2004-07-06 Vincent Celier <celier@gnat.com> * vms_conv.ads: Minor reformatting. Alphabetical order for enumerated values of type Command_Type, to have the command in alphabetical order for the usage. * vms_conv.adb (Process_Argument): Set Keep_Temporary_Files to True for the special qualifier /KEEP_TEMPORARY_FILES (minimum 6 characters). * gnat_ugn.texi: Document new switch -dn for the GNAT driver. * makegpr.adb (Global_Archive_Exists): New global Boolean variable (Add_Archive_Path): Only add the global archive if there is one. (Build_Global_Archive): Set Global_Archive_Exists depending if there is or not any object file to put in the global archive, and don't build a global archive if there is none. (X_Switches): New table (Compile_Link_With_Gnatmake): Pass to gnatmake the -X switches stored in the X_Switches table, if any. (Initialize): Make sure the X_Switches table is empty (Scan_Arg): Record -X switches in table X_Switches * opt.ads (Keep_Temporary_Files): New Boolean flag, defaulted to False. * make.adb: Minor comment fix * gnatname.adb (Gnatname): When not on VMS, and gnatname has been invoked with directory information, add the directory in front of the path. * gnatchop.adb (Gnatchop): When not on VMS, and gnatchop has been invoked with directory information, add the directory in front of the path. * gnatcmd.adb (Delete_Temp_Config_Files): Only delete temporary files when Keep_Temporary_Files is False. (GNATCmd): When not on VMS, and the GNAT driver has been invoked with directory information, add the directory in front of the path. When not on VMS, handle new switch -dn before the command to set Keep_Temporary_Files to True. (Non_VMS_Usage): Use lower case for the non VMS usage: this is valid everywhere. * gnatlink.adb (Gnatlink): When not on VMS, and gnatlink has been invoked with directory information, add the directory in front of the path. 2004-07-06 Thomas Quinot <quinot@act-europe.fr> * snames.ads, snames.adb (Name_Stub): New name for the distributed systems annex. * rtsfind.ads: New RTE TC_Object, for DSA/PolyORB. New RTEs RAS_Proxy_Type and RAS_Proxy_Type_Access, for DSA. * g-socket.adb (To_Timeval): Fix incorrect conversion of Selector_Duration to Timeval for the case of 0.0. * exp_util.ads (Evolve_Or_Else): Fix overenthusiastic copy/paste of documentation from Evolve_And_Then. 2004-07-06 Jose Ruiz <ruiz@act-europe.fr> * s-taprop-tru64.adb, s-taprop-os2.adb, s-taprop-mingw.adb, s-taprop-posix.adb: Update comment. 2004-07-06 Robert Dewar <dewar@gnat.com> * s-osinte-hpux.ads, s-osinte-freebsd.ads, s-osinte-lynxos.ads, s-taprop-lynxos.adb, s-osinte-tru64.ads, s-osinte-aix.ads, s-osinte-irix.ads, s-taprop-irix.adb, s-interr-sigaction.adb, s-taprop-irix-athread.adb, s-osinte-hpux-dce.adb, s-taprop-hpux-dce.adb, s-taprop-linux.adb, s-taprop-dummy.adb, s-taprop-solaris.adb, s-interr-vms.adb, s-osinte-vms.ads, s-taprop-vms.adb, s-osinte-vxworks.ads, s-osprim-vxworks.adb, a-numaux-x86.adb, a-except.adb, a-exexpr.adb, a-intsig.adb, a-tags.adb, a-tags.ads, bindgen.ads, checks.adb, checks.adb, csets.ads, einfo.ads, einfo.ads, elists.adb, exp_ch4.adb, exp_ch7.adb, exp_dist.adb, exp_util.adb, freeze.adb, g-dynhta.adb, gnatmem.adb, g-regexp.adb, inline.adb, i-os2thr.ads, osint.adb, prj.adb, scng.adb, sem_cat.adb, sem_ch10.adb, sem_ch12.adb, sem_ch4.adb, sem_ch7.adb, sem_ch8.adb, sem_disp.adb, sem_prag.adb, sem_res.adb, sem_type.adb, sem_type.ads, sem_warn.adb, s-ficobl.ads, s-finimp.adb, s-htable.adb, sinfo.ads, sinput-l.ads, s-interr.adb, s-interr.ads, sprint.adb, s-tarest.adb, s-tasini.ads, s-taskin.ads, s-taskin.ads, uname.adb, vms_data.ads: Minor reformatting, Fix bad box comment format. * gnat_rm.texi: Fix minor grammatical error * sem_attr.adb, exp_attr.adb: New attribute Has_Access_Values * sem_util.ads, sem_util.adb (Requires_Transient_Scope): Allow many more cases of discriminated records to be recognized as not needing a secondary stack. (Has_Access_Values): New function. * snames.h, snames.adb, snames.ads: New attribute Has_Access_Values * cstand.adb, layout.ads, layout.adb, sem_ch13.ads: Change name Set_Prim_Alignment to Set_Elem_Alignment (more accurate correspondence with LRM terminology). Change terminology in comments primitive type => elementary type. 2004-07-06 Ed Schonberg <schonberg@gnat.com> PR ada/15602 * sem_ch7.adb (Unit_Requires_Body): For a generic package, the formal parameters do not impose any requirements on the presence of a body. 2004-07-06 Ed Schonberg <schonberg@gnat.com> PR ada/15593 * sem_ch12.adb (Analyze_Package_Instantiation): If the generic is not a compilation unit and is in an open scope at the point of instantiation, assume that a body may be present later. 2004-07-06 Ed Schonberg <schonberg@gnat.com> * sem_ch13.adb (Analyze_Attribute_Definition_Clause, case 'Size): Improve error message when specified size is not supported. * sem_ch6.adb (Maybe_Primitive_Operation): A library-level subprogram is never a primitive operation. From-SVN: r84152
1130 lines
37 KiB
Ada
1130 lines
37 KiB
Ada
------------------------------------------------------------------------------
|
|
-- --
|
|
-- GNAT COMPILER COMPONENTS --
|
|
-- --
|
|
-- I N L I N E --
|
|
-- --
|
|
-- B o d y --
|
|
-- --
|
|
-- Copyright (C) 1992-2004 Free Software Foundation, Inc. --
|
|
-- --
|
|
-- GNAT is free software; you can redistribute it and/or modify it under --
|
|
-- terms of the GNU General Public License as published by the Free Soft- --
|
|
-- ware Foundation; either version 2, or (at your option) any later ver- --
|
|
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
|
|
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
|
|
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
|
|
-- for more details. You should have received a copy of the GNU General --
|
|
-- Public License distributed with GNAT; see file COPYING. If not, write --
|
|
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
|
|
-- MA 02111-1307, USA. --
|
|
-- --
|
|
-- GNAT was originally developed by the GNAT team at New York University. --
|
|
-- Extensive contributions were provided by Ada Core Technologies Inc. --
|
|
-- --
|
|
------------------------------------------------------------------------------
|
|
|
|
with Atree; use Atree;
|
|
with Einfo; use Einfo;
|
|
with Elists; use Elists;
|
|
with Errout; use Errout;
|
|
with Exp_Ch7; use Exp_Ch7;
|
|
with Exp_Ch11; use Exp_Ch11;
|
|
with Exp_Tss; use Exp_Tss;
|
|
with Fname; use Fname;
|
|
with Fname.UF; use Fname.UF;
|
|
with Lib; use Lib;
|
|
with Nlists; use Nlists;
|
|
with Opt; use Opt;
|
|
with Sem_Ch8; use Sem_Ch8;
|
|
with Sem_Ch10; use Sem_Ch10;
|
|
with Sem_Ch12; use Sem_Ch12;
|
|
with Sem_Util; use Sem_Util;
|
|
with Sinfo; use Sinfo;
|
|
with Snames; use Snames;
|
|
with Stand; use Stand;
|
|
with Uname; use Uname;
|
|
|
|
package body Inline is
|
|
|
|
--------------------
|
|
-- Inlined Bodies --
|
|
--------------------
|
|
|
|
-- Inlined functions are actually placed in line by the backend if the
|
|
-- corresponding bodies are available (i.e. compiled). Whenever we find
|
|
-- a call to an inlined subprogram, we add the name of the enclosing
|
|
-- compilation unit to a worklist. After all compilation, and after
|
|
-- expansion of generic bodies, we traverse the list of pending bodies
|
|
-- and compile them as well.
|
|
|
|
package Inlined_Bodies is new Table.Table (
|
|
Table_Component_Type => Entity_Id,
|
|
Table_Index_Type => Int,
|
|
Table_Low_Bound => 0,
|
|
Table_Initial => Alloc.Inlined_Bodies_Initial,
|
|
Table_Increment => Alloc.Inlined_Bodies_Increment,
|
|
Table_Name => "Inlined_Bodies");
|
|
|
|
-----------------------
|
|
-- Inline Processing --
|
|
-----------------------
|
|
|
|
-- For each call to an inlined subprogram, we make entries in a table
|
|
-- that stores caller and callee, and indicates a prerequisite from
|
|
-- one to the other. We also record the compilation unit that contains
|
|
-- the callee. After analyzing the bodies of all such compilation units,
|
|
-- we produce a list of subprograms in topological order, for use by the
|
|
-- back-end. If P2 is a prerequisite of P1, then P1 calls P2, and for
|
|
-- proper inlining the back-end must analyze the body of P2 before that of
|
|
-- P1. The code below guarantees that the transitive closure of inlined
|
|
-- subprograms called from the main compilation unit is made available to
|
|
-- the code generator.
|
|
|
|
Last_Inlined : Entity_Id := Empty;
|
|
|
|
-- For each entry in the table we keep a list of successors in topological
|
|
-- order, i.e. callers of the current subprogram.
|
|
|
|
type Subp_Index is new Nat;
|
|
No_Subp : constant Subp_Index := 0;
|
|
|
|
-- The subprogram entities are hashed into the Inlined table.
|
|
|
|
Num_Hash_Headers : constant := 512;
|
|
|
|
Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
|
|
of Subp_Index;
|
|
|
|
type Succ_Index is new Nat;
|
|
No_Succ : constant Succ_Index := 0;
|
|
|
|
type Succ_Info is record
|
|
Subp : Subp_Index;
|
|
Next : Succ_Index;
|
|
end record;
|
|
|
|
-- The following table stores list elements for the successor lists.
|
|
-- These lists cannot be chained directly through entries in the Inlined
|
|
-- table, because a given subprogram can appear in several such lists.
|
|
|
|
package Successors is new Table.Table (
|
|
Table_Component_Type => Succ_Info,
|
|
Table_Index_Type => Succ_Index,
|
|
Table_Low_Bound => 1,
|
|
Table_Initial => Alloc.Successors_Initial,
|
|
Table_Increment => Alloc.Successors_Increment,
|
|
Table_Name => "Successors");
|
|
|
|
type Subp_Info is record
|
|
Name : Entity_Id := Empty;
|
|
First_Succ : Succ_Index := No_Succ;
|
|
Count : Integer := 0;
|
|
Listed : Boolean := False;
|
|
Main_Call : Boolean := False;
|
|
Next : Subp_Index := No_Subp;
|
|
Next_Nopred : Subp_Index := No_Subp;
|
|
end record;
|
|
|
|
package Inlined is new Table.Table (
|
|
Table_Component_Type => Subp_Info,
|
|
Table_Index_Type => Subp_Index,
|
|
Table_Low_Bound => 1,
|
|
Table_Initial => Alloc.Inlined_Initial,
|
|
Table_Increment => Alloc.Inlined_Increment,
|
|
Table_Name => "Inlined");
|
|
|
|
-----------------------
|
|
-- Local Subprograms --
|
|
-----------------------
|
|
|
|
function Scope_In_Main_Unit (Scop : Entity_Id) return Boolean;
|
|
-- Return True if Scop is in the main unit or its spec, or in a
|
|
-- parent of the main unit if it is a child unit.
|
|
|
|
procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
|
|
-- Make two entries in Inlined table, for an inlined subprogram being
|
|
-- called, and for the inlined subprogram that contains the call. If
|
|
-- the call is in the main compilation unit, Caller is Empty.
|
|
|
|
function Add_Subp (E : Entity_Id) return Subp_Index;
|
|
-- Make entry in Inlined table for subprogram E, or return table index
|
|
-- that already holds E.
|
|
|
|
function Has_Initialized_Type (E : Entity_Id) return Boolean;
|
|
-- If a candidate for inlining contains type declarations for types with
|
|
-- non-trivial initialization procedures, they are not worth inlining.
|
|
|
|
function Is_Nested (E : Entity_Id) return Boolean;
|
|
-- If the function is nested inside some other function, it will
|
|
-- always be compiled if that function is, so don't add it to the
|
|
-- inline list. We cannot compile a nested function outside the
|
|
-- scope of the containing function anyway. This is also the case if
|
|
-- the function is defined in a task body or within an entry (for
|
|
-- example, an initialization procedure).
|
|
|
|
procedure Add_Inlined_Subprogram (Index : Subp_Index);
|
|
-- Add subprogram to Inlined List once all of its predecessors have been
|
|
-- placed on the list. Decrement the count of all its successors, and
|
|
-- add them to list (recursively) if count drops to zero.
|
|
|
|
------------------------------
|
|
-- Deferred Cleanup Actions --
|
|
------------------------------
|
|
|
|
-- The cleanup actions for scopes that contain instantiations is delayed
|
|
-- until after expansion of those instantiations, because they may
|
|
-- contain finalizable objects or tasks that affect the cleanup code.
|
|
-- A scope that contains instantiations only needs to be finalized once,
|
|
-- even if it contains more than one instance. We keep a list of scopes
|
|
-- that must still be finalized, and call cleanup_actions after all the
|
|
-- instantiations have been completed.
|
|
|
|
To_Clean : Elist_Id;
|
|
|
|
procedure Add_Scope_To_Clean (Inst : Entity_Id);
|
|
-- Build set of scopes on which cleanup actions must be performed.
|
|
|
|
procedure Cleanup_Scopes;
|
|
-- Complete cleanup actions on scopes that need it.
|
|
|
|
--------------
|
|
-- Add_Call --
|
|
--------------
|
|
|
|
procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
|
|
P1 : constant Subp_Index := Add_Subp (Called);
|
|
P2 : Subp_Index;
|
|
J : Succ_Index;
|
|
|
|
begin
|
|
if Present (Caller) then
|
|
P2 := Add_Subp (Caller);
|
|
|
|
-- Add P2 to the list of successors of P1, if not already there.
|
|
-- Note that P2 may contain more than one call to P1, and only
|
|
-- one needs to be recorded.
|
|
|
|
J := Inlined.Table (P1).First_Succ;
|
|
|
|
while J /= No_Succ loop
|
|
|
|
if Successors.Table (J).Subp = P2 then
|
|
return;
|
|
end if;
|
|
|
|
J := Successors.Table (J).Next;
|
|
end loop;
|
|
|
|
-- On exit, make a successor entry for P2.
|
|
|
|
Successors.Increment_Last;
|
|
Successors.Table (Successors.Last).Subp := P2;
|
|
Successors.Table (Successors.Last).Next :=
|
|
Inlined.Table (P1).First_Succ;
|
|
Inlined.Table (P1).First_Succ := Successors.Last;
|
|
|
|
Inlined.Table (P2).Count := Inlined.Table (P2).Count + 1;
|
|
|
|
else
|
|
Inlined.Table (P1).Main_Call := True;
|
|
end if;
|
|
end Add_Call;
|
|
|
|
----------------------
|
|
-- Add_Inlined_Body --
|
|
----------------------
|
|
|
|
procedure Add_Inlined_Body (E : Entity_Id) is
|
|
Pack : Entity_Id;
|
|
|
|
function Must_Inline return Boolean;
|
|
-- Inlining is only done if the call statement N is in the main unit,
|
|
-- or within the body of another inlined subprogram.
|
|
|
|
-----------------
|
|
-- Must_Inline --
|
|
-----------------
|
|
|
|
function Must_Inline return Boolean is
|
|
Scop : Entity_Id := Current_Scope;
|
|
Comp : Node_Id;
|
|
|
|
begin
|
|
-- Check if call is in main unit
|
|
|
|
while Scope (Scop) /= Standard_Standard
|
|
and then not Is_Child_Unit (Scop)
|
|
loop
|
|
Scop := Scope (Scop);
|
|
end loop;
|
|
|
|
Comp := Parent (Scop);
|
|
|
|
while Nkind (Comp) /= N_Compilation_Unit loop
|
|
Comp := Parent (Comp);
|
|
end loop;
|
|
|
|
if Comp = Cunit (Main_Unit)
|
|
or else Comp = Library_Unit (Cunit (Main_Unit))
|
|
then
|
|
Add_Call (E);
|
|
return True;
|
|
end if;
|
|
|
|
-- Call is not in main unit. See if it's in some inlined
|
|
-- subprogram.
|
|
|
|
Scop := Current_Scope;
|
|
while Scope (Scop) /= Standard_Standard
|
|
and then not Is_Child_Unit (Scop)
|
|
loop
|
|
if Is_Overloadable (Scop)
|
|
and then Is_Inlined (Scop)
|
|
then
|
|
Add_Call (E, Scop);
|
|
return True;
|
|
end if;
|
|
|
|
Scop := Scope (Scop);
|
|
end loop;
|
|
|
|
return False;
|
|
|
|
end Must_Inline;
|
|
|
|
-- Start of processing for Add_Inlined_Body
|
|
|
|
begin
|
|
-- Find unit containing E, and add to list of inlined bodies if needed.
|
|
-- If the body is already present, no need to load any other unit. This
|
|
-- is the case for an initialization procedure, which appears in the
|
|
-- package declaration that contains the type. It is also the case if
|
|
-- the body has already been analyzed. Finally, if the unit enclosing
|
|
-- E is an instance, the instance body will be analyzed in any case,
|
|
-- and there is no need to add the enclosing unit (whose body might not
|
|
-- be available).
|
|
|
|
-- Library-level functions must be handled specially, because there is
|
|
-- no enclosing package to retrieve. In this case, it is the body of
|
|
-- the function that will have to be loaded.
|
|
|
|
if not Is_Abstract (E) and then not Is_Nested (E)
|
|
and then Convention (E) /= Convention_Protected
|
|
then
|
|
Pack := Scope (E);
|
|
|
|
if Must_Inline
|
|
and then Ekind (Pack) = E_Package
|
|
then
|
|
Set_Is_Called (E);
|
|
|
|
if Pack = Standard_Standard then
|
|
|
|
-- Library-level inlined function. Add function iself to
|
|
-- list of needed units.
|
|
|
|
Inlined_Bodies.Increment_Last;
|
|
Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
|
|
|
|
elsif Is_Generic_Instance (Pack) then
|
|
null;
|
|
|
|
elsif not Is_Inlined (Pack)
|
|
and then not Has_Completion (E)
|
|
and then not Scope_In_Main_Unit (Pack)
|
|
then
|
|
Set_Is_Inlined (Pack);
|
|
Inlined_Bodies.Increment_Last;
|
|
Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
|
|
end if;
|
|
end if;
|
|
end if;
|
|
end Add_Inlined_Body;
|
|
|
|
----------------------------
|
|
-- Add_Inlined_Subprogram --
|
|
----------------------------
|
|
|
|
procedure Add_Inlined_Subprogram (Index : Subp_Index) is
|
|
E : constant Entity_Id := Inlined.Table (Index).Name;
|
|
Succ : Succ_Index;
|
|
Subp : Subp_Index;
|
|
|
|
function Back_End_Cannot_Inline (Subp : Entity_Id) return Boolean;
|
|
-- There are various conditions under which back-end inlining cannot
|
|
-- be done reliably:
|
|
--
|
|
-- a) If a body has handlers, it must not be inlined, because this
|
|
-- may violate program semantics, and because in zero-cost exception
|
|
-- mode it will lead to undefined symbols at link time.
|
|
--
|
|
-- b) If a body contains inlined function instances, it cannot be
|
|
-- inlined under ZCX because the numerix suffix generated by gigi
|
|
-- will be different in the body and the place of the inlined call.
|
|
--
|
|
-- This procedure must be carefully coordinated with the back end
|
|
|
|
----------------------------
|
|
-- Back_End_Cannot_Inline --
|
|
----------------------------
|
|
|
|
function Back_End_Cannot_Inline (Subp : Entity_Id) return Boolean is
|
|
Decl : constant Node_Id := Unit_Declaration_Node (Subp);
|
|
Body_Ent : Entity_Id;
|
|
Ent : Entity_Id;
|
|
|
|
begin
|
|
if Nkind (Decl) = N_Subprogram_Declaration
|
|
and then Present (Corresponding_Body (Decl))
|
|
then
|
|
Body_Ent := Corresponding_Body (Decl);
|
|
else
|
|
return False;
|
|
end if;
|
|
|
|
-- If subprogram is marked Inline_Always, inlining is mandatory
|
|
|
|
if Is_Always_Inlined (Subp) then
|
|
return False;
|
|
end if;
|
|
|
|
if Present
|
|
(Exception_Handlers
|
|
(Handled_Statement_Sequence
|
|
(Unit_Declaration_Node (Corresponding_Body (Decl)))))
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
Ent := First_Entity (Body_Ent);
|
|
|
|
while Present (Ent) loop
|
|
if Is_Subprogram (Ent)
|
|
and then Is_Generic_Instance (Ent)
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
Next_Entity (Ent);
|
|
end loop;
|
|
return False;
|
|
end Back_End_Cannot_Inline;
|
|
|
|
-- Start of processing for Add_Inlined_Subprogram
|
|
|
|
begin
|
|
-- Insert the current subprogram in the list of inlined subprograms,
|
|
-- if it can actually be inlined by the back-end.
|
|
|
|
if not Scope_In_Main_Unit (E)
|
|
and then Is_Inlined (E)
|
|
and then not Is_Nested (E)
|
|
and then not Has_Initialized_Type (E)
|
|
then
|
|
if Back_End_Cannot_Inline (E) then
|
|
Set_Is_Inlined (E, False);
|
|
|
|
else
|
|
if No (Last_Inlined) then
|
|
Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
|
|
else
|
|
Set_Next_Inlined_Subprogram (Last_Inlined, E);
|
|
end if;
|
|
|
|
Last_Inlined := E;
|
|
end if;
|
|
end if;
|
|
|
|
Inlined.Table (Index).Listed := True;
|
|
Succ := Inlined.Table (Index).First_Succ;
|
|
|
|
while Succ /= No_Succ loop
|
|
Subp := Successors.Table (Succ).Subp;
|
|
Inlined.Table (Subp).Count := Inlined.Table (Subp).Count - 1;
|
|
|
|
if Inlined.Table (Subp).Count = 0 then
|
|
Add_Inlined_Subprogram (Subp);
|
|
end if;
|
|
|
|
Succ := Successors.Table (Succ).Next;
|
|
end loop;
|
|
end Add_Inlined_Subprogram;
|
|
|
|
------------------------
|
|
-- Add_Scope_To_Clean --
|
|
------------------------
|
|
|
|
procedure Add_Scope_To_Clean (Inst : Entity_Id) is
|
|
Scop : constant Entity_Id := Enclosing_Dynamic_Scope (Inst);
|
|
Elmt : Elmt_Id;
|
|
|
|
begin
|
|
-- If the instance appears in a library-level package declaration,
|
|
-- all finalization is global, and nothing needs doing here.
|
|
|
|
if Scop = Standard_Standard then
|
|
return;
|
|
end if;
|
|
|
|
-- If the instance appears within a generic subprogram there is nothing
|
|
-- to finalize either.
|
|
|
|
declare
|
|
S : Entity_Id;
|
|
begin
|
|
S := Scope (Inst);
|
|
while Present (S) and then S /= Standard_Standard loop
|
|
if Is_Generic_Subprogram (S) then
|
|
return;
|
|
end if;
|
|
|
|
S := Scope (S);
|
|
end loop;
|
|
end;
|
|
|
|
Elmt := First_Elmt (To_Clean);
|
|
|
|
while Present (Elmt) loop
|
|
|
|
if Node (Elmt) = Scop then
|
|
return;
|
|
end if;
|
|
|
|
Elmt := Next_Elmt (Elmt);
|
|
end loop;
|
|
|
|
Append_Elmt (Scop, To_Clean);
|
|
end Add_Scope_To_Clean;
|
|
|
|
--------------
|
|
-- Add_Subp --
|
|
--------------
|
|
|
|
function Add_Subp (E : Entity_Id) return Subp_Index is
|
|
Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
|
|
J : Subp_Index;
|
|
|
|
procedure New_Entry;
|
|
-- Initialize entry in Inlined table.
|
|
|
|
procedure New_Entry is
|
|
begin
|
|
Inlined.Increment_Last;
|
|
Inlined.Table (Inlined.Last).Name := E;
|
|
Inlined.Table (Inlined.Last).First_Succ := No_Succ;
|
|
Inlined.Table (Inlined.Last).Count := 0;
|
|
Inlined.Table (Inlined.Last).Listed := False;
|
|
Inlined.Table (Inlined.Last).Main_Call := False;
|
|
Inlined.Table (Inlined.Last).Next := No_Subp;
|
|
Inlined.Table (Inlined.Last).Next_Nopred := No_Subp;
|
|
end New_Entry;
|
|
|
|
-- Start of processing for Add_Subp
|
|
|
|
begin
|
|
if Hash_Headers (Index) = No_Subp then
|
|
New_Entry;
|
|
Hash_Headers (Index) := Inlined.Last;
|
|
return Inlined.Last;
|
|
|
|
else
|
|
J := Hash_Headers (Index);
|
|
|
|
while J /= No_Subp loop
|
|
|
|
if Inlined.Table (J).Name = E then
|
|
return J;
|
|
else
|
|
Index := J;
|
|
J := Inlined.Table (J).Next;
|
|
end if;
|
|
end loop;
|
|
|
|
-- On exit, subprogram was not found. Enter in table. Index is
|
|
-- the current last entry on the hash chain.
|
|
|
|
New_Entry;
|
|
Inlined.Table (Index).Next := Inlined.Last;
|
|
return Inlined.Last;
|
|
end if;
|
|
end Add_Subp;
|
|
|
|
----------------------------
|
|
-- Analyze_Inlined_Bodies --
|
|
----------------------------
|
|
|
|
procedure Analyze_Inlined_Bodies is
|
|
Comp_Unit : Node_Id;
|
|
J : Int;
|
|
Pack : Entity_Id;
|
|
S : Succ_Index;
|
|
|
|
begin
|
|
Analyzing_Inlined_Bodies := False;
|
|
|
|
if Serious_Errors_Detected = 0 then
|
|
New_Scope (Standard_Standard);
|
|
|
|
J := 0;
|
|
while J <= Inlined_Bodies.Last
|
|
and then Serious_Errors_Detected = 0
|
|
loop
|
|
Pack := Inlined_Bodies.Table (J);
|
|
|
|
while Present (Pack)
|
|
and then Scope (Pack) /= Standard_Standard
|
|
and then not Is_Child_Unit (Pack)
|
|
loop
|
|
Pack := Scope (Pack);
|
|
end loop;
|
|
|
|
Comp_Unit := Parent (Pack);
|
|
|
|
while Present (Comp_Unit)
|
|
and then Nkind (Comp_Unit) /= N_Compilation_Unit
|
|
loop
|
|
Comp_Unit := Parent (Comp_Unit);
|
|
end loop;
|
|
|
|
-- Load the body, unless it the main unit, or is an instance
|
|
-- whose body has already been analyzed.
|
|
|
|
if Present (Comp_Unit)
|
|
and then Comp_Unit /= Cunit (Main_Unit)
|
|
and then Body_Required (Comp_Unit)
|
|
and then (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
|
|
or else No (Corresponding_Body (Unit (Comp_Unit))))
|
|
then
|
|
declare
|
|
Bname : constant Unit_Name_Type :=
|
|
Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
|
|
|
|
OK : Boolean;
|
|
|
|
begin
|
|
if not Is_Loaded (Bname) then
|
|
Load_Needed_Body (Comp_Unit, OK);
|
|
|
|
if not OK then
|
|
Error_Msg_Unit_1 := Bname;
|
|
Error_Msg_N
|
|
("one or more inlined subprograms accessed in $!",
|
|
Comp_Unit);
|
|
Error_Msg_Name_1 :=
|
|
Get_File_Name (Bname, Subunit => False);
|
|
Error_Msg_N ("\but file{ was not found!", Comp_Unit);
|
|
raise Unrecoverable_Error;
|
|
end if;
|
|
end if;
|
|
end;
|
|
end if;
|
|
|
|
J := J + 1;
|
|
end loop;
|
|
|
|
-- The analysis of required bodies may have produced additional
|
|
-- generic instantiations. To obtain further inlining, we perform
|
|
-- another round of generic body instantiations. Establishing a
|
|
-- fully recursive loop between inlining and generic instantiations
|
|
-- is unlikely to yield more than this one additional pass.
|
|
|
|
Instantiate_Bodies;
|
|
|
|
-- The list of inlined subprograms is an overestimate, because
|
|
-- it includes inlined functions called from functions that are
|
|
-- compiled as part of an inlined package, but are not themselves
|
|
-- called. An accurate computation of just those subprograms that
|
|
-- are needed requires that we perform a transitive closure over
|
|
-- the call graph, starting from calls in the main program. Here
|
|
-- we do one step of the inverse transitive closure, and reset
|
|
-- the Is_Called flag on subprograms all of whose callers are not.
|
|
|
|
for Index in Inlined.First .. Inlined.Last loop
|
|
S := Inlined.Table (Index).First_Succ;
|
|
|
|
if S /= No_Succ
|
|
and then not Inlined.Table (Index).Main_Call
|
|
then
|
|
Set_Is_Called (Inlined.Table (Index).Name, False);
|
|
|
|
while S /= No_Succ loop
|
|
|
|
if Is_Called
|
|
(Inlined.Table (Successors.Table (S).Subp).Name)
|
|
or else Inlined.Table (Successors.Table (S).Subp).Main_Call
|
|
then
|
|
Set_Is_Called (Inlined.Table (Index).Name);
|
|
exit;
|
|
end if;
|
|
|
|
S := Successors.Table (S).Next;
|
|
end loop;
|
|
end if;
|
|
end loop;
|
|
|
|
-- Now that the units are compiled, chain the subprograms within
|
|
-- that are called and inlined. Produce list of inlined subprograms
|
|
-- sorted in topological order. Start with all subprograms that
|
|
-- have no prerequisites, i.e. inlined subprograms that do not call
|
|
-- other inlined subprograms.
|
|
|
|
for Index in Inlined.First .. Inlined.Last loop
|
|
|
|
if Is_Called (Inlined.Table (Index).Name)
|
|
and then Inlined.Table (Index).Count = 0
|
|
and then not Inlined.Table (Index).Listed
|
|
then
|
|
Add_Inlined_Subprogram (Index);
|
|
end if;
|
|
end loop;
|
|
|
|
-- Because Add_Inlined_Subprogram treats recursively nodes that have
|
|
-- no prerequisites left, at the end of the loop all subprograms
|
|
-- must have been listed. If there are any unlisted subprograms
|
|
-- left, there must be some recursive chains that cannot be inlined.
|
|
|
|
for Index in Inlined.First .. Inlined.Last loop
|
|
if Is_Called (Inlined.Table (Index).Name)
|
|
and then Inlined.Table (Index).Count /= 0
|
|
and then not Is_Predefined_File_Name
|
|
(Unit_File_Name
|
|
(Get_Source_Unit (Inlined.Table (Index).Name)))
|
|
then
|
|
Error_Msg_N
|
|
("& cannot be inlined?", Inlined.Table (Index).Name);
|
|
-- A warning on the first one might be sufficient.
|
|
end if;
|
|
end loop;
|
|
|
|
Pop_Scope;
|
|
end if;
|
|
end Analyze_Inlined_Bodies;
|
|
|
|
-----------------------------
|
|
-- Check_Body_For_Inlining --
|
|
-----------------------------
|
|
|
|
procedure Check_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
|
|
Bname : Unit_Name_Type;
|
|
E : Entity_Id;
|
|
OK : Boolean;
|
|
|
|
begin
|
|
if Is_Compilation_Unit (P)
|
|
and then not Is_Generic_Instance (P)
|
|
then
|
|
Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
|
|
E := First_Entity (P);
|
|
|
|
while Present (E) loop
|
|
if Is_Always_Inlined (E)
|
|
or else (Front_End_Inlining and then Has_Pragma_Inline (E))
|
|
then
|
|
if not Is_Loaded (Bname) then
|
|
Load_Needed_Body (N, OK);
|
|
|
|
if OK then
|
|
|
|
-- Check that we are not trying to inline a parent
|
|
-- whose body depends on a child, when we are compiling
|
|
-- the body of the child. Otherwise we have a potential
|
|
-- elaboration circularity with inlined subprograms and
|
|
-- with Taft-Amendment types.
|
|
|
|
declare
|
|
Comp : Node_Id; -- Body just compiled
|
|
Child_Spec : Entity_Id; -- Spec of main unit
|
|
Ent : Entity_Id; -- For iteration
|
|
With_Clause : Node_Id; -- Context of body.
|
|
|
|
begin
|
|
if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
|
|
and then Present (Body_Entity (P))
|
|
then
|
|
Child_Spec :=
|
|
Defining_Entity (
|
|
(Unit (Library_Unit (Cunit (Main_Unit)))));
|
|
|
|
Comp :=
|
|
Parent (Unit_Declaration_Node (Body_Entity (P)));
|
|
|
|
With_Clause := First (Context_Items (Comp));
|
|
|
|
-- Check whether the context of the body just
|
|
-- compiled includes a child of itself, and that
|
|
-- child is the spec of the main compilation.
|
|
|
|
while Present (With_Clause) loop
|
|
if Nkind (With_Clause) = N_With_Clause
|
|
and then
|
|
Scope (Entity (Name (With_Clause))) = P
|
|
and then
|
|
Entity (Name (With_Clause)) = Child_Spec
|
|
then
|
|
Error_Msg_Node_2 := Child_Spec;
|
|
Error_Msg_NE
|
|
("body of & depends on child unit&?",
|
|
With_Clause, P);
|
|
Error_Msg_N
|
|
("\subprograms in body cannot be inlined?",
|
|
With_Clause);
|
|
|
|
-- Disable further inlining from this unit,
|
|
-- and keep Taft-amendment types incomplete.
|
|
|
|
Ent := First_Entity (P);
|
|
|
|
while Present (Ent) loop
|
|
if Is_Type (Ent)
|
|
and then Has_Completion_In_Body (Ent)
|
|
then
|
|
Set_Full_View (Ent, Empty);
|
|
|
|
elsif Is_Subprogram (Ent) then
|
|
Set_Is_Inlined (Ent, False);
|
|
end if;
|
|
|
|
Next_Entity (Ent);
|
|
end loop;
|
|
|
|
return;
|
|
end if;
|
|
|
|
Next (With_Clause);
|
|
end loop;
|
|
end if;
|
|
end;
|
|
|
|
elsif Ineffective_Inline_Warnings then
|
|
Error_Msg_Unit_1 := Bname;
|
|
Error_Msg_N
|
|
("unable to inline subprograms defined in $?", P);
|
|
Error_Msg_N ("\body not found?", P);
|
|
return;
|
|
end if;
|
|
end if;
|
|
|
|
return;
|
|
end if;
|
|
|
|
Next_Entity (E);
|
|
end loop;
|
|
end if;
|
|
end Check_Body_For_Inlining;
|
|
|
|
--------------------
|
|
-- Cleanup_Scopes --
|
|
--------------------
|
|
|
|
procedure Cleanup_Scopes is
|
|
Elmt : Elmt_Id;
|
|
Decl : Node_Id;
|
|
Scop : Entity_Id;
|
|
|
|
begin
|
|
Elmt := First_Elmt (To_Clean);
|
|
|
|
while Present (Elmt) loop
|
|
Scop := Node (Elmt);
|
|
|
|
if Ekind (Scop) = E_Entry then
|
|
Scop := Protected_Body_Subprogram (Scop);
|
|
|
|
elsif Is_Subprogram (Scop)
|
|
and then Is_Protected_Type (Scope (Scop))
|
|
and then Present (Protected_Body_Subprogram (Scop))
|
|
then
|
|
-- If a protected operation contains an instance, its
|
|
-- cleanup operations have been delayed, and the subprogram
|
|
-- has been rewritten in the expansion of the enclosing
|
|
-- protected body. It is the corresponding subprogram that
|
|
-- may require the cleanup operations.
|
|
|
|
Set_Uses_Sec_Stack
|
|
(Protected_Body_Subprogram (Scop),
|
|
Uses_Sec_Stack (Scop));
|
|
Scop := Protected_Body_Subprogram (Scop);
|
|
end if;
|
|
|
|
if Ekind (Scop) = E_Block then
|
|
Decl := Parent (Block_Node (Scop));
|
|
|
|
else
|
|
Decl := Unit_Declaration_Node (Scop);
|
|
|
|
if Nkind (Decl) = N_Subprogram_Declaration
|
|
or else Nkind (Decl) = N_Task_Type_Declaration
|
|
or else Nkind (Decl) = N_Subprogram_Body_Stub
|
|
then
|
|
Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
|
|
end if;
|
|
end if;
|
|
|
|
New_Scope (Scop);
|
|
Expand_Cleanup_Actions (Decl);
|
|
End_Scope;
|
|
|
|
Elmt := Next_Elmt (Elmt);
|
|
end loop;
|
|
end Cleanup_Scopes;
|
|
|
|
--------------------------
|
|
-- Has_Initialized_Type --
|
|
--------------------------
|
|
|
|
function Has_Initialized_Type (E : Entity_Id) return Boolean is
|
|
E_Body : constant Node_Id := Get_Subprogram_Body (E);
|
|
Decl : Node_Id;
|
|
|
|
begin
|
|
if No (E_Body) then -- imported subprogram
|
|
return False;
|
|
|
|
else
|
|
Decl := First (Declarations (E_Body));
|
|
|
|
while Present (Decl) loop
|
|
|
|
if Nkind (Decl) = N_Full_Type_Declaration
|
|
and then Present (Init_Proc (Defining_Identifier (Decl)))
|
|
then
|
|
return True;
|
|
end if;
|
|
|
|
Next (Decl);
|
|
end loop;
|
|
end if;
|
|
|
|
return False;
|
|
end Has_Initialized_Type;
|
|
|
|
----------------
|
|
-- Initialize --
|
|
----------------
|
|
|
|
procedure Initialize is
|
|
begin
|
|
Analyzing_Inlined_Bodies := False;
|
|
Pending_Descriptor.Init;
|
|
Pending_Instantiations.Init;
|
|
Inlined_Bodies.Init;
|
|
Successors.Init;
|
|
Inlined.Init;
|
|
|
|
for J in Hash_Headers'Range loop
|
|
Hash_Headers (J) := No_Subp;
|
|
end loop;
|
|
end Initialize;
|
|
|
|
------------------------
|
|
-- Instantiate_Bodies --
|
|
------------------------
|
|
|
|
-- Generic bodies contain all the non-local references, so an
|
|
-- instantiation does not need any more context than Standard
|
|
-- itself, even if the instantiation appears in an inner scope.
|
|
-- Generic associations have verified that the contract model is
|
|
-- satisfied, so that any error that may occur in the analysis of
|
|
-- the body is an internal error.
|
|
|
|
procedure Instantiate_Bodies is
|
|
J : Int;
|
|
Info : Pending_Body_Info;
|
|
|
|
begin
|
|
if Serious_Errors_Detected = 0 then
|
|
|
|
Expander_Active := (Operating_Mode = Opt.Generate_Code);
|
|
New_Scope (Standard_Standard);
|
|
To_Clean := New_Elmt_List;
|
|
|
|
if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
|
|
Start_Generic;
|
|
end if;
|
|
|
|
-- A body instantiation may generate additional instantiations, so
|
|
-- the following loop must scan to the end of a possibly expanding
|
|
-- set (that's why we can't simply use a FOR loop here).
|
|
|
|
J := 0;
|
|
|
|
while J <= Pending_Instantiations.Last
|
|
and then Serious_Errors_Detected = 0
|
|
loop
|
|
Info := Pending_Instantiations.Table (J);
|
|
|
|
-- If the instantiation node is absent, it has been removed
|
|
-- as part of unreachable code.
|
|
|
|
if No (Info.Inst_Node) then
|
|
null;
|
|
|
|
elsif Nkind (Info.Act_Decl) = N_Package_Declaration then
|
|
Instantiate_Package_Body (Info);
|
|
Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl));
|
|
|
|
else
|
|
Instantiate_Subprogram_Body (Info);
|
|
end if;
|
|
|
|
J := J + 1;
|
|
end loop;
|
|
|
|
-- Reset the table of instantiations. Additional instantiations
|
|
-- may be added through inlining, when additional bodies are
|
|
-- analyzed.
|
|
|
|
Pending_Instantiations.Init;
|
|
|
|
-- We can now complete the cleanup actions of scopes that contain
|
|
-- pending instantiations (skipped for generic units, since we
|
|
-- never need any cleanups in generic units).
|
|
-- pending instantiations.
|
|
|
|
if Expander_Active
|
|
and then not Is_Generic_Unit (Main_Unit_Entity)
|
|
then
|
|
Cleanup_Scopes;
|
|
|
|
-- Also generate subprogram descriptors that were delayed
|
|
|
|
for J in Pending_Descriptor.First .. Pending_Descriptor.Last loop
|
|
declare
|
|
Ent : constant Entity_Id := Pending_Descriptor.Table (J);
|
|
|
|
begin
|
|
if Is_Subprogram (Ent) then
|
|
Generate_Subprogram_Descriptor_For_Subprogram
|
|
(Get_Subprogram_Body (Ent), Ent);
|
|
|
|
elsif Ekind (Ent) = E_Package then
|
|
Generate_Subprogram_Descriptor_For_Package
|
|
(Parent (Declaration_Node (Ent)), Ent);
|
|
|
|
elsif Ekind (Ent) = E_Package_Body then
|
|
Generate_Subprogram_Descriptor_For_Package
|
|
(Declaration_Node (Ent), Ent);
|
|
end if;
|
|
end;
|
|
end loop;
|
|
|
|
elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
|
|
End_Generic;
|
|
end if;
|
|
|
|
Pop_Scope;
|
|
end if;
|
|
end Instantiate_Bodies;
|
|
|
|
---------------
|
|
-- Is_Nested --
|
|
---------------
|
|
|
|
function Is_Nested (E : Entity_Id) return Boolean is
|
|
Scop : Entity_Id := Scope (E);
|
|
|
|
begin
|
|
while Scop /= Standard_Standard loop
|
|
if Ekind (Scop) in Subprogram_Kind then
|
|
return True;
|
|
|
|
elsif Ekind (Scop) = E_Task_Type
|
|
or else Ekind (Scop) = E_Entry
|
|
or else Ekind (Scop) = E_Entry_Family then
|
|
return True;
|
|
end if;
|
|
|
|
Scop := Scope (Scop);
|
|
end loop;
|
|
|
|
return False;
|
|
end Is_Nested;
|
|
|
|
----------
|
|
-- Lock --
|
|
----------
|
|
|
|
procedure Lock is
|
|
begin
|
|
Pending_Instantiations.Locked := True;
|
|
Inlined_Bodies.Locked := True;
|
|
Successors.Locked := True;
|
|
Inlined.Locked := True;
|
|
Pending_Instantiations.Release;
|
|
Inlined_Bodies.Release;
|
|
Successors.Release;
|
|
Inlined.Release;
|
|
end Lock;
|
|
|
|
--------------------------
|
|
-- Remove_Dead_Instance --
|
|
--------------------------
|
|
|
|
procedure Remove_Dead_Instance (N : Node_Id) is
|
|
J : Int;
|
|
|
|
begin
|
|
J := 0;
|
|
|
|
while J <= Pending_Instantiations.Last loop
|
|
|
|
if Pending_Instantiations.Table (J).Inst_Node = N then
|
|
Pending_Instantiations.Table (J).Inst_Node := Empty;
|
|
return;
|
|
end if;
|
|
|
|
J := J + 1;
|
|
end loop;
|
|
end Remove_Dead_Instance;
|
|
|
|
------------------------
|
|
-- Scope_In_Main_Unit --
|
|
------------------------
|
|
|
|
function Scope_In_Main_Unit (Scop : Entity_Id) return Boolean is
|
|
Comp : Node_Id;
|
|
S : Entity_Id := Scop;
|
|
Ent : Entity_Id := Cunit_Entity (Main_Unit);
|
|
|
|
begin
|
|
-- The scope may be within the main unit, or it may be an ancestor
|
|
-- of the main unit, if the main unit is a child unit. In both cases
|
|
-- it makes no sense to process the body before the main unit. In
|
|
-- the second case, this may lead to circularities if a parent body
|
|
-- depends on a child spec, and we are analyzing the child.
|
|
|
|
while Scope (S) /= Standard_Standard
|
|
and then not Is_Child_Unit (S)
|
|
loop
|
|
S := Scope (S);
|
|
end loop;
|
|
|
|
Comp := Parent (S);
|
|
|
|
while Present (Comp)
|
|
and then Nkind (Comp) /= N_Compilation_Unit
|
|
loop
|
|
Comp := Parent (Comp);
|
|
end loop;
|
|
|
|
if Is_Child_Unit (Ent) then
|
|
|
|
while Present (Ent)
|
|
and then Is_Child_Unit (Ent)
|
|
loop
|
|
if Scope (Ent) = S then
|
|
return True;
|
|
end if;
|
|
|
|
Ent := Scope (Ent);
|
|
end loop;
|
|
end if;
|
|
|
|
return
|
|
Comp = Cunit (Main_Unit)
|
|
or else Comp = Library_Unit (Cunit (Main_Unit));
|
|
end Scope_In_Main_Unit;
|
|
|
|
end Inline;
|