* gimplify.c (gimplify_expr) <case CONST_DECL>: Don't replace with DECL_INITIAL if fb_lvalue. * tree-gimple.c (is_gimple_id): Add CONST_DECL. * tree-pretty-print.c (dump_decl_name): Dump unnamed CONST_DECL with <Cxxx>. * tree-ssa-ccp.c (maybe_fold_stmt_indirect): Fold CONST_DECL. fortran/ * trans-expr.c (gfc_conv_expr_reference): Create a CONST_DECL for TREE_CONSTANTs. testsuite/ * gfortran.fortran-torture/execute/intrinsic_rrspacing.f90: Fix write to constant argument. * gfortran.fortran-torture/execute/intrinsic_scale.f90: Likewise. From-SVN: r85365
1969 lines
50 KiB
C
1969 lines
50 KiB
C
/* Expression translation
|
|
Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
and Steven Bosscher <s.bosscher@student.tudelft.nl>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING. If not, write to the Free
|
|
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
|
02111-1307, USA. */
|
|
|
|
/* trans-expr.c-- generate GENERIC trees for gfc_expr. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tree.h"
|
|
#include "convert.h"
|
|
#include <stdio.h>
|
|
#include "ggc.h"
|
|
#include "toplev.h"
|
|
#include "real.h"
|
|
#include "tree-gimple.h"
|
|
#include "flags.h"
|
|
#include <gmp.h>
|
|
#include <assert.h>
|
|
#include "gfortran.h"
|
|
#include "trans.h"
|
|
#include "trans-const.h"
|
|
#include "trans-types.h"
|
|
#include "trans-array.h"
|
|
/* Only for gfc_trans_assign and gfc_trans_pointer_assign. */
|
|
#include "trans-stmt.h"
|
|
|
|
|
|
/* Copy the scalarization loop variables. */
|
|
|
|
static void
|
|
gfc_copy_se_loopvars (gfc_se * dest, gfc_se * src)
|
|
{
|
|
dest->ss = src->ss;
|
|
dest->loop = src->loop;
|
|
}
|
|
|
|
|
|
/* Initialise a simple expression holder.
|
|
|
|
Care must be taken when multiple se are created with the same parent.
|
|
The child se must be kept in sync. The easiest way is to delay creation
|
|
of a child se until after after the previous se has been translated. */
|
|
|
|
void
|
|
gfc_init_se (gfc_se * se, gfc_se * parent)
|
|
{
|
|
memset (se, 0, sizeof (gfc_se));
|
|
gfc_init_block (&se->pre);
|
|
gfc_init_block (&se->post);
|
|
|
|
se->parent = parent;
|
|
|
|
if (parent)
|
|
gfc_copy_se_loopvars (se, parent);
|
|
}
|
|
|
|
|
|
/* Advances to the next SS in the chain. Use this rather than setting
|
|
se->ss = se->ss->next because all the parent needs to be kept in sync.
|
|
See gfc_init_se. */
|
|
|
|
void
|
|
gfc_advance_se_ss_chain (gfc_se * se)
|
|
{
|
|
gfc_se *p;
|
|
|
|
assert (se != NULL && se->ss != NULL && se->ss != gfc_ss_terminator);
|
|
|
|
p = se;
|
|
/* Walk down the parent chain. */
|
|
while (p != NULL)
|
|
{
|
|
/* Simple consistancy check. */
|
|
assert (p->parent == NULL || p->parent->ss == p->ss);
|
|
|
|
p->ss = p->ss->next;
|
|
|
|
p = p->parent;
|
|
}
|
|
}
|
|
|
|
|
|
/* Ensures the result of the expression as either a temporary variable
|
|
or a constant so that it can be used repeatedly. */
|
|
|
|
void
|
|
gfc_make_safe_expr (gfc_se * se)
|
|
{
|
|
tree var;
|
|
|
|
if (TREE_CODE_CLASS (TREE_CODE (se->expr)) == 'c')
|
|
return;
|
|
|
|
/* we need a temporary for this result */
|
|
var = gfc_create_var (TREE_TYPE (se->expr), NULL);
|
|
gfc_add_modify_expr (&se->pre, var, se->expr);
|
|
se->expr = var;
|
|
}
|
|
|
|
|
|
/* Return an expression which determines if a dummy parameter is present. */
|
|
|
|
tree
|
|
gfc_conv_expr_present (gfc_symbol * sym)
|
|
{
|
|
tree decl;
|
|
|
|
assert (sym->attr.dummy && sym->attr.optional);
|
|
|
|
decl = gfc_get_symbol_decl (sym);
|
|
if (TREE_CODE (decl) != PARM_DECL)
|
|
{
|
|
/* Array parameters use a temporary descriptor, we want the real
|
|
parameter. */
|
|
assert (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (decl))
|
|
|| GFC_ARRAY_TYPE_P (TREE_TYPE (decl)));
|
|
decl = GFC_DECL_SAVED_DESCRIPTOR (decl);
|
|
}
|
|
return build (NE_EXPR, boolean_type_node, decl,
|
|
fold_convert (TREE_TYPE (decl), null_pointer_node));
|
|
}
|
|
|
|
|
|
/* Generate code to initialize a string length variable. Returns the
|
|
value. */
|
|
|
|
void
|
|
gfc_trans_init_string_length (gfc_charlen * cl, stmtblock_t * pblock)
|
|
{
|
|
gfc_se se;
|
|
tree tmp;
|
|
|
|
gfc_init_se (&se, NULL);
|
|
gfc_conv_expr_type (&se, cl->length, gfc_strlen_type_node);
|
|
gfc_add_block_to_block (pblock, &se.pre);
|
|
|
|
tmp = cl->backend_decl;
|
|
gfc_add_modify_expr (pblock, tmp, se.expr);
|
|
}
|
|
|
|
static void
|
|
gfc_conv_substring (gfc_se * se, gfc_ref * ref, int kind)
|
|
{
|
|
tree tmp;
|
|
tree type;
|
|
tree var;
|
|
gfc_se start;
|
|
gfc_se end;
|
|
|
|
type = gfc_get_character_type (kind, ref->u.ss.length);
|
|
type = build_pointer_type (type);
|
|
|
|
var = NULL_TREE;
|
|
gfc_init_se (&start, se);
|
|
gfc_conv_expr_type (&start, ref->u.ss.start, gfc_strlen_type_node);
|
|
gfc_add_block_to_block (&se->pre, &start.pre);
|
|
|
|
if (integer_onep (start.expr))
|
|
gfc_conv_string_parameter (se);
|
|
else
|
|
{
|
|
/* Change the start of the string. */
|
|
if (TYPE_STRING_FLAG (TREE_TYPE (se->expr)))
|
|
tmp = se->expr;
|
|
else
|
|
tmp = gfc_build_indirect_ref (se->expr);
|
|
tmp = gfc_build_array_ref (tmp, start.expr);
|
|
se->expr = gfc_build_addr_expr (type, tmp);
|
|
}
|
|
|
|
/* Length = end + 1 - start. */
|
|
gfc_init_se (&end, se);
|
|
if (ref->u.ss.end == NULL)
|
|
end.expr = se->string_length;
|
|
else
|
|
{
|
|
gfc_conv_expr_type (&end, ref->u.ss.end, gfc_strlen_type_node);
|
|
gfc_add_block_to_block (&se->pre, &end.pre);
|
|
}
|
|
tmp =
|
|
build (MINUS_EXPR, gfc_strlen_type_node,
|
|
fold_convert (gfc_strlen_type_node, integer_one_node),
|
|
start.expr);
|
|
tmp = build (PLUS_EXPR, gfc_strlen_type_node, end.expr, tmp);
|
|
se->string_length = fold (tmp);
|
|
}
|
|
|
|
|
|
/* Convert a derived type component reference. */
|
|
|
|
static void
|
|
gfc_conv_component_ref (gfc_se * se, gfc_ref * ref)
|
|
{
|
|
gfc_component *c;
|
|
tree tmp;
|
|
tree decl;
|
|
tree field;
|
|
|
|
c = ref->u.c.component;
|
|
|
|
assert (c->backend_decl);
|
|
|
|
field = c->backend_decl;
|
|
assert (TREE_CODE (field) == FIELD_DECL);
|
|
decl = se->expr;
|
|
tmp = build (COMPONENT_REF, TREE_TYPE (field), decl, field, NULL_TREE);
|
|
|
|
se->expr = tmp;
|
|
|
|
if (c->ts.type == BT_CHARACTER)
|
|
{
|
|
tmp = c->ts.cl->backend_decl;
|
|
assert (tmp);
|
|
if (!INTEGER_CST_P (tmp))
|
|
gfc_todo_error ("Unknown length character component");
|
|
se->string_length = tmp;
|
|
}
|
|
|
|
if (c->pointer && c->dimension == 0)
|
|
se->expr = gfc_build_indirect_ref (se->expr);
|
|
}
|
|
|
|
|
|
/* Return the contents of a variable. Also handles reference/pointer
|
|
variables (all Fortran pointer references are implicit). */
|
|
|
|
static void
|
|
gfc_conv_variable (gfc_se * se, gfc_expr * expr)
|
|
{
|
|
gfc_ref *ref;
|
|
gfc_symbol *sym;
|
|
|
|
sym = expr->symtree->n.sym;
|
|
if (se->ss != NULL)
|
|
{
|
|
/* Check that something hasn't gone horribly wrong. */
|
|
assert (se->ss != gfc_ss_terminator);
|
|
assert (se->ss->expr == expr);
|
|
|
|
/* A scalarized term. We already know the descriptor. */
|
|
se->expr = se->ss->data.info.descriptor;
|
|
ref = se->ss->data.info.ref;
|
|
}
|
|
else
|
|
{
|
|
se->expr = gfc_get_symbol_decl (sym);
|
|
|
|
/* Procedure actual arguments. */
|
|
if (sym->attr.flavor == FL_PROCEDURE
|
|
&& se->expr != current_function_decl)
|
|
{
|
|
assert (se->want_pointer);
|
|
if (!sym->attr.dummy)
|
|
{
|
|
assert (TREE_CODE (se->expr) == FUNCTION_DECL);
|
|
se->expr = gfc_build_addr_expr (NULL, se->expr);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Special case for assigning the return value of a function.
|
|
Self recursive functions must have an explicit return value. */
|
|
if (se->expr == current_function_decl && sym->attr.function
|
|
&& (sym->result == sym))
|
|
{
|
|
se->expr = gfc_get_fake_result_decl (sym);
|
|
}
|
|
|
|
/* Dereference scalar dummy variables. */
|
|
if (sym->attr.dummy
|
|
&& sym->ts.type != BT_CHARACTER
|
|
&& !sym->attr.dimension)
|
|
se->expr = gfc_build_indirect_ref (se->expr);
|
|
|
|
/* Dereference pointer variables. */
|
|
if ((sym->attr.pointer || sym->attr.allocatable)
|
|
&& (sym->attr.dummy
|
|
|| sym->attr.result
|
|
|| sym->attr.function
|
|
|| !sym->attr.dimension)
|
|
&& sym->ts.type != BT_CHARACTER)
|
|
se->expr = gfc_build_indirect_ref (se->expr);
|
|
|
|
ref = expr->ref;
|
|
}
|
|
|
|
/* For character variables, also get the length. */
|
|
if (sym->ts.type == BT_CHARACTER)
|
|
{
|
|
se->string_length = sym->ts.cl->backend_decl;
|
|
assert (se->string_length);
|
|
}
|
|
|
|
while (ref)
|
|
{
|
|
switch (ref->type)
|
|
{
|
|
case REF_ARRAY:
|
|
/* Return the descriptor if that's what we want and this is an array
|
|
section reference. */
|
|
if (se->descriptor_only && ref->u.ar.type != AR_ELEMENT)
|
|
return;
|
|
/* TODO: Pointers to single elements of array sections, eg elemental subs. */
|
|
/* Return the descriptor for array pointers and allocations. */
|
|
if (se->want_pointer
|
|
&& ref->next == NULL && (se->descriptor_only))
|
|
return;
|
|
|
|
gfc_conv_array_ref (se, &ref->u.ar);
|
|
/* Return a pointer to an element. */
|
|
break;
|
|
|
|
case REF_COMPONENT:
|
|
gfc_conv_component_ref (se, ref);
|
|
break;
|
|
|
|
case REF_SUBSTRING:
|
|
gfc_conv_substring (se, ref, expr->ts.kind);
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
ref = ref->next;
|
|
}
|
|
/* Pointer assignment, allocation or pass by reference. Arrays are handled
|
|
seperately. */
|
|
if (se->want_pointer)
|
|
{
|
|
if (expr->ts.type == BT_CHARACTER)
|
|
gfc_conv_string_parameter (se);
|
|
else
|
|
se->expr = gfc_build_addr_expr (NULL, se->expr);
|
|
}
|
|
if (se->ss != NULL)
|
|
gfc_advance_se_ss_chain (se);
|
|
}
|
|
|
|
|
|
/* Unary ops are easy... Or they would be if ! was a valid op. */
|
|
|
|
static void
|
|
gfc_conv_unary_op (enum tree_code code, gfc_se * se, gfc_expr * expr)
|
|
{
|
|
gfc_se operand;
|
|
tree type;
|
|
|
|
assert (expr->ts.type != BT_CHARACTER);
|
|
/* Initialize the operand. */
|
|
gfc_init_se (&operand, se);
|
|
gfc_conv_expr_val (&operand, expr->op1);
|
|
gfc_add_block_to_block (&se->pre, &operand.pre);
|
|
|
|
type = gfc_typenode_for_spec (&expr->ts);
|
|
|
|
/* TRUTH_NOT_EXPR is not a "true" unary operator in GCC.
|
|
We must convert it to a compare to 0 (e.g. EQ_EXPR (op1, 0)).
|
|
All other unary operators have an equivalent GIMPLE unary operator */
|
|
if (code == TRUTH_NOT_EXPR)
|
|
se->expr = build (EQ_EXPR, type, operand.expr,
|
|
convert (type, integer_zero_node));
|
|
else
|
|
se->expr = build1 (code, type, operand.expr);
|
|
|
|
}
|
|
|
|
/* Expand power operator to optimal multiplications when a value is raised
|
|
to an constant integer n. See section 4.6.3, "Evaluation of Powers" of
|
|
Donald E. Knuth, "Seminumerical Algorithms", Vol. 2, "The Art of Computer
|
|
Programming", 3rd Edition, 1998. */
|
|
|
|
/* This code is mostly duplicated from expand_powi in the backend.
|
|
We establish the "optimal power tree" lookup table with the defined size.
|
|
The items in the table are the exponents used to calculate the index
|
|
exponents. Any integer n less than the value can get an "addition chain",
|
|
with the first node being one. */
|
|
#define POWI_TABLE_SIZE 256
|
|
|
|
/* The table is from Builtins.c. */
|
|
static const unsigned char powi_table[POWI_TABLE_SIZE] =
|
|
{
|
|
0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
|
|
4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
|
|
8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
|
|
12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
|
|
16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
|
|
20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
|
|
24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
|
|
28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
|
|
32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
|
|
36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
|
|
40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
|
|
44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
|
|
48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
|
|
52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
|
|
56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
|
|
60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
|
|
64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
|
|
68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
|
|
72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
|
|
76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
|
|
80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
|
|
84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
|
|
88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
|
|
92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
|
|
96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
|
|
100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
|
|
104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
|
|
108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
|
|
112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
|
|
116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
|
|
120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
|
|
124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
|
|
};
|
|
|
|
/* If n is larger than lookup table's max index, we use "window method". */
|
|
#define POWI_WINDOW_SIZE 3
|
|
|
|
/* Recursive function to expand power operator. The temporary values are put
|
|
in tmpvar. The function return tmpvar[1] ** n. */
|
|
static tree
|
|
gfc_conv_powi (gfc_se * se, int n, tree * tmpvar)
|
|
{
|
|
tree op0;
|
|
tree op1;
|
|
tree tmp;
|
|
int digit;
|
|
|
|
if (n < POWI_TABLE_SIZE)
|
|
{
|
|
if (tmpvar[n])
|
|
return tmpvar[n];
|
|
|
|
op0 = gfc_conv_powi (se, n - powi_table[n], tmpvar);
|
|
op1 = gfc_conv_powi (se, powi_table[n], tmpvar);
|
|
}
|
|
else if (n & 1)
|
|
{
|
|
digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
|
|
op0 = gfc_conv_powi (se, n - digit, tmpvar);
|
|
op1 = gfc_conv_powi (se, digit, tmpvar);
|
|
}
|
|
else
|
|
{
|
|
op0 = gfc_conv_powi (se, n >> 1, tmpvar);
|
|
op1 = op0;
|
|
}
|
|
|
|
tmp = fold (build (MULT_EXPR, TREE_TYPE (op0), op0, op1));
|
|
tmp = gfc_evaluate_now (tmp, &se->pre);
|
|
|
|
if (n < POWI_TABLE_SIZE)
|
|
tmpvar[n] = tmp;
|
|
|
|
return tmp;
|
|
}
|
|
|
|
/* Expand lhs ** rhs. rhs is an constant integer. If expand successfully,
|
|
return 1. Else return 0 and will call runtime library functions. */
|
|
static int
|
|
gfc_conv_cst_int_power (gfc_se * se, tree lhs, tree rhs)
|
|
{
|
|
tree cond;
|
|
tree tmp;
|
|
tree type;
|
|
tree vartmp[POWI_TABLE_SIZE];
|
|
int n;
|
|
int sgn;
|
|
|
|
type = TREE_TYPE (lhs);
|
|
n = abs (TREE_INT_CST_LOW (rhs));
|
|
sgn = tree_int_cst_sgn (rhs);
|
|
|
|
if ((!flag_unsafe_math_optimizations || optimize_size) && (n > 2 || n < -1))
|
|
return 0;
|
|
|
|
/* rhs == 0 */
|
|
if (sgn == 0)
|
|
{
|
|
se->expr = gfc_build_const (type, integer_one_node);
|
|
return 1;
|
|
}
|
|
/* If rhs < 0 and lhs is an integer, the result is -1, 0 or 1. */
|
|
if ((sgn == -1) && (TREE_CODE (type) == INTEGER_TYPE))
|
|
{
|
|
tmp = build (EQ_EXPR, boolean_type_node, lhs,
|
|
fold_convert (TREE_TYPE (lhs), integer_minus_one_node));
|
|
cond = build (EQ_EXPR, boolean_type_node, lhs,
|
|
convert (TREE_TYPE (lhs), integer_one_node));
|
|
|
|
/* If rhs is an even,
|
|
result = (lhs == 1 || lhs == -1) ? 1 : 0. */
|
|
if ((n & 1) == 0)
|
|
{
|
|
tmp = build (TRUTH_OR_EXPR, boolean_type_node, tmp, cond);
|
|
se->expr = build (COND_EXPR, type, tmp,
|
|
convert (type, integer_one_node),
|
|
convert (type, integer_zero_node));
|
|
return 1;
|
|
}
|
|
/* If rhs is an odd,
|
|
result = (lhs == 1) ? 1 : (lhs == -1) ? -1 : 0. */
|
|
tmp = build (COND_EXPR, type, tmp,
|
|
convert (type, integer_minus_one_node),
|
|
convert (type, integer_zero_node));
|
|
se->expr = build (COND_EXPR, type, cond,
|
|
convert (type, integer_one_node),
|
|
tmp);
|
|
return 1;
|
|
}
|
|
|
|
memset (vartmp, 0, sizeof (vartmp));
|
|
vartmp[1] = lhs;
|
|
if (sgn == -1)
|
|
{
|
|
tmp = gfc_build_const (type, integer_one_node);
|
|
vartmp[1] = build (RDIV_EXPR, type, tmp, vartmp[1]);
|
|
}
|
|
|
|
se->expr = gfc_conv_powi (se, n, vartmp);
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Power op (**). Constant integer exponent has special handling. */
|
|
|
|
static void
|
|
gfc_conv_power_op (gfc_se * se, gfc_expr * expr)
|
|
{
|
|
int kind;
|
|
int ikind;
|
|
gfc_se lse;
|
|
gfc_se rse;
|
|
tree fndecl;
|
|
tree tmp;
|
|
|
|
gfc_init_se (&lse, se);
|
|
gfc_conv_expr_val (&lse, expr->op1);
|
|
gfc_add_block_to_block (&se->pre, &lse.pre);
|
|
|
|
gfc_init_se (&rse, se);
|
|
gfc_conv_expr_val (&rse, expr->op2);
|
|
gfc_add_block_to_block (&se->pre, &rse.pre);
|
|
|
|
if (expr->op2->ts.type == BT_INTEGER
|
|
&& expr->op2->expr_type == EXPR_CONSTANT)
|
|
if (gfc_conv_cst_int_power (se, lse.expr, rse.expr))
|
|
return;
|
|
|
|
kind = expr->op1->ts.kind;
|
|
switch (expr->op2->ts.type)
|
|
{
|
|
case BT_INTEGER:
|
|
ikind = expr->op2->ts.kind;
|
|
switch (ikind)
|
|
{
|
|
case 1:
|
|
case 2:
|
|
rse.expr = convert (gfc_int4_type_node, rse.expr);
|
|
/* Fall through. */
|
|
|
|
case 4:
|
|
ikind = 0;
|
|
break;
|
|
|
|
case 8:
|
|
ikind = 1;
|
|
break;
|
|
|
|
default:
|
|
abort();
|
|
}
|
|
switch (kind)
|
|
{
|
|
case 1:
|
|
case 2:
|
|
if (expr->op1->ts.type == BT_INTEGER)
|
|
lse.expr = convert (gfc_int4_type_node, lse.expr);
|
|
else
|
|
abort ();
|
|
/* Fall through. */
|
|
|
|
case 4:
|
|
kind = 0;
|
|
break;
|
|
|
|
case 8:
|
|
kind = 1;
|
|
break;
|
|
|
|
default:
|
|
abort();
|
|
}
|
|
|
|
switch (expr->op1->ts.type)
|
|
{
|
|
case BT_INTEGER:
|
|
fndecl = gfor_fndecl_math_powi[kind][ikind].integer;
|
|
break;
|
|
|
|
case BT_REAL:
|
|
fndecl = gfor_fndecl_math_powi[kind][ikind].real;
|
|
break;
|
|
|
|
case BT_COMPLEX:
|
|
fndecl = gfor_fndecl_math_powi[kind][ikind].cmplx;
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
break;
|
|
|
|
case BT_REAL:
|
|
switch (kind)
|
|
{
|
|
case 4:
|
|
fndecl = built_in_decls[BUILT_IN_POWF];
|
|
break;
|
|
case 8:
|
|
fndecl = built_in_decls[BUILT_IN_POW];
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
break;
|
|
|
|
case BT_COMPLEX:
|
|
switch (kind)
|
|
{
|
|
case 4:
|
|
fndecl = gfor_fndecl_math_cpowf;
|
|
break;
|
|
case 8:
|
|
fndecl = gfor_fndecl_math_cpow;
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
|
|
tmp = gfc_chainon_list (NULL_TREE, lse.expr);
|
|
tmp = gfc_chainon_list (tmp, rse.expr);
|
|
se->expr = fold (gfc_build_function_call (fndecl, tmp));
|
|
}
|
|
|
|
|
|
/* Generate code to allocate a string temporary. */
|
|
|
|
tree
|
|
gfc_conv_string_tmp (gfc_se * se, tree type, tree len)
|
|
{
|
|
tree var;
|
|
tree tmp;
|
|
tree args;
|
|
|
|
if (TREE_TYPE (len) != gfc_strlen_type_node)
|
|
abort ();
|
|
|
|
if (gfc_can_put_var_on_stack (len))
|
|
{
|
|
/* Create a temporary variable to hold the result. */
|
|
tmp = fold (build (MINUS_EXPR, gfc_strlen_type_node, len,
|
|
convert (gfc_strlen_type_node,
|
|
integer_one_node)));
|
|
tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node, tmp);
|
|
tmp = build_array_type (gfc_character1_type_node, tmp);
|
|
var = gfc_create_var (tmp, "str");
|
|
var = gfc_build_addr_expr (type, var);
|
|
}
|
|
else
|
|
{
|
|
/* Allocate a temporary to hold the result. */
|
|
var = gfc_create_var (type, "pstr");
|
|
args = gfc_chainon_list (NULL_TREE, len);
|
|
tmp = gfc_build_function_call (gfor_fndecl_internal_malloc, args);
|
|
tmp = convert (type, tmp);
|
|
gfc_add_modify_expr (&se->pre, var, tmp);
|
|
|
|
/* Free the temporary afterwards. */
|
|
tmp = convert (pvoid_type_node, var);
|
|
args = gfc_chainon_list (NULL_TREE, tmp);
|
|
tmp = gfc_build_function_call (gfor_fndecl_internal_free, args);
|
|
gfc_add_expr_to_block (&se->post, tmp);
|
|
}
|
|
|
|
return var;
|
|
}
|
|
|
|
|
|
/* Handle a string concatenation operation. A temporary will be allocated to
|
|
hold the result. */
|
|
|
|
static void
|
|
gfc_conv_concat_op (gfc_se * se, gfc_expr * expr)
|
|
{
|
|
gfc_se lse;
|
|
gfc_se rse;
|
|
tree len;
|
|
tree type;
|
|
tree var;
|
|
tree args;
|
|
tree tmp;
|
|
|
|
assert (expr->op1->ts.type == BT_CHARACTER
|
|
&& expr->op2->ts.type == BT_CHARACTER);
|
|
|
|
gfc_init_se (&lse, se);
|
|
gfc_conv_expr (&lse, expr->op1);
|
|
gfc_conv_string_parameter (&lse);
|
|
gfc_init_se (&rse, se);
|
|
gfc_conv_expr (&rse, expr->op2);
|
|
gfc_conv_string_parameter (&rse);
|
|
|
|
gfc_add_block_to_block (&se->pre, &lse.pre);
|
|
gfc_add_block_to_block (&se->pre, &rse.pre);
|
|
|
|
type = gfc_get_character_type (expr->ts.kind, expr->ts.cl);
|
|
len = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
|
|
if (len == NULL_TREE)
|
|
{
|
|
len = fold (build (PLUS_EXPR, TREE_TYPE (lse.string_length),
|
|
lse.string_length, rse.string_length));
|
|
}
|
|
|
|
type = build_pointer_type (type);
|
|
|
|
var = gfc_conv_string_tmp (se, type, len);
|
|
|
|
/* Do the actual concatenation. */
|
|
args = NULL_TREE;
|
|
args = gfc_chainon_list (args, len);
|
|
args = gfc_chainon_list (args, var);
|
|
args = gfc_chainon_list (args, lse.string_length);
|
|
args = gfc_chainon_list (args, lse.expr);
|
|
args = gfc_chainon_list (args, rse.string_length);
|
|
args = gfc_chainon_list (args, rse.expr);
|
|
tmp = gfc_build_function_call (gfor_fndecl_concat_string, args);
|
|
gfc_add_expr_to_block (&se->pre, tmp);
|
|
|
|
/* Add the cleanup for the operands. */
|
|
gfc_add_block_to_block (&se->pre, &rse.post);
|
|
gfc_add_block_to_block (&se->pre, &lse.post);
|
|
|
|
se->expr = var;
|
|
se->string_length = len;
|
|
}
|
|
|
|
|
|
/* Translates an op expression. Common (binary) cases are handled by this
|
|
function, others are passed on. Recursion is used in either case.
|
|
We use the fact that (op1.ts == op2.ts) (except for the power
|
|
operand **).
|
|
Operators need no special handling for scalarized expressions as long as
|
|
they call gfc_conv_siple_val to get their operands.
|
|
Character strings get special handling. */
|
|
|
|
static void
|
|
gfc_conv_expr_op (gfc_se * se, gfc_expr * expr)
|
|
{
|
|
enum tree_code code;
|
|
gfc_se lse;
|
|
gfc_se rse;
|
|
tree type;
|
|
tree tmp;
|
|
int lop;
|
|
int checkstring;
|
|
|
|
checkstring = 0;
|
|
lop = 0;
|
|
switch (expr->operator)
|
|
{
|
|
case INTRINSIC_UPLUS:
|
|
gfc_conv_expr (se, expr->op1);
|
|
return;
|
|
|
|
case INTRINSIC_UMINUS:
|
|
gfc_conv_unary_op (NEGATE_EXPR, se, expr);
|
|
return;
|
|
|
|
case INTRINSIC_NOT:
|
|
gfc_conv_unary_op (TRUTH_NOT_EXPR, se, expr);
|
|
return;
|
|
|
|
case INTRINSIC_PLUS:
|
|
code = PLUS_EXPR;
|
|
break;
|
|
|
|
case INTRINSIC_MINUS:
|
|
code = MINUS_EXPR;
|
|
break;
|
|
|
|
case INTRINSIC_TIMES:
|
|
code = MULT_EXPR;
|
|
break;
|
|
|
|
case INTRINSIC_DIVIDE:
|
|
/* If expr is a real or complex expr, use an RDIV_EXPR. If op1 is
|
|
an integer, we must round towards zero, so we use a
|
|
TRUNC_DIV_EXPR. */
|
|
if (expr->ts.type == BT_INTEGER)
|
|
code = TRUNC_DIV_EXPR;
|
|
else
|
|
code = RDIV_EXPR;
|
|
break;
|
|
|
|
case INTRINSIC_POWER:
|
|
gfc_conv_power_op (se, expr);
|
|
return;
|
|
|
|
case INTRINSIC_CONCAT:
|
|
gfc_conv_concat_op (se, expr);
|
|
return;
|
|
|
|
case INTRINSIC_AND:
|
|
code = TRUTH_ANDIF_EXPR;
|
|
lop = 1;
|
|
break;
|
|
|
|
case INTRINSIC_OR:
|
|
code = TRUTH_ORIF_EXPR;
|
|
lop = 1;
|
|
break;
|
|
|
|
/* EQV and NEQV only work on logicals, but since we represent them
|
|
as integers, we can use EQ_EXPR and NE_EXPR for them in GIMPLE. */
|
|
case INTRINSIC_EQ:
|
|
case INTRINSIC_EQV:
|
|
code = EQ_EXPR;
|
|
checkstring = 1;
|
|
lop = 1;
|
|
break;
|
|
|
|
case INTRINSIC_NE:
|
|
case INTRINSIC_NEQV:
|
|
code = NE_EXPR;
|
|
checkstring = 1;
|
|
lop = 1;
|
|
break;
|
|
|
|
case INTRINSIC_GT:
|
|
code = GT_EXPR;
|
|
checkstring = 1;
|
|
lop = 1;
|
|
break;
|
|
|
|
case INTRINSIC_GE:
|
|
code = GE_EXPR;
|
|
checkstring = 1;
|
|
lop = 1;
|
|
break;
|
|
|
|
case INTRINSIC_LT:
|
|
code = LT_EXPR;
|
|
checkstring = 1;
|
|
lop = 1;
|
|
break;
|
|
|
|
case INTRINSIC_LE:
|
|
code = LE_EXPR;
|
|
checkstring = 1;
|
|
lop = 1;
|
|
break;
|
|
|
|
case INTRINSIC_USER:
|
|
case INTRINSIC_ASSIGN:
|
|
/* These should be converted into function calls by the frontend. */
|
|
abort ();
|
|
return;
|
|
|
|
default:
|
|
fatal_error ("Unknown intrinsic op");
|
|
return;
|
|
}
|
|
|
|
/* The only exception to this is **, which is handled seperately anyway. */
|
|
assert (expr->op1->ts.type == expr->op2->ts.type);
|
|
|
|
if (checkstring && expr->op1->ts.type != BT_CHARACTER)
|
|
checkstring = 0;
|
|
|
|
/* lhs */
|
|
gfc_init_se (&lse, se);
|
|
gfc_conv_expr (&lse, expr->op1);
|
|
gfc_add_block_to_block (&se->pre, &lse.pre);
|
|
|
|
/* rhs */
|
|
gfc_init_se (&rse, se);
|
|
gfc_conv_expr (&rse, expr->op2);
|
|
gfc_add_block_to_block (&se->pre, &rse.pre);
|
|
|
|
/* For string comparisons we generate a library call, and compare the return
|
|
value with 0. */
|
|
if (checkstring)
|
|
{
|
|
gfc_conv_string_parameter (&lse);
|
|
gfc_conv_string_parameter (&rse);
|
|
tmp = NULL_TREE;
|
|
tmp = gfc_chainon_list (tmp, lse.string_length);
|
|
tmp = gfc_chainon_list (tmp, lse.expr);
|
|
tmp = gfc_chainon_list (tmp, rse.string_length);
|
|
tmp = gfc_chainon_list (tmp, rse.expr);
|
|
|
|
/* Build a call for the comparison. */
|
|
lse.expr = gfc_build_function_call (gfor_fndecl_compare_string, tmp);
|
|
gfc_add_block_to_block (&lse.post, &rse.post);
|
|
|
|
rse.expr = integer_zero_node;
|
|
}
|
|
|
|
type = gfc_typenode_for_spec (&expr->ts);
|
|
|
|
if (lop)
|
|
{
|
|
/* The result of logical ops is always boolean_type_node. */
|
|
tmp = fold (build (code, type, lse.expr, rse.expr));
|
|
se->expr = convert (type, tmp);
|
|
}
|
|
else
|
|
se->expr = fold (build (code, type, lse.expr, rse.expr));
|
|
|
|
|
|
/* Add the post blocks. */
|
|
gfc_add_block_to_block (&se->post, &rse.post);
|
|
gfc_add_block_to_block (&se->post, &lse.post);
|
|
}
|
|
|
|
static void
|
|
gfc_conv_function_val (gfc_se * se, gfc_symbol * sym)
|
|
{
|
|
tree tmp;
|
|
|
|
if (sym->attr.dummy)
|
|
{
|
|
tmp = gfc_get_symbol_decl (sym);
|
|
assert (TREE_CODE (TREE_TYPE (tmp)) == POINTER_TYPE
|
|
&& TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) == FUNCTION_TYPE);
|
|
|
|
se->expr = tmp;
|
|
}
|
|
else
|
|
{
|
|
if (!sym->backend_decl)
|
|
sym->backend_decl = gfc_get_extern_function_decl (sym);
|
|
|
|
tmp = sym->backend_decl;
|
|
assert (TREE_CODE (tmp) == FUNCTION_DECL);
|
|
se->expr = gfc_build_addr_expr (NULL, tmp);
|
|
}
|
|
}
|
|
|
|
|
|
/* Generate code for a procedure call. Note can return se->post != NULL.
|
|
If se->direct_byref is set then se->expr contains the return parameter. */
|
|
|
|
void
|
|
gfc_conv_function_call (gfc_se * se, gfc_symbol * sym,
|
|
gfc_actual_arglist * arg)
|
|
{
|
|
tree arglist;
|
|
tree tmp;
|
|
tree fntype;
|
|
gfc_se parmse;
|
|
gfc_ss *argss;
|
|
gfc_ss_info *info;
|
|
int byref;
|
|
tree type;
|
|
tree var;
|
|
tree len;
|
|
tree stringargs;
|
|
gfc_formal_arglist *formal;
|
|
|
|
arglist = NULL_TREE;
|
|
stringargs = NULL_TREE;
|
|
var = NULL_TREE;
|
|
len = NULL_TREE;
|
|
|
|
if (se->ss != NULL)
|
|
{
|
|
if (!sym->attr.elemental)
|
|
{
|
|
assert (se->ss->type == GFC_SS_FUNCTION);
|
|
if (se->ss->useflags)
|
|
{
|
|
assert (gfc_return_by_reference (sym)
|
|
&& sym->result->attr.dimension);
|
|
assert (se->loop != NULL);
|
|
|
|
/* Access the previously obtained result. */
|
|
gfc_conv_tmp_array_ref (se);
|
|
gfc_advance_se_ss_chain (se);
|
|
return;
|
|
}
|
|
}
|
|
info = &se->ss->data.info;
|
|
}
|
|
else
|
|
info = NULL;
|
|
|
|
byref = gfc_return_by_reference (sym);
|
|
if (byref)
|
|
{
|
|
if (se->direct_byref)
|
|
arglist = gfc_chainon_list (arglist, se->expr);
|
|
else if (sym->result->attr.dimension)
|
|
{
|
|
assert (se->loop && se->ss);
|
|
/* Set the type of the array. */
|
|
tmp = gfc_typenode_for_spec (&sym->ts);
|
|
info->dimen = se->loop->dimen;
|
|
/* Allocate a temporary to store the result. */
|
|
gfc_trans_allocate_temp_array (se->loop, info, tmp, NULL_TREE);
|
|
|
|
/* Zero the first stride to indicate a temporary. */
|
|
tmp =
|
|
gfc_conv_descriptor_stride (info->descriptor, gfc_rank_cst[0]);
|
|
gfc_add_modify_expr (&se->pre, tmp,
|
|
convert (TREE_TYPE (tmp), integer_zero_node));
|
|
/* Pass the temporary as the first argument. */
|
|
tmp = info->descriptor;
|
|
tmp = gfc_build_addr_expr (NULL, tmp);
|
|
arglist = gfc_chainon_list (arglist, tmp);
|
|
}
|
|
else if (sym->ts.type == BT_CHARACTER)
|
|
{
|
|
assert (sym->ts.cl && sym->ts.cl->length
|
|
&& sym->ts.cl->length->expr_type == EXPR_CONSTANT);
|
|
len = gfc_conv_mpz_to_tree
|
|
(sym->ts.cl->length->value.integer, sym->ts.cl->length->ts.kind);
|
|
sym->ts.cl->backend_decl = len;
|
|
type = gfc_get_character_type (sym->ts.kind, sym->ts.cl);
|
|
type = build_pointer_type (type);
|
|
|
|
var = gfc_conv_string_tmp (se, type, len);
|
|
arglist = gfc_chainon_list (arglist, var);
|
|
arglist = gfc_chainon_list (arglist, convert (gfc_strlen_type_node,
|
|
len));
|
|
}
|
|
else /* TODO: derived type function return values. */
|
|
abort ();
|
|
}
|
|
|
|
formal = sym->formal;
|
|
/* Evaluate the arguments. */
|
|
for (; arg != NULL; arg = arg->next, formal = formal ? formal->next : NULL)
|
|
{
|
|
if (arg->expr == NULL)
|
|
{
|
|
|
|
if (se->ignore_optional)
|
|
{
|
|
/* Some intrinsics have already been resolved to the correct
|
|
parameters. */
|
|
continue;
|
|
}
|
|
else if (arg->label)
|
|
{
|
|
has_alternate_specifier = 1;
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
/* Pass a NULL pointer for an absent arg. */
|
|
gfc_init_se (&parmse, NULL);
|
|
parmse.expr = null_pointer_node;
|
|
if (arg->missing_arg_type == BT_CHARACTER)
|
|
{
|
|
stringargs =
|
|
gfc_chainon_list (stringargs,
|
|
convert (gfc_strlen_type_node,
|
|
integer_zero_node));
|
|
}
|
|
}
|
|
}
|
|
else if (se->ss && se->ss->useflags)
|
|
{
|
|
/* An elemental function inside a scalarized loop. */
|
|
gfc_init_se (&parmse, se);
|
|
gfc_conv_expr_reference (&parmse, arg->expr);
|
|
}
|
|
else
|
|
{
|
|
/* A scalar or transformational function. */
|
|
gfc_init_se (&parmse, NULL);
|
|
argss = gfc_walk_expr (arg->expr);
|
|
|
|
if (argss == gfc_ss_terminator)
|
|
{
|
|
gfc_conv_expr_reference (&parmse, arg->expr);
|
|
if (formal && formal->sym->attr.pointer
|
|
&& arg->expr->expr_type != EXPR_NULL)
|
|
{
|
|
/* Scalar pointer dummy args require an extra level of
|
|
indirection. The null pointer already contains
|
|
this level of indirection. */
|
|
parmse.expr = gfc_build_addr_expr (NULL, parmse.expr);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If the procedure requires explicit interface, actual argument
|
|
is passed according to corresponing formal argument. We
|
|
do not use g77 method and the address of array descriptor
|
|
is passed if corresponing formal is pointer or
|
|
assumed-shape, Otherwise use g77 method. */
|
|
int f;
|
|
f = (formal != NULL)
|
|
&& !formal->sym->attr.pointer
|
|
&& formal->sym->as->type != AS_ASSUMED_SHAPE;
|
|
f = f || !sym->attr.always_explicit;
|
|
gfc_conv_array_parameter (&parmse, arg->expr, argss, f);
|
|
}
|
|
}
|
|
|
|
gfc_add_block_to_block (&se->pre, &parmse.pre);
|
|
gfc_add_block_to_block (&se->post, &parmse.post);
|
|
|
|
/* Character strings are passed as two paramarers, a length and a
|
|
pointer. */
|
|
if (parmse.string_length != NULL_TREE)
|
|
stringargs = gfc_chainon_list (stringargs, parmse.string_length);
|
|
|
|
arglist = gfc_chainon_list (arglist, parmse.expr);
|
|
}
|
|
|
|
/* Add the hidden string length parameters to the arguments. */
|
|
arglist = chainon (arglist, stringargs);
|
|
|
|
/* Generate the actual call. */
|
|
gfc_conv_function_val (se, sym);
|
|
/* If there are alternate return labels, function type should be
|
|
integer. */
|
|
if (has_alternate_specifier)
|
|
TREE_TYPE (TREE_TYPE (TREE_TYPE (se->expr))) = integer_type_node;
|
|
|
|
fntype = TREE_TYPE (TREE_TYPE (se->expr));
|
|
se->expr = build (CALL_EXPR, TREE_TYPE (fntype), se->expr,
|
|
arglist, NULL_TREE);
|
|
|
|
/* A pure function may still have side-effects - it may modify its
|
|
parameters. */
|
|
TREE_SIDE_EFFECTS (se->expr) = 1;
|
|
#if 0
|
|
if (!sym->attr.pure)
|
|
TREE_SIDE_EFFECTS (se->expr) = 1;
|
|
#endif
|
|
|
|
if (byref && !se->direct_byref)
|
|
{
|
|
gfc_add_expr_to_block (&se->pre, se->expr);
|
|
|
|
if (sym->result->attr.dimension)
|
|
{
|
|
if (flag_bounds_check)
|
|
{
|
|
/* Check the data pointer hasn't been modified. This would happen
|
|
in a function returning a pointer. */
|
|
tmp = gfc_conv_descriptor_data (info->descriptor);
|
|
tmp = build (NE_EXPR, boolean_type_node, tmp, info->data);
|
|
gfc_trans_runtime_check (tmp, gfc_strconst_fault, &se->pre);
|
|
}
|
|
se->expr = info->descriptor;
|
|
}
|
|
else if (sym->ts.type == BT_CHARACTER)
|
|
{
|
|
se->expr = var;
|
|
se->string_length = len;
|
|
}
|
|
else
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
|
|
/* Generate code to copy a string. */
|
|
|
|
static void
|
|
gfc_trans_string_copy (stmtblock_t * block, tree dlen, tree dest,
|
|
tree slen, tree src)
|
|
{
|
|
tree tmp;
|
|
|
|
tmp = NULL_TREE;
|
|
tmp = gfc_chainon_list (tmp, dlen);
|
|
tmp = gfc_chainon_list (tmp, dest);
|
|
tmp = gfc_chainon_list (tmp, slen);
|
|
tmp = gfc_chainon_list (tmp, src);
|
|
tmp = gfc_build_function_call (gfor_fndecl_copy_string, tmp);
|
|
gfc_add_expr_to_block (block, tmp);
|
|
}
|
|
|
|
|
|
/* Translate a statement function.
|
|
The value of a statement function reference is obtained by evaluating the
|
|
expression using the values of the actual arguments for the values of the
|
|
corresponding dummy arguments. */
|
|
|
|
static void
|
|
gfc_conv_statement_function (gfc_se * se, gfc_expr * expr)
|
|
{
|
|
gfc_symbol *sym;
|
|
gfc_symbol *fsym;
|
|
gfc_formal_arglist *fargs;
|
|
gfc_actual_arglist *args;
|
|
gfc_se lse;
|
|
gfc_se rse;
|
|
gfc_saved_var *saved_vars;
|
|
tree *temp_vars;
|
|
tree type;
|
|
tree tmp;
|
|
int n;
|
|
|
|
sym = expr->symtree->n.sym;
|
|
args = expr->value.function.actual;
|
|
gfc_init_se (&lse, NULL);
|
|
gfc_init_se (&rse, NULL);
|
|
|
|
n = 0;
|
|
for (fargs = sym->formal; fargs; fargs = fargs->next)
|
|
n++;
|
|
saved_vars = (gfc_saved_var *)gfc_getmem (n * sizeof (gfc_saved_var));
|
|
temp_vars = (tree *)gfc_getmem (n * sizeof (tree));
|
|
|
|
for (fargs = sym->formal, n = 0; fargs; fargs = fargs->next, n++)
|
|
{
|
|
/* Each dummy shall be specified, explicitly or implicitly, to be
|
|
scalar. */
|
|
assert (fargs->sym->attr.dimension == 0);
|
|
fsym = fargs->sym;
|
|
|
|
/* Create a temporary to hold the value. */
|
|
type = gfc_typenode_for_spec (&fsym->ts);
|
|
temp_vars[n] = gfc_create_var (type, fsym->name);
|
|
|
|
if (fsym->ts.type == BT_CHARACTER)
|
|
{
|
|
/* Copy string arguments. */
|
|
tree arglen;
|
|
|
|
assert (fsym->ts.cl && fsym->ts.cl->length
|
|
&& fsym->ts.cl->length->expr_type == EXPR_CONSTANT);
|
|
|
|
arglen = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
|
|
tmp = gfc_build_addr_expr (build_pointer_type (type),
|
|
temp_vars[n]);
|
|
|
|
gfc_conv_expr (&rse, args->expr);
|
|
gfc_conv_string_parameter (&rse);
|
|
gfc_add_block_to_block (&se->pre, &lse.pre);
|
|
gfc_add_block_to_block (&se->pre, &rse.pre);
|
|
|
|
gfc_trans_string_copy (&se->pre, arglen, tmp, rse.string_length,
|
|
rse.expr);
|
|
gfc_add_block_to_block (&se->pre, &lse.post);
|
|
gfc_add_block_to_block (&se->pre, &rse.post);
|
|
}
|
|
else
|
|
{
|
|
/* For everything else, just evaluate the expression. */
|
|
gfc_conv_expr (&lse, args->expr);
|
|
|
|
gfc_add_block_to_block (&se->pre, &lse.pre);
|
|
gfc_add_modify_expr (&se->pre, temp_vars[n], lse.expr);
|
|
gfc_add_block_to_block (&se->pre, &lse.post);
|
|
}
|
|
|
|
args = args->next;
|
|
}
|
|
|
|
/* Use the temporary variables in place of the real ones. */
|
|
for (fargs = sym->formal, n = 0; fargs; fargs = fargs->next, n++)
|
|
gfc_shadow_sym (fargs->sym, temp_vars[n], &saved_vars[n]);
|
|
|
|
gfc_conv_expr (se, sym->value);
|
|
|
|
if (sym->ts.type == BT_CHARACTER)
|
|
{
|
|
gfc_conv_const_charlen (sym->ts.cl);
|
|
|
|
/* Force the expression to the correct length. */
|
|
if (!INTEGER_CST_P (se->string_length)
|
|
|| tree_int_cst_lt (se->string_length,
|
|
sym->ts.cl->backend_decl))
|
|
{
|
|
type = gfc_get_character_type (sym->ts.kind, sym->ts.cl);
|
|
tmp = gfc_create_var (type, sym->name);
|
|
tmp = gfc_build_addr_expr (build_pointer_type (type), tmp);
|
|
gfc_trans_string_copy (&se->pre, sym->ts.cl->backend_decl, tmp,
|
|
se->string_length, se->expr);
|
|
se->expr = tmp;
|
|
}
|
|
se->string_length = sym->ts.cl->backend_decl;
|
|
}
|
|
|
|
/* Resore the original variables. */
|
|
for (fargs = sym->formal, n = 0; fargs; fargs = fargs->next, n++)
|
|
gfc_restore_sym (fargs->sym, &saved_vars[n]);
|
|
gfc_free (saved_vars);
|
|
}
|
|
|
|
|
|
/* Translate a function expression. */
|
|
|
|
static void
|
|
gfc_conv_function_expr (gfc_se * se, gfc_expr * expr)
|
|
{
|
|
gfc_symbol *sym;
|
|
|
|
if (expr->value.function.isym)
|
|
{
|
|
gfc_conv_intrinsic_function (se, expr);
|
|
return;
|
|
}
|
|
|
|
/* We distinguish the statement function from general function to improve
|
|
runtime performance. */
|
|
if (expr->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
|
|
{
|
|
gfc_conv_statement_function (se, expr);
|
|
return;
|
|
}
|
|
|
|
/* expr.value.function.esym is the resolved (specific) function symbol for
|
|
most functions. However this isn't set for dummy procedures. */
|
|
sym = expr->value.function.esym;
|
|
if (!sym)
|
|
sym = expr->symtree->n.sym;
|
|
gfc_conv_function_call (se, sym, expr->value.function.actual);
|
|
}
|
|
|
|
static void
|
|
gfc_conv_array_constructor_expr (gfc_se * se, gfc_expr * expr)
|
|
{
|
|
assert (se->ss != NULL && se->ss != gfc_ss_terminator);
|
|
assert (se->ss->expr == expr && se->ss->type == GFC_SS_CONSTRUCTOR);
|
|
|
|
gfc_conv_tmp_array_ref (se);
|
|
gfc_advance_se_ss_chain (se);
|
|
}
|
|
|
|
|
|
/* Build a static initializer. EXPR is the expression for the initial value.
|
|
The other parameters describe the variable of component being initialized.
|
|
EXPR may be null. */
|
|
|
|
tree
|
|
gfc_conv_initializer (gfc_expr * expr, gfc_typespec * ts, tree type,
|
|
bool array, bool pointer)
|
|
{
|
|
gfc_se se;
|
|
|
|
if (!(expr || pointer))
|
|
return NULL_TREE;
|
|
|
|
if (array)
|
|
{
|
|
/* Arrays need special handling. */
|
|
if (pointer)
|
|
return gfc_build_null_descriptor (type);
|
|
else
|
|
return gfc_conv_array_initializer (type, expr);
|
|
}
|
|
else if (pointer)
|
|
return fold_convert (type, null_pointer_node);
|
|
else
|
|
{
|
|
switch (ts->type)
|
|
{
|
|
case BT_DERIVED:
|
|
gfc_init_se (&se, NULL);
|
|
gfc_conv_structure (&se, expr, 1);
|
|
return se.expr;
|
|
|
|
case BT_CHARACTER:
|
|
return gfc_conv_string_init (ts->cl->backend_decl,expr);
|
|
|
|
default:
|
|
gfc_init_se (&se, NULL);
|
|
gfc_conv_constant (&se, expr);
|
|
return se.expr;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Build an expression for a constructor. If init is nonzero then
|
|
this is part of a static variable initializer. */
|
|
|
|
void
|
|
gfc_conv_structure (gfc_se * se, gfc_expr * expr, int init)
|
|
{
|
|
gfc_constructor *c;
|
|
gfc_component *cm;
|
|
tree head;
|
|
tree tail;
|
|
tree val;
|
|
gfc_se cse;
|
|
tree type;
|
|
|
|
assert (expr->expr_type == EXPR_STRUCTURE || expr->expr_type == EXPR_NULL);
|
|
type = gfc_typenode_for_spec (&expr->ts);
|
|
head = build1 (CONSTRUCTOR, type, NULL_TREE);
|
|
tail = NULL_TREE;
|
|
|
|
cm = expr->ts.derived->components;
|
|
for (c = expr->value.constructor; c; c = c->next, cm = cm->next)
|
|
{
|
|
/* Skip absent members in default initializers. */
|
|
if (!c->expr)
|
|
continue;
|
|
|
|
gfc_init_se (&cse, se);
|
|
/* Evaluate the expression for this component. */
|
|
if (init)
|
|
{
|
|
cse.expr = gfc_conv_initializer (c->expr, &cm->ts,
|
|
TREE_TYPE (cm->backend_decl), cm->dimension, cm->pointer);
|
|
}
|
|
else
|
|
{
|
|
gfc_conv_expr (&cse, c->expr);
|
|
gfc_add_block_to_block (&se->pre, &cse.pre);
|
|
gfc_add_block_to_block (&se->post, &cse.post);
|
|
}
|
|
|
|
/* Build a TREE_CHAIN to hold it. */
|
|
val = tree_cons (cm->backend_decl, cse.expr, NULL_TREE);
|
|
|
|
/* Add it to the list. */
|
|
if (tail == NULL_TREE)
|
|
TREE_OPERAND(head, 0) = tail = val;
|
|
else
|
|
{
|
|
TREE_CHAIN (tail) = val;
|
|
tail = val;
|
|
}
|
|
}
|
|
se->expr = head;
|
|
}
|
|
|
|
|
|
/*translate a substring expression */
|
|
|
|
static void
|
|
gfc_conv_substring_expr (gfc_se * se, gfc_expr * expr)
|
|
{
|
|
gfc_ref *ref;
|
|
|
|
ref = expr->ref;
|
|
|
|
assert(ref->type == REF_SUBSTRING);
|
|
|
|
se->expr = gfc_build_string_const(expr->value.character.length,
|
|
expr->value.character.string);
|
|
se->string_length = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (se->expr)));
|
|
TYPE_STRING_FLAG (TREE_TYPE (se->expr))=1;
|
|
|
|
gfc_conv_substring(se,ref,expr->ts.kind);
|
|
}
|
|
|
|
|
|
/* Entry point for expression translation. */
|
|
|
|
void
|
|
gfc_conv_expr (gfc_se * se, gfc_expr * expr)
|
|
{
|
|
if (se->ss && se->ss->expr == expr
|
|
&& (se->ss->type == GFC_SS_SCALAR || se->ss->type == GFC_SS_REFERENCE))
|
|
{
|
|
/* Substiture a scalar expression evaluated outside the scalarization
|
|
loop. */
|
|
se->expr = se->ss->data.scalar.expr;
|
|
se->string_length = se->ss->data.scalar.string_length;
|
|
gfc_advance_se_ss_chain (se);
|
|
return;
|
|
}
|
|
|
|
switch (expr->expr_type)
|
|
{
|
|
case EXPR_OP:
|
|
gfc_conv_expr_op (se, expr);
|
|
break;
|
|
|
|
case EXPR_FUNCTION:
|
|
gfc_conv_function_expr (se, expr);
|
|
break;
|
|
|
|
case EXPR_CONSTANT:
|
|
gfc_conv_constant (se, expr);
|
|
break;
|
|
|
|
case EXPR_VARIABLE:
|
|
gfc_conv_variable (se, expr);
|
|
break;
|
|
|
|
case EXPR_NULL:
|
|
se->expr = null_pointer_node;
|
|
break;
|
|
|
|
case EXPR_SUBSTRING:
|
|
gfc_conv_substring_expr (se, expr);
|
|
break;
|
|
|
|
case EXPR_STRUCTURE:
|
|
gfc_conv_structure (se, expr, 0);
|
|
break;
|
|
|
|
case EXPR_ARRAY:
|
|
gfc_conv_array_constructor_expr (se, expr);
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
gfc_conv_expr_lhs (gfc_se * se, gfc_expr * expr)
|
|
{
|
|
gfc_conv_expr (se, expr);
|
|
/* AFAICS all numeric lvalues have empty post chains. If not we need to
|
|
figure out a way of rewriting an lvalue so that it has no post chain. */
|
|
assert (expr->ts.type != BT_CHARACTER || !se->post.head);
|
|
}
|
|
|
|
void
|
|
gfc_conv_expr_val (gfc_se * se, gfc_expr * expr)
|
|
{
|
|
tree val;
|
|
|
|
assert (expr->ts.type != BT_CHARACTER);
|
|
gfc_conv_expr (se, expr);
|
|
if (se->post.head)
|
|
{
|
|
val = gfc_create_var (TREE_TYPE (se->expr), NULL);
|
|
gfc_add_modify_expr (&se->pre, val, se->expr);
|
|
}
|
|
}
|
|
|
|
void
|
|
gfc_conv_expr_type (gfc_se * se, gfc_expr * expr, tree type)
|
|
{
|
|
gfc_conv_expr_val (se, expr);
|
|
se->expr = convert (type, se->expr);
|
|
}
|
|
|
|
|
|
/* Converts an expression so that it can be passed by refernece. Scalar
|
|
values only. */
|
|
|
|
void
|
|
gfc_conv_expr_reference (gfc_se * se, gfc_expr * expr)
|
|
{
|
|
tree var;
|
|
|
|
if (se->ss && se->ss->expr == expr
|
|
&& se->ss->type == GFC_SS_REFERENCE)
|
|
{
|
|
se->expr = se->ss->data.scalar.expr;
|
|
se->string_length = se->ss->data.scalar.string_length;
|
|
gfc_advance_se_ss_chain (se);
|
|
return;
|
|
}
|
|
|
|
if (expr->ts.type == BT_CHARACTER)
|
|
{
|
|
gfc_conv_expr (se, expr);
|
|
gfc_conv_string_parameter (se);
|
|
return;
|
|
}
|
|
|
|
if (expr->expr_type == EXPR_VARIABLE)
|
|
{
|
|
se->want_pointer = 1;
|
|
gfc_conv_expr (se, expr);
|
|
if (se->post.head)
|
|
{
|
|
var = gfc_create_var (TREE_TYPE (se->expr), NULL);
|
|
gfc_add_modify_expr (&se->pre, var, se->expr);
|
|
gfc_add_block_to_block (&se->pre, &se->post);
|
|
se->expr = var;
|
|
}
|
|
return;
|
|
}
|
|
|
|
gfc_conv_expr (se, expr);
|
|
|
|
/* Create a temporary var to hold the value. */
|
|
if (TREE_CONSTANT (se->expr))
|
|
{
|
|
var = build_decl (CONST_DECL, NULL, TREE_TYPE (se->expr));
|
|
DECL_INITIAL (var) = se->expr;
|
|
pushdecl (var);
|
|
}
|
|
else
|
|
{
|
|
var = gfc_create_var (TREE_TYPE (se->expr), NULL);
|
|
gfc_add_modify_expr (&se->pre, var, se->expr);
|
|
}
|
|
gfc_add_block_to_block (&se->pre, &se->post);
|
|
|
|
/* Take the address of that value. */
|
|
se->expr = gfc_build_addr_expr (NULL, var);
|
|
}
|
|
|
|
|
|
tree
|
|
gfc_trans_pointer_assign (gfc_code * code)
|
|
{
|
|
return gfc_trans_pointer_assignment (code->expr, code->expr2);
|
|
}
|
|
|
|
|
|
tree
|
|
gfc_trans_pointer_assignment (gfc_expr * expr1, gfc_expr * expr2)
|
|
{
|
|
gfc_se lse;
|
|
gfc_se rse;
|
|
gfc_ss *lss;
|
|
gfc_ss *rss;
|
|
stmtblock_t block;
|
|
|
|
gfc_start_block (&block);
|
|
|
|
gfc_init_se (&lse, NULL);
|
|
|
|
lss = gfc_walk_expr (expr1);
|
|
rss = gfc_walk_expr (expr2);
|
|
if (lss == gfc_ss_terminator)
|
|
{
|
|
lse.want_pointer = 1;
|
|
gfc_conv_expr (&lse, expr1);
|
|
assert (rss == gfc_ss_terminator);
|
|
gfc_init_se (&rse, NULL);
|
|
rse.want_pointer = 1;
|
|
gfc_conv_expr (&rse, expr2);
|
|
gfc_add_block_to_block (&block, &lse.pre);
|
|
gfc_add_block_to_block (&block, &rse.pre);
|
|
gfc_add_modify_expr (&block, lse.expr,
|
|
fold_convert (TREE_TYPE (lse.expr), rse.expr));
|
|
gfc_add_block_to_block (&block, &rse.post);
|
|
gfc_add_block_to_block (&block, &lse.post);
|
|
}
|
|
else
|
|
{
|
|
gfc_conv_expr_descriptor (&lse, expr1, lss);
|
|
/* Implement Nullify. */
|
|
if (expr2->expr_type == EXPR_NULL)
|
|
{
|
|
lse.expr = gfc_conv_descriptor_data (lse.expr);
|
|
rse.expr = fold_convert (TREE_TYPE (lse.expr), null_pointer_node);
|
|
gfc_add_modify_expr (&block, lse.expr, rse.expr);
|
|
}
|
|
else
|
|
{
|
|
lse.direct_byref = 1;
|
|
gfc_conv_expr_descriptor (&lse, expr2, rss);
|
|
}
|
|
gfc_add_block_to_block (&block, &lse.pre);
|
|
gfc_add_block_to_block (&block, &lse.post);
|
|
}
|
|
return gfc_finish_block (&block);
|
|
}
|
|
|
|
|
|
/* Makes sure se is suitable for passing as a function string parameter. */
|
|
/* TODO: Need to check all callers fo this function. It may be abused. */
|
|
|
|
void
|
|
gfc_conv_string_parameter (gfc_se * se)
|
|
{
|
|
tree type;
|
|
|
|
if (TREE_CODE (se->expr) == STRING_CST)
|
|
{
|
|
se->expr = gfc_build_addr_expr (pchar_type_node, se->expr);
|
|
return;
|
|
}
|
|
|
|
type = TREE_TYPE (se->expr);
|
|
if (TYPE_STRING_FLAG (type))
|
|
{
|
|
assert (TREE_CODE (se->expr) != INDIRECT_REF);
|
|
se->expr = gfc_build_addr_expr (pchar_type_node, se->expr);
|
|
}
|
|
|
|
assert (POINTER_TYPE_P (TREE_TYPE (se->expr)));
|
|
assert (se->string_length
|
|
&& TREE_CODE (TREE_TYPE (se->string_length)) == INTEGER_TYPE);
|
|
}
|
|
|
|
|
|
/* Generate code for assignment of scalar variables. Includes character
|
|
strings. */
|
|
|
|
tree
|
|
gfc_trans_scalar_assign (gfc_se * lse, gfc_se * rse, bt type)
|
|
{
|
|
stmtblock_t block;
|
|
|
|
gfc_init_block (&block);
|
|
|
|
if (type == BT_CHARACTER)
|
|
{
|
|
assert (lse->string_length != NULL_TREE
|
|
&& rse->string_length != NULL_TREE);
|
|
|
|
gfc_conv_string_parameter (lse);
|
|
gfc_conv_string_parameter (rse);
|
|
|
|
gfc_add_block_to_block (&block, &lse->pre);
|
|
gfc_add_block_to_block (&block, &rse->pre);
|
|
|
|
gfc_trans_string_copy (&block, lse->string_length, lse->expr,
|
|
rse->string_length, rse->expr);
|
|
}
|
|
else
|
|
{
|
|
gfc_add_block_to_block (&block, &lse->pre);
|
|
gfc_add_block_to_block (&block, &rse->pre);
|
|
|
|
gfc_add_modify_expr (&block, lse->expr,
|
|
fold_convert (TREE_TYPE (lse->expr), rse->expr));
|
|
}
|
|
|
|
gfc_add_block_to_block (&block, &lse->post);
|
|
gfc_add_block_to_block (&block, &rse->post);
|
|
|
|
return gfc_finish_block (&block);
|
|
}
|
|
|
|
|
|
/* Try to translate array(:) = func (...), where func is a transformational
|
|
array function, without using a temporary. Returns NULL is this isn't the
|
|
case. */
|
|
|
|
static tree
|
|
gfc_trans_arrayfunc_assign (gfc_expr * expr1, gfc_expr * expr2)
|
|
{
|
|
gfc_se se;
|
|
gfc_ss *ss;
|
|
|
|
/* The caller has already checked rank>0 and expr_type == EXPR_FUNCTION. */
|
|
if (expr2->value.function.isym && !gfc_is_intrinsic_libcall (expr2))
|
|
return NULL;
|
|
|
|
/* Elemental functions don't need a temporary anyway. */
|
|
if (expr2->symtree->n.sym->attr.elemental)
|
|
return NULL;
|
|
|
|
/* Check for a dependency. */
|
|
if (gfc_check_fncall_dependency (expr1, expr2))
|
|
return NULL;
|
|
|
|
/* The frontend doesn't seem to bother filling in expr->symtree for intrinsic
|
|
functions. */
|
|
assert (expr2->value.function.isym
|
|
|| (gfc_return_by_reference (expr2->symtree->n.sym)
|
|
&& expr2->symtree->n.sym->result->attr.dimension));
|
|
|
|
ss = gfc_walk_expr (expr1);
|
|
assert (ss != gfc_ss_terminator);
|
|
gfc_init_se (&se, NULL);
|
|
gfc_start_block (&se.pre);
|
|
se.want_pointer = 1;
|
|
|
|
gfc_conv_array_parameter (&se, expr1, ss, 0);
|
|
|
|
se.direct_byref = 1;
|
|
se.ss = gfc_walk_expr (expr2);
|
|
assert (se.ss != gfc_ss_terminator);
|
|
gfc_conv_function_expr (&se, expr2);
|
|
gfc_add_expr_to_block (&se.pre, se.expr);
|
|
gfc_add_block_to_block (&se.pre, &se.post);
|
|
|
|
return gfc_finish_block (&se.pre);
|
|
}
|
|
|
|
|
|
/* Translate an assignment. Most of the code is concerned with
|
|
setting up the scalarizer. */
|
|
|
|
tree
|
|
gfc_trans_assignment (gfc_expr * expr1, gfc_expr * expr2)
|
|
{
|
|
gfc_se lse;
|
|
gfc_se rse;
|
|
gfc_ss *lss;
|
|
gfc_ss *lss_section;
|
|
gfc_ss *rss;
|
|
gfc_loopinfo loop;
|
|
tree tmp;
|
|
stmtblock_t block;
|
|
stmtblock_t body;
|
|
|
|
/* Special case a single function returning an array. */
|
|
if (expr2->expr_type == EXPR_FUNCTION && expr2->rank > 0)
|
|
{
|
|
tmp = gfc_trans_arrayfunc_assign (expr1, expr2);
|
|
if (tmp)
|
|
return tmp;
|
|
}
|
|
|
|
/* Assignment of the form lhs = rhs. */
|
|
gfc_start_block (&block);
|
|
|
|
gfc_init_se (&lse, NULL);
|
|
gfc_init_se (&rse, NULL);
|
|
|
|
/* Walk the lhs. */
|
|
lss = gfc_walk_expr (expr1);
|
|
rss = NULL;
|
|
if (lss != gfc_ss_terminator)
|
|
{
|
|
/* The assignment needs scalarization. */
|
|
lss_section = lss;
|
|
|
|
/* Find a non-scalar SS from the lhs. */
|
|
while (lss_section != gfc_ss_terminator
|
|
&& lss_section->type != GFC_SS_SECTION)
|
|
lss_section = lss_section->next;
|
|
|
|
assert (lss_section != gfc_ss_terminator);
|
|
|
|
/* Initialize the scalarizer. */
|
|
gfc_init_loopinfo (&loop);
|
|
|
|
/* Walk the rhs. */
|
|
rss = gfc_walk_expr (expr2);
|
|
if (rss == gfc_ss_terminator)
|
|
{
|
|
/* The rhs is scalar. Add a ss for the expression. */
|
|
rss = gfc_get_ss ();
|
|
rss->next = gfc_ss_terminator;
|
|
rss->type = GFC_SS_SCALAR;
|
|
rss->expr = expr2;
|
|
}
|
|
/* Associate the SS with the loop. */
|
|
gfc_add_ss_to_loop (&loop, lss);
|
|
gfc_add_ss_to_loop (&loop, rss);
|
|
|
|
/* Calculate the bounds of the scalarization. */
|
|
gfc_conv_ss_startstride (&loop);
|
|
/* Resolve any data dependencies in the statement. */
|
|
gfc_conv_resolve_dependencies (&loop, lss_section, rss);
|
|
/* Setup the scalarizing loops. */
|
|
gfc_conv_loop_setup (&loop);
|
|
|
|
/* Setup the gfc_se structures. */
|
|
gfc_copy_loopinfo_to_se (&lse, &loop);
|
|
gfc_copy_loopinfo_to_se (&rse, &loop);
|
|
|
|
rse.ss = rss;
|
|
gfc_mark_ss_chain_used (rss, 1);
|
|
if (loop.temp_ss == NULL)
|
|
{
|
|
lse.ss = lss;
|
|
gfc_mark_ss_chain_used (lss, 1);
|
|
}
|
|
else
|
|
{
|
|
lse.ss = loop.temp_ss;
|
|
gfc_mark_ss_chain_used (lss, 3);
|
|
gfc_mark_ss_chain_used (loop.temp_ss, 3);
|
|
}
|
|
|
|
/* Start the scalarized loop body. */
|
|
gfc_start_scalarized_body (&loop, &body);
|
|
}
|
|
else
|
|
gfc_init_block (&body);
|
|
|
|
/* Translate the expression. */
|
|
gfc_conv_expr (&rse, expr2);
|
|
|
|
if (lss != gfc_ss_terminator && loop.temp_ss != NULL)
|
|
{
|
|
gfc_conv_tmp_array_ref (&lse);
|
|
gfc_advance_se_ss_chain (&lse);
|
|
}
|
|
else
|
|
gfc_conv_expr (&lse, expr1);
|
|
|
|
tmp = gfc_trans_scalar_assign (&lse, &rse, expr1->ts.type);
|
|
gfc_add_expr_to_block (&body, tmp);
|
|
|
|
if (lss == gfc_ss_terminator)
|
|
{
|
|
/* Use the scalar assignment as is. */
|
|
gfc_add_block_to_block (&block, &body);
|
|
}
|
|
else
|
|
{
|
|
if (lse.ss != gfc_ss_terminator)
|
|
abort ();
|
|
if (rse.ss != gfc_ss_terminator)
|
|
abort ();
|
|
|
|
if (loop.temp_ss != NULL)
|
|
{
|
|
gfc_trans_scalarized_loop_boundary (&loop, &body);
|
|
|
|
/* We need to copy the temporary to the actual lhs. */
|
|
gfc_init_se (&lse, NULL);
|
|
gfc_init_se (&rse, NULL);
|
|
gfc_copy_loopinfo_to_se (&lse, &loop);
|
|
gfc_copy_loopinfo_to_se (&rse, &loop);
|
|
|
|
rse.ss = loop.temp_ss;
|
|
lse.ss = lss;
|
|
|
|
gfc_conv_tmp_array_ref (&rse);
|
|
gfc_advance_se_ss_chain (&rse);
|
|
gfc_conv_expr (&lse, expr1);
|
|
|
|
if (lse.ss != gfc_ss_terminator)
|
|
abort ();
|
|
|
|
if (rse.ss != gfc_ss_terminator)
|
|
abort ();
|
|
|
|
tmp = gfc_trans_scalar_assign (&lse, &rse, expr1->ts.type);
|
|
gfc_add_expr_to_block (&body, tmp);
|
|
}
|
|
/* Generate the copying loops. */
|
|
gfc_trans_scalarizing_loops (&loop, &body);
|
|
|
|
/* Wrap the whole thing up. */
|
|
gfc_add_block_to_block (&block, &loop.pre);
|
|
gfc_add_block_to_block (&block, &loop.post);
|
|
|
|
gfc_cleanup_loop (&loop);
|
|
}
|
|
|
|
return gfc_finish_block (&block);
|
|
}
|
|
|
|
tree
|
|
gfc_trans_assign (gfc_code * code)
|
|
{
|
|
return gfc_trans_assignment (code->expr, code->expr2);
|
|
}
|