2012-01-31 Tobias Burnus <burnus@net-b.de> PR fortran/52029 * class.c (gfc_find_derived_vtab): Mark _copy function as pure. 2012-01-31 Tobias Burnus <burnus@net-b.de> PR fortran/52029 * gfortran.dg/class_49.f90: New. From-SVN: r183770
943 lines
27 KiB
C
943 lines
27 KiB
C
/* Implementation of Fortran 2003 Polymorphism.
|
|
Copyright (C) 2009, 2010
|
|
Free Software Foundation, Inc.
|
|
Contributed by Paul Richard Thomas <pault@gcc.gnu.org>
|
|
and Janus Weil <janus@gcc.gnu.org>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
/* class.c -- This file contains the front end functions needed to service
|
|
the implementation of Fortran 2003 polymorphism and other
|
|
object-oriented features. */
|
|
|
|
|
|
/* Outline of the internal representation:
|
|
|
|
Each CLASS variable is encapsulated by a class container, which is a
|
|
structure with two fields:
|
|
* _data: A pointer to the actual data of the variable. This field has the
|
|
declared type of the class variable and its attributes
|
|
(pointer/allocatable/dimension/...).
|
|
* _vptr: A pointer to the vtable entry (see below) of the dynamic type.
|
|
|
|
For each derived type we set up a "vtable" entry, i.e. a structure with the
|
|
following fields:
|
|
* _hash: A hash value serving as a unique identifier for this type.
|
|
* _size: The size in bytes of the derived type.
|
|
* _extends: A pointer to the vtable entry of the parent derived type.
|
|
* _def_init: A pointer to a default initialized variable of this type.
|
|
* _copy: A procedure pointer to a copying procedure.
|
|
After these follow procedure pointer components for the specific
|
|
type-bound procedures. */
|
|
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "gfortran.h"
|
|
#include "constructor.h"
|
|
|
|
|
|
/* Insert a reference to the component of the given name.
|
|
Only to be used with CLASS containers and vtables. */
|
|
|
|
void
|
|
gfc_add_component_ref (gfc_expr *e, const char *name)
|
|
{
|
|
gfc_ref **tail = &(e->ref);
|
|
gfc_ref *next = NULL;
|
|
gfc_symbol *derived = e->symtree->n.sym->ts.u.derived;
|
|
while (*tail != NULL)
|
|
{
|
|
if ((*tail)->type == REF_COMPONENT)
|
|
{
|
|
if (strcmp ((*tail)->u.c.component->name, "_data") == 0
|
|
&& (*tail)->next
|
|
&& (*tail)->next->type == REF_ARRAY
|
|
&& (*tail)->next->next == NULL)
|
|
return;
|
|
derived = (*tail)->u.c.component->ts.u.derived;
|
|
}
|
|
if ((*tail)->type == REF_ARRAY && (*tail)->next == NULL)
|
|
break;
|
|
tail = &((*tail)->next);
|
|
}
|
|
if (*tail != NULL && strcmp (name, "_data") == 0)
|
|
next = *tail;
|
|
(*tail) = gfc_get_ref();
|
|
(*tail)->next = next;
|
|
(*tail)->type = REF_COMPONENT;
|
|
(*tail)->u.c.sym = derived;
|
|
(*tail)->u.c.component = gfc_find_component (derived, name, true, true);
|
|
gcc_assert((*tail)->u.c.component);
|
|
if (!next)
|
|
e->ts = (*tail)->u.c.component->ts;
|
|
}
|
|
|
|
|
|
/* This is used to add both the _data component reference and an array
|
|
reference to class expressions. Used in translation of intrinsic
|
|
array inquiry functions. */
|
|
|
|
void
|
|
gfc_add_class_array_ref (gfc_expr *e)
|
|
{
|
|
int rank = CLASS_DATA (e)->as->rank;
|
|
gfc_array_spec *as = CLASS_DATA (e)->as;
|
|
gfc_ref *ref = NULL;
|
|
gfc_add_component_ref (e, "_data");
|
|
e->rank = rank;
|
|
for (ref = e->ref; ref; ref = ref->next)
|
|
if (!ref->next)
|
|
break;
|
|
if (ref->type != REF_ARRAY)
|
|
{
|
|
ref->next = gfc_get_ref ();
|
|
ref = ref->next;
|
|
ref->type = REF_ARRAY;
|
|
ref->u.ar.type = AR_FULL;
|
|
ref->u.ar.as = as;
|
|
}
|
|
}
|
|
|
|
|
|
/* Unfortunately, class array expressions can appear in various conditions;
|
|
with and without both _data component and an arrayspec. This function
|
|
deals with that variability. The previous reference to 'ref' is to a
|
|
class array. */
|
|
|
|
static bool
|
|
class_array_ref_detected (gfc_ref *ref, bool *full_array)
|
|
{
|
|
bool no_data = false;
|
|
bool with_data = false;
|
|
|
|
/* An array reference with no _data component. */
|
|
if (ref && ref->type == REF_ARRAY
|
|
&& !ref->next
|
|
&& ref->u.ar.type != AR_ELEMENT)
|
|
{
|
|
if (full_array)
|
|
*full_array = ref->u.ar.type == AR_FULL;
|
|
no_data = true;
|
|
}
|
|
|
|
/* Cover cases where _data appears, with or without an array ref. */
|
|
if (ref && ref->type == REF_COMPONENT
|
|
&& strcmp (ref->u.c.component->name, "_data") == 0)
|
|
{
|
|
if (!ref->next)
|
|
{
|
|
with_data = true;
|
|
if (full_array)
|
|
*full_array = true;
|
|
}
|
|
else if (ref->next && ref->next->type == REF_ARRAY
|
|
&& !ref->next->next
|
|
&& ref->type == REF_COMPONENT
|
|
&& ref->next->type == REF_ARRAY
|
|
&& ref->next->u.ar.type != AR_ELEMENT)
|
|
{
|
|
with_data = true;
|
|
if (full_array)
|
|
*full_array = ref->next->u.ar.type == AR_FULL;
|
|
}
|
|
}
|
|
|
|
return no_data || with_data;
|
|
}
|
|
|
|
|
|
/* Returns true if the expression contains a reference to a class
|
|
array. Notice that class array elements return false. */
|
|
|
|
bool
|
|
gfc_is_class_array_ref (gfc_expr *e, bool *full_array)
|
|
{
|
|
gfc_ref *ref;
|
|
|
|
if (!e->rank)
|
|
return false;
|
|
|
|
if (full_array)
|
|
*full_array= false;
|
|
|
|
/* Is this a class array object? ie. Is the symbol of type class? */
|
|
if (e->symtree
|
|
&& e->symtree->n.sym->ts.type == BT_CLASS
|
|
&& CLASS_DATA (e->symtree->n.sym)
|
|
&& CLASS_DATA (e->symtree->n.sym)->attr.dimension
|
|
&& class_array_ref_detected (e->ref, full_array))
|
|
return true;
|
|
|
|
/* Or is this a class array component reference? */
|
|
for (ref = e->ref; ref; ref = ref->next)
|
|
{
|
|
if (ref->type == REF_COMPONENT
|
|
&& ref->u.c.component->ts.type == BT_CLASS
|
|
&& CLASS_DATA (ref->u.c.component)->attr.dimension
|
|
&& class_array_ref_detected (ref->next, full_array))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Returns true if the expression is a reference to a class
|
|
scalar. This function is necessary because such expressions
|
|
can be dressed with a reference to the _data component and so
|
|
have a type other than BT_CLASS. */
|
|
|
|
bool
|
|
gfc_is_class_scalar_expr (gfc_expr *e)
|
|
{
|
|
gfc_ref *ref;
|
|
|
|
if (e->rank)
|
|
return false;
|
|
|
|
/* Is this a class object? */
|
|
if (e->symtree
|
|
&& e->symtree->n.sym->ts.type == BT_CLASS
|
|
&& CLASS_DATA (e->symtree->n.sym)
|
|
&& !CLASS_DATA (e->symtree->n.sym)->attr.dimension
|
|
&& (e->ref == NULL
|
|
|| (strcmp (e->ref->u.c.component->name, "_data") == 0
|
|
&& e->ref->next == NULL)))
|
|
return true;
|
|
|
|
/* Or is the final reference BT_CLASS or _data? */
|
|
for (ref = e->ref; ref; ref = ref->next)
|
|
{
|
|
if (ref->type == REF_COMPONENT
|
|
&& ref->u.c.component->ts.type == BT_CLASS
|
|
&& CLASS_DATA (ref->u.c.component)
|
|
&& !CLASS_DATA (ref->u.c.component)->attr.dimension
|
|
&& (ref->next == NULL
|
|
|| (strcmp (ref->next->u.c.component->name, "_data") == 0
|
|
&& ref->next->next == NULL)))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Build a NULL initializer for CLASS pointers,
|
|
initializing the _data component to NULL and
|
|
the _vptr component to the declared type. */
|
|
|
|
gfc_expr *
|
|
gfc_class_null_initializer (gfc_typespec *ts)
|
|
{
|
|
gfc_expr *init;
|
|
gfc_component *comp;
|
|
|
|
init = gfc_get_structure_constructor_expr (ts->type, ts->kind,
|
|
&ts->u.derived->declared_at);
|
|
init->ts = *ts;
|
|
|
|
for (comp = ts->u.derived->components; comp; comp = comp->next)
|
|
{
|
|
gfc_constructor *ctor = gfc_constructor_get();
|
|
if (strcmp (comp->name, "_vptr") == 0)
|
|
ctor->expr = gfc_lval_expr_from_sym (gfc_find_derived_vtab (ts->u.derived));
|
|
else
|
|
ctor->expr = gfc_get_null_expr (NULL);
|
|
gfc_constructor_append (&init->value.constructor, ctor);
|
|
}
|
|
|
|
return init;
|
|
}
|
|
|
|
|
|
/* Create a unique string identifier for a derived type, composed of its name
|
|
and module name. This is used to construct unique names for the class
|
|
containers and vtab symbols. */
|
|
|
|
static void
|
|
get_unique_type_string (char *string, gfc_symbol *derived)
|
|
{
|
|
char dt_name[GFC_MAX_SYMBOL_LEN+1];
|
|
sprintf (dt_name, "%s", derived->name);
|
|
dt_name[0] = TOUPPER (dt_name[0]);
|
|
if (derived->module)
|
|
sprintf (string, "%s_%s", derived->module, dt_name);
|
|
else if (derived->ns->proc_name)
|
|
sprintf (string, "%s_%s", derived->ns->proc_name->name, dt_name);
|
|
else
|
|
sprintf (string, "_%s", dt_name);
|
|
}
|
|
|
|
|
|
/* A relative of 'get_unique_type_string' which makes sure the generated
|
|
string will not be too long (replacing it by a hash string if needed). */
|
|
|
|
static void
|
|
get_unique_hashed_string (char *string, gfc_symbol *derived)
|
|
{
|
|
char tmp[2*GFC_MAX_SYMBOL_LEN+2];
|
|
get_unique_type_string (&tmp[0], derived);
|
|
/* If string is too long, use hash value in hex representation (allow for
|
|
extra decoration, cf. gfc_build_class_symbol & gfc_find_derived_vtab).
|
|
We need space to for 15 characters "__class_" + symbol name + "_%d_%da",
|
|
where %d is the (co)rank which can be up to n = 15. */
|
|
if (strlen (tmp) > GFC_MAX_SYMBOL_LEN - 15)
|
|
{
|
|
int h = gfc_hash_value (derived);
|
|
sprintf (string, "%X", h);
|
|
}
|
|
else
|
|
strcpy (string, tmp);
|
|
}
|
|
|
|
|
|
/* Assign a hash value for a derived type. The algorithm is that of SDBM. */
|
|
|
|
unsigned int
|
|
gfc_hash_value (gfc_symbol *sym)
|
|
{
|
|
unsigned int hash = 0;
|
|
char c[2*(GFC_MAX_SYMBOL_LEN+1)];
|
|
int i, len;
|
|
|
|
get_unique_type_string (&c[0], sym);
|
|
len = strlen (c);
|
|
|
|
for (i = 0; i < len; i++)
|
|
hash = (hash << 6) + (hash << 16) - hash + c[i];
|
|
|
|
/* Return the hash but take the modulus for the sake of module read,
|
|
even though this slightly increases the chance of collision. */
|
|
return (hash % 100000000);
|
|
}
|
|
|
|
|
|
/* Build a polymorphic CLASS entity, using the symbol that comes from
|
|
build_sym. A CLASS entity is represented by an encapsulating type,
|
|
which contains the declared type as '_data' component, plus a pointer
|
|
component '_vptr' which determines the dynamic type. */
|
|
|
|
gfc_try
|
|
gfc_build_class_symbol (gfc_typespec *ts, symbol_attribute *attr,
|
|
gfc_array_spec **as, bool delayed_vtab)
|
|
{
|
|
char name[GFC_MAX_SYMBOL_LEN+1], tname[GFC_MAX_SYMBOL_LEN+1];
|
|
gfc_symbol *fclass;
|
|
gfc_symbol *vtab;
|
|
gfc_component *c;
|
|
|
|
if (as && *as && (*as)->type == AS_ASSUMED_SIZE)
|
|
{
|
|
gfc_error ("Assumed size polymorphic objects or components, such "
|
|
"as that at %C, have not yet been implemented");
|
|
return FAILURE;
|
|
}
|
|
|
|
if (attr->class_ok)
|
|
/* Class container has already been built. */
|
|
return SUCCESS;
|
|
|
|
attr->class_ok = attr->dummy || attr->pointer || attr->allocatable
|
|
|| attr->select_type_temporary;
|
|
|
|
if (!attr->class_ok)
|
|
/* We can not build the class container yet. */
|
|
return SUCCESS;
|
|
|
|
/* Determine the name of the encapsulating type. */
|
|
get_unique_hashed_string (tname, ts->u.derived);
|
|
if ((*as) && attr->allocatable)
|
|
sprintf (name, "__class_%s_%d_%da", tname, (*as)->rank, (*as)->corank);
|
|
else if ((*as))
|
|
sprintf (name, "__class_%s_%d_%d", tname, (*as)->rank, (*as)->corank);
|
|
else if (attr->pointer)
|
|
sprintf (name, "__class_%s_p", tname);
|
|
else if (attr->allocatable)
|
|
sprintf (name, "__class_%s_a", tname);
|
|
else
|
|
sprintf (name, "__class_%s", tname);
|
|
|
|
gfc_find_symbol (name, ts->u.derived->ns, 0, &fclass);
|
|
if (fclass == NULL)
|
|
{
|
|
gfc_symtree *st;
|
|
/* If not there, create a new symbol. */
|
|
fclass = gfc_new_symbol (name, ts->u.derived->ns);
|
|
st = gfc_new_symtree (&ts->u.derived->ns->sym_root, name);
|
|
st->n.sym = fclass;
|
|
gfc_set_sym_referenced (fclass);
|
|
fclass->refs++;
|
|
fclass->ts.type = BT_UNKNOWN;
|
|
fclass->attr.abstract = ts->u.derived->attr.abstract;
|
|
if (ts->u.derived->f2k_derived)
|
|
fclass->f2k_derived = gfc_get_namespace (NULL, 0);
|
|
if (gfc_add_flavor (&fclass->attr, FL_DERIVED,
|
|
NULL, &gfc_current_locus) == FAILURE)
|
|
return FAILURE;
|
|
|
|
/* Add component '_data'. */
|
|
if (gfc_add_component (fclass, "_data", &c) == FAILURE)
|
|
return FAILURE;
|
|
c->ts = *ts;
|
|
c->ts.type = BT_DERIVED;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->ts.u.derived = ts->u.derived;
|
|
c->attr.class_pointer = attr->pointer;
|
|
c->attr.pointer = attr->pointer || (attr->dummy && !attr->allocatable)
|
|
|| attr->select_type_temporary;
|
|
c->attr.allocatable = attr->allocatable;
|
|
c->attr.dimension = attr->dimension;
|
|
c->attr.codimension = attr->codimension;
|
|
c->attr.abstract = ts->u.derived->attr.abstract;
|
|
c->as = (*as);
|
|
c->initializer = NULL;
|
|
|
|
/* Add component '_vptr'. */
|
|
if (gfc_add_component (fclass, "_vptr", &c) == FAILURE)
|
|
return FAILURE;
|
|
c->ts.type = BT_DERIVED;
|
|
if (delayed_vtab)
|
|
c->ts.u.derived = NULL;
|
|
else
|
|
{
|
|
vtab = gfc_find_derived_vtab (ts->u.derived);
|
|
gcc_assert (vtab);
|
|
c->ts.u.derived = vtab->ts.u.derived;
|
|
}
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->attr.pointer = 1;
|
|
}
|
|
else if (!fclass->f2k_derived)
|
|
fclass->f2k_derived = gfc_get_namespace (NULL, 0);
|
|
|
|
/* Since the extension field is 8 bit wide, we can only have
|
|
up to 255 extension levels. */
|
|
if (ts->u.derived->attr.extension == 255)
|
|
{
|
|
gfc_error ("Maximum extension level reached with type '%s' at %L",
|
|
ts->u.derived->name, &ts->u.derived->declared_at);
|
|
return FAILURE;
|
|
}
|
|
|
|
fclass->attr.extension = ts->u.derived->attr.extension + 1;
|
|
fclass->attr.alloc_comp = ts->u.derived->attr.alloc_comp;
|
|
fclass->attr.is_class = 1;
|
|
ts->u.derived = fclass;
|
|
attr->allocatable = attr->pointer = attr->dimension = attr->codimension = 0;
|
|
(*as) = NULL;
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
/* Add a procedure pointer component to the vtype
|
|
to represent a specific type-bound procedure. */
|
|
|
|
static void
|
|
add_proc_comp (gfc_symbol *vtype, const char *name, gfc_typebound_proc *tb)
|
|
{
|
|
gfc_component *c;
|
|
|
|
if (tb->non_overridable)
|
|
return;
|
|
|
|
c = gfc_find_component (vtype, name, true, true);
|
|
|
|
if (c == NULL)
|
|
{
|
|
/* Add procedure component. */
|
|
if (gfc_add_component (vtype, name, &c) == FAILURE)
|
|
return;
|
|
|
|
if (!c->tb)
|
|
c->tb = XCNEW (gfc_typebound_proc);
|
|
*c->tb = *tb;
|
|
c->tb->ppc = 1;
|
|
c->attr.procedure = 1;
|
|
c->attr.proc_pointer = 1;
|
|
c->attr.flavor = FL_PROCEDURE;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->attr.external = 1;
|
|
c->attr.untyped = 1;
|
|
c->attr.if_source = IFSRC_IFBODY;
|
|
}
|
|
else if (c->attr.proc_pointer && c->tb)
|
|
{
|
|
*c->tb = *tb;
|
|
c->tb->ppc = 1;
|
|
}
|
|
|
|
if (tb->u.specific)
|
|
{
|
|
c->ts.interface = tb->u.specific->n.sym;
|
|
if (!tb->deferred)
|
|
c->initializer = gfc_get_variable_expr (tb->u.specific);
|
|
}
|
|
}
|
|
|
|
|
|
/* Add all specific type-bound procedures in the symtree 'st' to a vtype. */
|
|
|
|
static void
|
|
add_procs_to_declared_vtab1 (gfc_symtree *st, gfc_symbol *vtype)
|
|
{
|
|
if (!st)
|
|
return;
|
|
|
|
if (st->left)
|
|
add_procs_to_declared_vtab1 (st->left, vtype);
|
|
|
|
if (st->right)
|
|
add_procs_to_declared_vtab1 (st->right, vtype);
|
|
|
|
if (st->n.tb && !st->n.tb->error
|
|
&& !st->n.tb->is_generic && st->n.tb->u.specific)
|
|
add_proc_comp (vtype, st->name, st->n.tb);
|
|
}
|
|
|
|
|
|
/* Copy procedure pointers components from the parent type. */
|
|
|
|
static void
|
|
copy_vtab_proc_comps (gfc_symbol *declared, gfc_symbol *vtype)
|
|
{
|
|
gfc_component *cmp;
|
|
gfc_symbol *vtab;
|
|
|
|
vtab = gfc_find_derived_vtab (declared);
|
|
|
|
for (cmp = vtab->ts.u.derived->components; cmp; cmp = cmp->next)
|
|
{
|
|
if (gfc_find_component (vtype, cmp->name, true, true))
|
|
continue;
|
|
|
|
add_proc_comp (vtype, cmp->name, cmp->tb);
|
|
}
|
|
}
|
|
|
|
|
|
/* Add procedure pointers for all type-bound procedures to a vtab. */
|
|
|
|
static void
|
|
add_procs_to_declared_vtab (gfc_symbol *derived, gfc_symbol *vtype)
|
|
{
|
|
gfc_symbol* super_type;
|
|
|
|
super_type = gfc_get_derived_super_type (derived);
|
|
|
|
if (super_type && (super_type != derived))
|
|
{
|
|
/* Make sure that the PPCs appear in the same order as in the parent. */
|
|
copy_vtab_proc_comps (super_type, vtype);
|
|
/* Only needed to get the PPC initializers right. */
|
|
add_procs_to_declared_vtab (super_type, vtype);
|
|
}
|
|
|
|
if (derived->f2k_derived && derived->f2k_derived->tb_sym_root)
|
|
add_procs_to_declared_vtab1 (derived->f2k_derived->tb_sym_root, vtype);
|
|
|
|
if (derived->f2k_derived && derived->f2k_derived->tb_uop_root)
|
|
add_procs_to_declared_vtab1 (derived->f2k_derived->tb_uop_root, vtype);
|
|
}
|
|
|
|
|
|
/* Find (or generate) the symbol for a derived type's vtab. */
|
|
|
|
gfc_symbol *
|
|
gfc_find_derived_vtab (gfc_symbol *derived)
|
|
{
|
|
gfc_namespace *ns;
|
|
gfc_symbol *vtab = NULL, *vtype = NULL, *found_sym = NULL, *def_init = NULL;
|
|
gfc_symbol *copy = NULL, *src = NULL, *dst = NULL;
|
|
|
|
/* Find the top-level namespace (MODULE or PROGRAM). */
|
|
for (ns = gfc_current_ns; ns; ns = ns->parent)
|
|
if (!ns->parent)
|
|
break;
|
|
|
|
/* If the type is a class container, use the underlying derived type. */
|
|
if (derived->attr.is_class)
|
|
derived = gfc_get_derived_super_type (derived);
|
|
|
|
if (ns)
|
|
{
|
|
char name[GFC_MAX_SYMBOL_LEN+1], tname[GFC_MAX_SYMBOL_LEN+1];
|
|
|
|
get_unique_hashed_string (tname, derived);
|
|
sprintf (name, "__vtab_%s", tname);
|
|
|
|
/* Look for the vtab symbol in various namespaces. */
|
|
gfc_find_symbol (name, gfc_current_ns, 0, &vtab);
|
|
if (vtab == NULL)
|
|
gfc_find_symbol (name, ns, 0, &vtab);
|
|
if (vtab == NULL)
|
|
gfc_find_symbol (name, derived->ns, 0, &vtab);
|
|
|
|
if (vtab == NULL)
|
|
{
|
|
gfc_get_symbol (name, ns, &vtab);
|
|
vtab->ts.type = BT_DERIVED;
|
|
if (gfc_add_flavor (&vtab->attr, FL_VARIABLE, NULL,
|
|
&gfc_current_locus) == FAILURE)
|
|
goto cleanup;
|
|
vtab->attr.target = 1;
|
|
vtab->attr.save = SAVE_IMPLICIT;
|
|
vtab->attr.vtab = 1;
|
|
vtab->attr.access = ACCESS_PUBLIC;
|
|
gfc_set_sym_referenced (vtab);
|
|
sprintf (name, "__vtype_%s", tname);
|
|
|
|
gfc_find_symbol (name, ns, 0, &vtype);
|
|
if (vtype == NULL)
|
|
{
|
|
gfc_component *c;
|
|
gfc_symbol *parent = NULL, *parent_vtab = NULL;
|
|
|
|
gfc_get_symbol (name, ns, &vtype);
|
|
if (gfc_add_flavor (&vtype->attr, FL_DERIVED,
|
|
NULL, &gfc_current_locus) == FAILURE)
|
|
goto cleanup;
|
|
vtype->attr.access = ACCESS_PUBLIC;
|
|
vtype->attr.vtype = 1;
|
|
gfc_set_sym_referenced (vtype);
|
|
|
|
/* Add component '_hash'. */
|
|
if (gfc_add_component (vtype, "_hash", &c) == FAILURE)
|
|
goto cleanup;
|
|
c->ts.type = BT_INTEGER;
|
|
c->ts.kind = 4;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->initializer = gfc_get_int_expr (gfc_default_integer_kind,
|
|
NULL, derived->hash_value);
|
|
|
|
/* Add component '_size'. */
|
|
if (gfc_add_component (vtype, "_size", &c) == FAILURE)
|
|
goto cleanup;
|
|
c->ts.type = BT_INTEGER;
|
|
c->ts.kind = 4;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
/* Remember the derived type in ts.u.derived,
|
|
so that the correct initializer can be set later on
|
|
(in gfc_conv_structure). */
|
|
c->ts.u.derived = derived;
|
|
c->initializer = gfc_get_int_expr (gfc_default_integer_kind,
|
|
NULL, 0);
|
|
|
|
/* Add component _extends. */
|
|
if (gfc_add_component (vtype, "_extends", &c) == FAILURE)
|
|
goto cleanup;
|
|
c->attr.pointer = 1;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
parent = gfc_get_derived_super_type (derived);
|
|
if (parent)
|
|
{
|
|
parent_vtab = gfc_find_derived_vtab (parent);
|
|
c->ts.type = BT_DERIVED;
|
|
c->ts.u.derived = parent_vtab->ts.u.derived;
|
|
c->initializer = gfc_get_expr ();
|
|
c->initializer->expr_type = EXPR_VARIABLE;
|
|
gfc_find_sym_tree (parent_vtab->name, parent_vtab->ns,
|
|
0, &c->initializer->symtree);
|
|
}
|
|
else
|
|
{
|
|
c->ts.type = BT_DERIVED;
|
|
c->ts.u.derived = vtype;
|
|
c->initializer = gfc_get_null_expr (NULL);
|
|
}
|
|
|
|
if (derived->components == NULL && !derived->attr.zero_comp)
|
|
{
|
|
/* At this point an error must have occurred.
|
|
Prevent further errors on the vtype components. */
|
|
found_sym = vtab;
|
|
goto have_vtype;
|
|
}
|
|
|
|
/* Add component _def_init. */
|
|
if (gfc_add_component (vtype, "_def_init", &c) == FAILURE)
|
|
goto cleanup;
|
|
c->attr.pointer = 1;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->ts.type = BT_DERIVED;
|
|
c->ts.u.derived = derived;
|
|
if (derived->attr.abstract)
|
|
c->initializer = gfc_get_null_expr (NULL);
|
|
else
|
|
{
|
|
/* Construct default initialization variable. */
|
|
sprintf (name, "__def_init_%s", tname);
|
|
gfc_get_symbol (name, ns, &def_init);
|
|
def_init->attr.target = 1;
|
|
def_init->attr.save = SAVE_IMPLICIT;
|
|
def_init->attr.access = ACCESS_PUBLIC;
|
|
def_init->attr.flavor = FL_VARIABLE;
|
|
gfc_set_sym_referenced (def_init);
|
|
def_init->ts.type = BT_DERIVED;
|
|
def_init->ts.u.derived = derived;
|
|
def_init->value = gfc_default_initializer (&def_init->ts);
|
|
|
|
c->initializer = gfc_lval_expr_from_sym (def_init);
|
|
}
|
|
|
|
/* Add component _copy. */
|
|
if (gfc_add_component (vtype, "_copy", &c) == FAILURE)
|
|
goto cleanup;
|
|
c->attr.proc_pointer = 1;
|
|
c->attr.access = ACCESS_PRIVATE;
|
|
c->tb = XCNEW (gfc_typebound_proc);
|
|
c->tb->ppc = 1;
|
|
if (derived->attr.abstract)
|
|
c->initializer = gfc_get_null_expr (NULL);
|
|
else
|
|
{
|
|
/* Set up namespace. */
|
|
gfc_namespace *sub_ns = gfc_get_namespace (ns, 0);
|
|
sub_ns->sibling = ns->contained;
|
|
ns->contained = sub_ns;
|
|
sub_ns->resolved = 1;
|
|
/* Set up procedure symbol. */
|
|
sprintf (name, "__copy_%s", tname);
|
|
gfc_get_symbol (name, sub_ns, ©);
|
|
sub_ns->proc_name = copy;
|
|
copy->attr.flavor = FL_PROCEDURE;
|
|
copy->attr.subroutine = 1;
|
|
copy->attr.pure = 1;
|
|
copy->attr.if_source = IFSRC_DECL;
|
|
/* This is elemental so that arrays are automatically
|
|
treated correctly by the scalarizer. */
|
|
copy->attr.elemental = 1;
|
|
if (ns->proc_name->attr.flavor == FL_MODULE)
|
|
copy->module = ns->proc_name->name;
|
|
gfc_set_sym_referenced (copy);
|
|
/* Set up formal arguments. */
|
|
gfc_get_symbol ("src", sub_ns, &src);
|
|
src->ts.type = BT_DERIVED;
|
|
src->ts.u.derived = derived;
|
|
src->attr.flavor = FL_VARIABLE;
|
|
src->attr.dummy = 1;
|
|
src->attr.intent = INTENT_IN;
|
|
gfc_set_sym_referenced (src);
|
|
copy->formal = gfc_get_formal_arglist ();
|
|
copy->formal->sym = src;
|
|
gfc_get_symbol ("dst", sub_ns, &dst);
|
|
dst->ts.type = BT_DERIVED;
|
|
dst->ts.u.derived = derived;
|
|
dst->attr.flavor = FL_VARIABLE;
|
|
dst->attr.dummy = 1;
|
|
dst->attr.intent = INTENT_OUT;
|
|
gfc_set_sym_referenced (dst);
|
|
copy->formal->next = gfc_get_formal_arglist ();
|
|
copy->formal->next->sym = dst;
|
|
/* Set up code. */
|
|
sub_ns->code = gfc_get_code ();
|
|
sub_ns->code->op = EXEC_INIT_ASSIGN;
|
|
sub_ns->code->expr1 = gfc_lval_expr_from_sym (dst);
|
|
sub_ns->code->expr2 = gfc_lval_expr_from_sym (src);
|
|
/* Set initializer. */
|
|
c->initializer = gfc_lval_expr_from_sym (copy);
|
|
c->ts.interface = copy;
|
|
}
|
|
|
|
/* Add procedure pointers for type-bound procedures. */
|
|
add_procs_to_declared_vtab (derived, vtype);
|
|
}
|
|
|
|
have_vtype:
|
|
vtab->ts.u.derived = vtype;
|
|
vtab->value = gfc_default_initializer (&vtab->ts);
|
|
}
|
|
}
|
|
|
|
found_sym = vtab;
|
|
|
|
cleanup:
|
|
/* It is unexpected to have some symbols added at resolution or code
|
|
generation time. We commit the changes in order to keep a clean state. */
|
|
if (found_sym)
|
|
{
|
|
gfc_commit_symbol (vtab);
|
|
if (vtype)
|
|
gfc_commit_symbol (vtype);
|
|
if (def_init)
|
|
gfc_commit_symbol (def_init);
|
|
if (copy)
|
|
gfc_commit_symbol (copy);
|
|
if (src)
|
|
gfc_commit_symbol (src);
|
|
if (dst)
|
|
gfc_commit_symbol (dst);
|
|
}
|
|
else
|
|
gfc_undo_symbols ();
|
|
|
|
return found_sym;
|
|
}
|
|
|
|
|
|
/* General worker function to find either a type-bound procedure or a
|
|
type-bound user operator. */
|
|
|
|
static gfc_symtree*
|
|
find_typebound_proc_uop (gfc_symbol* derived, gfc_try* t,
|
|
const char* name, bool noaccess, bool uop,
|
|
locus* where)
|
|
{
|
|
gfc_symtree* res;
|
|
gfc_symtree* root;
|
|
|
|
/* Set correct symbol-root. */
|
|
gcc_assert (derived->f2k_derived);
|
|
root = (uop ? derived->f2k_derived->tb_uop_root
|
|
: derived->f2k_derived->tb_sym_root);
|
|
|
|
/* Set default to failure. */
|
|
if (t)
|
|
*t = FAILURE;
|
|
|
|
/* Try to find it in the current type's namespace. */
|
|
res = gfc_find_symtree (root, name);
|
|
if (res && res->n.tb && !res->n.tb->error)
|
|
{
|
|
/* We found one. */
|
|
if (t)
|
|
*t = SUCCESS;
|
|
|
|
if (!noaccess && derived->attr.use_assoc
|
|
&& res->n.tb->access == ACCESS_PRIVATE)
|
|
{
|
|
if (where)
|
|
gfc_error ("'%s' of '%s' is PRIVATE at %L",
|
|
name, derived->name, where);
|
|
if (t)
|
|
*t = FAILURE;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Otherwise, recurse on parent type if derived is an extension. */
|
|
if (derived->attr.extension)
|
|
{
|
|
gfc_symbol* super_type;
|
|
super_type = gfc_get_derived_super_type (derived);
|
|
gcc_assert (super_type);
|
|
|
|
return find_typebound_proc_uop (super_type, t, name,
|
|
noaccess, uop, where);
|
|
}
|
|
|
|
/* Nothing found. */
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Find a type-bound procedure or user operator by name for a derived-type
|
|
(looking recursively through the super-types). */
|
|
|
|
gfc_symtree*
|
|
gfc_find_typebound_proc (gfc_symbol* derived, gfc_try* t,
|
|
const char* name, bool noaccess, locus* where)
|
|
{
|
|
return find_typebound_proc_uop (derived, t, name, noaccess, false, where);
|
|
}
|
|
|
|
gfc_symtree*
|
|
gfc_find_typebound_user_op (gfc_symbol* derived, gfc_try* t,
|
|
const char* name, bool noaccess, locus* where)
|
|
{
|
|
return find_typebound_proc_uop (derived, t, name, noaccess, true, where);
|
|
}
|
|
|
|
|
|
/* Find a type-bound intrinsic operator looking recursively through the
|
|
super-type hierarchy. */
|
|
|
|
gfc_typebound_proc*
|
|
gfc_find_typebound_intrinsic_op (gfc_symbol* derived, gfc_try* t,
|
|
gfc_intrinsic_op op, bool noaccess,
|
|
locus* where)
|
|
{
|
|
gfc_typebound_proc* res;
|
|
|
|
/* Set default to failure. */
|
|
if (t)
|
|
*t = FAILURE;
|
|
|
|
/* Try to find it in the current type's namespace. */
|
|
if (derived->f2k_derived)
|
|
res = derived->f2k_derived->tb_op[op];
|
|
else
|
|
res = NULL;
|
|
|
|
/* Check access. */
|
|
if (res && !res->error)
|
|
{
|
|
/* We found one. */
|
|
if (t)
|
|
*t = SUCCESS;
|
|
|
|
if (!noaccess && derived->attr.use_assoc
|
|
&& res->access == ACCESS_PRIVATE)
|
|
{
|
|
if (where)
|
|
gfc_error ("'%s' of '%s' is PRIVATE at %L",
|
|
gfc_op2string (op), derived->name, where);
|
|
if (t)
|
|
*t = FAILURE;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Otherwise, recurse on parent type if derived is an extension. */
|
|
if (derived->attr.extension)
|
|
{
|
|
gfc_symbol* super_type;
|
|
super_type = gfc_get_derived_super_type (derived);
|
|
gcc_assert (super_type);
|
|
|
|
return gfc_find_typebound_intrinsic_op (super_type, t, op,
|
|
noaccess, where);
|
|
}
|
|
|
|
/* Nothing found. */
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Get a typebound-procedure symtree or create and insert it if not yet
|
|
present. This is like a very simplified version of gfc_get_sym_tree for
|
|
tbp-symtrees rather than regular ones. */
|
|
|
|
gfc_symtree*
|
|
gfc_get_tbp_symtree (gfc_symtree **root, const char *name)
|
|
{
|
|
gfc_symtree *result;
|
|
|
|
result = gfc_find_symtree (*root, name);
|
|
if (!result)
|
|
{
|
|
result = gfc_new_symtree (root, name);
|
|
gcc_assert (result);
|
|
result->n.tb = NULL;
|
|
}
|
|
|
|
return result;
|
|
}
|