
begin
return UI_Max (Left, UI_From_Int (Right));
end UI_Max;
function UI_Max (Left : Uint; Right : Uint) return Uint is
begin
if Left >= Right then
return Left;
else
return Right;
end if;
end UI_Max;
------------
-- UI_Min --
------------
function UI_Min (Left : Int; Right : Uint) return Uint is
begin
return UI_Min (UI_From_Int (Left), Right);
end UI_Min;
function UI_Min (Left : Uint; Right : Int) return Uint is
begin
return UI_Min (Left, UI_From_Int (Right));
end UI_Min;
function UI_Min (Left : Uint; Right : Uint) return Uint is
begin
if Left <= Right then
return Left;
else
return Right;
end if;
end UI_Min;
-------------
-- UI_Mod --
-------------
function UI_Mod (Left : Int; Right : Uint) return Uint is
begin
return UI_Mod (UI_From_Int (Left), Right);
end UI_Mod;
function UI_Mod (Left : Uint; Right : Int) return Uint is
begin
return UI_Mod (Left, UI_From_Int (Right));
end UI_Mod;
function UI_Mod (Left : Uint; Right : Uint) return Uint is
Urem : constant Uint := Left rem Right;
begin
if (Left < Uint_0) = (Right < Uint_0)
or else Urem = Uint_0
then
return Urem;
else
return Right + Urem;
end if;
end UI_Mod;
------------
-- UI_Mul --
------------
function UI_Mul (Left : Int; Right : Uint) return Uint is
begin
return UI_Mul (UI_From_Int (Left), Right);
end UI_Mul;
function UI_Mul (Left : Uint; Right : Int) return Uint is
begin
return UI_Mul (Left, UI_From_Int (Right));
end UI_Mul;
function UI_Mul (Left : Uint; Right : Uint) return Uint is
begin
-- Simple case of single length operands
if Direct (Left) and then Direct (Right) then
return
UI_From_Dint
(Dint (Direct_Val (Left)) * Dint (Direct_Val (Right)));
end if;
-- Otherwise we have the general case (Algorithm M in Knuth)
declare
L_Length : constant Int := N_Digits (Left);
R_Length : constant Int := N_Digits (Right);
L_Vec : UI_Vector (1 .. L_Length);
R_Vec : UI_Vector (1 .. R_Length);
Neg : Boolean;
begin
Init_Operand (Left, L_Vec);
Init_Operand (Right, R_Vec);
Neg := (L_Vec (1) < Int_0) xor (R_Vec (1) < Int_0);
L_Vec (1) := abs (L_Vec (1));
R_Vec (1) := abs (R_Vec (1));
Algorithm_M : declare
Product : UI_Vector (1 .. L_Length + R_Length);
Tmp_Sum : Int;
Carry : Int;
begin
for J in Product'Range loop
Product (J) := 0;
end loop;
for J in reverse R_Vec'Range loop
Carry := 0;
for K in reverse L_Vec'Range loop
Tmp_Sum :=
L_Vec (K) * R_Vec (J) + Product (J + K) + Carry;
Product (J + K) := Tmp_Sum rem Base;
Carry := Tmp_Sum / Base;
end loop;
Product (J) := Carry;
end loop;
return Vector_To_Uint (Product, Neg);
end Algorithm_M;
end;
end UI_Mul;
------------
-- UI_Ne --
------------
function UI_Ne (Left : Int; Right : Uint) return Boolean is
begin
return UI_Ne (UI_From_Int (Left), Right);
end UI_Ne;
function UI_Ne (Left : Uint; Right : Int) return Boolean is
begin
return UI_Ne (Left, UI_From_Int (Right));
end UI_Ne;
function UI_Ne (Left : Uint; Right : Uint) return Boolean is
begin
-- Quick processing for identical arguments. Note that this takes
-- care of the case of two No_Uint arguments.
if Int (Left) = Int (Right) then
return False;
end if;
-- See if left operand directly represented
if Direct (Left) then
-- If right operand directly represented then compare
if Direct (Right) then
return Int (Left) /= Int (Right);
-- Left operand directly represented, right not, must be unequal
else
return True;
end if;
-- Right operand directly represented, left not, must be unequal
elsif Direct (Right) then
return True;
end if;
-- Otherwise both multi-word, do comparison
declare
Size : constant Int := N_Digits (Left);
Left_Loc : Int;
Right_Loc : Int;
begin
if Size /= N_Digits (Right) then
return True;
end if;
Left_Loc := Uints.Table (Left).Loc;
Right_Loc := Uints.Table (Right).Loc;
for J in Int_0 .. Size - Int_1 loop
if Udigits.Table (Left_Loc + J) /=
Udigits.Table (Right_Loc + J)
then
return True;
end if;
end loop;
return False;
end;
end UI_Ne;
----------------
-- UI_Negate --
----------------
function UI_Negate (Right : Uint) return Uint is
begin
-- Case where input is directly represented. Note that since the
-- range of Direct values is non-symmetrical, the result may not
-- be directly represented, this is taken care of in UI_From_Int.
if Direct (Right) then
return UI_From_Int (-Direct_Val (Right));
-- Full processing for multi-digit case. Note that we cannot just
-- copy the value to the end of the table negating the first digit,
-- since the range of Direct values is non-symmetrical, so we can
-- have a negative value that is not Direct whose negation can be
-- represented directly.
else
declare
R_Length : constant Int := N_Digits (Right);
R_Vec : UI_Vector (1 .. R_Length);
Neg : Boolean;
begin
Init_Operand (Right, R_Vec);
Neg := R_Vec (1) > Int_0;
R_Vec (1) := abs R_Vec (1);
return Vector_To_Uint (R_Vec, Neg);
end;
end if;
end UI_Negate;
-------------
-- UI_Rem --
-------------
function UI_Rem (Left : Int; Right : Uint) return Uint is
begin
return UI_Rem (UI_From_Int (Left), Right);
end UI_Rem;
function UI_Rem (Left : Uint; Right : Int) return Uint is
begin
return UI_Rem (Left, UI_From_Int (Right));
end UI_Rem;
function UI_Rem (Left, Right : Uint) return Uint is
Sign : Int;
Tmp : Int;
subtype Int1_12 is Integer range 1 .. 12;
begin
pragma Assert (Right /= Uint_0);
if Direct (Right) then
if Direct (Left) then
return UI_From_Int (Direct_Val (Left) rem Direct_Val (Right));
else
-- Special cases when Right is less than 13 and Left is larger
-- larger than one digit. All of these algorithms depend on the
-- base being 2 ** 15 We work with Abs (Left) and Abs(Right)
-- then multiply result by Sign (Left)
if (Right <= Uint_12) and then (Right >= Uint_Minus_12) then
if Left < Uint_0 then
Sign := -1;
else
Sign := 1;
end if;
-- All cases are listed, grouped by mathematical method
-- It is not inefficient to do have this case list out
-- of order since GCC sorts the cases we list.
case Int1_12 (abs (Direct_Val (Right))) is
when 1 =>
return Uint_0;
-- Powers of two are simple AND's with LS Left Digit
-- GCC will recognise these constants as powers of 2
-- and replace the rem with simpler operations where
-- possible.
-- Least_Sig_Digit might return Negative numbers.
when 2 =>
return UI_From_Int (
Sign * (Least_Sig_Digit (Left) mod 2));
when 4 =>
return UI_From_Int (
Sign * (Least_Sig_Digit (Left) mod 4));
when 8 =>
return UI_From_Int (
Sign * (Least_Sig_Digit (Left) mod 8));
-- Some number theoretical tricks:
-- If B Rem Right = 1 then
-- Left Rem Right = Sum_Of_Digits_Base_B (Left) Rem Right
-- Note: 2^32 mod 3 = 1
when 3 =>
return UI_From_Int (
Sign * (Sum_Double_Digits (Left, 1) rem Int (3)));
-- Note: 2^15 mod 7 = 1
when 7 =>
return UI_From_Int (
Sign * (Sum_Digits (Left, 1) rem Int (7)));
-- Note: 2^32 mod 5 = -1
-- Alternating sums might be negative, but rem is always
-- positive hence we must use mod here.
when 5 =>
Tmp := Sum_Double_Digits (Left, -1) mod Int (5);
return UI_From_Int (Sign * Tmp);
-- Note: 2^15 mod 9 = -1
-- Alternating sums might be negative, but rem is always
-- positive hence we must use mod here.
when 9 =>
Tmp := Sum_Digits (Left, -1) mod Int (9);
return UI_From_Int (Sign * Tmp);
-- Note: 2^15 mod 11 = -1
-- Alternating sums might be negative, but rem is always
-- positive hence we must use mod here.
when 11 =>
Tmp := Sum_Digits (Left, -1) mod Int (11);
return UI_From_Int (Sign * Tmp);
-- Now resort to Chinese Remainder theorem
-- to reduce 6, 10, 12 to previous special cases
-- There is no reason we could not add more cases
-- like these if it proves useful.
-- Perhaps we should go up to 16, however
-- I have no "trick" for 13.
-- To find u mod m we:
-- Pick m1, m2 S.T.
-- GCD(m1, m2) = 1 AND m = (m1 * m2).
-- Next we pick (Basis) M1, M2 small S.T.
-- (M1 mod m1) = (M2 mod m2) = 1 AND
-- (M1 mod m2) = (M2 mod m1) = 0
-- So u mod m = (u1 * M1 + u2 * M2) mod m
-- Where u1 = (u mod m1) AND u2 = (u mod m2);
-- Under typical circumstances the last mod m
-- can be done with a (possible) single subtraction.
-- m1 = 2; m2 = 3; M1 = 3; M2 = 4;
when 6 =>
Tmp := 3 * (Least_Sig_Digit (Left) rem 2) +
4 * (Sum_Double_Digits (Left, 1) rem 3);
return UI_From_Int (Sign * (Tmp rem 6));
-- m1 = 2; m2 = 5; M1 = 5; M2 = 6;
when 10 =>
Tmp := 5 * (Least_Sig_Digit (Left) rem 2) +
6 * (Sum_Double_Digits (Left, -1) mod 5);
return UI_From_Int (Sign * (Tmp rem 10));
-- m1 = 3; m2 = 4; M1 = 4; M2 = 9;
when 12 =>
Tmp := 4 * (Sum_Double_Digits (Left, 1) rem 3) +
9 * (Least_Sig_Digit (Left) rem 4);
return UI_From_Int (Sign * (Tmp rem 12));
end case;
end if;
-- Else fall through to general case.
-- ???This needs to be improved. We have the Rem when we do the
-- Div. Div throws it away!
-- The special case Length (Left) = Length(right) = 1 in Div
-- looks slow. It uses UI_To_Int when Int should suffice. ???
end if;
end if;
return Left - (Left / Right) * Right;
end UI_Rem;
------------
-- UI_Sub --
------------
function UI_Sub (Left : Int; Right : Uint) return Uint is
begin
return UI_Add (Left, -Right);
end UI_Sub;
function UI_Sub (Left : Uint; Right : Int) return Uint is
begin
return UI_Add (Left, -Right);
end UI_Sub;
function UI_Sub (Left : Uint; Right : Uint) return Uint is
begin
if Direct (Left) and then Direct (Right) then
return UI_From_Int (Direct_Val (Left) - Direct_Val (Right));
else
return UI_Add (Left, -Right);
end if;
end UI_Sub;
----------------
-- UI_To_Int --
----------------
function UI_To_Int (Input : Uint) return Int is
begin
if Direct (Input) then
return Direct_Val (Input);
-- Case of input is more than one digit
else
declare
In_Length : constant Int := N_Digits (Input);
In_Vec : UI_Vector (1 .. In_Length);
Ret_Int : Int;
begin
-- Uints of more than one digit could be outside the range for
-- Ints. Caller should have checked for this if not certain.
-- Fatal error to attempt to convert from value outside Int'Range.
pragma Assert (UI_Is_In_Int_Range (Input));
-- Otherwise, proceed ahead, we are OK
Init_Operand (Input, In_Vec);
Ret_Int := 0;
-- Calculate -|Input| and then negates if value is positive.
-- This handles our current definition of Int (based on
-- 2s complement). Is it secure enough?
for Idx in In_Vec'Range loop
Ret_Int := Ret_Int * Base - abs In_Vec (Idx);
end loop;
if In_Vec (1) < Int_0 then
return Ret_Int;
else
return -Ret_Int;
end if;
end;
end if;
end UI_To_Int;
--------------
-- UI_Write --
--------------
procedure UI_Write (Input : Uint; Format : UI_Format := Auto) is
begin
Image_Out (Input, False, Format);
end UI_Write;
---------------------
-- Vector_To_Uint --
---------------------
function Vector_To_Uint
(In_Vec : UI_Vector;
Negative : Boolean)
return Uint
is
Size : Int;
Val : Int;
begin
-- The vector can contain leading zeros. These are not stored in the
-- table, so loop through the vector looking for first non-zero digit
for J in In_Vec'Range loop
if In_Vec (J) /= Int_0 then
-- The length of the value is the length of the rest of the vector
Size := In_Vec'Last - J + 1;
-- One digit value can always be represented directly
if Size = Int_1 then
if Negative then
return Uint (Int (Uint_Direct_Bias) - In_Vec (J));
else
return Uint (Int (Uint_Direct_Bias) + In_Vec (J));
end if;
-- Positive two digit values may be in direct representation range
elsif Size = Int_2 and then not Negative then
Val := In_Vec (J) * Base + In_Vec (J + 1);
if Val <= Max_Direct then
return Uint (Int (Uint_Direct_Bias) + Val);
end if;
end if;
-- The value is outside the direct representation range and
-- must therefore be stored in the table. Expand the table
-- to contain the count and tigis. The index of the new table
-- entry will be returned as the result.
Uints.Increment_Last;
Uints.Table (Uints.Last).Length := Size;
Uints.Table (Uints.Last).Loc := Udigits.Last + 1;
Udigits.Increment_Last;
if Negative then
Udigits.Table (Udigits.Last) := -In_Vec (J);
else
Udigits.Table (Udigits.Last) := +In_Vec (J);
end if;
for K in 2 .. Size loop
Udigits.Increment_Last;
Udigits.Table (Udigits.Last) := In_Vec (J + K - 1);
end loop;
return Uints.Last;
end if;
end loop;
-- Dropped through loop only if vector contained all zeros
return Uint_0;
end Vector_To_Uint;
end Uintp;