0450cc4ce8
1117 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
|
7fb048a2ee |
Remove verbosity from ui_out_message and friends
That concept is never actually used, so it's just a burden. Removing it facilitates the refactoring in upcoming patches. gdb/ChangeLog: * mi/mi-out.c (mi_message): Remove verbosity argument. * ada-tasks.c (print_ada_task_info, info_task, task_command): Update call. * auto-load.c (auto_load_info_scripts): Likewise. * breakpoint.c (breakpoint_1, watchpoints_info, tracepoints_info): Likewise. * cli-out.c (cli_message): Remove verbosity argument. * inferior.c (print_inferior): Update call. * linux-thread-db.c (info_auto_load_libthread_db): Likewise. * probe.c (info_probes_for_ops): Likewise. * skip.c (skip_info): Likewise. * solib.c (info_sharedlibrary_command): Likewise. * symfile.c (load_progress): Likewise. * thread.c (print_thread_info_1): Likewise. * ui-out.c (uo_message, ui_out_message): Remove verbosity argument. (ui_out_get_verblvl): Remove. * ui-out.h (ui_out_message): Remove verbosity argument. (ui_out_get_verblvl): Remove. (message_ftype): Remove verbosity argument. |
||
|
036e657b48 |
Do not use std::move when assigning an anonymous object to a unique_ptr.
Using std::move forces an extra copy of the object. These changes fix -Wpessimizing-move warnings from clang. gdb/ChangeLog: * ada-lang.c (create_excep_cond_exprs): Do not use 'std::move'. * ax-gdb.c (agent_eval_command_one): Likewise. (agent_eval_command_one): Likewise. * breakpoint.c (parse_cond_to_aexpr): Likewise. (parse_cmd_to_aexpr): Likewise. * dtrace-probe.c (dtrace_process_dof_probe): Likewise. * parse.c (parse_expression_for_completion): Likewise. |
||
|
f5ea389ac7 |
Change gdbarch software_single_step frame_info to regcache
This patch changes gdbarch method software_single_step's parameter from "struct frame_info *" to "struct regcache *, IOW, software_single_step starts to use current regcache rather than current frame for software single. gdb: 2016-11-22 Yao Qi <yao.qi@linaro.org> * gdbarch.sh (software_single_step): Change parameter from frame_info to regcache. * gdbarch.c, gdbarch.h: Regenerated. * aarch64-tdep.c (aarch64_software_single_step): Change parameter from frame_info to regcache. Don't call get_current_regcache. * alpha-tdep.c (alpha_deal_with_atomic_sequence): Likewise. (alpha_software_single_step): Likewise. * alpha-tdep.h (alpha_software_single_step): Update declaration. * arm-linux-tdep.c (arm_linux_software_single_step): Likewise. * arm-tdep.c (arm_software_single_step): Likewise. * arm-tdep.h (arm_software_single_step): Likewise. * breakpoint.c (insert_single_step_breakpoint): Pass regcache to gdbarch_software_single_step. * cris-tdep.c (cris_software_single_step): Change parameter from frame_info to regcache. Don't call get_current_regcache. * mips-tdep.c (mips_software_single_step): Likewise. * mips-tdep.h (mips_software_single_step): Update declaration. * moxie-tdep.c (moxie_software_single_step): Likewise. * nios2-tdep.c (nios2_software_single_step): Likewise. * ppc-tdep.h (ppc_deal_with_atomic_sequence): Update declaration. * rs6000-aix-tdep.c (rs6000_software_single_step): Likewise. * rs6000-tdep.c (ppc_deal_with_atomic_sequence): Likewise. * s390-linux-tdep.c (s390_software_single_step): Likewise. * sparc-tdep.c (sparc_software_single_step): Likewise. * spu-tdep.c (spu_software_single_step): Likewise. * tic6x-tdep.c (tic6x_software_single_step): Likewise. |
||
|
b22e99fdaf |
gdb::{unique_ptr,move} -> std::{unique_ptr,move}
Now that we require C++11, use std::unique_ptr and std::move directly. gdb/ChangeLog: 2016-11-15 Pedro Alves <palves@redhat.com> * ada-lang.c (create_excep_cond_exprs): Use std::move instead of gdb::move. * break-catch-throw.c (handle_gnu_v3_exceptions): Use std::unique_ptr instead of gdb::unique_ptr. * breakpoint.c (watch_command_1): Use std::move instead of gdb::move. * cli/cli-dump.c (dump_memory_to_file, restore_binary_file): Use std::unique_ptr instead of gdb::unique_ptr. * dtrace-probe.c (dtrace_process_dof_probe): Use std::move instead of gdb::move. * elfread.c (elf_read_minimal_symbols): Use std::unique_ptr instead of gdb::unique_ptr. * mi/mi-main.c (mi_cmd_data_read_memory): Use std::unique_ptr instead of gdb::unique_ptr. * parse.c (parse_expression_for_completion): Use std::move instead of gdb::move. * printcmd.c (display_command): std::move instead of gdb::move. |
||
|
6c73cd95f9 |
agent_expr_up: gdb::unique_ptr -> std::unique_ptr
Now that we require C++11, use std::unique_ptr directly. This allows simplifying collection_list a bit by placing unique pointers in the vector directly, making the vector own its elements. gdb/ChangeLog: 2016-11-09 Pedro Alves <palves@redhat.com> * ax-gdb.c (agent_eval_command_one): Use std::move instead of gdb::move. * ax.h (agent_expr_up): Use std::unique_ptr instead of gdb::unique_ptr. * breakpoint.c (parse_cond_to_aexpr): Use std::move instead of gdb::move. * tracepoint.c (collection_list::collect_symbol): Likewise. (collection_list::~collection_list): Delete. (encode_actions_1): Use std::move instead of gdb::move. (collection_list::add_aexpr): Use std::move instead of unique_ptr::release. * tracepoint.h (collection_list) <~collection_list>: Delete declaration. <m_aexprs>: Now a vector of agent_ptr_up. |
||
|
3cde5c42d1 |
Eliminate agent_expr_p; VEC -> std::vector in struct bp_target_info
After the previous patch, we end up with these two types with quite similar, and potentially confusing names: typedef gdb::unique_ptr<agent_expr> agent_expr_up; /* Pointer to an agent_expr structure. */ typedef struct agent_expr *agent_expr_p; The latter is only necessary to put agent_expr pointers in VECs. So just eliminate it and use std::vector instead. gdb/ChangeLog: 2016-11-08 Pedro Alves <palves@redhat.com> * ax.h (agent_expr_p): Delete. (DEF_VEC_P (agent_expr_p)): Delete. * breakpoint.c (build_target_condition_list) (build_target_command_list): Adjust to use of std::vector. (bp_location_dtor): Remove now unnecessary VEC_free calls. * breakpoint.h: Include <vector>. (struct bp_target_info) <conditions, tcommands>: Now std::vector's. * remote.c (remote_add_target_side_condition): bp_tgt->conditions is now a std::vector; adjust. (remote_add_target_side_commands, remote_insert_breakpoint): bp_tgt->tcommands is now a std::vector; adjust. |
||
|
833177a4a5 |
'struct agent_expr *' -> unique_ptr<agent_expr>
This patch makes the gen_* functions return a unique_ptr instead of raw pointer: typedef gdb::unique_ptr<agent_expr> agent_expr_up; and then adjusts the codebase throughout to stop using make_cleanup_free_agent_expr. The cond_bytecode and cmd_bytecode fields of struct bp_location are owning pointers, so they're changed to be unique_ptr's instead of raw pointers. gdb/ChangeLog: 2016-11-08 Pedro Alves <palves@redhat.com> * ax-gdb.c (is_nontrivial_conversion): Use agent_expr_up. (gen_trace_for_var, gen_trace_for_expr, gen_eval_for_expr) (gen_trace_for_return_address, gen_printf): Use and return an agent_expr_up. Don't use make_cleanup_free_agent_expr. (agent_eval_command_one, maint_agent_printf_command): Use agent_expr_up. Don't use make_cleanup_free_agent_expr. * ax-gdb.h (gen_trace_for_expr, gen_trace_for_var) (gen_trace_for_return_address, gen_eval_for_expr, gen_printf): Use agent_expr_up. * ax-general.c (new_agent_expr): Rename to ... (agent_expr::agent_expr): ... this, and now a constructor. (free_agent_expr): Rename to ... (agent_expr::~agent_exp): ... this, and now a destructor. (do_free_agent_expr_cleanup, make_cleanup_free_agent_expr): Delete. * ax.h (struct agent_expr): Add ctor/dtor. (agent_expr_up): New typedef. (new_agent_expr, free_agent_expr, make_cleanup_free_agent_expr): Delete declarations. * breakpoint.c (parse_cond_to_aexpr): Use and return an agent_expr_up. Don't use make_cleanup_free_agent_expr. (build_target_condition_list): Adjust to use agent_expr_up. (parse_cmd_to_aexpr): Use and return an agent_expr_up. Don't use make_cleanup_free_agent_expr. (build_target_command_list): Adjust to use agent_expr_up. (force_breakpoint_reinsertion): Adjust to use agent_expr_up. (bp_location_dtor): Remove unnecessary free_agent_expr and xfree calls. * breakpoint.h (struct bp_target_info) <cond_bytecode, cmd_bytecode>: Now agent_expr_up's. * remote.c (remote_download_tracepoint): Adjust to use agent_expr_up and remove use of make_cleanup_free_agent_expr. * tracepoint.c (validate_actionline, collect_symbol): Adjust to use agent_expr_up and remove uses of make_cleanup_free_agent_expr. (collection_list::~collection_list): Call delete instead of free_agent_expr. (encode_actions_1): Adjust to use agent_expr_up and remove uses of make_cleanup_free_agent_expr. (add_aexpr): Change parameter type to agent_expr_up; Return a raw agent_expr pointer. |
||
|
2f408ecb92 |
Use ui_file_as_string throughout more
This replaces most of the remaining ui_file_xstrdup calls with ui_file_as_string calls. Whenever a call was replaced, that led to a cascade of other necessary adjustments throughout, to make the code use std::string instead of raw pointers. And then whenever I added a std::string as member of a struct, I needed to adjust allocation/destruction of said struct to use new/delete instead of xmalloc/xfree. The stopping point was once gdb built again. These doesn't seem to be a way to reasonably split this out further. Maybe-not-obvious changes: - demangle_for_lookup returns a cleanup today. To get rid of that, and avoid unnecessary string dupping/copying, this introduces a demangle_result_storage type that the caller instantiates and passes to demangle_for_lookup. - Many methods returned a "char *" to indicate that the caller owns the memory and must free it. Those are switched to return a std::string instead. Methods that return a "view" into some internal string return a "const char *" instead. I.e., we only copy/allocate when necessary. gdb/ChangeLog: 2016-11-08 Pedro Alves <palves@redhat.com> * ada-lang.c (ada_name_for_lookup, type_as_string): Use and return std::string. (type_as_string_and_cleanup): Delete. (ada_lookup_struct_elt_type): Use type_as_string. * ada-lang.h (ada_name_for_lookup): Now returns std::string. * ada-varobj.c (ada_varobj_scalar_image): Return a std::string. (ada_varobj_describe_child): Make 'child_name' and 'child_path_expr' parameters std::string pointers. (ada_varobj_describe_struct_child, ada_varobj_describe_ptr_child): Likewise, and use string_printf. (ada_varobj_describe_simple_array_child) (ada_varobj_describe_child): Likewise. (ada_varobj_get_name_of_child, ada_varobj_get_path_expr_of_child) (ada_varobj_get_value_image) (ada_varobj_get_value_of_array_variable) (ada_varobj_get_value_of_variable, ada_name_of_variable) (ada_name_of_child, ada_path_expr_of_child) (ada_value_of_variable): Now returns std::string. Use string_printf. (ada_value_of_child): Adjust. * break-catch-throw.c (check_status_exception_catchpoint): Adjust to use std::string. * breakpoint.c (watch_command_1): Adjust to use std::string. * c-lang.c (c_get_string): Adjust to use std::string. * c-typeprint.c (print_name_maybe_canonical): Use std::string. * c-varobj.c (varobj_is_anonymous_child): Use ==/!= std::string operators. (c_name_of_variable): Now returns a std::string. (c_describe_child): The 'cname' and 'cfull_expression' output parameters are now std::string pointers. Adjust. (c_name_of_child, c_path_expr_of_child, c_value_of_variable) (cplus_number_of_children): Adjust to use std::string and string_printf. (cplus_name_of_variable): Now returns a std::string. (cplus_describe_child): The 'cname' and 'cfull_expression' output parameters are now std::string pointers. Adjust. (cplus_name_of_child, cplus_path_expr_of_child) (cplus_value_of_variable): Now returns a std::string. * cp-abi.c (cplus_typename_from_type_info): Return std::string. * cp-abi.h (cplus_typename_from_type_info): Return std::string. (struct cp_abi_ops) <get_typename_from_type_info>: Return std::string. * cp-support.c (inspect_type): Use std::string. (cp_canonicalize_string_full, cp_canonicalize_string_no_typedefs) (cp_canonicalize_string): Return std::string and adjust. * cp-support.h (cp_canonicalize_string) (cp_canonicalize_string_no_typedefs, cp_canonicalize_string_full): Return std::string. * dbxread.c (read_dbx_symtab): Use std::string. * dwarf2read.c (dwarf2_canonicalize_name): Adjust to use std::string. * gdbcmd.h (lookup_struct_elt_type): Adjust to use std::string. * gnu-v3-abi.c (gnuv3_get_typeid): Use std::string. (gnuv3_get_typename_from_type_info): Return a std::string and adjust. (gnuv3_get_type_from_type_info): Adjust to use std::string. * guile/guile.c (gdbscm_execute_gdb_command): Adjust to use std::string. * infcmd.c (print_return_value_1): Adjust to use std::string. * linespec.c (find_linespec_symbols): Adjust to demangle_for_lookup API change. Use std::string. * mi/mi-cmd-var.c (print_varobj, mi_cmd_var_set_format) (mi_cmd_var_info_type, mi_cmd_var_info_path_expression) (mi_cmd_var_info_expression, mi_cmd_var_evaluate_expression) (mi_cmd_var_assign, varobj_update_one): Adjust to use std::string. * minsyms.c (lookup_minimal_symbol): Use std::string. * python/py-varobj.c (py_varobj_iter_next): Use new instead of XNEW. vitem->name is a std::string now, adjust. * rust-exp.y (convert_ast_to_type, convert_name): Adjust to use std::string. * stabsread.c (define_symbol): Adjust to use std::string. * symtab.c (demangle_for_lookup): Now returns 'const char *'. Add a demangle_result_storage parameter. Use it for storage. (lookup_symbol_in_language) (lookup_symbol_in_objfile_from_linkage_name): Adjust to new demangle_for_lookup API. * symtab.h (struct demangle_result_storage): New type. (demangle_for_lookup): Now returns 'const char *'. Add a demangle_result_storage parameter. * typeprint.c (type_to_string): Return std::string and use ui_file_as_string. * value.h (type_to_string): Change return type to std::string. * varobj-iter.h (struct varobj_item) <name>: Now a std::string. (varobj_iter_delete): Use delete instead of xfree. * varobj.c (create_child): Return std::string instead of char * in output parameter. (name_of_variable, name_of_child, my_value_of_variable): Return std::string instead of char *. (varobj_create, varobj_get_handle): Constify 'objname' parameter. Adjust to std::string fields. (varobj_get_objname): Return a const char * instead of a char *. (varobj_get_expression): Return a std::string. (varobj_list_children): Adjust to use std::string. (varobj_get_type): Return a std::string. (varobj_get_path_expr): Return a const char * instead of a char *. Adjust to std::string fields. (varobj_get_formatted_value, varobj_get_value): Return a std::string. (varobj_set_value): Change type of 'expression' parameter to std::string. Use std::string. (install_new_value): Use std::string. (delete_variable_1): Adjust to use std::string. (create_child): Change the 'name' parameter to a std::string reference. Swap it into the new item's name. (create_child_with_value): Swap item's name into the new child's name. Use string_printf. (new_variable): Use new instead of XNEW. (free_variable): Don't xfree fields that are now std::string. (name_of_variable, name_of_child): Now returns std::string. (value_of_root): Adjust to use std::string. (my_value_of_variable, varobj_value_get_print_value): Return and use std::string. (varobj_value_get_print_value): Adjust to use ui_file_as_string and std::string. * varobj.h (struct varobj) <name, path_expr, obj_name, print_value>: Now std::string's. <name_of_variable, name_of_child, path_expr_of_child, value_of_variable>: Return std::string. (varobj_create, varobj_get_handle): Constify 'objname' parameter. (varobj_get_objname): Return a const char * instead of a char *. (varobj_get_expression, varobj_get_type): Return a std::string. (varobj_get_path_expr): Return a const char * instead of a char *. (varobj_get_formatted_value, varobj_get_value): Return a std::string. (varobj_set_value): Constify 'expression' parameter. (varobj_value_get_print_value): Return a std::string. |
||
|
4d01a485d2 |
'struct expression *' -> gdb::unique_xmalloc_ptr<expression>
This patch makes parse_expression and friends return a unique_ptr instead of raw pointer [1]: typedef gdb::unique_malloc_ptr<expression> expression_up; and then adjusts the codebase throughout to stop using cleanups to manage lifetime of expression pointers. Whenever I found a structure owning an expression pointer, I made it store a unique_ptr instead of a raw pointer, which then requires using new/delete of the holding structure, instead of XNEW/xfree. [1] - I'd like to set the rule that types named with an "_up" suffix are unique_ptr typedefs. Note I used gdb::unique_xmalloc_ptr instead of gdb::unique_ptr, simply because we still use xmalloc instead of new to allocate expression objects. Once that's changed, all we need to do is change the expression_up typedef and the smart pointer will then call delete instead of xfree. gdb/ChangeLog: 2016-11-08 Pedro Alves <palves@redhat.com> * ada-lang.c (ada_read_renaming_var_value): Use expression_up. (struct ada_catchpoint_location) <excep_cond_expr>: Now an expression_up. (ada_catchpoint_location_dtor): Reset excep_cond_expr instead of using xfree. (create_excep_cond_exprs): Use expression_up and gdb::move. (allocate_location_exception): Use new instead of XNEW. (should_stop_exception): Likewise. Adjust to use expression_up. (create_ada_exception_catchpoint): Use new instead of XNEW. * ax-gdb.c (agent_eval_command_one): Use expression_up instead of cleanups. (maint_agent_printf_command): Use expression_up. * break-catch-sig.c (create_signal_catchpoint): Use new instead of XNEW. * break-catch-syscall.c (create_syscall_event_catchpoint): Likewise. * break-catch-throw.c (handle_gnu_v3_exceptions): Use new instead of XCNEW. Use gdb::unique_ptr instead of cleanups. * breakpoint.c (set_breakpoint_condition, update_watchpoint) (parse_cmd_to_aexpr, watchpoint_check) (bpstat_check_breakpoint_conditions, watchpoint_locations_match): Adjust to use expression_up. (init_bp_location): Adjust. (free_bp_location): Use delete instead of xfree. (set_raw_breakpoint_without_location, set_raw_breakpoint) (add_solib_catchpoint, create_fork_vfork_event_catchpoint) (new_single_step_breakpoint, create_breakpoint_sal): Use new instead of XNEW. (find_condition_and_thread): Adjust to use expression_up. (create_breakpoint): Use new instead of XNEW. (dtor_watchpoint): Don't xfree expression pointers, they're unique_ptr's now. (insert_watchpoint, remove_watchpoint): Adjust. (watch_command_1): Use expression_up. Use new instead of XCNEW. (catch_exec_command_1): Use new instead of XNEW. (bp_location_dtor): Don't xfree expression pointers, they're unique_ptr's now. (base_breakpoint_allocate_location) (strace_marker_create_breakpoints_sal): Use new instead of XNEW. (delete_breakpoint): Use delete instead of xfree. * breakpoint.h (struct bp_location) <cond>: Now an unique_ptr<expression> instead of a raw pointer. (struct watchpoint) <exp, cond_exp>: Likewise. * cli/cli-script.c (execute_control_command): Use expression_up instead of cleanups. * dtrace-probe.c (dtrace_process_dof_probe): Use expression_up. * eval.c (parse_and_eval_address, parse_and_eval_long) (parse_and_eval, parse_to_comma_and_eval, parse_and_eval_type): Use expression_up instead of cleanups. * expression.h (expression_up): New typedef. (parse_expression, parse_expression_with_language, parse_exp_1): Change return type to expression_up. * mi/mi-main.c (mi_cmd_data_evaluate_expression) (print_variable_or_computed): Use expression_up. * objc-lang.c (print_object_command): Use expression_up instead of cleanups. * parse.c (parse_exp_1, parse_exp_in_context) (parse_exp_in_context_1, parse_expression) (parse_expression_with_language): Return an expression_up instead of a raw pointer. (parse_expression_for_completion): Use expression_up. * printcmd.c (struct display) <exp>: Now an expression_up instead of a raw pointer. (print_command_1, output_command_const, set_command, x_command): Use expression_up instead of cleanups. (display_command): Likewise. Use new instead of XNEW. (free_display): Use delete instead of xfree. (do_one_display): Adjust to use expression_up. * remote.c (remote_download_tracepoint): Likewise. * stack.c (return_command): Likewise. * tracepoint.c (validate_actionline, encode_actions_1): Use expression_up instead of cleanups. * typeprint.c (whatis_exp, maintenance_print_type): Likewise. * value.c (init_if_undefined_command): Likewise. * varobj.c (struct varobj_root) <exp>: Now an expression_up instead of a raw pointer. (varobj_create): Adjust. (varobj_set_value): Use an expression_up instead of cleanups. (new_root_variable): Use new instead of XNEW. (free_variable): Use delete instead of xfree. (value_of_root_1): Use std::swap. |
||
|
896b6bda69 |
breakpoint.c:commands_command_1 constification and cleanup
This is constification needed for next patch. Adjust commands_command_1 to use std::string too because the "arg" parameter is currently overwritten and then passed to make_cleanup. The constification alone would trigger a compile error in the make_cleanup call otherwise (passing const char * to void * parameter). Using std::string gets rid of the cleanup in the first place, resulting in simpler code. gdb/ChangeLog: 2016-11-08 Pedro Alves <palves@redhat.com> * breakpoint.c (struct commands_info) <arg>: Constify. (commands_command_1): Constify 'arg' parameter. Use std::string and string_printf. (commands_from_control_command): Constify 'arg' parameter. (map_breakpoint_numbers): Constify 'args' parameter. * breakpoint.h (commands_from_control_command): Constify 'arg' parameter. |
||
|
93f9a11fbd |
gdbarch software_single_step returns VEC (CORE_ADDR) *
This patch changes gdbarch method software_single_step to return a vector of addresses on which GDB should insert breakpoints, and don't insert breakpoints. Instead, the caller of gdbarch_software_single_step inserts breakpoints if the returned vector is not NULL. gdb: 2016-11-08 Yao Qi <yao.qi@linaro.org> * aarch64-tdep.c (aarch64_software_single_step): Return VEC (CORE_ADDR) *. Return NULL instead of 0. Don't call insert_single_step_breakpoint. * alpha-tdep.c (alpha_deal_with_atomic_sequence): Likewise. (alpha_software_single_step): Likewise. * alpha-tdep.h (alpha_software_single_step): Update declaration. * arm-linux-tdep.c (arm_linux_software_single_step): Return VEC (CORE_ADDR) *. Return NULL instead of 0. * arm-tdep.c (arm_software_single_step): Return NULL instead of 0. * arm-tdep.h (arm_software_single_step): Update declaration. * breakpoint.c (insert_single_step_breakpoints): New function. * breakpoint.h (insert_single_step_breakpoints): Declare. * cris-tdep.c (cris_software_single_step): Return VEC (CORE_ADDR) *. Don't call insert_single_step_breakpoint. * gdbarch.sh (software_single_step): Change it to return VEC (CORE_ADDR) *. * gdbarch.c, gdbarch.h: Regenerated. * infrun.c (maybe_software_singlestep): Adjust. * mips-tdep.c (mips_deal_with_atomic_sequence): Return VEC (CORE_ADDR) *. Don't call insert_single_step_breakpoint. (micromips_deal_with_atomic_sequence): Likewise. (deal_with_atomic_sequence): Likewise. (mips_software_single_step): Likewise. * mips-tdep.h (mips_software_single_step): Update declaration. * moxie-tdep.c (moxie_software_single_step): Likewise. * nios2-tdep.c (nios2_software_single_step): Likewise. * ppc-tdep.h (ppc_deal_with_atomic_sequence): Update declaration. * record-full.c (record_full_resume): Adjust. (record_full_wait_1): Likewise. * rs6000-aix-tdep.c (rs6000_software_single_step): Return VEC (CORE_ADDR) *. Don't call insert_single_step_breakpoint. * rs6000-tdep.c (ppc_deal_with_atomic_sequence): Return VEC (CORE_ADDR) *. Don't call insert_single_step_breakpoint. * s390-linux-tdep.c (s390_software_single_step): Likewise. * sparc-tdep.c (sparc_software_single_step): Likewise. * spu-tdep.c (spu_software_single_step): Likewise. * tic6x-tdep.c (tic6x_software_single_step): Likewise. |
||
|
53c3572a9f |
Fix PR breakpoints/20739: Badly formatted adress string in error message
Remove duplicate `0x'-prefix for the hex address printed. `paddress' already prepends this, so no need to do it manually. gdb/ChangeLog: 2016-11-08 Cordian A. Daniluk <th3c0r1uk@gmail.com> PR breakpoints/20739 * breakpoint.c (check_fast_tracepoint_sals): Don't print duplicate 0x prefix. |
||
|
833b7ab500 |
Determine the kind of single step breakpoint
This patch adds a new gdbarch method breakpoint_kind_from_current_state for single step breakpoint, and uses it in breakpoint_kind. gdb: 2016-11-03 Yao Qi <yao.qi@linaro.org> * arch-utils.c (default_breakpoint_kind_from_current_state): New function. * arch-utils.h (default_breakpoint_kind_from_current_state): Declare. * arm-tdep.c (arm_breakpoint_kind_from_current_state): New function. (arm_gdbarch_init): Call set_gdbarch_breakpoint_kind_from_current_state. * breakpoint.c (breakpoint_kind): Call gdbarch_breakpoint_kind_from_current_state for single step breakpoint. Update comments. * gdbarch.sh (breakpoint_kind_from_current_state): New. * gdbarch.c, gdbarch.h: Regenerate. |
||
|
579c6ad983 |
Rename placed_size to kind
This patch renames placed_size to kind. gdb: 2016-11-03 Yao Qi <yao.qi@linaro.org> * breakpoint.h (struct bp_target_info) <placed_size>: Remove. <kind>: New field. Update all users. |
||
|
cd6c3b4ffc |
New gdbarch methods breakpoint_kind_from_pc and sw_breakpoint_from_kind
This patch adds two gdbarch methods breakpoint_kind_from_pc and sw_breakpoint_from_kind, and uses target_info.placed_size as "kind" of the breakpoint. This patch updates the usages of target_info.placed_size. The "kind" of a breakpoint is determined by gdbarch rather than target, so we have gdbarch method breakpoint_kind_from_pc, and we should set target_info.placed_size out of each implementation of target to_insert_breakpoint. In this way, each target doesn't have to set target_info.placed_size any more. This patch also sets target_info.placed_address before target_insert_breakpoint too, so that target to_insert_breakpoint can use it, see record_full_insert_breakpoint. Before we call target_insert_breakpoint, we set target_info.placed_address and target_info.placed_size like this, CORE_ADDR addr = bl->target_info.reqstd_address; bl->target_info.placed_size = gdbarch_breakpoint_kind_from_pc (bl->gdbarch, &addr); bl->target_info.placed_address = addr; return target_insert_breakpoint (bl->gdbarch, &bl->target_info); target_insert_breakpoint may fail, but it doesn't matter to the "kind" and "placed_address" of a breakpoint. They should be determined by gdbarch. gdb: 2016-11-03 Yao Qi <yao.qi@linaro.org> * arch-utils.h (GDBARCH_BREAKPOINT_MANIPULATION): Define breakpoint_kind_from_pc and sw_breakpoint_from_kind. (GDBARCH_BREAKPOINT_MANIPULATION_ENDIAN): Likewise. (SET_GDBARCH_BREAKPOINT_MANIPULATION): Call set_gdbarch_breakpoint_kind_from_pc and set_gdbarch_sw_breakpoint_from_kind. * arm-tdep.c: Add comments. * bfin-tdep.c: Likewise. * breakpoint.c (breakpoint_kind): New function. (insert_bp_location): Set target_info.placed_size and target_info.placed_address. (bkpt_insert_location): Likewise. * cris-tdep.c: Add comments. * gdbarch.sh (breakpoint_kind_from_pc): New. (sw_breakpoint_from_kind): New. * gdbarch.c, gdbarch.h: Regenerated. * ia64-tdep.c (ia64_memory_insert_breakpoint): Don't set bp_tgt->placed_size. (ia64_memory_remove_breakpoint): Don't assert bp_tgt->placed_size. (ia64_breakpoint_kind_from_pc): New function. (ia64_gdbarch_init): Install ia64_breakpoint_kind_from_pc. * m32r-tdep.c (m32r_memory_insert_breakpoint): Don't set bp_tgt->placed_size. * mem-break.c (default_memory_insert_breakpoint): Don't set bp_tgt->placed_size. Call gdbarch_sw_breakpoint_from_kind. (default_memory_remove_breakpoint): Call gdbarch_sw_breakpoint_from_kind. (memory_validate_breakpoint): Don't check bp_tgt->placed_size. * mips-tdep.c: Add comments. * mt-tdep.c: Likewise. * nios2-tdep.c: Likewise. * record-full.c (record_full_insert_breakpoint): Don't call gdbarch_breakpoint_from_pc. Don't set bp_tgt->placed_address and bp_tgt->placed_size. * remote.c (remote_insert_breakpoint): Don't call gdbarch_remote_breakpoint_from_pc. Use bp_tgt->placed_size. Don't set bp_tgt->placed_address and bp_tgt->placed_size. (remote_insert_hw_breakpoint): Likewise. * score-tdep.c: Likewise. * sh-tdep.c: Likewise. * tic6x-tdep.c: Likewise. * v850-tdep.c: Likewise. * xtensa-tdep.c: Likewise. |
||
|
0e454242cc |
Remove make_cleanup_restore_current_ui
This removes make_cleanup_restore_current_ui by converting the last use. The last use was in a few functions used to iterate over all UIs. This patch replaces these functions with a class, and arranges for the class destructor to do the needed cleanup. 2016-10-21 Tom Tromey <tom@tromey.com> * tui/tui-interp.c (tui_on_normal_stop, tui_on_signal_received) (tui_on_end_stepping_range, tui_on_signal_exited, tui_on_exited) (tui_on_no_history, tui_on_user_selected_context_changed): Update. * top.h (switch_thru_all_uis): New class. (SWITCH_THRU_ALL_UIS): Rewrite. (make_cleanup_restore_current_ui, switch_thru_all_uis_init) (switch_thru_all_uis_cond, switch_thru_all_uis_next): Don't declare. * mi/mi-interp.c (mi_new_thread, mi_thread_exit) (mi_record_changed, mi_inferior_added, mi_inferior_appeared) (mi_inferior_exit, mi_inferior_removed, mi_on_signal_received) (mi_on_end_stepping_range, mi_on_signal_exited, mi_on_exited) (mi_on_no_history, mi_on_normal_stop, mi_traceframe_changed) (mi_tsv_created, mi_tsv_deleted, mi_tsv_modified) (mi_breakpoint_created, mi_breakpoint_deleted) (mi_breakpoint_modified, mi_output_running_pid, mi_on_resume) (mi_solib_loaded, mi_solib_unloaded, mi_command_param_changed) (mi_memory_changed, mi_user_selected_context_changed): Update. * infrun.c (all_uis_check_sync_execution_done) (all_uis_on_sync_execution_starting, normal_stop): Update. * event-top.c (restore_ui_cleanup) (make_cleanup_restore_current_ui, switch_thru_all_uis_init) (switch_thru_all_uis_cond, switch_thru_all_uis_next): Remove. * cli/cli-interp.c (cli_on_normal_stop, cli_on_signal_received) (cli_on_end_stepping_range, cli_on_signal_exited, cli_on_exited) (cli_on_no_history, cli_on_user_selected_context_changed): Update. * breakpoint.c (watchpoint_check): Update. |
||
|
bfd282882d |
Convert tid_range_parser and get_number_or_range to classes
This converts tid_range_parser and get_number_or_range to be classes. The various tid_range_parser_* and get_number_or_range_* functions become methods on the respective classes. Then it updates the users to follow. The rationale for the change is that this provides better encapsulation. For example, this forced me to think of a better interface between tid_range_parser and get_number_or_range, since the former peeked into the latter's internals a bit too much. That ended up resulting mostly in these two not-just-straight-1-1 changes: void -tid_range_parser_skip (struct tid_range_parser *parser) +tid_range_parser::skip_range () { ... - tid_range_parser_init (parser, parser->range_parser.end_ptr, - parser->default_inferior); + m_range_parser.skip_range (); + init (m_range_parser.string (), m_default_inferior); } and: /* If we successfully parsed a thread number or finished parsing a thread range, switch back to assuming the next TID is inferior-qualified. */ - if (parser->range_parser.end_ptr == NULL - || parser->range_parser.string == parser->range_parser.end_ptr) + if (!m_range_parser.in_range ()) { For the same reason (encapsulation), this moves the enum tid_range_state definition to within the tid_parser class's scope, since that is private implementation detail. While at it, switch to use "bool" for booleans. gdb/ChangeLog: 2016-10-13 Pedro Alves <palves@redhat.com> Tom Tromey <tom@tromey.com> * tid-parse.h (tid_range_parser): New class. (enum tid_range_state): Move into tid_range_parser's scope. Remove TID_RANGE_ prefix from all values. (tid_range_parser_get_tid, tid_range_parser_get_tid_range) (tid_range_parser_star_range, tid_range_parser_finished) (tid_range_parser_skip, tid_range_parser_qualified): Don't declare. (tid_is_in_list): Update comment. * tid-parse.c (tid_range_parser::tid_range_parser): New. (init, finished, get_string, skip, tid_is_qualified) (get_tid_or_range, get_tid_range, get_tid, star_range): Rename; turn into methods. (tid_is_in_list): Adjust. * cli/cli-utils.h (number_or_range_parser): New class. (init_number_or_range, get_number_or_range) (number_range_setup_range): Don't declare. * cli/cli-utils.c (number_or_range_parser::number_or_range_parser): New. (init_number_or_range, get_number_or_range) (number_range_setup_range): Rename; turn into methods. (number_is_in_list): Adjust. * breakpoint.c (map_breakpoint_numbers): Adjust. Use bool. (trace_pass_command, get_tracepoint_by_number): Adjust. * breakpoint.h (get_tracepoint_by_number): Adjust. * inferior.c (detach_inferior_command, kill_inferior_command) (remove_inferior_command): Adjust. * linespec.c (decode_line_2): Adjust. * memattr.c (mem_enable_command, mem_disable_command) (mem_delete_command): Adjust. * printcmd.c (map_display_numbers): Adjust. * reverse.c (delete_bookmark_command, bookmarks_info): Adjust. * thread.c (thread_apply_command): Adjust. |
||
|
768adc05c4 |
gdb: Fix std::{min, max}-related build breakage on 32-bit hosts
Building on a 32-bit host fails currently with errors like: .../src/gdb/exec.c: In function ‘target_xfer_status section_table_read_available_memory(gdb_byte*, ULONGEST, ULONGEST, ULONGEST*)’: .../src/gdb/exec.c:801:54: error: no matching function for call to ‘min(ULONGEST, long unsigned int)’ end = std::min (offset + len, r->start + r->length); ^ In file included from /usr/include/c++/5.3.1/algorithm:61:0, from .../src/gdb/exec.c:46: /usr/include/c++/5.3.1/bits/stl_algobase.h:195:5: note: candidate: template<class _Tp> const _Tp& std::min(const _Tp&, const _Tp&) min(const _Tp& __a, const _Tp& __b) ^ /usr/include/c++/5.3.1/bits/stl_algobase.h:195:5: note: template argument deduction/substitution failed: .../src/gdb/exec.c:801:54: note: deduced conflicting types for parameter ‘const _Tp’ (‘long long unsigned int’ and ‘long unsigned int’) end = std::min (offset + len, r->start + r->length); ^ In file included from /usr/include/c++/5.3.1/algorithm:61:0, from .../src/gdb/exec.c:46: /usr/include/c++/5.3.1/bits/stl_algobase.h:243:5: note: candidate: template<class _Tp, class _Compare> const _Tp& std::min(const _Tp&, const _Tp&, _Compare) min(const _Tp& __a, const _Tp& __b, _Compare __comp) ^ The problem is that the std::min/std::max function templates use the same type for both parameters. When the argument types are different, the compiler can't automatically deduce which template specialization to pick from the arguments' types. Fix that by specifying the specialization we want explicitly. gdb/ChangeLog: 2016-09-18 Pedro Alves <palves@redhat.com> * breakpoint.c (hardware_watchpoint_inserted_in_range): Explicitly specify the std:min/std::max specialization. * exec.c (section_table_read_available_memory): Likewise. * remote.c (remote_read_qxfer): Likewise. * target.c (simple_verify_memory): Likewise. |
||
|
325fac504a |
gdb: Use std::min and std::max throughout
Otherwise including <string> or some other C++ header is broken. E.g.: In file included from /opt/gcc/include/c++/7.0.0/bits/char_traits.h:39:0, from /opt/gcc/include/c++/7.0.0/string:40, from /home/pedro/gdb/mygit/cxx-convertion/src/gdb/infrun.c:68: /opt/gcc/include/c++/7.0.0/bits/stl_algobase.h:243:56: error: macro "min" passed 3 arguments, but takes just 2 min(const _Tp& __a, const _Tp& __b, _Compare __comp) ^ /opt/gcc/include/c++/7.0.0/bits/stl_algobase.h:265:56: error: macro "max" passed 3 arguments, but takes just 2 max(const _Tp& __a, const _Tp& __b, _Compare __comp) ^ In file included from .../src/gdb/infrun.c:21:0: To the best of my grepping abilities, I believe I adjusted all min/max calls. gdb/ChangeLog: 2016-09-16 Pedro Alves <palves@redhat.com> * defs.h (min, max): Delete. * aarch64-tdep.c: Include <algorithm> and use std::min and std::max throughout. * aarch64-tdep.c: Likewise. * alpha-tdep.c: Likewise. * amd64-tdep.c: Likewise. * amd64-windows-tdep.c: Likewise. * arm-tdep.c: Likewise. * avr-tdep.c: Likewise. * breakpoint.c: Likewise. * btrace.c: Likewise. * ctf.c: Likewise. * disasm.c: Likewise. * doublest.c: Likewise. * dwarf2loc.c: Likewise. * dwarf2read.c: Likewise. * environ.c: Likewise. * exec.c: Likewise. * f-exp.y: Likewise. * findcmd.c: Likewise. * ft32-tdep.c: Likewise. * gcore.c: Likewise. * hppa-tdep.c: Likewise. * i386-darwin-tdep.c: Likewise. * i386-tdep.c: Likewise. * linux-thread-db.c: Likewise. * lm32-tdep.c: Likewise. * m32r-tdep.c: Likewise. * m88k-tdep.c: Likewise. * memrange.c: Likewise. * minidebug.c: Likewise. * mips-tdep.c: Likewise. * moxie-tdep.c: Likewise. * nds32-tdep.c: Likewise. * nios2-tdep.c: Likewise. * nto-procfs.c: Likewise. * parse.c: Likewise. * ppc-sysv-tdep.c: Likewise. * probe.c: Likewise. * record-btrace.c: Likewise. * remote.c: Likewise. * rs6000-tdep.c: Likewise. * rx-tdep.c: Likewise. * s390-linux-nat.c: Likewise. * s390-linux-tdep.c: Likewise. * ser-tcp.c: Likewise. * sh-tdep.c: Likewise. * sh64-tdep.c: Likewise. * source.c: Likewise. * sparc-tdep.c: Likewise. * symfile.c: Likewise. * target-memory.c: Likewise. * target.c: Likewise. * tic6x-tdep.c: Likewise. * tilegx-tdep.c: Likewise. * tracefile-tfile.c: Likewise. * tracepoint.c: Likewise. * valprint.c: Likewise. * value.c: Likewise. * xtensa-tdep.c: Likewise. * cli/cli-cmds.c: Likewise. * compile/compile-object-load.c: Likewise. |
||
|
7397181903 |
Plumb enum remove_bp_reason all the way to target_remove_breakpoint
So the target knows whether we're detaching breakpoints. Nothing uses the parameter in this patch yet. gdb/ChangeLog: 2016-08-10 Pedro Alves <palves@redhat.com> PR gdb/19187 * break-catch-sig.c (signal_catchpoint_remove_location): Adjust interface. * break-catch-syscall.c (remove_catch_syscall): * breakpoint.c (enum remove_bp_reason): Moved to breakpoint.h. (remove_breakpoint_1): Pass 'reason' down. (remove_catch_fork, remove_catch_vfork, remove_catch_solib) (remove_catch_exec, remove_watchpoint, remove_masked_watchpoint) (base_breakpoint_remove_location, bkpt_remove_location) (bkpt_probe_remove_location, bkpt_probe_remove_location): Adjust interface. * breakpoint.h (enum remove_bp_reason): Moved here from breakpoint.c. (struct breakpoint_ops) <remove_location>: Add 'reason' parameter. * corelow.c (core_remove_breakpoint): New function. (init_core_ops): Install it as to_remove_breakpoint method. * exec.c (exec_remove_breakpoint): New function. (init_exec_ops): Install it as to_remove_breakpoint method. * mem-break.c (memory_remove_breakpoint): Adjust interface. * record-btrace.c (record_btrace_remove_breakpoint): Adjust interface. * record-full.c (record_full_remove_breakpoint) (record_full_core_remove_breakpoint): Adjust interface. * remote.c (remote_remove_breakpoint): Adjust interface. * target-debug.h (target_debug_print_enum_remove_bp_reason): New macro. * target-delegates.c: Regenerate. * target.c (target_remove_breakpoint): Add 'reason' parameter. * target.h (struct target_ops) <to_remove_breakpoint>: Add 'reason' parameter. (target_remove_breakpoint, memory_remove_breakpoint): Add 'reason' parameter. |
||
|
b2b6a7dab9 |
Introduce 'enum remove_bp_reason'
Makes the code more obvious. gdb/ChangeLog: 2016-08-10 Pedro Alves <palves@redhat.com> PR gdb/19187 * breakpoint.c (insertion_state_t): Delete. (enum remove_bp_reason): New. (detach_breakpoints, remove_breakpoint_1, remove_breakpoint): Adjust to use enum remove_bp_reason instead of insertion_state_t. |
||
|
834c0d033b |
Simplify remove_breakpoint interface
All callers pass mark_uninserted, so there's no need for the 'is' parameter. gdb/ChangeLog: 2016-08-10 Pedro Alves <palves@redhat.com> PR gdb/19187 * breakpoint.c (remove_breakpoint): Remove 'is' parameter and always pass mark_uninserted to remove_breakpoint_1. (insert_breakpoint_locations, remove_breakpoints) (remove_breakpoints_pid, update_global_location_list): Update callers. |
||
|
93daf339a4 |
PR python/17698 - add Breakpoint.pending
This patch adds a "pending" attribute to gdb.Breakpoint. Built and regtested on x86-64 Fedora 23. 2016-07-13 Tom Tromey <tom@tromey.com> PR python/17698: * NEWS: Update. * python/py-breakpoint.c (bppy_get_pending): New function. (breakpoint_object_getset): Add entry for "pending". * breakpoint.h (pending_breakpoint_p): Declare. * breakpoint.c (pending_breakpoint_p): New function. 2016-07-13 Tom Tromey <tom@tromey.com> PR python/17698: * python.texi (Breakpoints In Python): Document Breakpoint.pending. 2016-07-13 Tom Tromey <tom@tromey.com> PR python/17698: * gdb.python/py-breakpoint.exp (test_bkpt_basic): Add "pending" test. (test_watchpoints): Likewise. (test_bkpt_pending): New proc. |
||
|
6300088845 |
Forget watchpoint locations when inferior exits or is killed/detached
If you have two inferiors (or more), set watchpoints in one of the inferiors, and then that inferior exits, until you manually delete the watchpoint (or something forces a breakpoint re-set), you can't resume the other inferior. This is exercised by the test added by this commit. Without the GDB fix, this test fails like this: FAIL: gdb.multi/watchpoint-multi-exit.exp: dispose=kill: continue to marker in inferior 1 FAIL: gdb.multi/watchpoint-multi-exit.exp: dispose=detach: continue to marker in inferior 1 FAIL: gdb.multi/watchpoint-multi-exit.exp: dispose=exit: continue to marker in inferior 1 and gdb.log shows (in all three cases): (gdb) continue Continuing. Warning: Could not insert hardware watchpoint 2. Could not insert hardware breakpoints: You may have requested too many hardware breakpoints/watchpoints. Command aborted. (gdb) FAIL: gdb.multi/watchpoint-multi-exit.exp: dispose=kill: continue to marker in inferior 1 The problem is that GDB doesn't forget about the locations of watchpoints set in the inferior that is now dead. When we try to continue the inferior that is still alive, we reach insert_breakpoint_locations, which has the the loop that triggers the error: /* If we failed to insert all locations of a watchpoint, remove them, as half-inserted watchpoint is of limited use. */ That loop finds locations that are not marked inserted, but which according to should_be_inserted should have been inserted, and so errors out. gdb/ChangeLog: 2016-07-01 Pedro Alves <palves@redhat.com> * breakpoint.c (breakpoint_init_inferior): Discard watchpoint locations. * infcmd.c (detach_command): Call breakpoint_init_inferior. gdb/testsuite/ChangeLog: 2016-07-01 Pedro Alves <palves@redhat.com> * gdb.multi/watchpoint-multi-exit.c: New file. * gdb.multi/watchpoint-multi-exit.exp: New file. |
||
|
468afe6c5f |
Send deleted watchpoint-scope output to all UIs
Testing with: make check RUNTESTFLAGS="SEPARATE_MI_TTY=1" shows this, in gdb.mi/mi-watch.exp: -*stopped,reason="watchpoint-scope",wpnum="2",frame={addr="0x00000000004005cb", +*stopped,frame={addr="0x00000000004005cb", (...) -PASS: gdb.mi/mi-watch.exp: hw: watchpoint trigger +FAIL: gdb.mi/mi-watch.exp: hw: watchpoint trigger (unknown output after running) That is, we lose the "watchpoint-scope" output on the MI UI. This commit fixes it, and makes the test run with MI running as both main UI and separate UI. gdb/ChangeLog: 2016-06-21 Pedro Alves <palves@redhat.com> * breakpoint.c (watchpoint_check): Send watchpoint-deleted output to all UIs. gdb/testsuite/ChangeLog: 2016-06-21 Pedro Alves <palves@redhat.com> * gdb.mi/mi-watch.exp (test_watchpoint_creation_and_listing) (test_awatch_creation_and_listing) (test_rwatch_creation_and_listing, test_watchpoint_triggering): Remove 'type' parameter. (test_watchpoint_all): New parameter mi_mode. Remove with_test_prefix. (top level): Use foreach_with_prefix, and add main/separate UI MI testing axis. |
||
|
8980e177bb |
Push thread->control.command_interp to the struct thread_fsm
I noticed that if we step into an inline function, step_1 never reaches proceed, and thus nevers sets the thread's tp->control.command_interp. Because of that, should_print_stop_to_console fails to determine that is should print stop output to the console. The fix is to set the thread's command_interp earlier. However, I realized that we can move that field to the thread_fsm, given that its lifetime is exactly the same as thread_fsm. So the patch plumbs all fsms constructors to take the command interp and store it in the thread_fsm. We can see the fix in action, with e.g., the gdb.opt/inline-cmds.exp test, and issuing a step when stopped at line 67: &"s\n" ^running *running,thread-id="all" (gdb) ~"67\t result = func2 ();\n" *stopped,reason="end-stepping-range",frame={addr="0x00000000004004d0",func="main",args=[],file="/home/pedro/gdb/mygit/src/gdb/testsuite/gdb.opt/inline-cmds.c",fullname="/home/pedro/gdb/mygit/src/gdb/testsuite/gdb.opt/inline-cmds.c",line="67"},thread-id="1",stopped-threads="all",core="0" (gdb) s &"s\n" ^running *running,thread-id="all" (gdb) + ~"func2 () at /home/pedro/gdb/mygit/src/gdb/testsuite/gdb.opt/inline-cmds.c:67\n" + ~"67\t result = func2 ();\n" *stopped,reason="end-stepping-range",frame={addr="0x00000000004004d0",func="func2",args=[],file="/home/pedro/gdb/mygit/src/gdb/testsuite/gdb.opt/inline-cmds.c",fullname="/home/pedro/gdb/mygit/src/gdb/testsuite/gdb.opt/inline-cmds.c",line="67"},thread-id="1",stopped-threads="all",core="0" (gdb) (The inline-cmds.exp command is adjusted to exercise this.) (Due to the follow_fork change, this also fixes "next N" across a fork with "set follow-fork child" with "set detach-on-fork on". Commands that rely on internal breakpoints, like "finish" will still require more work to migrate breakpoints etc. to the child thread.) gdb/ChangeLog: 2016-06-21 Pedro Alves <palves@redhat.com> * breakpoint.c (new_until_break_fsm): Add 'cmd_interp' parameter. (until_break_fsm_should_stop, until_break_fsm_clean_up): Add thread parameter. (until_break_command): Pass command interpreter to thread fsm ctor. * cli/cli-interp.c (should_print_stop_to_console): Adjust. * gdbthread.h (struct thread_control_state) <command_interp>: Delete field. * infcall.c (new_call_thread_fsm): Add 'cmd_interp' parameter. Pass it down. (call_thread_fsm_should_stop): Add thread parameter. (call_function_by_hand_dummy): Pass command interpreter to thread fsm ctor. Pass thread pointer to fsm clean up method. * infcmd.c: Include interps.h. (struct step_command_fsm) <thread>: Delete field. (new_step_command_fsm): Add 'cmd_interp' parameter. Pass it down. (step_command_fsm_prepare): Remove references to fsm's thread field. (step_1): Pass command interpreter to thread fsm ctor. Pass thread pointer to fsm clean up method. (step_command_fsm_should_stop, step_command_fsm_clean_up): Add thread parameter and use it. (new_until_next_fsm): Add 'cmd_interp' parameter. Pass it down. (until_next_fsm_should_stop, until_next_fsm_clean_up): Add thread parameter and use it. (until_next_command): Pass command interpreter to thread fsm ctor. (struct finish_command_fsm) <thread>: Delete field. (finish_command_fsm_ops): Add NULL slot for should_notify_stop. (new_finish_command_fsm): Add 'cmd_interp' parameter and pass it down. Remove thread parameter and adjust. (finish_command_fsm_should_stop, finish_command_fsm_clean_up): Add thread parameter and use it. (finish_command): Pass command interpreter to thread fsm ctor. Don't pass thread. * infrun.c (follow_fork): Move thread fsm to child fork instead of command interpreter, only. (clear_proceed_status_thread): Remove reference to command_interp. (proceed): Don't record the thread's command interpreter. (clean_up_just_stopped_threads_fsms): Pass thread to fsm clean_up method. (fetch_inferior_event): Pass thread to fsm should_stop method. * thread-fsm.c (thread_fsm_ctor): Add 'cmd_interp' parameter. Store it. (thread_fsm_clean_up, thread_fsm_should_stop): Add thread parameter and pass it down. * thread-fsm.h (struct thread_fsm) <command_interp>: New field. (struct thread_fsm_ops) <clean_up, should_stop>: Add thread parameter. (thread_fsm_ctor): Add 'cmd_interp' parameter. (thread_fsm_clean_up, thread_fsm_should_stop): Add thread parameter. * thread.c (thread_cancel_execution_command): Pass thread to thread fsm clean_up method. gdb/testsuite/ChangeLog: 2016-06-21 Pedro Alves <palves@redhat.com> * gdb.opt/inline-cmds.c: Add "set mi break here" marker. * gdb.opt/inline-cmds.exp: Add MI tests. |
||
|
cb81451067 |
Make the interpreters be per UI
Make each UI have its own interpreter list, top level interpreter, current interpreter, etc. The "interpreter_async" global is not really specific to an struct interp (it crosses interpreter-exec ...), so I moved it to "struct ui" directly, while the other globals were left hidden in interps.c, opaque to the rest of GDB. gdb/ChangeLog: 2016-06-21 Pedro Alves <palves@redhat.com> * breakpoint.c (bpstat_do_actions_1): Access the current UI's async field instead of the interpreter_async global. * cli/cli-script.c (execute_user_command, while_command) (if_command, script_from_file): Likewise. * compile/compile.c: Include top.h instead of interps.h. (compile_file_command, compile_code_command) (compile_print_command): Access the current UI's async field instead of the interpreter_async global. * guile/guile.c: Include top.h instead of interps.h. (guile_repl_command, guile_command, gdbscm_execute_gdb_command): Access the current UI's async field instead of the interpreter_async global. * guile/scm-ports.c: Include top.h instead of interps.h. (ioscm_with_output_to_port_worker): Access the current UI's async field instead of the interpreter_async global. * inf-loop.c (inferior_event_handler): Likewise. * infcall.c (run_inferior_call): Likewise. * infrun.c (reinstall_readline_callback_handler_cleanup) (fetch_inferior_event): Likewise. * interps.c (interpreter_async): Delete. (struct ui_interp_info): New. (get_current_interp_info): New function. (interp_list, current_interpreter, top_level_interpreter_ptr): Delete. (interp_add, interp_set, interp_lookup, interp_ui_out) (current_interp_set_logging, interp_set_temp) (current_interp_named_p): Adjust to per-UI interpreters. (command_interpreter): Delete. (command_interp, current_interp_command_loop, interp_quiet_p) (interp_exec, interpreter_exec_cmd, interpreter_completer) (top_level_interpreter, top_level_interpreter_data): Adjust to per-UI interpreters. * interps.h (interpreter_async): Delete. * main.c (captured_command_loop): Access the current UI's async field instead of the interpreter_async global. * python/python.c (python_interactive_command, python_command) (execute_gdb_command): Likewise. * top.c (maybe_wait_sync_command_done, execute_command_to_string): Access the current UI's async field instead of the interpreter_async global. * top.h (struct tl_interp_info): Forward declare. (struct ui) <interp_info, async>: New fields. |
||
|
870f88f755 |
remove trivialy unused variables
gdb/ChangeLog: 2016-05-07 Trevor Saunders <tbsaunde+binutils@tbsaunde.org> * aarch64-linux-tdep.c (aarch64_linux_sigframe_init): Remove unused variables. * aarch64-tdep.c (aarch64_skip_prologue): Likewise. (aarch64_scan_prologue): Likewise. (aarch64_prologue_prev_register): Likewise. (aarch64_dwarf2_prev_register): Likewise. (pass_in_v): Likewise. (aarch64_push_dummy_call): Likewise. (aarch64_breakpoint_from_pc): Likewise. (aarch64_return_in_memory): Likewise. (aarch64_return_value): Likewise. (aarch64_displaced_step_b_cond): Likewise. (aarch64_displaced_step_cb): Likewise. (aarch64_displaced_step_tb): Likewise. (aarch64_gdbarch_init): Likewise. (aarch64_process_record): Likewise. * alpha-mdebug-tdep.c (alpha_mdebug_init_abi): Likewise. * alpha-tdep.c (_initialize_alpha_tdep): Likewise. * amd64-dicos-tdep.c (amd64_dicos_init_abi): Likewise. * amd64-linux-tdep.c (amd64_dtrace_parse_probe_argument): Likewise. * amd64-tdep.c (fixup_riprel): Likewise. * amd64-windows-tdep.c (amd64_windows_frame_decode_epilogue): Likewise. (amd64_windows_frame_decode_insns): Likewise. (amd64_windows_frame_cache): Likewise. (amd64_windows_frame_prev_register): Likewise. (amd64_windows_frame_this_id): Likewise. (amd64_windows_init_abi): Likewise. * arm-linux-tdep.c (arm_linux_get_syscall_number): Likewise. (arm_linux_get_next_pcs_syscall_next_pc): Likewise. * arm-symbian-tdep.c (arm_symbian_init_abi): Likewise. * arm-tdep.c (arm_make_epilogue_frame_cache): Likewise. (arm_epilogue_frame_prev_register): Likewise. (arm_record_vdata_transfer_insn): Likewise. (arm_record_exreg_ld_st_insn): Likewise. * auto-load.c (execute_script_contents): Likewise. (print_scripts): Likewise. * avr-tdep.c (avr_frame_prev_register): Likewise. (avr_push_dummy_call): Likewise. * bfin-linux-tdep.c (bfin_linux_sigframe_init): Likewise. * bfin-tdep.c (bfin_gdbarch_init): Likewise. * blockframe.c (find_pc_partial_function_gnu_ifunc): Likewise. * break-catch-throw.c (fetch_probe_arguments): Likewise. * breakpoint.c (breakpoint_xfer_memory): Likewise. (breakpoint_init_inferior): Likewise. (breakpoint_inserted_here_p): Likewise. (software_breakpoint_inserted_here_p): Likewise. (hardware_breakpoint_inserted_here_p): Likewise. (bpstat_what): Likewise. (break_range_command): Likewise. (save_breakpoints): Likewise. * coffread.c (coff_symfile_read): Likewise. * cris-tdep.c (cris_push_dummy_call): Likewise. (cris_scan_prologue): Likewise. (cris_register_size): Likewise. (_initialize_cris_tdep): Likewise. * d-exp.y: Likewise. * dbxread.c (dbx_read_symtab): Likewise. (process_one_symbol): Likewise. (coffstab_build_psymtabs): Likewise. (elfstab_build_psymtabs): Likewise. * dicos-tdep.c (dicos_init_abi): Likewise. * disasm.c (do_mixed_source_and_assembly): Likewise. (gdb_disassembly): Likewise. * dtrace-probe.c (dtrace_process_dof): Likewise. * dwarf2read.c (error_check_comp_unit_head): Likewise. (build_type_psymtabs_1): Likewise. (skip_one_die): Likewise. (process_imported_unit_die): Likewise. (dwarf2_physname): Likewise. (read_file_scope): Likewise. (setup_type_unit_groups): Likewise. (create_dwo_cu_reader): Likewise. (create_dwo_cu): Likewise. (create_dwo_unit_in_dwp_v1): Likewise. (create_dwo_unit_in_dwp_v2): Likewise. (lookup_dwo_unit_in_dwp): Likewise. (free_dwo_file): Likewise. (check_producer): Likewise. (dwarf2_add_typedef): Likewise. (dwarf2_add_member_fn): Likewise. (read_unsigned_leb128): Likewise. (read_signed_leb128): Likewise. (dwarf2_const_value): Likewise. (follow_die_sig_1): Likewise. (dwarf_decode_macro_bytes): Likewise. * extension.c (restore_active_ext_lang): Likewise. * frv-linux-tdep.c (frv_linux_sigtramp_frame_cache): Likewise. * ft32-tdep.c (ft32_analyze_prologue): Likewise. * gdbtypes.c (lookup_typename): Likewise. (resolve_dynamic_range): Likewise. (check_typedef): Likewise. * h8300-tdep.c (h8300_is_argument_spill): Likewise. (h8300_gdbarch_init): Likewise. * hppa-tdep.c (hppa32_push_dummy_call): Likewise. (hppa_frame_this_id): Likewise. (_initialize_hppa_tdep): Likewise. * hppanbsd-tdep.c (hppanbsd_sigtramp_cache_init): Likewise. * hppaobsd-tdep.c (hppaobsd_supply_fpregset): Likewise. * i386-dicos-tdep.c (i386_dicos_init_abi): Likewise. * i386-tdep.c (i386_bnd_type): Likewise. (i386_gdbarch_init): Likewise. (i386_mpx_bd_base): Likewise. * i386nbsd-tdep.c (i386nbsd_sigtramp_cache_init): Likewise. * i386obsd-tdep.c (i386obsd_elf_init_abi): Likewise. * ia64-tdep.c (examine_prologue): Likewise. (ia64_frame_cache): Likewise. (ia64_push_dummy_call): Likewise. * infcmd.c (finish_command_fsm_async_reply_reason): Likewise. (default_print_one_register_info): Likewise. * infrun.c (infrun_thread_ptid_changed): Likewise. (thread_still_needs_step_over): Likewise. (stop_all_threads): Likewise. (restart_threads): Likewise. (keep_going_stepped_thread): Likewise. * iq2000-tdep.c (iq2000_scan_prologue): Likewise. * language.c (language_init_primitive_type_symbols): Likewise. * linespec.c (add_sal_to_sals): Likewise. * linux-nat.c (status_callback): Likewise. (kill_unfollowed_fork_children): Likewise. (linux_nat_kill): Likewise. * linux-tdep.c (linux_fill_prpsinfo): Likewise. * linux-thread-db.c (thread_db_notice_clone): Likewise. (record_thread): Likewise. * location.c (string_to_event_location_basic): Likewise. * m32c-tdep.c (m32c_prev_register): Likewise. * m32r-linux-tdep.c (m32r_linux_init_abi): Likewise. * m32r-tdep.c (decode_prologue): Likewise. * m68klinux-tdep.c (m68k_linux_sigtramp_frame_cache): Likewise. * machoread.c (macho_symtab_read): Likewise. (macho_symfile_read): Likewise. (macho_symfile_offsets): Likewise. * maint.c (set_per_command_cmd): Likewise. * mi/mi-cmd-stack.c (mi_cmd_stack_list_locals): Likewise. (mi_cmd_stack_list_variables): Likewise. * mi/mi-main.c (mi_cmd_exec_run): Likewise. (output_register): Likewise. (mi_cmd_execute): Likewise. (mi_cmd_trace_define_variable): Likewise. (print_variable_or_computed): Likewise. * minsyms.c (prim_record_minimal_symbol_full): Likewise. * mn10300-tdep.c (mn10300_frame_prev_register): Likewise. * msp430-tdep.c (msp430_pseudo_register_write): Likewise. * mt-tdep.c (mt_registers_info): Likewise. * nios2-tdep.c (nios2_analyze_prologue): Likewise. (nios2_push_dummy_call): Likewise. (nios2_frame_unwind_cache): Likewise. (nios2_stub_frame_cache): Likewise. (nios2_stub_frame_sniffer): Likewise. (nios2_gdbarch_init): Likewise. * ppc-ravenscar-thread.c: Likewise. * ppcfbsd-tdep.c (ppcfbsd_sigtramp_frame_cache): Likewise. * python/py-evts.c (add_new_registry): Likewise. * python/py-finishbreakpoint.c (bpfinishpy_init): Likewise. (bpfinishpy_detect_out_scope_cb): Likewise. * python/py-framefilter.c (py_print_value): Likewise. * python/py-inferior.c (infpy_write_memory): Likewise. * python/py-infevents.c (create_inferior_call_event_object): Likewise. * python/py-infthread.c (thpy_get_ptid): Likewise. * python/py-linetable.c (ltpy_get_pcs_for_line): Likewise. (ltpy_get_all_source_lines): Likewise. (ltpy_is_valid): Likewise. (ltpy_iternext): Likewise. * python/py-symtab.c (symtab_and_line_to_sal_object): Likewise. * python/py-unwind.c (pyuw_object_attribute_to_pointer): Likewise. (unwind_infopy_str): Likewise. * python/py-varobj.c (py_varobj_get_iterator): Likewise. * ravenscar-thread.c (ravenscar_inferior_created): Likewise. * rs6000-aix-tdep.c (rs6000_push_dummy_call): Likewise. * rs6000-lynx178-tdep.c (rs6000_lynx178_push_dummy_call): Likewise. * rs6000-tdep.c (ppc_deal_with_atomic_sequence): Likewise. * s390-linux-tdep.c (s390_supply_tdb_regset): Likewise. (s390_frame_prev_register): Likewise. (s390_dwarf2_frame_init_reg): Likewise. (s390_record_vr): Likewise. (s390_process_record): Likewise. * score-tdep.c (score_push_dummy_call): Likewise. (score3_analyze_prologue): Likewise. * sh-tdep.c (sh_extract_return_value_nofpu): Likewise. * sh64-tdep.c (sh64_analyze_prologue): Likewise. (sh64_push_dummy_call): Likewise. (sh64_extract_return_value): Likewise. (sh64_do_fp_register): Likewise. * solib-aix.c (solib_aix_get_section_offsets): Likewise. * solib-darwin.c (darwin_read_exec_load_addr_from_dyld): Likewise. (darwin_solib_read_all_image_info_addr): Likewise. * solib-dsbt.c (enable_break): Likewise. * solib-frv.c (enable_break2): Likewise. (frv_fdpic_find_canonical_descriptor): Likewise. * solib-svr4.c (svr4_handle_solib_event): Likewise. * sparc-tdep.c (sparc_skip_stack_check): Likewise. * sparc64-linux-tdep.c (sparc64_linux_get_longjmp_target): Likewise. * sparcobsd-tdep.c (sparc32obsd_init_abi): Likewise. * spu-tdep.c (info_spu_dma_cmdlist): Likewise. * stack.c (read_frame_local): Likewise. * symfile.c (symbol_file_add_separate): Likewise. (remove_symbol_file_command): Likewise. * symmisc.c (maintenance_print_one_line_table): Likewise. * symtab.c (symbol_cache_flush): Likewise. (basic_lookup_transparent_type): Likewise. (sort_search_symbols_remove_dups): Likewise. * target.c (target_memory_map): Likewise. (target_detach): Likewise. (target_resume): Likewise. (acquire_fileio_fd): Likewise. (target_store_registers): Likewise. * thread.c (print_thread_info_1): Likewise. * tic6x-tdep.c (tic6x_analyze_prologue): Likewise. * tilegx-linux-tdep.c (tilegx_linux_sigframe_init): Likewise. * tilegx-tdep.c (tilegx_push_dummy_call): Likewise. (tilegx_analyze_prologue): Likewise. (tilegx_stack_frame_destroyed_p): Likewise. (tilegx_frame_cache): Likewise. * tracefile.c (trace_save): Likewise. * tracepoint.c (encode_actions_and_make_cleanup): Likewise. (start_tracing): Likewise. (print_one_static_tracepoint_marker): Likewise. * tui/tui.c (tui_enable): Likewise. * valops.c (value_struct_elt_bitpos): Likewise. (find_overload_match): Likewise. (find_oload_champ): Likewise. * value.c (value_contents_copy_raw): Likewise. * windows-tdep.c (windows_get_tlb_type): Likewise. * x86-linux-nat.c (x86_linux_enable_btrace): Likewise. * xcoffread.c (record_minimal_symbol): Likewise. (scan_xcoff_symtab): Likewise. * xtensa-tdep.c (execute_code): Likewise. (xtensa_gdbarch_init): Likewise. (_initialize_xtensa_tdep): Likewise. |
||
|
21edc42f4e |
Force to insert software single step breakpoint
GDB doesn't insert software single step breakpoint if the instruction branches to itself, so that the program can't stop after command "si". (gdb) b 32 Breakpoint 2 at 0x8680: file git/gdb/testsuite/gdb.base/branch-to-self.c, line 32. (gdb) c Continuing. Breakpoint 2, main () at gdb/git/gdb/testsuite/gdb.base/branch-to-self.c:32 32 asm (".Lhere: " BRANCH_INSN " .Lhere"); /* loop-line */ (gdb) si infrun: clear_proceed_status_thread (Thread 3991.3991) infrun: proceed (addr=0xffffffff, signal=GDB_SIGNAL_DEFAULT) infrun: step-over queue now empty infrun: resuming [Thread 3991.3991] for step-over infrun: skipping breakpoint: stepping past insn at: 0x8680 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Sending packet: $Z0,8678,4#f3...Packet received: OK infrun: skipping breakpoint: stepping past insn at: 0x8680 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Sending packet: $Z0,b6fe86c8,4#82...Packet received: OK infrun: resume (step=1, signal=GDB_SIGNAL_0), trap_expected=1, current thread [Thread 3991.3991] at 0x868 breakpoint.c:should_be_inserted thinks the breakpoint shouldn't be inserted, which is wrong. This patch restrict the condition that only skip the non-single-step breakpoints if they are inserted at the place we are stepping over, however we don't want to skip single-step breakpoint if its thread is the thread we are stepping over, so in this patch, I add a thread num in 'struct step_over_info' to record the thread we're stepping over. gdb: 2016-04-25 Yao Qi <yao.qi@linaro.org> * breakpoint.c (should_be_inserted): Return 0 if the location's owner is not single step breakpoint or single step breakpoint's thread isn't the thread which is stepping past a breakpoint. * gdbarch.sh (software_single_step): Update comments. * gdbarch.h: Regenerated. * infrun.c (struct step_over_info) <thread>: New field. (set_step_over_info): New argument 'thread'. Callers updated. (clear_step_over_info): Set field thread to -1. (thread_is_stepping_over_breakpoint): New function. * infrun.h (thread_is_stepping_over_breakpoint): Declaration. |
||
|
9ef9e6a6a0 |
breakpoints/19546: Fix crash after updating breakpoints
One of the last checks update_breakpoints_after_exec does while looping over the list of breakpoints is check that the breakpoint has a valid location spec. It uses event_location_empty_p to check if the location spec is "empty", and if it is, the breakpoint is deleted. momentary_breakpoint types rely on setting the breakpoint structure's location spec to NULL, thereby causing an update to delete the breakpoint. However, event_location_empty_p assumed that locations were never NULL. As a result, GDB would crash dereferencing a NULL pointer whenever update_breakpoints_after_exec would encounter a momentary_breakpoint. This patch creates a new wrapper/helper function which tests that the given breakpoint's location spec is non-NULL and if it is not "empty" or "unspecified." gdb/ChangeLog PR breakpoints/19546 * breakpoint.c (breakpoint_event_location_empty_p): New function. (update_breakpoints_after_exec, bkpt_re_set): Use this new function instead of event_location_empty_p. gdb/testsuite/ChangeLog PR breakpoints/19546 * gdb.base/infcall-exec.c: New file. * gdb.base/infcall-exec2.c: New file. * gdb.base/infcall-exec.exp: New file. |
||
|
2a7f3dffce |
Fix PR19548: Breakpoint re-set inserts breakpoints when it shouldn't
PR19548 shows that we still have problems related to
|
||
|
4a6a1ed4a1 |
Fix GDB crash in dprintf.exp
I see GDB crashes in dprintf.exp on aarch64-linux testing, (gdb) PASS: gdb.base/dprintf.exp: agent: break 29 set dprintf-style agent^M (gdb) PASS: gdb.base/dprintf.exp: agent: set dprintf style to agent continue^M Continuing. ASAN:SIGSEGV ================================================================= ==22475==ERROR: AddressSanitizer: SEGV on unknown address 0x000000000008 (pc 0x000000494820 sp 0x7fff389b83a0 bp 0x62d000082417 T0) #0 0x49481f in remote_add_target_side_commands /home/yao/SourceCode/gnu/gdb/git/gdb/remote.c:9190^M #1 0x49e576 in remote_add_target_side_commands /home/yao/SourceCode/gnu/gdb/git/gdb/remote.c:9174^M #2 0x49e576 in remote_insert_breakpoint /home/yao/SourceCode/gnu/gdb/git/gdb/remote.c:9240^M #3 0x5278b7 in insert_bp_location /home/yao/SourceCode/gnu/gdb/git/gdb/breakpoint.c:2734^M #4 0x52ac09 in insert_breakpoint_locations /home/yao/SourceCode/gnu/gdb/git/gdb/breakpoint.c:3159^M #5 0x52ac09 in update_global_location_list /home/yao/SourceCode/gnu/gdb/git/gdb/breakpoint.c:12686 the root cause of this problem in this case is about linespec and symtab which produces additional incorrect location and a NULL is added to bp_tgt->tcommands. I posted a patch https://sourceware.org/ml/gdb-patches/2015-12/msg00321.html to fix it in linespec (the fix causes regression), but GDB still shouldn't add NULL into bp_tgt->tcommands. The logic of build_target_command_list looks odd to me. If we get something wrong in parse_cmd_to_aexpr (it returns NULL), we shouldn't continue, instead we should set flag null_command_or_parse_error. This is what this patch does. In the meantime, we find build_target_condition_list has the same problem, so fix it too. gdb: 2016-01-28 Yao Qi <yao.qi@linaro.org> * breakpoint.c (build_target_command_list): Don't call continue if aexpr is NULL. (build_target_condition_list): Likewise. |
||
|
b35a8b2f1f | * breakpoint.c (init_breakpoint_sal): Add comment. | ||
|
305e13e67f |
Fix regression introduced in "break *<EXPR>" by explicit location patches.
A relatively recent patch support for explicit locations, and part
of that patch cleaned up the way we parse breakpoint locations.
Unfortunatly, a small regression crept in for "*<EXPR>" breakpoint
locations. In particular, on PIE programs, one can see the issue by
doing the following, with any program:
(gdb) b *main
Breakpoint 1 at 0x51a: file hello.c, line 3.
(gdb) run
Starting program: /[...]/hello
Error in re-setting breakpoint 1: Warning:
Cannot insert breakpoint 1.
Cannot access memory at address 0x51a
Warning:
Cannot insert breakpoint 1.
Cannot access memory at address 0x51a
Just for the record, this regression was introduced by:
commit
|
||
|
c2f4122d5c |
Limit breakpoint re-set to the current program space
Currently, we always re-set all locations of all breakpoints. This commit makes us re-set only locations of the current program space. If we loaded symbols to a program space (e.g., "file" command or some shared library was loaded), GDB must run through all breakpoints and determine if any new locations need to be added to the breakpoint. However, there's no reason to recreate locations for _other_ program spaces, as those haven't changed. Similarly, when we create a new inferior, through e.g., a fork, GDB must run through all breakpoints and determine if any new locations need to be added to the breakpoint. There's no reason to destroy the locations of the parent inferior and other inferiors. We know those won't change. In addition to being inneficient, resetting breakpoints of inferiors that are currently running is problematic, because: - some targets can't read memory while the inferior is running. - the inferior might exit while we're re-setting its breakpoints, which may confuse prologue skipping. I went through all the places where we call breakpoint_re_set, and it seems to me that all can be changed to only re-set locations of the current program space. The patch that reversed threads order in "info threads" etc. happened to make gdb.threads/fork-plus-thread.exp expose this problem when testing on x86/-m32. The problem was latent and masked out by chance by the code-cache: https://sourceware.org/ml/gdb-patches/2016-01/msg00213.html Tested on x86-64 F20, native (-m64/-m32) and extended-remote gdbserver. Fixes the regression discussed in the url above with --target_board=unix/-m32: -FAIL: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: inferior 1 exited +PASS: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: inferior 1 exited -FAIL: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: no threads left (timeout) -FAIL: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: only inferior 1 left (the program exited) +PASS: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: no threads left +PASS: gdb.threads/fork-plus-threads.exp: detach-on-fork=off: only inferior 1 left gdb/ChangeLog: 2016-01-19 Pedro Alves <palves@redhat.com> * ax-gdb.c (agent_command_1): Adjust call to decode_line_full. * break-catch-throw.c (re_set_exception_catchpoint): Pass the current program space down to linespec decoding and breakpoint location updating. * breakpoint.c (parse_breakpoint_sals): Adjust calls to decode_line_full. (until_break_command): Adjust calls to decode_line_1. (base_breakpoint_decode_location, bkpt_decode_location): Add 'search_pspace' parameter. Pass it along. (bkpt_probe_create_sals_from_location): Adjust calls to parse_probes. (tracepoint_decode_location, tracepoint_probe_decode_location) (strace_marker_decode_location): Add 'search_pspace' parameter. Pass it along. (all_locations_are_pending): Rewrite to take a breakpoint and program space as arguments instead. (hoist_existing_locations): New function. (update_breakpoint_locations): Add 'filter_pspace' parameter. Use hoist_existing_locations instead of always removing all locations, and adjust to all_locations_are_pending change. (location_to_sals): Add 'search_pspace' parameter. Pass it along. Don't disable the breakpoint if there are other locations in another program space. (breakpoint_re_set_default): Adjust to pass down the current program space as filter program space. (decode_location_default): Add 'search_pspace' parameter and pass it along. (prepare_re_set_context): Don't switch program space here. (breakpoint_re_set): Use save_current_space_and_thread instead of save_current_program_space. * breakpoint.h (struct breakpoint_ops) <decode_location>: Add 'search_pspace' parameter. (update_breakpoint_locations): Add 'filter_pspace' parameter. * cli/cli-cmds.c (edit_command, list_command): Adjust calls to decode_line_1. * elfread.c (elf_gnu_ifunc_resolver_return_stop): Pass the current program space as filter program space. * linespec.c (struct linespec_state) <search_pspace>: New field. (create_sals_line_offset, convert_explicit_location_to_sals) (parse_linespec): Pass the search program space down. (linespec_state_constructor): Add 'search_pspace' parameter. Store it. (linespec_parser_new): Add 'search_pspace' parameter and pass it along. (linespec_lex_to_end): Adjust. (decode_line_full, decode_line_1): Add 'search_pspace' parameter and pass it along. (decode_line_with_last_displayed): Adjust. (collect_symtabs_from_filename, symtabs_from_filename): New 'search_pspace' parameter. Use it. (find_function_symbols): Pass the search program space down. * linespec.h (decode_line_1, decode_line_full): Add 'search_pspace' parameter. * probe.c (parse_probes_in_pspace): New function, factored out from ... (parse_probes): ... this. Add 'search_pspace' parameter and use it. * probe.h (parse_probes): Add pspace' parameter. * python/python.c (gdbpy_decode_line): Adjust. * tracepoint.c (scope_info): Adjust. |
||
|
f303dbd60d |
Fix PR threads/19422 - show which thread caused stop
This commit changes GDB like this: - Program received signal SIGINT, Interrupt. + Thread 1 "main" received signal SIGINT, Interrupt. - Breakpoint 1 at 0x40087a: file threads.c, line 87. + Thread 3 "bar" hit Breakpoint 1 at 0x40087a: file threads.c, line 87. ... once the program goes multi-threaded. Until GDB sees a second thread spawn, the output is still the same as before, per the discussion back in 2012: https://www.sourceware.org/ml/gdb/2012-11/msg00010.html This helps non-stop mode, where you can't easily tell which thread hit a breakpoint or received a signal: (gdb) info threads Id Target Id Frame * 1 Thread 0x7ffff7fc1740 (LWP 19362) "main" (running) 2 Thread 0x7ffff7fc0700 (LWP 19366) "foo" (running) 3 Thread 0x7ffff77bf700 (LWP 19367) "bar" (running) (gdb) Program received signal SIGUSR1, User defined signal 1. 0x0000003616a09237 in pthread_join (threadid=140737353877248, thread_return=0x7fffffffd5b8) at pthread_join.c:92 92 lll_wait_tid (pd->tid); (gdb) b threads.c:87 Breakpoint 1 at 0x40087a: file threads.c, line 87. (gdb) Breakpoint 1, thread_function1 (arg=0x1) at threads.c:87 87 usleep (1); /* Loop increment. */ The best the user can do is run "info threads" and try to figure things out. It actually also affects all-stop mode, in case of "handle SIG print nostop": ... Program received signal SIGUSR1, User defined signal 1. Program received signal SIGUSR1, User defined signal 1. Program received signal SIGUSR1, User defined signal 1. Program received signal SIGUSR1, User defined signal 1. ... The above doesn't give any clue that these were different threads getting the SIGUSR1 signal. I initially thought of lowercasing "breakpoint" in "Thread 3 hit Breakpoint 1" but then after trying it I realized that leaving "Breakpoint" uppercase helps the eye quickly find the relevant information. It's also easier to implement not showing anything about threads until the program goes multi-threaded this way. Here's a larger example session in non-stop mode: (gdb) c -a& Continuing. (gdb) interrupt -a (gdb) Thread 1 "main" stopped. 0x0000003616a09237 in pthread_join (threadid=140737353877248, thread_return=0x7fffffffd5b8) at pthread_join.c:92 92 lll_wait_tid (pd->tid); Thread 2 "foo" stopped. 0x0000003615ebc6ed in nanosleep () at ../sysdeps/unix/syscall-template.S:81 81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS) Thread 3 "bar" stopped. 0x0000003615ebc6ed in nanosleep () at ../sysdeps/unix/syscall-template.S:81 81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS) b threads.c:87 Breakpoint 4 at 0x40087a: file threads.c, line 87. (gdb) b threads.c:67 Breakpoint 5 at 0x400811: file threads.c, line 67. (gdb) c -a& Continuing. (gdb) Thread 3 "bar" hit Breakpoint 4, thread_function1 (arg=0x1) at threads.c:87 87 usleep (1); /* Loop increment. */ Thread 2 "foo" hit Breakpoint 5, thread_function0 (arg=0x0) at threads.c:68 68 (*myp) ++; info threads Id Target Id Frame * 1 Thread 0x7ffff7fc1740 (LWP 31957) "main" (running) 2 Thread 0x7ffff7fc0700 (LWP 31961) "foo" thread_function0 (arg=0x0) at threads.c:68 3 Thread 0x7ffff77bf700 (LWP 31962) "bar" thread_function1 (arg=0x1) at threads.c:87 (gdb) shell kill -SIGINT 31957 (gdb) Thread 1 "main" received signal SIGINT, Interrupt. 0x0000003616a09237 in pthread_join (threadid=140737353877248, thread_return=0x7fffffffd5b8) at pthread_join.c:92 92 lll_wait_tid (pd->tid); info threads Id Target Id Frame * 1 Thread 0x7ffff7fc1740 (LWP 31957) "main" 0x0000003616a09237 in pthread_join (threadid=140737353877248, thread_return=0x7fffffffd5b8) at pthread_join.c:92 2 Thread 0x7ffff7fc0700 (LWP 31961) "foo" thread_function0 (arg=0x0) at threads.c:68 3 Thread 0x7ffff77bf700 (LWP 31962) "bar" thread_function1 (arg=0x1) at threads.c:87 (gdb) t 2 [Switching to thread 2, Thread 0x7ffff7fc0700 (LWP 31961)] #0 thread_function0 (arg=0x0) at threads.c:68 68 (*myp) ++; (gdb) catch syscall Catchpoint 6 (any syscall) (gdb) c& Continuing. (gdb) Thread 2 "foo" hit Catchpoint 6 (call to syscall nanosleep), 0x0000003615ebc6ed in nanosleep () at ../sysdeps/unix/syscall-template.S:81 81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS) I'll work on documentation next if this looks agreeable. This patch applies on top of the star wildcards thread IDs series: https://sourceware.org/ml/gdb-patches/2016-01/msg00291.html For convenience, I've pushed this to the users/palves/show-which-thread-caused-stop branch. gdb/doc/ChangeLog: 2016-01-18 Pedro Alves <palves@redhat.com> * gdb.texinfo (Threads): Mention that GDB displays the ID and name of the thread that hit a breakpoint or received a signal. gdb/ChangeLog: 2016-01-18 Pedro Alves <palves@redhat.com> * NEWS: Mention that GDB now displays the ID and name of the thread that hit a breakpoint or received a signal. * break-catch-sig.c (signal_catchpoint_print_it): Use maybe_print_thread_hit_breakpoint. * break-catch-syscall.c (print_it_catch_syscall): Likewise. * break-catch-throw.c (print_it_exception_catchpoint): Likewise. * breakpoint.c (maybe_print_thread_hit_breakpoint): New function. (print_it_catch_fork, print_it_catch_vfork, print_it_catch_solib) (print_it_catch_exec, print_it_ranged_breakpoint) (print_it_watchpoint, print_it_masked_watchpoint, bkpt_print_it): Use maybe_print_thread_hit_breakpoint. * breakpoint.h (maybe_print_thread_hit_breakpoint): Declare. * gdbthread.h (show_thread_that_caused_stop): Declare. * infrun.c (print_signal_received_reason): Print which thread received signal. * thread.c (show_thread_that_caused_stop): New function. gdb/testsuite/ChangeLog: 2016-01-18 Pedro Alves <palves@redhat.com> * gdb.base/async-shell.exp: Adjust expected output. * gdb.base/dprintf-non-stop.exp: Adjust expected output. * gdb.base/siginfo-thread.exp: Adjust expected output. * gdb.base/watchpoint-hw-hit-once.exp: Adjust expected output. * gdb.java/jnpe.exp: Adjust expected output. * gdb.threads/clone-new-thread-event.exp: Adjust expected output. * gdb.threads/continue-pending-status.exp: Adjust expected output. * gdb.threads/leader-exit.exp: Adjust expected output. * gdb.threads/manythreads.exp: Adjust expected output. * gdb.threads/pthreads.exp: Adjust expected output. * gdb.threads/schedlock.exp: Adjust expected output. * gdb.threads/siginfo-threads.exp: Adjust expected output. * gdb.threads/signal-command-multiple-signals-pending.exp: Adjust expected output. * gdb.threads/signal-delivered-right-thread.exp: Adjust expected output. * gdb.threads/sigthread.exp: Adjust expected output. * gdb.threads/watchpoint-fork.exp: Adjust expected output. |
||
|
5d5658a1d3 |
Per-inferior/Inferior-qualified thread IDs
This commit changes GDB to track thread numbers per-inferior. Then, if you're debugging multiple inferiors, GDB displays "inferior-num.thread-num" instead of just "thread-num" whenever it needs to display a thread: (gdb) info inferiors Num Description Executable 1 process 6022 /home/pedro/gdb/tests/threads * 2 process 6037 /home/pedro/gdb/tests/threads (gdb) info threads Id Target Id Frame 1.1 Thread 0x7ffff7fc2740 (LWP 6022) "threads" (running) 1.2 Thread 0x7ffff77c0700 (LWP 6028) "threads" (running) 1.3 Thread 0x7ffff7fc2740 (LWP 6032) "threads" (running) 2.1 Thread 0x7ffff7fc1700 (LWP 6037) "threads" (running) 2.2 Thread 0x7ffff77c0700 (LWP 6038) "threads" (running) * 2.3 Thread 0x7ffff7fc2740 (LWP 6039) "threads" (running) (gdb) ... (gdb) thread 1.1 [Switching to thread 1.1 (Thread 0x7ffff7fc2740 (LWP 8155))] (gdb) ... etc. You can still use "thread NUM", in which case GDB infers you're referring to thread NUM of the current inferior. The $_thread convenience var and Python's InferiorThread.num attribute are remapped to the new per-inferior thread number. It's a backward compatibility break, but since it only matters when debugging multiple inferiors, I think it's worth doing. Because MI thread IDs need to be a single integer, we keep giving threads a global identifier, _in addition_ to the per-inferior number, and make MI always refer to the global thread IDs. IOW, nothing changes from a MI frontend's perspective. Similarly, since Python's Breakpoint.thread and Guile's breakpoint-thread/set-breakpoint-thread breakpoint methods need to work with integers, those are adjusted to work with global thread IDs too. Follow up patches will provide convenient means to access threads' global IDs. To avoid potencially confusing users (which also avoids updating much of the testsuite), if there's only one inferior and its ID is "1", IOW, the user hasn't done anything multi-process/inferior related, then the "INF." part of thread IDs is not shown. E.g,.: (gdb) info inferiors Num Description Executable * 1 process 15275 /home/pedro/gdb/tests/threads (gdb) info threads Id Target Id Frame * 1 Thread 0x7ffff7fc1740 (LWP 15275) "threads" main () at threads.c:40 (gdb) add-inferior Added inferior 2 (gdb) info threads Id Target Id Frame * 1.1 Thread 0x7ffff7fc1740 (LWP 15275) "threads" main () at threads.c:40 (gdb) No regressions on x86_64 Fedora 20. gdb/ChangeLog: 2016-01-13 Pedro Alves <palves@redhat.com> * NEWS: Mention that thread IDs are now per inferior and global thread IDs. * Makefile.in (SFILES): Add tid-parse.c. (COMMON_OBS): Add tid-parse.o. (HFILES_NO_SRCDIR): Add tid-parse.h. * ada-tasks.c: Adjust to use ptid_to_global_thread_id. * breakpoint.c (insert_breakpoint_locations) (remove_threaded_breakpoints, bpstat_check_breakpoint_conditions) (print_one_breakpoint_location, set_longjmp_breakpoint) (check_longjmp_breakpoint_for_call_dummy) (set_momentary_breakpoint): Adjust to use global IDs. (find_condition_and_thread, watch_command_1): Use parse_thread_id. (until_break_command, longjmp_bkpt_dtor) (breakpoint_re_set_thread, insert_single_step_breakpoint): Adjust to use global IDs. * dummy-frame.c (pop_dummy_frame_bpt): Adjust to use ptid_to_global_thread_id. * elfread.c (elf_gnu_ifunc_resolver_stop): Likewise. * gdbthread.h (struct thread_info): Rename field 'num' to 'global_num. Add new fields 'per_inf_num' and 'inf'. (thread_id_to_pid): Rename thread_id_to_pid to global_thread_id_to_ptid. (pid_to_thread_id): Rename to ... (ptid_to_global_thread_id): ... this. (valid_thread_id): Rename to ... (valid_global_thread_id): ... this. (find_thread_id): Rename to ... (find_thread_global_id): ... this. (ALL_THREADS, ALL_THREADS_BY_INFERIOR): Declare. (print_thread_info): Add comment. * tid-parse.h: New file. * tid-parse.c: New file. * infcmd.c (step_command_fsm_prepare) (step_command_fsm_should_stop): Adjust to use the global thread ID. (until_next_command, until_next_command) (finish_command_fsm_should_stop): Adjust to use the global thread ID. (attach_post_wait): Adjust to check the inferior number too. * inferior.h (struct inferior) <highest_thread_num>: New field. * infrun.c (handle_signal_stop) (insert_exception_resume_breakpoint) (insert_exception_resume_from_probe): Adjust to use the global thread ID. * record-btrace.c (record_btrace_open): Use global thread IDs. * remote.c (process_initial_stop_replies): Also consider the inferior number. * target.c (target_pre_inferior): Clear the inferior's highest thread num. * thread.c (clear_thread_inferior_resources): Adjust to use the global thread ID. (new_thread): New inferior parameter. Adjust to use it. Set both the thread's global ID and the thread's per-inferior ID. (add_thread_silent): Adjust. (find_thread_global_id): New. (find_thread_id): Make static. Adjust to rename. (valid_thread_id): Rename to ... (valid_global_thread_id): ... this. (pid_to_thread_id): Rename to ... (ptid_to_global_thread_id): ... this. (thread_id_to_pid): Rename to ... (global_thread_id_to_ptid): ... this. Adjust. (first_thread_of_process): Adjust. (do_captured_list_thread_ids): Adjust to use global thread IDs. (should_print_thread): New function. (print_thread_info): Rename to ... (print_thread_info_1): ... this, and add new show_global_ids parameter. Handle it. Iterate over inferiors. (print_thread_info): Reimplement as wrapper around print_thread_info_1. (show_inferior_qualified_tids): New function. (print_thread_id): Use it. (tp_array_compar): Compare inferior numbers too. (thread_apply_command): Use tid_range_parser. (do_captured_thread_select): Use parse_thread_id. (thread_id_make_value): Adjust. (_initialize_thread): Adjust "info threads" help string. * varobj.c (struct varobj_root): Update comment. (varobj_create): Adjust to use global thread IDs. (value_of_root_1): Adjust to use global_thread_id_to_ptid. * windows-tdep.c (display_tib): No longer accept an argument. * cli/cli-utils.c (get_number_trailer): Make extern. * cli/cli-utils.h (get_number_trailer): Declare. (get_number_const): Adjust documentation. * mi/mi-cmd-var.c (mi_cmd_var_update_iter): Adjust to use global thread IDs. * mi/mi-interp.c (mi_new_thread, mi_thread_exit) (mi_on_normal_stop, mi_output_running_pid, mi_on_resume): * mi/mi-main.c (mi_execute_command, mi_cmd_execute): Likewise. * guile/scm-breakpoint.c (gdbscm_set_breakpoint_thread_x): Likewise. * python/py-breakpoint.c (bppy_set_thread): Likewise. * python/py-finishbreakpoint.c (bpfinishpy_init): Likewise. * python/py-infthread.c (thpy_get_num): Add comment and return the per-inferior thread ID. (thread_object_getset): Update comment of "num". gdb/testsuite/ChangeLog: 2016-01-07 Pedro Alves <palves@redhat.com> * gdb.base/break.exp: Adjust to output changes. * gdb.base/hbreak2.exp: Likewise. * gdb.base/sepdebug.exp: Likewise. * gdb.base/watch_thread_num.exp: Likewise. * gdb.linespec/keywords.exp: Likewise. * gdb.multi/info-threads.exp: Likewise. * gdb.threads/thread-find.exp: Likewise. * gdb.multi/tids.c: New file. * gdb.multi/tids.exp: New file. gdb/doc/ChangeLog: 2016-01-07 Pedro Alves <palves@redhat.com> * gdb.texinfo (Threads): Document per-inferior thread IDs, qualified thread IDs, global thread IDs and thread ID lists. (Set Watchpoints, Thread-Specific Breakpoints): Adjust to refer to thread IDs. (Convenience Vars): Document the $_thread convenience variable. (Ada Tasks): Adjust to refer to thread IDs. (GDB/MI Async Records, GDB/MI Thread Commands, GDB/MI Ada Tasking Commands, GDB/MI Variable Objects): Update to mention global thread IDs. * guile.texi (Breakpoints In Guile) <breakpoint-thread/set-breakpoint-thread breakpoint>: Mention global thread IDs instead of thread IDs. * python.texi (Threads In Python): Adjust documentation of InferiorThread.num. (Breakpoint.thread): Mention global thread IDs instead of thread IDs. |
||
|
43792cf0de |
Centralize thread ID printing
Add a new function to print a thread ID, in the style of paddress, plongest, etc. and adjust all CLI-reachable paths to use it. This gives us a single place to tweak to print inferior-qualified thread IDs later: - [Switching to thread 1 (Thread 0x7ffff7fc2740 (LWP 8155))] + [Switching to thread 1.1 (Thread 0x7ffff7fc2740 (LWP 8155))] etc., though for now, this has no user-visible change. No regressions on x86_64 Fedora 20. gdb/ChangeLog: 2016-01-13 Pedro Alves <palves@redhat.com> * breakpoint.c (remove_threaded_breakpoints) (print_one_breakpoint_location): Use print_thread_id. * btrace.c (btrace_enable, btrace_disable, btrace_teardown) (btrace_fetch, btrace_clear): Use print_thread_id. * common/print-utils.c (CELLSIZE): Delete. (get_cell): Rename to ... (get_print_cell): ... this and made extern. Adjust call callers. Adjust to use PRINT_CELL_SIZE. * common/print-utils.h (get_print_cell): Declare. (PRINT_CELL_SIZE): New. * gdbthread.h (print_thread_id): Declare. * infcmd.c (signal_command): Use print_thread_id. * inferior.c (print_inferior): Use print_thread_id. * infrun.c (handle_signal_stop) (insert_exception_resume_breakpoint) (insert_exception_resume_from_probe) (print_signal_received_reason): Use print_thread_id. * record-btrace.c (record_btrace_info) (record_btrace_resume_thread, record_btrace_cancel_resume) (record_btrace_step_thread, record_btrace_wait): Use print_thread_id. * thread.c (thread_apply_all_command): Use print_thread_id. (print_thread_id): New function. (thread_apply_command): Use print_thread_id. (thread_command, thread_find_command, do_captured_thread_select): Use print_thread_id. |
||
|
618f726fcb |
GDB copyright headers update after running GDB's copyright.py script.
gdb/ChangeLog: Update year range in copyright notice of all files. |
||
|
c2c2a31fdb |
Remove support for thread events without PTRACE_EVENT_CLONE in GDB
Before, on systems that did not support PTRACE_EVENT_CLONE, both GDB and GDBServer coordinated with libthread_db.so to insert breakpoints at magic locations in libpthread.so, in order to break at thread creation and thread death. Support for thread events was removed from GDBServer as patch: https://sourceware.org/ml/gdb-patches/2015-11/msg00466.html This patch removes support for thread events in GDB. No regressions found on Ubuntu 14.04 x86_64. gdb/ChangeLog: * breakpoint.c (remove_thread_event_breakpoints): Remove. * breakpoint.h (remove_thread_event_breakpoints): Remove declaration. * linux-nat.c (in_pid_list_p): Remove. (lin_lwp_attach_lwp): Remove. * linux-nat.h (lin_lwp_attach_lwp): Remove declaration. * linux-thread-db.c (thread_db_use_events): Remove. (struct thread_db_info) <td_create_bp_addr>: Remove. <td_death_bp_addr>: Likewise. <td_ta_event_addr_p>: Likewise. <td_ta_set_event_p>: Likewise. <td_ta_clear_event_p>: Likewise. <td_ta_event_getmsg_p>: Likewise. <td_thr_event_enable_p>: Likewise. (attach_thread): Likewise. (detach_thread): Likewise. (have_threads_callback): Likewise. (have_threads): Likewise. (enable_thread_event): Likewise. (enable_thread_event_reporting): Likewise. (try_thread_db_load_1): Remove td_ta_event_addr, td_ta_set_event, td_ta_clear_event, td_ta_event_getmsg, td_thr_event_enable initializations. (try_thread_db_load_1): Remove enable_thread_event_reporting call. (disable_thread_event_reporting): Remove. (record_thread): Adapt to thread_db_use_event removal. (detach_thread): Remove. (thread_db_detach): Adapt to thread_db_use_event removal. (check_event): Remove. (thread_db_wait): Adapt to thread events support removal. (thread_db_mourn_inferior): Likewise. (find_new_threads_callback): Likewise. (find_new_threads_once): Likewise. (thread_db_update_thread_list): Likewise. |
||
|
c93e8391bf |
Fix internal error when saving fast tracepoint definitions
When trying to save fast tracepoints to file, gdb returns internal failure: gdb/breakpoint.c:13446: internal-error: unhandled tracepoint type 27 A problem internal to GDB has been detected, further debugging may prove unreliable. And no file including the fast tracepoints definition is created. The patch also extends save-trace.exp to test saving tracepoint with a fast tracepoint in there. Note that because this test doesn't actually inserts the tracepoints in the program, we can run it with targets that don't actually support fast tracepoints (or tracepoints at all). gdb/ChangeLog: * breakpoint.c (tracepoint_print_recreate): Fix logic error if -> else if. gdb/testsuite/ChangeLog: * gdb.trace/actions.c: Include trace-common.h. (main): Add a location for a fast tracepoint. * gdb.trace/save-trace.exp: Set a fast tracepoint in addition to the normal tracepoints. (gdb_verify_tracepoints): Adjust number of expected tracepoints. |
||
|
c6d8112436 |
[C++] breakpoint.c: "no memory" software watchpoints and enum casts
Fixes: src/gdb/breakpoint.c: In function ‘void update_watchpoint(watchpoint*, int)’: src/gdb/breakpoint.c:2147:31: error: invalid conversion from ‘int’ to ‘target_hw_bp_type’ [-fpermissive] base->loc->watchpoint_type = -1; ^ Seems better to rely on "address == -1 && length == -1" than on a enum value that's not really part of the set of supposedly valid enum values. Also, factor that out to separate functions for better localization of the concept. gdb/ChangeLog: 2015-11-19 Pedro Alves <palves@redhat.com> * breakpoint.c (software_watchpoint_add_no_memory_location) (is_no_memory_software_watchpoint): New functions. (update_watchpoint): Use software_watchpoint_add_memoryless_location. (breakpoint_address_bits): Use is_no_memory_software_watchpoint. |
||
|
d35ae83384 |
Don't displaced step when there's a breakpoint in the scratch pad range
Assuming displaced stepping is enabled, and a breakpoint is set in the memory region of the scratch pad, things break. One of two cases can happen: #1 - The breakpoint wasn't inserted yet (all threads were stopped), so after setting up the displaced stepping scratch pad with the adjusted copy of the instruction we're trying to single-step, we insert the breakpoint, which corrupts the scratch pad, and the inferior executes the wrong instruction. (Example below.) This is clearly unacceptable. #2 - The breakpoint was already inserted, so setting up the displaced stepping scratch pad overwrites the breakpoint. This is OK in the sense that we already assume that no thread is going to executes the code in the scratch pad range (after initial startup) anyway. This commit addresses both cases by simply punting on displaced stepping if we have a breakpoint in the scratch pad range. The #1 case above explains a few regressions exposed by the AS/NS series on x86: Running ./gdb.dwarf2/callframecfa.exp ... FAIL: gdb.dwarf2/callframecfa.exp: set display for call-frame-cfa FAIL: gdb.dwarf2/callframecfa.exp: step 1 for call-frame-cfa FAIL: gdb.dwarf2/callframecfa.exp: step 2 for call-frame-cfa FAIL: gdb.dwarf2/callframecfa.exp: step 3 for call-frame-cfa FAIL: gdb.dwarf2/callframecfa.exp: step 4 for call-frame-cfa Running ./gdb.dwarf2/typeddwarf.exp ... FAIL: gdb.dwarf2/typeddwarf.exp: continue to breakpoint: continue to typeddwarf.c:53 FAIL: gdb.dwarf2/typeddwarf.exp: check value of x at typeddwarf.c:53 FAIL: gdb.dwarf2/typeddwarf.exp: check value of y at typeddwarf.c:53 FAIL: gdb.dwarf2/typeddwarf.exp: check value of z at typeddwarf.c:53 FAIL: gdb.dwarf2/typeddwarf.exp: continue to breakpoint: continue to typeddwarf.c:73 FAIL: gdb.dwarf2/typeddwarf.exp: check value of w at typeddwarf.c:73 FAIL: gdb.dwarf2/typeddwarf.exp: check value of x at typeddwarf.c:73 FAIL: gdb.dwarf2/typeddwarf.exp: check value of y at typeddwarf.c:73 FAIL: gdb.dwarf2/typeddwarf.exp: check value of z at typeddwarf.c:73 Enabling "maint set target-non-stop on" implies displaced stepping enabled as well, and it's the latter that's to blame here. We can see the same failures with "maint set target-non-stop off + set displaced on". Diffing (good/bad) gdb.log for callframecfa.exp shows: @@ -99,29 +99,29 @@ Breakpoint 2 at 0x80481b0: file q.c, lin continue Continuing. -Breakpoint 2, func (arg=77) at q.c:2 +Breakpoint 2, func (arg=52301) at q.c:2 2 in q.c (gdb) PASS: gdb.dwarf2/callframecfa.exp: continue to breakpoint: continue to breakpoint for call-frame-cfa display arg -1: arg = 77 -(gdb) PASS: gdb.dwarf2/callframecfa.exp: set display for call-frame-cfa +1: arg = 52301 +(gdb) FAIL: gdb.dwarf2/callframecfa.exp: set display for call-frame-cfa The problem is here, when setting up the func call: Breakpoint 1, main (argc=-13345, argv=0x0) at q.c:7 7 in q.c (gdb) disassemble Dump of assembler code for function main: 0x080481bb <+0>: push %ebp 0x080481bc <+1>: mov %esp,%ebp 0x080481be <+3>: sub $0x4,%esp => 0x080481c1 <+6>: movl $0x4d,(%esp) 0x080481c8 <+13>: call 0x80481b0 <func> 0x080481cd <+18>: leave 0x080481ce <+19>: ret End of assembler dump. (gdb) disassemble /r Dump of assembler code for function main: 0x080481bb <+0>: 55 push %ebp 0x080481bc <+1>: 89 e5 mov %esp,%ebp 0x080481be <+3>: 83 ec 04 sub $0x4,%esp => 0x080481c1 <+6>: c7 04 24 4d 00 00 00 movl $0x4d,(%esp) 0x080481c8 <+13>: e8 e3 ff ff ff call 0x80481b0 <func> 0x080481cd <+18>: c9 leave 0x080481ce <+19>: c3 ret End of assembler dump. Note the breakpoint at main is set at 0x080481c1. Right at the instruction that sets up func's argument. Executing that instruction should write 0x4d to the address pointed at by $esp. However, if we stepi, the program manages to write 52301/0xcc4d there instead (0xcc is int3, the x86 breakpoint instruction), because the breakpoint address is 4 bytes inside the scratch pad location, which is 0x080481bd: (gdb) p 0x080481c1 - 0x080481bd $1 = 4 IOW, instead of executing: "c7 04 24 4d 00 00 00" [ movl $0x4d,(%esp) ] the inferior executes: "c7 04 24 4d cc 00 00" [ movl $0xcc4d,(%esp) ] gdb/ChangeLog: 2015-10-30 Pedro Alves <palves@redhat.com> * breakpoint.c (breakpoint_in_range_p) (breakpoint_location_address_range_overlap): New functions. * breakpoint.h (breakpoint_in_range_p): New declaration. * infrun.c (displaced_step_prepare_throw): If there's a breakpoint in the scratch pad range, don't displaced step. |
||
|
9a3c826307 |
Add some more casts (1/2)
Note: I needed to split this patch in two, otherwise it's too big for the mailing list. This patch adds explicit casts to situations where a void pointer is assigned to a pointer to the "real" type. Building in C++ mode requires those assignments to use an explicit cast. This includes, for example: - callback arguments (cleanups, comparison functions, ...) - data attached to some object (objfile, program space, etc) in the form of a void pointer - "user data" passed to some function This patch comes from the commit "(mostly) auto-generated patch to insert casts needed for C++", taken from Pedro's C++ branch. Only files built on x86 with --enable-targets=all are modified, so the native files for other arches will need to be dealt with separately. I built-tested this with --enable-targets=all and reg-tested. To my surprise, a test case (selftest.exp) had to be adjusted. Here's the ChangeLog entry. Again, this was relatively quick to make despite the length, thanks to David Malcom's script, although I don't believe it's very useful information in that particular case... gdb/ChangeLog: * aarch64-tdep.c (aarch64_make_prologue_cache): Add cast(s). (aarch64_make_stub_cache): Likewise. (value_of_aarch64_user_reg): Likewise. * ada-lang.c (ada_inferior_data_cleanup): Likewise. (get_ada_inferior_data): Likewise. (get_ada_pspace_data): Likewise. (ada_pspace_data_cleanup): Likewise. (ada_complete_symbol_matcher): Likewise. (ada_exc_search_name_matches): Likewise. * ada-tasks.c (get_ada_tasks_pspace_data): Likewise. (get_ada_tasks_inferior_data): Likewise. * addrmap.c (addrmap_mutable_foreach_worker): Likewise. (splay_obstack_alloc): Likewise. (splay_obstack_free): Likewise. * alpha-linux-tdep.c (alpha_linux_supply_gregset): Likewise. (alpha_linux_collect_gregset): Likewise. (alpha_linux_supply_fpregset): Likewise. (alpha_linux_collect_fpregset): Likewise. * alpha-mdebug-tdep.c (alpha_mdebug_frame_unwind_cache): Likewise. * alpha-tdep.c (alpha_lds): Likewise. (alpha_sts): Likewise. (alpha_sigtramp_frame_unwind_cache): Likewise. (alpha_heuristic_frame_unwind_cache): Likewise. (alpha_supply_int_regs): Likewise. (alpha_fill_int_regs): Likewise. (alpha_supply_fp_regs): Likewise. (alpha_fill_fp_regs): Likewise. * alphanbsd-tdep.c (alphanbsd_supply_fpregset): Likewise. (alphanbsd_aout_supply_gregset): Likewise. (alphanbsd_supply_gregset): Likewise. * amd64-linux-tdep.c (amd64_linux_init_abi): Likewise. (amd64_x32_linux_init_abi): Likewise. * amd64-nat.c (amd64_supply_native_gregset): Likewise. (amd64_collect_native_gregset): Likewise. * amd64-tdep.c (amd64_frame_cache): Likewise. (amd64_sigtramp_frame_cache): Likewise. (amd64_epilogue_frame_cache): Likewise. (amd64_supply_fxsave): Likewise. (amd64_supply_xsave): Likewise. (amd64_collect_fxsave): Likewise. (amd64_collect_xsave): Likewise. * amd64-windows-tdep.c (amd64_windows_frame_cache): Likewise. * amd64obsd-tdep.c (amd64obsd_trapframe_cache): Likewise. * arm-linux-tdep.c (arm_linux_supply_gregset): Likewise. (arm_linux_collect_gregset): Likewise. (arm_linux_supply_nwfpe): Likewise. (arm_linux_collect_nwfpe): Likewise. (arm_linux_supply_vfp): Likewise. (arm_linux_collect_vfp): Likewise. * arm-tdep.c (arm_find_mapping_symbol): Likewise. (arm_prologue_unwind_stop_reason): Likewise. (arm_prologue_this_id): Likewise. (arm_prologue_prev_register): Likewise. (arm_exidx_data_free): Likewise. (arm_find_exidx_entry): Likewise. (arm_stub_this_id): Likewise. (arm_m_exception_this_id): Likewise. (arm_m_exception_prev_register): Likewise. (arm_normal_frame_base): Likewise. (gdb_print_insn_arm): Likewise. (arm_objfile_data_free): Likewise. (arm_record_special_symbol): Likewise. (value_of_arm_user_reg): Likewise. * armbsd-tdep.c (armbsd_supply_fpregset): Likewise. (armbsd_supply_gregset): Likewise. * auto-load.c (auto_load_pspace_data_cleanup): Likewise. (get_auto_load_pspace_data): Likewise. (hash_loaded_script_entry): Likewise. (eq_loaded_script_entry): Likewise. (clear_section_scripts): Likewise. (collect_matching_scripts): Likewise. * auxv.c (auxv_inferior_data_cleanup): Likewise. (get_auxv_inferior_data): Likewise. * avr-tdep.c (avr_frame_unwind_cache): Likewise. * ax-general.c (do_free_agent_expr_cleanup): Likewise. * bfd-target.c (target_bfd_xfer_partial): Likewise. (target_bfd_xclose): Likewise. (target_bfd_get_section_table): Likewise. * bfin-tdep.c (bfin_frame_cache): Likewise. * block.c (find_block_in_blockvector): Likewise. (call_site_for_pc): Likewise. (block_find_non_opaque_type_preferred): Likewise. * break-catch-sig.c (signal_catchpoint_insert_location): Likewise. (signal_catchpoint_remove_location): Likewise. (signal_catchpoint_breakpoint_hit): Likewise. (signal_catchpoint_print_one): Likewise. (signal_catchpoint_print_mention): Likewise. (signal_catchpoint_print_recreate): Likewise. * break-catch-syscall.c (get_catch_syscall_inferior_data): Likewise. * breakpoint.c (do_cleanup_counted_command_line): Likewise. (bp_location_compare_addrs): Likewise. (get_first_locp_gte_addr): Likewise. (check_tracepoint_command): Likewise. (do_map_commands_command): Likewise. (get_breakpoint_objfile_data): Likewise. (free_breakpoint_probes): Likewise. (do_captured_breakpoint_query): Likewise. (compare_breakpoints): Likewise. (bp_location_compare): Likewise. (bpstat_remove_breakpoint_callback): Likewise. (do_delete_breakpoint_cleanup): Likewise. * bsd-uthread.c (bsd_uthread_set_supply_uthread): Likewise. (bsd_uthread_set_collect_uthread): Likewise. (bsd_uthread_activate): Likewise. (bsd_uthread_fetch_registers): Likewise. (bsd_uthread_store_registers): Likewise. * btrace.c (check_xml_btrace_version): Likewise. (parse_xml_btrace_block): Likewise. (parse_xml_btrace_pt_config_cpu): Likewise. (parse_xml_btrace_pt_raw): Likewise. (parse_xml_btrace_pt): Likewise. (parse_xml_btrace_conf_bts): Likewise. (parse_xml_btrace_conf_pt): Likewise. (do_btrace_data_cleanup): Likewise. * c-typeprint.c (find_typedef_for_canonicalize): Likewise. * charset.c (cleanup_iconv): Likewise. (do_cleanup_iterator): Likewise. * cli-out.c (cli_uiout_dtor): Likewise. (cli_table_begin): Likewise. (cli_table_body): Likewise. (cli_table_end): Likewise. (cli_table_header): Likewise. (cli_begin): Likewise. (cli_end): Likewise. (cli_field_int): Likewise. (cli_field_skip): Likewise. (cli_field_string): Likewise. (cli_field_fmt): Likewise. (cli_spaces): Likewise. (cli_text): Likewise. (cli_message): Likewise. (cli_wrap_hint): Likewise. (cli_flush): Likewise. (cli_redirect): Likewise. (out_field_fmt): Likewise. (field_separator): Likewise. (cli_out_set_stream): Likewise. * cli/cli-cmds.c (compare_symtabs): Likewise. * cli/cli-dump.c (call_dump_func): Likewise. (restore_section_callback): Likewise. * cli/cli-script.c (clear_hook_in_cleanup): Likewise. (do_restore_user_call_depth): Likewise. (do_free_command_lines_cleanup): Likewise. * coff-pe-read.c (get_section_vmas): Likewise. (pe_as16): Likewise. (pe_as32): Likewise. * coffread.c (coff_symfile_read): Likewise. * common/agent.c (agent_look_up_symbols): Likewise. * common/filestuff.c (do_close_cleanup): Likewise. * common/format.c (free_format_pieces_cleanup): Likewise. * common/vec.c (vec_o_reserve): Likewise. * compile/compile-c-support.c (print_one_macro): Likewise. * compile/compile-c-symbols.c (hash_symbol_error): Likewise. (eq_symbol_error): Likewise. (del_symbol_error): Likewise. (error_symbol_once): Likewise. (gcc_convert_symbol): Likewise. (gcc_symbol_address): Likewise. (hash_symname): Likewise. (eq_symname): Likewise. * compile/compile-c-types.c (hash_type_map_instance): Likewise. (eq_type_map_instance): Likewise. (insert_type): Likewise. (convert_type): Likewise. * compile/compile-object-load.c (munmap_listp_free_cleanup): Likewise. (setup_sections): Likewise. (link_hash_table_free): Likewise. (copy_sections): Likewise. * compile/compile-object-run.c (do_module_cleanup): Likewise. * compile/compile.c (compile_print_value): Likewise. (do_rmdir): Likewise. (cleanup_compile_instance): Likewise. (cleanup_unlink_file): Likewise. * completer.c (free_completion_tracker): Likewise. * corelow.c (add_to_spuid_list): Likewise. * cp-namespace.c (reset_directive_searched): Likewise. * cp-support.c (reset_directive_searched): Likewise. * cris-tdep.c (cris_sigtramp_frame_unwind_cache): Likewise. (cris_frame_unwind_cache): Likewise. * d-lang.c (builtin_d_type): Likewise. * d-namespace.c (reset_directive_searched): Likewise. * dbxread.c (dbx_free_symfile_info): Likewise. (do_free_bincl_list_cleanup): Likewise. * disasm.c (hash_dis_line_entry): Likewise. (eq_dis_line_entry): Likewise. (dis_asm_print_address): Likewise. (fprintf_disasm): Likewise. (do_ui_file_delete): Likewise. * doublest.c (convert_floatformat_to_doublest): Likewise. * dummy-frame.c (pop_dummy_frame_bpt): Likewise. (dummy_frame_prev_register): Likewise. (dummy_frame_this_id): Likewise. * dwarf2-frame-tailcall.c (cache_hash): Likewise. (cache_eq): Likewise. (cache_find): Likewise. (tailcall_frame_this_id): Likewise. (dwarf2_tailcall_prev_register_first): Likewise. (tailcall_frame_prev_register): Likewise. (tailcall_frame_dealloc_cache): Likewise. (tailcall_frame_prev_arch): Likewise. * dwarf2-frame.c (dwarf2_frame_state_free): Likewise. (dwarf2_frame_set_init_reg): Likewise. (dwarf2_frame_init_reg): Likewise. (dwarf2_frame_set_signal_frame_p): Likewise. (dwarf2_frame_signal_frame_p): Likewise. (dwarf2_frame_set_adjust_regnum): Likewise. (dwarf2_frame_adjust_regnum): Likewise. (clear_pointer_cleanup): Likewise. (dwarf2_frame_cache): Likewise. (find_cie): Likewise. (dwarf2_frame_find_fde): Likewise. * dwarf2expr.c (dwarf_expr_address_type): Likewise. (free_dwarf_expr_context_cleanup): Likewise. * dwarf2loc.c (locexpr_find_frame_base_location): Likewise. (locexpr_get_frame_base): Likewise. (loclist_find_frame_base_location): Likewise. (loclist_get_frame_base): Likewise. (dwarf_expr_dwarf_call): Likewise. (dwarf_expr_get_base_type): Likewise. (dwarf_expr_push_dwarf_reg_entry_value): Likewise. (dwarf_expr_get_obj_addr): Likewise. (entry_data_value_coerce_ref): Likewise. (entry_data_value_copy_closure): Likewise. (entry_data_value_free_closure): Likewise. (get_frame_address_in_block_wrapper): Likewise. (dwarf2_evaluate_property): Likewise. (dwarf2_compile_property_to_c): Likewise. (needs_frame_read_addr_from_reg): Likewise. (needs_frame_get_reg_value): Likewise. (needs_frame_frame_base): Likewise. (needs_frame_frame_cfa): Likewise. (needs_frame_tls_address): Likewise. (needs_frame_dwarf_call): Likewise. (needs_dwarf_reg_entry_value): Likewise. (get_ax_pc): Likewise. (locexpr_read_variable): Likewise. (locexpr_read_variable_at_entry): Likewise. (locexpr_read_needs_frame): Likewise. (locexpr_describe_location): Likewise. (locexpr_tracepoint_var_ref): Likewise. (locexpr_generate_c_location): Likewise. (loclist_read_variable): Likewise. (loclist_read_variable_at_entry): Likewise. (loclist_describe_location): Likewise. (loclist_tracepoint_var_ref): Likewise. (loclist_generate_c_location): Likewise. * dwarf2read.c (line_header_hash_voidp): Likewise. (line_header_eq_voidp): Likewise. (dwarf2_has_info): Likewise. (dwarf2_get_section_info): Likewise. (locate_dwz_sections): Likewise. (hash_file_name_entry): Likewise. (eq_file_name_entry): Likewise. (delete_file_name_entry): Likewise. (dw2_setup): Likewise. (dw2_get_file_names_reader): Likewise. (dw2_find_pc_sect_compunit_symtab): Likewise. (hash_signatured_type): Likewise. (eq_signatured_type): Likewise. (add_signatured_type_cu_to_table): Likewise. (create_debug_types_hash_table): Likewise. (lookup_dwo_signatured_type): Likewise. (lookup_dwp_signatured_type): Likewise. (lookup_signatured_type): Likewise. (hash_type_unit_group): Likewise. (eq_type_unit_group): Likewise. (get_type_unit_group): Likewise. (process_psymtab_comp_unit_reader): Likewise. (sort_tu_by_abbrev_offset): Likewise. (process_skeletonless_type_unit): Likewise. (psymtabs_addrmap_cleanup): Likewise. (dwarf2_read_symtab): Likewise. (psymtab_to_symtab_1): Likewise. (die_hash): Likewise. (die_eq): Likewise. (load_full_comp_unit_reader): Likewise. (reset_die_in_process): Likewise. (free_cu_line_header): Likewise. (handle_DW_AT_stmt_list): Likewise. (hash_dwo_file): Likewise. (eq_dwo_file): Likewise. (hash_dwo_unit): Likewise. (eq_dwo_unit): Likewise. (create_dwo_cu_reader): Likewise. (create_dwo_unit_in_dwp_v1): Likewise. (create_dwo_unit_in_dwp_v2): Likewise. (lookup_dwo_unit_in_dwp): Likewise. (dwarf2_locate_dwo_sections): Likewise. (dwarf2_locate_common_dwp_sections): Likewise. (dwarf2_locate_v2_dwp_sections): Likewise. (hash_dwp_loaded_cutus): Likewise. (eq_dwp_loaded_cutus): Likewise. (lookup_dwo_cutu): Likewise. (abbrev_table_free_cleanup): Likewise. (dwarf2_free_abbrev_table): Likewise. (find_partial_die_in_comp_unit): Likewise. (free_line_header_voidp): Likewise. (follow_die_offset): Likewise. (follow_die_sig_1): Likewise. (free_heap_comp_unit): Likewise. (free_stack_comp_unit): Likewise. (dwarf2_free_objfile): Likewise. (per_cu_offset_and_type_hash): Likewise. (per_cu_offset_and_type_eq): Likewise. (get_die_type_at_offset): Likewise. (partial_die_hash): Likewise. (partial_die_eq): Likewise. (dwarf2_per_objfile_free): Likewise. (hash_strtab_entry): Likewise. (eq_strtab_entry): Likewise. (add_string): Likewise. (hash_symtab_entry): Likewise. (eq_symtab_entry): Likewise. (delete_symtab_entry): Likewise. (cleanup_mapped_symtab): Likewise. (add_indices_to_cpool): Likewise. (hash_psymtab_cu_index): Likewise. (eq_psymtab_cu_index): Likewise. (add_address_entry_worker): Likewise. (unlink_if_set): Likewise. (write_one_signatured_type): Likewise. (save_gdb_index_command): Likewise. * elfread.c (elf_symtab_read): Likewise. (elf_gnu_ifunc_cache_hash): Likewise. (elf_gnu_ifunc_cache_eq): Likewise. (elf_gnu_ifunc_record_cache): Likewise. (elf_gnu_ifunc_resolve_by_cache): Likewise. (elf_get_probes): Likewise. (probe_key_free): Likewise. * f-lang.c (builtin_f_type): Likewise. * frame-base.c (frame_base_append_sniffer): Likewise. (frame_base_set_default): Likewise. (frame_base_find_by_frame): Likewise. * frame-unwind.c (frame_unwind_prepend_unwinder): Likewise. (frame_unwind_append_unwinder): Likewise. (frame_unwind_find_by_frame): Likewise. * frame.c (frame_addr_hash): Likewise. (frame_addr_hash_eq): Likewise. (frame_stash_find): Likewise. (do_frame_register_read): Likewise. (unwind_to_current_frame): Likewise. (frame_cleanup_after_sniffer): Likewise. * frv-linux-tdep.c (frv_linux_sigtramp_frame_cache): Likewise. * frv-tdep.c (frv_frame_unwind_cache): Likewise. * ft32-tdep.c (ft32_frame_cache): Likewise. * gcore.c (do_bfd_delete_cleanup): Likewise. (gcore_create_callback): Likewise. * gdb_bfd.c (hash_bfd): Likewise. (eq_bfd): Likewise. (gdb_bfd_open): Likewise. (free_one_bfd_section): Likewise. (gdb_bfd_ref): Likewise. (gdb_bfd_unref): Likewise. (get_section_descriptor): Likewise. (gdb_bfd_map_section): Likewise. (gdb_bfd_crc): Likewise. (gdb_bfd_mark_parent): Likewise. (gdb_bfd_record_inclusion): Likewise. (gdb_bfd_requires_relocations): Likewise. (print_one_bfd): Likewise. * gdbtypes.c (type_pair_hash): Likewise. (type_pair_eq): Likewise. (builtin_type): Likewise. (objfile_type): Likewise. * gnu-v3-abi.c (vtable_ptrdiff_type): Likewise. (vtable_address_point_offset): Likewise. (gnuv3_get_vtable): Likewise. (hash_value_and_voffset): Likewise. (eq_value_and_voffset): Likewise. (compare_value_and_voffset): Likewise. (compute_vtable_size): Likewise. (gnuv3_get_typeid_type): Likewise. * go-lang.c (builtin_go_type): Likewise. * guile/scm-block.c (bkscm_hash_block_smob): Likewise. (bkscm_eq_block_smob): Likewise. (bkscm_objfile_block_map): Likewise. (bkscm_del_objfile_blocks): Likewise. * guile/scm-breakpoint.c (bpscm_build_bp_list): Likewise. * guile/scm-disasm.c (gdbscm_disasm_read_memory_worker): Likewise. (gdbscm_disasm_print_address): Likewise. * guile/scm-frame.c (frscm_hash_frame_smob): Likewise. (frscm_eq_frame_smob): Likewise. (frscm_inferior_frame_map): Likewise. (frscm_del_inferior_frames): Likewise. * guile/scm-gsmob.c (gdbscm_add_objfile_ref): Likewise. * guile/scm-objfile.c (ofscm_handle_objfile_deleted): Likewise. (ofscm_objfile_smob_from_objfile): Likewise. * guile/scm-ports.c (ioscm_write): Likewise. (ioscm_file_port_delete): Likewise. (ioscm_file_port_rewind): Likewise. (ioscm_file_port_put): Likewise. (ioscm_file_port_write): Likewise. * guile/scm-progspace.c (psscm_handle_pspace_deleted): Likewise. (psscm_pspace_smob_from_pspace): Likewise. * guile/scm-safe-call.c (scscm_recording_pre_unwind_handler): Likewise. (scscm_recording_unwind_handler): Likewise. (gdbscm_with_catch): Likewise. (scscm_call_0_body): Likewise. (scscm_call_1_body): Likewise. (scscm_call_2_body): Likewise. (scscm_call_3_body): Likewise. (scscm_call_4_body): Likewise. (scscm_apply_1_body): Likewise. (scscm_eval_scheme_string): Likewise. (gdbscm_safe_eval_string): Likewise. (scscm_source_scheme_script): Likewise. (gdbscm_safe_source_script): Likewise. * guile/scm-string.c (gdbscm_call_scm_to_stringn): Likewise. (gdbscm_call_scm_from_stringn): Likewise. * guile/scm-symbol.c (syscm_hash_symbol_smob): Likewise. (syscm_eq_symbol_smob): Likewise. (syscm_get_symbol_map): Likewise. (syscm_del_objfile_symbols): Likewise. * guile/scm-symtab.c (stscm_hash_symtab_smob): Likewise. (stscm_eq_symtab_smob): Likewise. (stscm_objfile_symtab_map): Likewise. (stscm_del_objfile_symtabs): Likewise. * guile/scm-type.c (tyscm_hash_type_smob): Likewise. (tyscm_eq_type_smob): Likewise. (tyscm_type_map): Likewise. (tyscm_copy_type_recursive): Likewise. (save_objfile_types): Likewise. * guile/scm-utils.c (extract_arg): Likewise. * h8300-tdep.c (h8300_frame_cache): Likewise. * hppa-linux-tdep.c (hppa_linux_sigtramp_frame_unwind_cache): Likewise. * hppa-tdep.c (compare_unwind_entries): Likewise. (find_unwind_entry): Likewise. (hppa_frame_cache): Likewise. (hppa_stub_frame_unwind_cache): Likewise. * hppanbsd-tdep.c (hppanbsd_supply_gregset): Likewise. * hppaobsd-tdep.c (hppaobsd_supply_gregset): Likewise. (hppaobsd_supply_fpregset): Likewise. * i386-cygwin-tdep.c (core_process_module_section): Likewise. * i386-linux-tdep.c (i386_linux_init_abi): Likewise. * i386-tdep.c (i386_frame_cache): Likewise. (i386_epilogue_frame_cache): Likewise. (i386_sigtramp_frame_cache): Likewise. (i386_supply_gregset): Likewise. (i386_collect_gregset): Likewise. (i386_gdbarch_init): Likewise. * i386obsd-tdep.c (i386obsd_aout_supply_regset): Likewise. (i386obsd_trapframe_cache): Likewise. * i387-tdep.c (i387_supply_fsave): Likewise. (i387_collect_fsave): Likewise. (i387_supply_fxsave): Likewise. (i387_collect_fxsave): Likewise. (i387_supply_xsave): Likewise. (i387_collect_xsave): Likewise. * ia64-tdep.c (ia64_frame_cache): Likewise. (ia64_sigtramp_frame_cache): Likewise. * infcmd.c (attach_command_continuation): Likewise. (attach_command_continuation_free_args): Likewise. * inferior.c (restore_inferior): Likewise. (delete_thread_of_inferior): Likewise. * inflow.c (inflow_inferior_data_cleanup): Likewise. (get_inflow_inferior_data): Likewise. (inflow_inferior_exit): Likewise. * infrun.c (displaced_step_clear_cleanup): Likewise. (restore_current_uiout_cleanup): Likewise. (release_stop_context_cleanup): Likewise. (do_restore_infcall_suspend_state_cleanup): Likewise. (do_restore_infcall_control_state_cleanup): Likewise. (restore_inferior_ptid): Likewise. * inline-frame.c (block_starting_point_at): Likewise. * iq2000-tdep.c (iq2000_frame_cache): Likewise. * jit.c (get_jit_objfile_data): Likewise. (get_jit_program_space_data): Likewise. (jit_object_close_impl): Likewise. (jit_find_objf_with_entry_addr): Likewise. (jit_breakpoint_deleted): Likewise. (jit_unwind_reg_set_impl): Likewise. (jit_unwind_reg_get_impl): Likewise. (jit_dealloc_cache): Likewise. (jit_frame_sniffer): Likewise. (jit_frame_prev_register): Likewise. (jit_prepend_unwinder): Likewise. (jit_inferior_exit_hook): Likewise. (free_objfile_data): Likewise. * jv-lang.c (jv_per_objfile_free): Likewise. (get_dynamics_objfile): Likewise. (get_java_class_symtab): Likewise. (builtin_java_type): Likewise. * language.c (language_string_char_type): Likewise. (language_bool_type): Likewise. (language_lookup_primitive_type): Likewise. (language_lookup_primitive_type_as_symbol): Likewise. * linespec.c (hash_address_entry): Likewise. (eq_address_entry): Likewise. (iterate_inline_only): Likewise. (iterate_name_matcher): Likewise. (decode_line_2_compare_items): Likewise. (collect_one_symbol): Likewise. (compare_symbols): Likewise. (compare_msymbols): Likewise. (add_symtabs_to_list): Likewise. (collect_symbols): Likewise. (compare_msyms): Likewise. (add_minsym): Likewise. (cleanup_linespec_result): Likewise. * linux-fork.c (inferior_call_waitpid_cleanup): Likewise. * linux-nat.c (delete_lwp_cleanup): Likewise. (count_events_callback): Likewise. (select_event_lwp_callback): Likewise. (resume_stopped_resumed_lwps): Likewise. * linux-tdep.c (get_linux_gdbarch_data): Likewise. (invalidate_linux_cache_inf): Likewise. (get_linux_inferior_data): Likewise. (linux_find_memory_regions_thunk): Likewise. (linux_make_mappings_callback): Likewise. (linux_corefile_thread_callback): Likewise. (find_mapping_size): Likewise. * linux-thread-db.c (find_new_threads_callback): Likewise. * lm32-tdep.c (lm32_frame_cache): Likewise. * m2-lang.c (builtin_m2_type): Likewise. * m32c-tdep.c (m32c_analyze_frame_prologue): Likewise. * m32r-linux-tdep.c (m32r_linux_sigtramp_frame_cache): Likewise. (m32r_linux_supply_gregset): Likewise. (m32r_linux_collect_gregset): Likewise. * m32r-tdep.c (m32r_frame_unwind_cache): Likewise. * m68hc11-tdep.c (m68hc11_frame_unwind_cache): Likewise. * m68k-tdep.c (m68k_frame_cache): Likewise. * m68kbsd-tdep.c (m68kbsd_supply_fpregset): Likewise. (m68kbsd_supply_gregset): Likewise. * m68klinux-tdep.c (m68k_linux_sigtramp_frame_cache): Likewise. * m88k-tdep.c (m88k_frame_cache): Likewise. (m88k_supply_gregset): Likewise. gdb/gdbserver/ChangeLog: * dll.c (match_dll): Add cast(s). (unloaded_dll): Likewise. * linux-low.c (second_thread_of_pid_p): Likewise. (delete_lwp_callback): Likewise. (count_events_callback): Likewise. (select_event_lwp_callback): Likewise. (linux_set_resume_request): Likewise. * server.c (accumulate_file_name_length): Likewise. (emit_dll_description): Likewise. (handle_qxfer_threads_worker): Likewise. (visit_actioned_threads): Likewise. * thread-db.c (any_thread_of): Likewise. * tracepoint.c (same_process_p): Likewise. (match_blocktype): Likewise. (build_traceframe_info_xml): Likewise. gdb/testsuite/ChangeLog: * gdb.gdb/selftest.exp (do_steps_and_nexts): Adjust expected source line. |
||
|
224c3ddb89 |
Add casts to memory allocation related calls
Most allocation functions (if not all) return a void* pointing to the allocated memory. In C++, we need to add an explicit cast when assigning the result to a pointer to another type (which is the case more often than not). The content of this patch is taken from Pedro's branch, from commit "(mostly) auto-generated patch to insert casts needed for C++". I validated that the changes make sense and manually reflowed the code to make it respect the coding style. I also found multiple places where I could use XNEW/XNEWVEC/XRESIZEVEC/etc. Thanks a lot to whoever did that automated script to insert casts, doing it completely by hand would have taken a ridiculous amount of time. Only files built on x86 with --enable-targets=all are modified. This means that all other -nat.c files are untouched and will have to be dealt with later by using appropiate compilers. Or maybe we can try to build them with a regular g++ just to know where to add casts, I don't know. I built-tested this with --enable-targets=all and reg-tested. Here's the changelog entry, which was not too bad to make despite the size, thanks to David Malcom's script. I fixed some bits by hand, but there might be some wrong parts left (hopefully not). gdb/ChangeLog: * aarch64-linux-tdep.c (aarch64_stap_parse_special_token): Add cast to allocation result assignment. * ada-exp.y (write_object_renaming): Likewise. (write_ambiguous_var): Likewise. (ada_nget_field_index): Likewise. (write_var_or_type): Likewise. * ada-lang.c (ada_decode_symbol): Likewise. (ada_value_assign): Likewise. (value_pointer): Likewise. (cache_symbol): Likewise. (add_nonlocal_symbols): Likewise. (ada_name_for_lookup): Likewise. (symbol_completion_add): Likewise. (ada_to_fixed_type_1): Likewise. (ada_get_next_arg): Likewise. (defns_collected): Likewise. * ada-lex.l (processId): Likewise. (processString): Likewise. * ada-tasks.c (read_known_tasks_array): Likewise. (read_known_tasks_list): Likewise. * ada-typeprint.c (decoded_type_name): Likewise. * addrmap.c (addrmap_mutable_create_fixed): Likewise. * amd64-tdep.c (amd64_push_arguments): Likewise. (amd64_displaced_step_copy_insn): Likewise. (amd64_classify_insn_at): Likewise. (amd64_relocate_instruction): Likewise. * amd64obsd-tdep.c (amd64obsd_sigtramp_p): Likewise. * arch-utils.c (simple_displaced_step_copy_insn): Likewise. (initialize_current_architecture): Likewise. * arm-linux-tdep.c (arm_stap_parse_special_token): Likewise. * arm-symbian-tdep.c (arm_symbian_osabi_sniffer): Likewise. * arm-tdep.c (arm_exidx_new_objfile): Likewise. (arm_push_dummy_call): Likewise. (extend_buffer_earlier): Likewise. (arm_adjust_breakpoint_address): Likewise. (arm_skip_stub): Likewise. * auto-load.c (filename_is_in_pattern): Likewise. (maybe_add_script_file): Likewise. (maybe_add_script_text): Likewise. (auto_load_objfile_script_1): Likewise. * auxv.c (ld_so_xfer_auxv): Likewise. * ax-general.c (new_agent_expr): Likewise. (grow_expr): Likewise. (ax_reg_mask): Likewise. * bcache.c (bcache_full): Likewise. * breakpoint.c (program_breakpoint_here_p): Likewise. * btrace.c (parse_xml_raw): Likewise. * build-id.c (build_id_to_debug_bfd): Likewise. * buildsym.c (end_symtab_with_blockvector): Likewise. * c-exp.y (string_exp): Likewise. (qualified_name): Likewise. (write_destructor_name): Likewise. (operator_stoken): Likewise. (parse_number): Likewise. (scan_macro_expansion): Likewise. (yylex): Likewise. (c_print_token): Likewise. * c-lang.c (c_get_string): Likewise. (emit_numeric_character): Likewise. * charset.c (wchar_iterate): Likewise. * cli/cli-cmds.c (complete_command): Likewise. (make_command): Likewise. * cli/cli-dump.c (restore_section_callback): Likewise. (restore_binary_file): Likewise. * cli/cli-interp.c (cli_interpreter_exec): Likewise. * cli/cli-script.c (execute_control_command): Likewise. * cli/cli-setshow.c (do_set_command): Likewise. * coff-pe-read.c (add_pe_forwarded_sym): Likewise. (read_pe_exported_syms): Likewise. * coffread.c (coff_read_struct_type): Likewise. (coff_read_enum_type): Likewise. * common/btrace-common.c (btrace_data_append): Likewise. * common/buffer.c (buffer_grow): Likewise. * common/filestuff.c (gdb_fopen_cloexec): Likewise. * common/format.c (parse_format_string): Likewise. * common/gdb_vecs.c (delim_string_to_char_ptr_vec_append): Likewise. * common/xml-utils.c (xml_escape_text): Likewise. * compile/compile-object-load.c (copy_sections): Likewise. (compile_object_load): Likewise. * compile/compile-object-run.c (compile_object_run): Likewise. * completer.c (filename_completer): Likewise. * corefile.c (read_memory_typed_address): Likewise. (write_memory_unsigned_integer): Likewise. (write_memory_signed_integer): Likewise. (complete_set_gnutarget): Likewise. * corelow.c (get_core_register_section): Likewise. * cp-name-parser.y (d_grab): Likewise. (allocate_info): Likewise. (cp_new_demangle_parse_info): Likewise. * cp-namespace.c (cp_scan_for_anonymous_namespaces): Likewise. (cp_lookup_symbol_in_namespace): Likewise. (lookup_namespace_scope): Likewise. (find_symbol_in_baseclass): Likewise. (cp_lookup_nested_symbol): Likewise. (cp_lookup_transparent_type_loop): Likewise. * cp-support.c (copy_string_to_obstack): Likewise. (make_symbol_overload_list): Likewise. (make_symbol_overload_list_namespace): Likewise. (make_symbol_overload_list_adl_namespace): Likewise. (first_component_command): Likewise. * cp-valprint.c (cp_print_value): Likewise. * ctf.c (ctf_xfer_partial): Likewise. * d-exp.y (StringExp): Likewise. * d-namespace.c (d_lookup_symbol_in_module): Likewise. (lookup_module_scope): Likewise. (find_symbol_in_baseclass): Likewise. (d_lookup_nested_symbol): Likewise. * dbxread.c (find_stab_function_addr): Likewise. (read_dbx_symtab): Likewise. (dbx_end_psymtab): Likewise. (cp_set_block_scope): Likewise. * dcache.c (dcache_alloc): Likewise. * demangle.c (_initialize_demangler): Likewise. * dicos-tdep.c (dicos_load_module_p): Likewise. * dictionary.c (dict_create_hashed_expandable): Likewise. (dict_create_linear_expandable): Likewise. (expand_hashtable): Likewise. (add_symbol_linear_expandable): Likewise. * dwarf2-frame.c (add_cie): Likewise. (add_fde): Likewise. (dwarf2_build_frame_info): Likewise. * dwarf2expr.c (dwarf_expr_grow_stack): Likewise. (dwarf_expr_fetch_address): Likewise. (add_piece): Likewise. (execute_stack_op): Likewise. * dwarf2loc.c (chain_candidate): Likewise. (dwarf_entry_parameter_to_value): Likewise. (read_pieced_value): Likewise. (write_pieced_value): Likewise. * dwarf2read.c (dwarf2_read_section): Likewise. (add_type_unit): Likewise. (read_comp_units_from_section): Likewise. (fixup_go_packaging): Likewise. (dwarf2_compute_name): Likewise. (dwarf2_physname): Likewise. (create_dwo_unit_in_dwp_v1): Likewise. (create_dwo_unit_in_dwp_v2): Likewise. (read_func_scope): Likewise. (read_call_site_scope): Likewise. (dwarf2_attach_fields_to_type): Likewise. (process_structure_scope): Likewise. (mark_common_block_symbol_computed): Likewise. (read_common_block): Likewise. (abbrev_table_read_table): Likewise. (guess_partial_die_structure_name): Likewise. (fixup_partial_die): Likewise. (add_file_name): Likewise. (dwarf2_const_value_data): Likewise. (dwarf2_const_value_attr): Likewise. (build_error_marker_type): Likewise. (guess_full_die_structure_name): Likewise. (anonymous_struct_prefix): Likewise. (typename_concat): Likewise. (dwarf2_canonicalize_name): Likewise. (dwarf2_name): Likewise. (write_constant_as_bytes): Likewise. (dwarf2_fetch_constant_bytes): Likewise. (copy_string): Likewise. (parse_macro_definition): Likewise. * elfread.c (elf_symfile_segments): Likewise. (elf_rel_plt_read): Likewise. (elf_gnu_ifunc_resolve_by_cache): Likewise. (elf_gnu_ifunc_resolve_by_got): Likewise. (elf_read_minimal_symbols): Likewise. (elf_gnu_ifunc_record_cache): Likewise. * event-top.c (top_level_prompt): Likewise. (command_line_handler): Likewise. * exec.c (resize_section_table): Likewise. * expprint.c (print_subexp_standard): Likewise. * fbsd-tdep.c (fbsd_collect_regset_section_cb): Likewise. * findcmd.c (parse_find_args): Likewise. * findvar.c (address_from_register): Likewise. * frame.c (get_prev_frame_always): Likewise. * gdb_bfd.c (gdb_bfd_ref): Likewise. (get_section_descriptor): Likewise. * gdb_obstack.c (obconcat): Likewise. (obstack_strdup): Likewise. * gdbtypes.c (lookup_function_type_with_arguments): Likewise. (create_set_type): Likewise. (lookup_unsigned_typename): Likewise. (lookup_signed_typename): Likewise. (resolve_dynamic_union): Likewise. (resolve_dynamic_struct): Likewise. (add_dyn_prop): Likewise. (copy_dynamic_prop_list): Likewise. (arch_flags_type): Likewise. (append_composite_type_field_raw): Likewise. * gdbtypes.h (INIT_FUNC_SPECIFIC): Likewise. * gnu-v3-abi.c (gnuv3_rtti_type): Likewise. * go-exp.y (string_exp): Likewise. * go-lang.c (go_demangle): Likewise. * guile/guile.c (compute_scheme_string): Likewise. * guile/scm-cmd.c (gdbscm_parse_command_name): Likewise. (gdbscm_canonicalize_command_name): Likewise. * guile/scm-ports.c (ioscm_init_stdio_buffers): Likewise. (ioscm_init_memory_port): Likewise. (ioscm_reinit_memory_port): Likewise. * guile/scm-utils.c (gdbscm_gc_xstrdup): Likewise. (gdbscm_gc_dup_argv): Likewise. * h8300-tdep.c (h8300_push_dummy_call): Likewise. * hppa-tdep.c (internalize_unwinds): Likewise. (read_unwind_info): Likewise. * i386-cygwin-tdep.c (core_process_module_section): Likewise. (windows_core_xfer_shared_libraries): Likewise. * i386-tdep.c (i386_displaced_step_copy_insn): Likewise. (i386_stap_parse_special_token_triplet): Likewise. (i386_stap_parse_special_token_three_arg_disp): Likewise. * i386obsd-tdep.c (i386obsd_sigtramp_p): Likewise. * inf-child.c (inf_child_fileio_readlink): Likewise. * inf-ptrace.c (inf_ptrace_fetch_register): Likewise. (inf_ptrace_store_register): Likewise. * infrun.c (follow_exec): Likewise. (displaced_step_prepare_throw): Likewise. (save_stop_context): Likewise. (save_infcall_suspend_state): Likewise. * jit.c (jit_read_descriptor): Likewise. (jit_read_code_entry): Likewise. (jit_symtab_line_mapping_add_impl): Likewise. (finalize_symtab): Likewise. (jit_unwind_reg_get_impl): Likewise. * jv-exp.y (QualifiedName): Likewise. * jv-lang.c (get_java_utf8_name): Likewise. (type_from_class): Likewise. (java_demangle_type_signature): Likewise. (java_class_name_from_physname): Likewise. * jv-typeprint.c (java_type_print_base): Likewise. * jv-valprint.c (java_value_print): Likewise. * language.c (add_language): Likewise. * linespec.c (add_sal_to_sals_basic): Likewise. (add_sal_to_sals): Likewise. (decode_objc): Likewise. (find_linespec_symbols): Likewise. * linux-fork.c (fork_save_infrun_state): Likewise. * linux-nat.c (linux_nat_detach): Likewise. (linux_nat_fileio_readlink): Likewise. * linux-record.c (record_linux_sockaddr): Likewise. (record_linux_msghdr): Likewise. (Do): Likewise. * linux-tdep.c (linux_core_info_proc_mappings): Likewise. (linux_collect_regset_section_cb): Likewise. (linux_get_siginfo_data): Likewise. * linux-thread-db.c (try_thread_db_load_from_pdir_1): Likewise. (try_thread_db_load_from_dir): Likewise. (thread_db_load_search): Likewise. (info_auto_load_libthread_db): Likewise. * m32c-tdep.c (m32c_m16c_address_to_pointer): Likewise. (m32c_m16c_pointer_to_address): Likewise. * m68hc11-tdep.c (m68hc11_pseudo_register_write): Likewise. * m68k-tdep.c (m68k_get_longjmp_target): Likewise. * machoread.c (macho_check_dsym): Likewise. * macroexp.c (resize_buffer): Likewise. (gather_arguments): Likewise. (maybe_expand): Likewise. * macrotab.c (new_macro_key): Likewise. (new_source_file): Likewise. (new_macro_definition): Likewise. * mdebugread.c (parse_symbol): Likewise. (parse_type): Likewise. (parse_partial_symbols): Likewise. (psymtab_to_symtab_1): Likewise. * mem-break.c (default_memory_insert_breakpoint): Likewise. * mi/mi-cmd-break.c (mi_argv_to_format): Likewise. * mi/mi-main.c (mi_cmd_data_read_memory): Likewise. (mi_cmd_data_read_memory_bytes): Likewise. (mi_cmd_data_write_memory_bytes): Likewise. (mi_cmd_trace_frame_collected): Likewise. * mi/mi-parse.c (mi_parse_argv): Likewise. (mi_parse): Likewise. * minidebug.c (lzma_open): Likewise. (lzma_pread): Likewise. * mips-tdep.c (mips_read_fp_register_single): Likewise. (mips_print_fp_register): Likewise. * mipsnbsd-tdep.c (mipsnbsd_get_longjmp_target): Likewise. * mipsread.c (read_alphacoff_dynamic_symtab): Likewise. * mt-tdep.c (mt_register_name): Likewise. (mt_registers_info): Likewise. (mt_push_dummy_call): Likewise. * namespace.c (add_using_directive): Likewise. * nat/linux-btrace.c (perf_event_read): Likewise. (linux_enable_bts): Likewise. * nat/linux-osdata.c (linux_common_core_of_thread): Likewise. * nat/linux-ptrace.c (linux_ptrace_test_ret_to_nx): Likewise. * nto-tdep.c (nto_find_and_open_solib): Likewise. (nto_parse_redirection): Likewise. * objc-lang.c (objc_demangle): Likewise. (find_methods): Likewise. * objfiles.c (get_objfile_bfd_data): Likewise. (set_objfile_main_name): Likewise. (allocate_objfile): Likewise. (objfile_relocate): Likewise. (update_section_map): Likewise. * osabi.c (generic_elf_osabi_sniff_abi_tag_sections): Likewise. * p-exp.y (exp): Likewise. (yylex): Likewise. * p-valprint.c (pascal_object_print_value): Likewise. * parse.c (initialize_expout): Likewise. (mark_completion_tag): Likewise. (copy_name): Likewise. (parse_float): Likewise. (type_stack_reserve): Likewise. * ppc-linux-tdep.c (ppc_stap_parse_special_token): Likewise. (ppu2spu_prev_register): Likewise. * ppc-ravenscar-thread.c (supply_register_at_address): Likewise. * printcmd.c (printf_wide_c_string): Likewise. (printf_pointer): Likewise. * probe.c (parse_probes): Likewise. * python/py-cmd.c (gdbpy_parse_command_name): Likewise. (cmdpy_init): Likewise. * python/py-gdb-readline.c (gdbpy_readline_wrapper): Likewise. * python/py-symtab.c (set_sal): Likewise. * python/py-unwind.c (pyuw_sniffer): Likewise. * python/python.c (python_interactive_command): Likewise. (compute_python_string): Likewise. * ravenscar-thread.c (get_running_thread_id): Likewise. * record-full.c (record_full_exec_insn): Likewise. (record_full_core_open_1): Likewise. * regcache.c (regcache_raw_read_signed): Likewise. (regcache_raw_read_unsigned): Likewise. (regcache_cooked_read_signed): Likewise. (regcache_cooked_read_unsigned): Likewise. * remote-fileio.c (remote_fileio_func_open): Likewise. (remote_fileio_func_rename): Likewise. (remote_fileio_func_unlink): Likewise. (remote_fileio_func_stat): Likewise. (remote_fileio_func_system): Likewise. * remote-mips.c (mips_xfer_memory): Likewise. (mips_load_srec): Likewise. (pmon_end_download): Likewise. * remote.c (new_remote_state): Likewise. (map_regcache_remote_table): Likewise. (remote_register_number_and_offset): Likewise. (init_remote_state): Likewise. (get_memory_packet_size): Likewise. (remote_pass_signals): Likewise. (remote_program_signals): Likewise. (remote_start_remote): Likewise. (remote_check_symbols): Likewise. (remote_query_supported): Likewise. (extended_remote_attach): Likewise. (process_g_packet): Likewise. (store_registers_using_G): Likewise. (putpkt_binary): Likewise. (read_frame): Likewise. (compare_sections_command): Likewise. (remote_hostio_pread): Likewise. (remote_hostio_readlink): Likewise. (remote_file_put): Likewise. (remote_file_get): Likewise. (remote_pid_to_exec_file): Likewise. (_initialize_remote): Likewise. * rs6000-aix-tdep.c (rs6000_aix_ld_info_to_xml): Likewise. (rs6000_aix_core_xfer_shared_libraries_aix): Likewise. * rs6000-tdep.c (ppc_displaced_step_copy_insn): Likewise. (bfd_uses_spe_extensions): Likewise. * s390-linux-tdep.c (s390_displaced_step_copy_insn): Likewise. * score-tdep.c (score7_malloc_and_get_memblock): Likewise. * solib-dsbt.c (decode_loadmap): Likewise. (fetch_loadmap): Likewise. (scan_dyntag): Likewise. (enable_break): Likewise. (dsbt_relocate_main_executable): Likewise. * solib-frv.c (fetch_loadmap): Likewise. (enable_break2): Likewise. (frv_relocate_main_executable): Likewise. * solib-spu.c (spu_relocate_main_executable): Likewise. (spu_bfd_open): Likewise. * solib-svr4.c (lm_info_read): Likewise. (read_program_header): Likewise. (find_program_interpreter): Likewise. (scan_dyntag): Likewise. (elf_locate_base): Likewise. (open_symbol_file_object): Likewise. (read_program_headers_from_bfd): Likewise. (svr4_relocate_main_executable): Likewise. * solib-target.c (solib_target_relocate_section_addresses): Likewise. * solib.c (solib_find_1): Likewise. (exec_file_find): Likewise. (solib_find): Likewise. * source.c (openp): Likewise. (print_source_lines_base): Likewise. (forward_search_command): Likewise. * sparc-ravenscar-thread.c (supply_register_at_address): Likewise. * spu-tdep.c (spu2ppu_prev_register): Likewise. (spu_get_overlay_table): Likewise. * stabsread.c (patch_block_stabs): Likewise. (define_symbol): Likewise. (again:): Likewise. (read_member_functions): Likewise. (read_one_struct_field): Likewise. (read_enum_type): Likewise. (common_block_start): Likewise. * stack.c (read_frame_arg): Likewise. (backtrace_command): Likewise. * stap-probe.c (stap_parse_register_operand): Likewise. * symfile.c (syms_from_objfile_1): Likewise. (find_separate_debug_file): Likewise. (load_command): Likewise. (load_progress): Likewise. (load_section_callback): Likewise. (reread_symbols): Likewise. (add_filename_language): Likewise. (allocate_compunit_symtab): Likewise. (read_target_long_array): Likewise. (simple_read_overlay_table): Likewise. * symtab.c (symbol_set_names): Likewise. (resize_symbol_cache): Likewise. (rbreak_command): Likewise. (completion_list_add_name): Likewise. (completion_list_objc_symbol): Likewise. (add_filename_to_list): Likewise. * target-descriptions.c (maint_print_c_tdesc_cmd): Likewise. * target-memory.c (target_write_memory_blocks): Likewise. * target.c (target_read_string): Likewise. (read_whatever_is_readable): Likewise. (target_read_alloc_1): Likewise. (simple_search_memory): Likewise. (target_fileio_read_alloc_1): Likewise. * tilegx-tdep.c (tilegx_push_dummy_call): Likewise. * top.c (command_line_input): Likewise. * tracefile-tfile.c (tfile_fetch_registers): Likewise. * tracefile.c (tracefile_fetch_registers): Likewise. * tracepoint.c (add_memrange): Likewise. (init_collection_list): Likewise. (add_aexpr): Likewise. (trace_dump_actions): Likewise. (parse_trace_status): Likewise. (parse_tracepoint_definition): Likewise. (parse_tsv_definition): Likewise. (parse_static_tracepoint_marker_definition): Likewise. * tui/tui-file.c (tui_sfileopen): Likewise. (tui_file_adjust_strbuf): Likewise. * tui/tui-io.c (tui_expand_tabs): Likewise. * tui/tui-source.c (tui_set_source_content): Likewise. * typeprint.c (find_global_typedef): Likewise. * ui-file.c (do_ui_file_xstrdup): Likewise. (ui_file_obsavestring): Likewise. (mem_file_write): Likewise. * utils.c (make_hex_string): Likewise. (get_regcomp_error): Likewise. (puts_filtered_tabular): Likewise. (gdb_realpath_keepfile): Likewise. (ldirname): Likewise. (gdb_bfd_errmsg): Likewise. (substitute_path_component): Likewise. * valops.c (search_struct_method): Likewise. (find_oload_champ_namespace_loop): Likewise. * valprint.c (print_decimal_chars): Likewise. (read_string): Likewise. (generic_emit_char): Likewise. * varobj.c (varobj_delete): Likewise. (varobj_value_get_print_value): Likewise. * vaxobsd-tdep.c (vaxobsd_sigtramp_sniffer): Likewise. * windows-tdep.c (display_one_tib): Likewise. * xcoffread.c (read_xcoff_symtab): Likewise. (process_xcoff_symbol): Likewise. (swap_sym): Likewise. (scan_xcoff_symtab): Likewise. (xcoff_initial_scan): Likewise. * xml-support.c (gdb_xml_end_element): Likewise. (xml_process_xincludes): Likewise. (xml_fetch_content_from_file): Likewise. * xml-syscall.c (xml_list_of_syscalls): Likewise. * xstormy16-tdep.c (xstormy16_push_dummy_call): Likewise. gdb/gdbserver/ChangeLog: * ax.c (gdb_parse_agent_expr): Add cast to allocation result assignment. (gdb_unparse_agent_expr): Likewise. * hostio.c (require_data): Likewise. (handle_pread): Likewise. * linux-low.c (disable_regset): Likewise. (fetch_register): Likewise. (store_register): Likewise. (get_dynamic): Likewise. (linux_qxfer_libraries_svr4): Likewise. * mem-break.c (delete_fast_tracepoint_jump): Likewise. (set_fast_tracepoint_jump): Likewise. (uninsert_fast_tracepoint_jumps_at): Likewise. (reinsert_fast_tracepoint_jumps_at): Likewise. (validate_inserted_breakpoint): Likewise. (clone_agent_expr): Likewise. * regcache.c (init_register_cache): Likewise. * remote-utils.c (putpkt_binary_1): Likewise. (decode_M_packet): Likewise. (decode_X_packet): Likewise. (look_up_one_symbol): Likewise. (relocate_instruction): Likewise. (monitor_output): Likewise. * server.c (handle_search_memory): Likewise. (handle_qxfer_exec_file): Likewise. (handle_qxfer_libraries): Likewise. (handle_qxfer): Likewise. (handle_query): Likewise. (handle_v_cont): Likewise. (handle_v_run): Likewise. (captured_main): Likewise. * target.c (write_inferior_memory): Likewise. * thread-db.c (try_thread_db_load_from_dir): Likewise. * tracepoint.c (init_trace_buffer): Likewise. (add_tracepoint_action): Likewise. (add_traceframe): Likewise. (add_traceframe_block): Likewise. (cmd_qtdpsrc): Likewise. (cmd_qtdv): Likewise. (cmd_qtstatus): Likewise. (response_source): Likewise. (response_tsv): Likewise. (cmd_qtnotes): Likewise. (gdb_collect): Likewise. (initialize_tracepoint): Likewise. |
||
|
dd2e65cc2c |
Call target_can_download_tracepoint if there are tracepoints to download
Nowadays, GDB calls target_can_download_tracepoint at the entry of download_tracepoint_locations, which is called by. update_global_location_list. Sometimes, it is not needed to call target_can_download_tracepoint at all because there is no tracepoint created. In remote target, target_can_download_tracepoint send qTStatus to the remote in order to know whether tracepoint can be downloaded or not. This means some redundant qTStatus packets are sent. This patch is to teach GDB to call target_can_download_tracepoint lazily, only on the moment there are tracepoint to download. gdb.perf/single-step.exp (with a local patch to measure RSP packets) shows the number of RSP packets is reduced because there is no tracepoint at all, so GDB doesn't send qTStatus any more. # of RSP packets original patched single-step rsp 1000 7000 6000 single-step rsp 2000 14000 12000 single-step rsp 3000 21000 18000 single-step rsp 4000 28000 24000 gdb: 2015-09-10 Yao Qi <yao.qi@linaro.org> * breakpoint.c (download_tracepoint_locations): New local can_download_tracepoint. Check the result of target_can_download_tracepoint and save it in can_download_tracepoint if there are tracepoints to download. * linux-nat.h (enum tribool): Move it to ... * common/common-types.h: ... here. |
||
|
cfc3163382 |
Convert the until/advance commands to thread_fsm mechanism
gdb/ChangeLog: 2015-09-09 Pedro Alves <palves@redhat.com> * breakpoint.c: Include "thread-fsm.h". (struct until_break_command_continuation_args): Delete. (struct until_break_fsm): New. (until_break_fsm_ops): New global. (new_until_break_fsm, until_break_fsm_should_stop): New functions. (until_break_command_continuation): Delete. (until_break_fsm_clean_up): New function. (until_break_fsm_async_reply_reason): New function. (until_break_command): Adjust to create an until_break_fsm instead of a continuation. (momentary_bkpt_print_it): No longer print MI's async-stop-reason here. * infcmd.c (struct until_next_fsm): New. (until_next_fsm_ops): New global. (new_until_next_fsm, until_next_fsm_should_stop): New function. (until_next_continuation): Delete. (until_next_fsm_clean_up, until_next_fsm_async_reply_reason): New functions. (until_next_command): Adjust to create a new until_next_fsm instead of a continuation. |
||
|
243a925328 |
Replace "struct continuation" mechanism by something more extensible
This adds an object oriented replacement for the "struct continuation" mechanism, and converts the stepping commands (step, next, stepi, nexti) and the "finish" commands to use it. It adds a new thread "class" (struct thread_fsm) that contains the necessary info and callbacks to manage the state machine of a thread's execution command. This allows getting rid of some hacks. E.g., in fetch_inferior_event and normal_stop we no longer need to know whether a thread is doing a multi-step (e.g., step N). This effectively makes the intermediate_continuations unused -- they'll be garbage collected in a separate patch. (They were never a proper abstraction, IMO. See how fetch_inferior_event needs to check step_multi before knowing whether to call INF_EXEC_CONTINUE or INF_EXEC_COMPLETE.) The target async vs !async uiout hacks in mi_on_normal_stop go away too. print_stop_event is no longer called from normal_stop. Instead it is now called from within each interpreter's normal_stop observer. This clears the path to make each interpreter print a stop event the way it sees fit. Currently we have some hacks in common code to differenciate CLI vs TUI vs MI around this area. The "finish" command's FSM class stores the return value plus that value's position in the value history, so that those can be printed to both MI and CLI's streams. This fixes the CLI "finish" command when run from MI -- it now also includes the function's return value in the CLI stream: (gdb) ~"callee3 (strarg=0x400730 \"A string argument.\") at src/gdb/testsuite/gdb.mi/basics.c:35\n" ~"35\t}\n" +~"Value returned is $1 = 0\n" *stopped,reason="function-finished",frame=...,gdb-result-var="$1",return-value="0",thread-id="1",stopped-threads="all",core="0" -FAIL: gdb.mi/mi-cli.exp: CLI finish: check CLI output +PASS: gdb.mi/mi-cli.exp: CLI finish: check CLI output gdb/ChangeLog: 2015-09-09 Pedro Alves <palves@redhat.com> * Makefile.in (COMMON_OBS): Add thread-fsm.o. * breakpoint.c (handle_jit_event): Print debug output. (bpstat_what): Split event callback handling to ... (bpstat_run_callbacks): ... this new function. (momentary_bkpt_print_it): No longer handle bp_finish here. * breakpoint.h (bpstat_run_callbacks): Declare. * gdbthread.h (struct thread_info) <step_multi>: Delete field. <thread_fsm>: New field. (thread_cancel_execution_command): Declare. * infcmd.c: Include thread-fsm.h. (struct step_command_fsm): New. (step_command_fsm_ops): New global. (new_step_command_fsm, step_command_fsm_prepare): New functions. (step_1): Adjust to use step_command_fsm_prepare and prepare_one_step. (struct step_1_continuation_args): Delete. (step_1_continuation): Delete. (step_command_fsm_should_stop): New function. (step_once): Delete. (step_command_fsm_clean_up, step_command_fsm_async_reply_reason) (prepare_one_step): New function, based on step_once. (until_next_command): Remove step_multi reference. (struct return_value_info): New. (print_return_value): Rename to ... (print_return_value_1): ... this. New struct return_value_info parameter. Adjust. (print_return_value): Reimplement as wrapper around print_return_value_1. (struct finish_command_fsm): New. (finish_command_continuation): Delete. (finish_command_fsm_ops): New global. (new_finish_command_fsm, finish_command_fsm_should_stop): New functions. (finish_command_fsm_clean_up, finish_command_fsm_return_value): New. (finish_command_continuation_free_arg): Delete. (finish_command_fsm_async_reply_reason): New. (finish_backward, finish_forward): Change symbol parameter to a finish_command_fsm. Adjust. (finish_command): Create a finish_command_fsm. Adjust. * infrun.c: Include "thread-fsm.h". (clear_proceed_status_thread): Delete the thread's FSM. (infrun_thread_stop_requested_callback): Cancel the thread's execution command. (clean_up_just_stopped_threads_fsms): New function. (fetch_inferior_event): Handle the event_thread's should_stop method saying the command isn't done yet. (process_event_stop_test): Run breakpoint callbacks here. (print_stop_event): Rename to ... (print_stop_location): ... this. (restore_current_uiout_cleanup): New function. (print_stop_event): Reimplement. (normal_stop): No longer notify the end_stepping_range observers here handle "step N" nor "finish" here. No longer call print_stop_event here. * infrun.h (struct return_value_info): Forward declare. (print_return_value): Declare. (print_stop_event): Change prototype. * thread-fsm.c: New file. * thread-fsm.h: New file. * thread.c: Include "thread-fsm.h". (thread_cancel_execution_command): New function. (clear_thread_inferior_resources): Call it. * cli/cli-interp.c (cli_on_normal_stop): New function. (cli_interpreter_init): Install cli_on_normal_stop as normal_stop observer. * mi/mi-interp.c: Include "thread-fsm.h". (restore_current_uiout_cleanup): Delete. (mi_on_normal_stop): If the thread has an FSM associated, and it finished, ask it for the async-reply-reason to print. Always call print_stop_event here, regardless of the top-level interpreter. Check bpstat_what to tell whether an asynchronous breakpoint hit triggered. * tui/tui-interp.c (tui_on_normal_stop): New function. (tui_init): Install tui_on_normal_stop as normal_stop observer. gdb/testsuite/ChangeLog: 2015-09-09 Pedro Alves <palves@redhat.com> * gdb.mi/mi-cli.exp: Add CLI finish tests. |
||
|
0b333c5e7d |
Merge async and sync code paths some more
This patch makes the execution control code use largely the same mechanisms in both sync- and async-capable targets. This means using continuations and use the event loop to react to target events on sync targets as well. The trick is to immediately mark infrun's event loop source after resume instead of calling wait_for_inferior. Then fetch_inferior_event is adjusted to do a blocking wait on sync targets. Tested on x86_64 Fedora 20, native and gdbserver, with and without "maint set target-async off". gdb/ChangeLog: 2015-09-09 Pedro Alves <palves@redhat.com> * breakpoint.c (bpstat_do_actions_1, until_break_command): Don't check whether the target can async. * inf-loop.c (inferior_event_handler): Only call target_async if the target can async. * infcall.c: Include top.h and interps.h. (run_inferior_call): For the interpreter to sync mode while running the infcall. Call wait_sync_command_done instead of wait_for_inferior plus normal_stop. * infcmd.c (prepare_execution_command): Don't check whether the target can async when running in the foreground. (step_1): Delete synchronous case handling. (step_once): Always install a continuation, even in sync mode. (until_next_command, finish_forward): Don't check whether the target can async. (attach_command_post_wait, notice_new_inferior): Always install a continuation, even in sync mode. * infrun.c (mark_infrun_async_event_handler): New function. (proceed): In sync mode, mark infrun's event source instead of waiting for events here. (fetch_inferior_event): If the target can't async, do a blocking wait. (prepare_to_wait): In sync mode, mark infrun's event source. (infrun_async_inferior_event_handler): No longer bail out if the target can't async. * infrun.h (mark_infrun_async_event_handler): New declaration. * linux-nat.c (linux_nat_wait_1): Remove calls to set_sigint_trap/clear_sigint_trap. (linux_nat_terminal_inferior): No longer check whether the target can async. * mi/mi-interp.c (mi_on_sync_execution_done): Update and simplify comment. (mi_execute_command_input_handler): No longer check whether the target is async. Update and simplify comment. * target.c (default_target_wait): New function. * target.h (struct target_ops) <to_wait>: Now defaults to default_target_wait. (default_target_wait): Declare. * top.c (wait_sync_command_done): New function, factored out from ... (maybe_wait_sync_command_done): ... this. * top.h (wait_sync_command_done): Declare. * target-delegates.c: Regenerate. |
||
|
8d7493201c |
Replace some xmalloc-family functions with XNEW-family ones
This patch is part of the make-gdb-buildable-in-C++ effort. The idea is to change some calls to the xmalloc family of functions to calls to the equivalents in the XNEW family. This avoids adding an explicit cast, so it keeps the code a bit more readable. Some of them also map relatively well to a C++ equivalent (XNEW (struct foo) -> new foo), so it will be possible to do scripted replacements if needed. I only changed calls that were obviously allocating memory for one or multiple "objects". Allocation of variable sizes (such as strings or buffer handling) will be for later (and won't use XNEW). - xmalloc (sizeof (struct foo)) -> XNEW (struct foo) - xmalloc (num * sizeof (struct foo)) -> XNEWVEC (struct foo, num) - xcalloc (1, sizeof (struct foo)) -> XCNEW (struct foo) - xcalloc (num, sizeof (struct foo)) -> XCNEWVEC (struct foo, num) - xrealloc (p, num * sizeof (struct foo) -> XRESIZEVEC (struct foo, p, num) - obstack_alloc (ob, sizeof (struct foo)) -> XOBNEW (ob, struct foo) - obstack_alloc (ob, num * sizeof (struct foo)) -> XOBNEWVEC (ob, struct foo, num) - alloca (sizeof (struct foo)) -> XALLOCA (struct foo) - alloca (num * sizeof (struct foo)) -> XALLOCAVEC (struct foo, num) Some instances of xmalloc followed by memset to zero the buffer were replaced by XCNEW or XCNEWVEC. I regtested on x86-64, Ubuntu 14.04, but the patch touches many architecture-specific files. For those I'll have to rely on the buildbot or people complaining that I broke their gdb. gdb/ChangeLog: * aarch64-linux-nat.c (aarch64_add_process): Likewise. * aarch64-tdep.c (aarch64_gdbarch_init): Likewise. * ada-exp.y (write_ambiguous_var): Likewise. * ada-lang.c (resolve_subexp): Likewise. (user_select_syms): Likewise. (assign_aggregate): Likewise. (ada_evaluate_subexp): Likewise. (cache_symbol): Likewise. * addrmap.c (allocate_key): Likewise. (addrmap_create_mutable): Likewise. * aix-thread.c (sync_threadlists): Likewise. * alpha-tdep.c (alpha_push_dummy_call): Likewise. (alpha_gdbarch_init): Likewise. * amd64-windows-tdep.c (amd64_windows_push_arguments): Likewise. * arm-linux-nat.c (arm_linux_add_process): Likewise. * arm-linux-tdep.c (arm_linux_displaced_step_copy_insn): Likewise. * arm-tdep.c (push_stack_item): Likewise. (arm_displaced_step_copy_insn): Likewise. (arm_gdbarch_init): Likewise. (_initialize_arm_tdep): Likewise. * avr-tdep.c (push_stack_item): Likewise. * ax-general.c (new_agent_expr): Likewise. * block.c (block_initialize_namespace): Likewise. * breakpoint.c (alloc_counted_command_line): Likewise. (update_dprintf_command_list): Likewise. (parse_breakpoint_sals): Likewise. (decode_static_tracepoint_spec): Likewise. (until_break_command): Likewise. (clear_command): Likewise. (update_global_location_list): Likewise. (get_breakpoint_objfile_data) Likewise. * btrace.c (ftrace_new_function): Likewise. (btrace_set_insn_history): Likewise. (btrace_set_call_history): Likewise. * buildsym.c (add_symbol_to_list): Likewise. (record_pending_block): Likewise. (start_subfile): Likewise. (start_buildsym_compunit): Likewise. (push_subfile): Likewise. (end_symtab_get_static_block): Likewise. (buildsym_init): Likewise. * cli/cli-cmds.c (source_command): Likewise. * cli/cli-decode.c (add_cmd): Likewise. * cli/cli-script.c (build_command_line): Likewise. (setup_user_args): Likewise. (realloc_body_list): Likewise. (process_next_line): Likewise. (copy_command_lines): Likewise. * cli/cli-setshow.c (do_set_command): Likewise. * coff-pe-read.c (read_pe_exported_syms): Likewise. * coffread.c (coff_locate_sections): Likewise. (coff_symtab_read): Likewise. (coff_read_struct_type): Likewise. * common/cleanups.c (make_my_cleanup2): Likewise. * common/common-exceptions.c (throw_it): Likewise. * common/filestuff.c (make_cleanup_close): Likewise. * common/format.c (parse_format_string): Likewise. * common/queue.h (DEFINE_QUEUE_P): Likewise. * compile/compile-object-load.c (munmap_list_add): Likewise. (compile_object_load): Likewise. * compile/compile-object-run.c (compile_object_run): Likewise. * compile/compile.c (append_args): Likewise. * corefile.c (specify_exec_file_hook): Likewise. * cp-support.c (make_symbol_overload_list): Likewise. * cris-tdep.c (push_stack_item): Likewise. (cris_gdbarch_init): Likewise. * ctf.c (ctf_trace_file_writer_new): Likewise. * dbxread.c (init_header_files): Likewise. (add_new_header_file): Likewise. (init_bincl_list): Likewise. (dbx_end_psymtab): Likewise. (start_psymtab): Likewise. (dbx_end_psymtab): Likewise. * dcache.c (dcache_init): Likewise. * dictionary.c (dict_create_hashed): Likewise. (dict_create_hashed_expandable): Likewise. (dict_create_linear): Likewise. (dict_create_linear_expandable): Likewise. * dtrace-probe.c (dtrace_process_dof_probe): Likewise. * dummy-frame.c (register_dummy_frame_dtor): Likewise. * dwarf2-frame-tailcall.c (cache_new_ref1): Likewise. * dwarf2-frame.c (dwarf2_build_frame_info): Likewise. (decode_frame_entry_1): Likewise. * dwarf2expr.c (new_dwarf_expr_context): Likewise. * dwarf2loc.c (dwarf2_compile_expr_to_ax): Likewise. * dwarf2read.c (dwarf2_has_info): Likewise. (create_signatured_type_table_from_index): Likewise. (dwarf2_read_index): Likewise. (dw2_get_file_names_reader): Likewise. (create_all_type_units): Likewise. (read_cutu_die_from_dwo): Likewise. (init_tu_and_read_dwo_dies): Likewise. (init_cutu_and_read_dies): Likewise. (create_all_comp_units): Likewise. (queue_comp_unit): Likewise. (inherit_abstract_dies): Likewise. (read_call_site_scope): Likewise. (dwarf2_add_field): Likewise. (dwarf2_add_typedef): Likewise. (dwarf2_add_member_fn): Likewise. (attr_to_dynamic_prop): Likewise. (abbrev_table_alloc_abbrev): Likewise. (abbrev_table_read_table): Likewise. (add_include_dir): Likewise. (add_file_name): Likewise. (dwarf_decode_line_header): Likewise. (dwarf2_const_value_attr): Likewise. (dwarf_alloc_block): Likewise. (parse_macro_definition): Likewise. (set_die_type): Likewise. (write_psymtabs_to_index): Likewise. (create_cus_from_index): Likewise. (dwarf2_create_include_psymtab): Likewise. (process_psymtab_comp_unit_reader): Likewise. (build_type_psymtab_dependencies): Likewise. (read_comp_units_from_section): Likewise. (compute_compunit_symtab_includes): Likewise. (create_dwo_unit_in_dwp_v1): Likewise. (create_dwo_unit_in_dwp_v2): Likewise. (read_func_scope): Likewise. (process_structure_scope): Likewise. (mark_common_block_symbol_computed): Likewise. (load_partial_dies): Likewise. (dwarf2_symbol_mark_computed): Likewise. * elfread.c (elf_symfile_segments): Likewise. (elf_read_minimal_symbols): Likewise. * environ.c (make_environ): Likewise. * eval.c (evaluate_subexp_standard): Likewise. * event-loop.c (create_file_handler): Likewise. (create_async_signal_handler): Likewise. (create_async_event_handler): Likewise. (create_timer): Likewise. * exec.c (build_section_table): Likewise. * fbsd-nat.c (fbsd_remember_child): Likewise. * fork-child.c (fork_inferior): Likewise. * frv-tdep.c (new_variant): Likewise. * gdbarch.sh (gdbarch_alloc): Likewise. (append_name): Likewise. * gdbtypes.c (rank_function): Likewise. (copy_type_recursive): Likewise. (add_dyn_prop): Likewise. * gnu-nat.c (make_proc): Likewise. (make_inf): Likewise. (gnu_write_inferior): Likewise. * gnu-v3-abi.c (build_gdb_vtable_type): Likewise. (build_std_type_info_type): Likewise. * guile/scm-param.c (compute_enum_list): Likewise. * guile/scm-utils.c (gdbscm_parse_function_args): Likewise. * guile/scm-value.c (gdbscm_value_call): Likewise. * h8300-tdep.c (h8300_gdbarch_init): Likewise. * hppa-tdep.c (hppa_init_objfile_priv_data): Likewise. (read_unwind_info): Likewise. * ia64-tdep.c (ia64_gdbarch_init): Likewise. * infcall.c (dummy_frame_context_saver_setup): Likewise. (call_function_by_hand_dummy): Likewise. * infcmd.c (step_once): Likewise. (finish_forward): Likewise. (attach_command): Likewise. (notice_new_inferior): Likewise. * inferior.c (add_inferior_silent): Likewise. * infrun.c (add_displaced_stepping_state): Likewise. (save_infcall_control_state): Likewise. (save_inferior_ptid): Likewise. (_initialize_infrun): Likewise. * jit.c (bfd_open_from_target_memory): Likewise. (jit_gdbarch_data_init): Likewise. * language.c (add_language): Likewise. * linespec.c (decode_line_2): Likewise. * linux-nat.c (add_to_pid_list): Likewise. (add_initial_lwp): Likewise. * linux-thread-db.c (add_thread_db_info): Likewise. (record_thread): Likewise. (info_auto_load_libthread_db): Likewise. * m32c-tdep.c (m32c_gdbarch_init): Likewise. * m68hc11-tdep.c (m68hc11_gdbarch_init): Likewise. * m68k-tdep.c (m68k_gdbarch_init): Likewise. * m88k-tdep.c (m88k_analyze_prologue): Likewise. * macrocmd.c (macro_define_command): Likewise. * macroexp.c (gather_arguments): Likewise. * macroscope.c (sal_macro_scope): Likewise. * macrotab.c (new_macro_table): Likewise. * mdebugread.c (push_parse_stack): Likewise. (parse_partial_symbols): Likewise. (parse_symbol): Likewise. (psymtab_to_symtab_1): Likewise. (new_block): Likewise. (new_psymtab): Likewise. (mdebug_build_psymtabs): Likewise. (add_pending): Likewise. (elfmdebug_build_psymtabs): Likewise. * mep-tdep.c (mep_gdbarch_init): Likewise. * mi/mi-main.c (mi_execute_command): Likewise. * mi/mi-parse.c (mi_parse_argv): Likewise. * minidebug.c (lzma_open): Likewise. * minsyms.c (terminate_minimal_symbol_table): Likewise. * mips-linux-nat.c (mips_linux_insert_watchpoint): Likewise. * mips-tdep.c (mips_gdbarch_init): Likewise. * mn10300-tdep.c (mn10300_gdbarch_init): Likewise. * msp430-tdep.c (msp430_gdbarch_init): Likewise. * mt-tdep.c (mt_registers_info): Likewise. * nat/aarch64-linux.c (aarch64_linux_new_thread): Likewise. * nat/linux-btrace.c (linux_enable_bts): Likewise. (linux_enable_pt): Likewise. * nat/linux-osdata.c (linux_xfer_osdata_processes): Likewise. (linux_xfer_osdata_processgroups): Likewise. * nios2-tdep.c (nios2_gdbarch_init): Likewise. * nto-procfs.c (procfs_meminfo): Likewise. * objc-lang.c (start_msglist): Likewise. (selectors_info): Likewise. (classes_info): Likewise. (find_methods): Likewise. * objfiles.c (allocate_objfile): Likewise. (update_section_map): Likewise. * osabi.c (gdbarch_register_osabi): Likewise. (gdbarch_register_osabi_sniffer): Likewise. * parse.c (start_arglist): Likewise. * ppc-linux-nat.c (hwdebug_find_thread_points_by_tid): Likewise. (hwdebug_insert_point): Likewise. * printcmd.c (display_command): Likewise. (ui_printf): Likewise. * procfs.c (create_procinfo): Likewise. (load_syscalls): Likewise. (proc_get_LDT_entry): Likewise. (proc_update_threads): Likewise. * prologue-value.c (make_pv_area): Likewise. (pv_area_store): Likewise. * psymtab.c (extend_psymbol_list): Likewise. (init_psymbol_list): Likewise. (allocate_psymtab): Likewise. * python/py-inferior.c (add_thread_object): Likewise. * python/py-param.c (compute_enum_values): Likewise. * python/py-value.c (valpy_call): Likewise. * python/py-varobj.c (py_varobj_iter_next): Likewise. * python/python.c (ensure_python_env): Likewise. * record-btrace.c (record_btrace_start_replaying): Likewise. * record-full.c (record_full_reg_alloc): Likewise. (record_full_mem_alloc): Likewise. (record_full_end_alloc): Likewise. (record_full_core_xfer_partial): Likewise. * regcache.c (get_thread_arch_aspace_regcache): Likewise. * remote-fileio.c (remote_fileio_init_fd_map): Likewise. * remote-notif.c (remote_notif_state_allocate): Likewise. * remote.c (demand_private_info): Likewise. (remote_notif_stop_alloc_reply): Likewise. (remote_enable_btrace): Likewise. * reverse.c (save_bookmark_command): Likewise. * rl78-tdep.c (rl78_gdbarch_init): Likewise. * rx-tdep.c (rx_gdbarch_init): Likewise. * s390-linux-nat.c (s390_insert_watchpoint): Likewise. * ser-go32.c (dos_get_tty_state): Likewise. (dos_copy_tty_state): Likewise. * ser-mingw.c (ser_windows_open): Likewise. (ser_console_wait_handle): Likewise. (ser_console_get_tty_state): Likewise. (make_pipe_state): Likewise. (net_windows_open): Likewise. * ser-unix.c (hardwire_get_tty_state): Likewise. (hardwire_copy_tty_state): Likewise. * solib-aix.c (solib_aix_new_lm_info): Likewise. * solib-dsbt.c (dsbt_current_sos): Likewise. (dsbt_relocate_main_executable): Likewise. * solib-frv.c (frv_current_sos): Likewise. (frv_relocate_main_executable): Likewise. * solib-spu.c (spu_bfd_fopen): Likewise. * solib-svr4.c (lm_info_read): Likewise. (svr4_copy_library_list): Likewise. (svr4_default_sos): Likewise. * source.c (find_source_lines): Likewise. (line_info): Likewise. (add_substitute_path_rule): Likewise. * spu-linux-nat.c (spu_bfd_open): Likewise. * spu-tdep.c (info_spu_dma_cmdlist): Likewise. * stabsread.c (dbx_lookup_type): Likewise. (read_type): Likewise. (read_member_functions): Likewise. (read_struct_fields): Likewise. (read_baseclasses): Likewise. (read_args): Likewise. (_initialize_stabsread): Likewise. * stack.c (func_command): Likewise. * stap-probe.c (handle_stap_probe): Likewise. * symfile.c (addrs_section_sort): Likewise. (addr_info_make_relative): Likewise. (load_section_callback): Likewise. (add_symbol_file_command): Likewise. (init_filename_language_table): Likewise. * symtab.c (create_filename_seen_cache): Likewise. (sort_search_symbols_remove_dups): Likewise. (search_symbols): Likewise. * target.c (make_cleanup_restore_target_terminal): Likewise. * thread.c (new_thread): Likewise. (enable_thread_stack_temporaries): Likewise. (make_cleanup_restore_current_thread): Likewise. (thread_apply_all_command): Likewise. * tic6x-tdep.c (tic6x_gdbarch_init): Likewise. * top.c (gdb_readline_wrapper): Likewise. * tracefile-tfile.c (tfile_trace_file_writer_new): Likewise. * tracepoint.c (trace_find_line_command): Likewise. (all_tracepoint_actions_and_cleanup): Likewise. (make_cleanup_restore_current_traceframe): Likewise. (get_uploaded_tp): Likewise. (get_uploaded_tsv): Likewise. * tui/tui-data.c (tui_alloc_generic_win_info): Likewise. (tui_alloc_win_info): Likewise. (tui_alloc_content): Likewise. (tui_add_content_elements): Likewise. * tui/tui-disasm.c (tui_find_disassembly_address): Likewise. (tui_set_disassem_content): Likewise. * ui-file.c (ui_file_new): Likewise. (stdio_file_new): Likewise. (tee_file_new): Likewise. * utils.c (make_cleanup_restore_integer): Likewise. (add_internal_problem_command): Likewise. * v850-tdep.c (v850_gdbarch_init): Likewise. * valops.c (find_oload_champ): Likewise. * value.c (allocate_value_lazy): Likewise. (record_latest_value): Likewise. (create_internalvar): Likewise. * varobj.c (install_variable): Likewise. (new_variable): Likewise. (new_root_variable): Likewise. (cppush): Likewise. (_initialize_varobj): Likewise. * windows-nat.c (windows_make_so): Likewise. * x86-nat.c (x86_add_process): Likewise. * xcoffread.c (arrange_linetable): Likewise. (allocate_include_entry): Likewise. (process_linenos): Likewise. (SYMBOL_DUP): Likewise. (xcoff_start_psymtab): Likewise. (xcoff_end_psymtab): Likewise. * xml-support.c (gdb_xml_parse_attr_ulongest): Likewise. * xtensa-tdep.c (xtensa_register_type): Likewise. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. gdb/gdbserver/ChangeLog: * ax.c (gdb_parse_agent_expr): Likewise. (compile_bytecodes): Likewise. * dll.c (loaded_dll): Likewise. * event-loop.c (append_callback_event): Likewise. (create_file_handler): Likewise. (create_file_event): Likewise. * hostio.c (handle_open): Likewise. * inferiors.c (add_thread): Likewise. (add_process): Likewise. * linux-aarch64-low.c (aarch64_linux_new_process): Likewise. * linux-arm-low.c (arm_new_process): Likewise. (arm_new_thread): Likewise. * linux-low.c (add_to_pid_list): Likewise. (linux_add_process): Likewise. (handle_extended_wait): Likewise. (add_lwp): Likewise. (enqueue_one_deferred_signal): Likewise. (enqueue_pending_signal): Likewise. (linux_resume_one_lwp_throw): Likewise. (linux_resume_one_thread): Likewise. (linux_read_memory): Likewise. (linux_write_memory): Likewise. * linux-mips-low.c (mips_linux_new_process): Likewise. (mips_linux_new_thread): Likewise. (mips_add_watchpoint): Likewise. * linux-x86-low.c (initialize_low_arch): Likewise. * lynx-low.c (lynx_add_process): Likewise. * mem-break.c (set_raw_breakpoint_at): Likewise. (set_breakpoint): Likewise. (add_condition_to_breakpoint): Likewise. (add_commands_to_breakpoint): Likewise. (clone_agent_expr): Likewise. (clone_one_breakpoint): Likewise. * regcache.c (new_register_cache): Likewise. * remote-utils.c (look_up_one_symbol): Likewise. * server.c (queue_stop_reply): Likewise. (start_inferior): Likewise. (queue_stop_reply_callback): Likewise. (handle_target_event): Likewise. * spu-low.c (fetch_ppc_memory): Likewise. (store_ppc_memory): Likewise. * target.c (set_target_ops): Likewise. * thread-db.c (thread_db_load_search): Likewise. (try_thread_db_load_1): Likewise. * tracepoint.c (add_tracepoint): Likewise. (add_tracepoint_action): Likewise. (create_trace_state_variable): Likewise. (cmd_qtdpsrc): Likewise. (cmd_qtro): Likewise. (add_while_stepping_state): Likewise. * win32-low.c (child_add_thread): Likewise. (get_image_name): Likewise. |
||
|
6799407467 |
Mass rename explicit' -> explicit_loc'.
BuildBot reminded me that "explicit" is a reserved keyword in C++. This patch simply renames all the (illegal) uses of "explicit". This should fix the build errors with --enable-build-with-cxx bots. gdb/ChangeLog * break-catch-throw.c (re_set_exception_catchpoint) Rename reserved C++ keyword "explicit" to "explicit_loc". * breakpoint.c (create_overlay_event_breakpoint) (create_longjmp_master_breakpoint) (create_std_terminate_master_breakpoint) (create_exception_master_breakpoint, update_static_tracepoint): Rename reserved C++ keyword "explicit" to "explicit_loc". * completer.c (collect_explicit_location_matches) (explicit_location_completer): Rename reserved C++ keyword "explicit" to "explicit_loc". * linespec.c (struct linespec) <explicit>: Rename to "explicit_loc". (canonicalize_linespec, create_sals_line_offset) (convert_linespec_to_sals, convert_explicit_location_to_sals) (event_location_to_sals, decode_objc): Rename reserved C++ keyword "explicit" to "explicit_loc". * location.c (struct event_location) <explicit>: Rename to "explicit_loc". (initialize_explicit_location, new_explicit_location) (explicit_location_to_string_internal, explicit_location_to_linespec): Rename reserved C++ keyword "explicit" to "explicit_loc". * location.h (explicit_location_to_string) (explicit_location_to_linespec, initialize_explicit_location) (new_explicit_location): Rename reserved C++ keyword "explicit" to "explicit_loc". * mi/mi-cmd-break.c (mi_cmd_break_insert_1): Rename reserved C++ keyword "explicit" to "explicit_loc". |
||
|
244558af86 |
[regression] Do not read from catchpoint/watchpoint locations' addresses when checking for a permanent breakpoint
While running bare-metal tests with GDB i noticed some failures in gdb.base/break.exp, related to the use of the catch commands. It turns out GDB tries to access memory address 0x0 whenever one tries to insert a catchpoint, which should obviously not happen. This was introduced with the changes for permanent breakpoints. In special, bp_loc_is_permanent tries to check if there is a breakpoint inserted at the same address as the current breakpoint's location's address. In the case of catchpoints, this is 0x0. (top-gdb) catch fork Sending packet: $m0,1#fa...Packet received: E01 Catchpoint 4 (fork) (top-gdb) catch vfork Sending packet: $m0,1#fa...Packet received: E01 Catchpoint 5 (vfork) It is not obvious to detect because this fails silently for Linux. For our bare-metal testing, though, this fails with a clear error message from the target about not being able to read such address. The attached patch addresses this by bailing out of bp_loc_is_permanent (...) if the location address is not meaningful. I also took the opportunity to update the comment for breakpoint_address_is_meaningful, which mentioned breakpoint addresses as opposed to their locations' addresses. gdb/ChangeLog: 2015-08-11 Luis Machado <lgustavo@codesourcery.com> * breakpoint.c (bp_loc_is_permanent): Return 0 when breakpoint location address is not meaningful. (breakpoint_address_is_meaningful): Update comment. |
||
|
629500fae6 |
Explicit locations: documentation updates
This patch adds documentation for explicit locations to both the User Manual and gdb's online help system. gdb/ChangeLog: * NEWS: Mention explicit locations. * breakpoint.c [LOCATION_HELP_STRING]: New macro. [BREAK_ARGS_HELP]: Use LOCATION_HELP_STRING. (_initialize_breakpoint): Update documentation for "clear", "break", "trace", "strace", "ftrace", and "dprintf". gdb/doc/ChangeLog: * gdb.texinfo (Thread-Specific Breakpoints, Printing Source Lines): Use "location(s)"instead of "linespec(s)". (Specifying a Location): Rewrite. Add subsections describing linespec, address, and explicit locations. Add node/menu for each subsection. (Source and Machine Code, C Preprocessor Macros) (Create and Delete Trace points) (Extensions for Ada Tasks): Use "location(s)" instead of "linespec(s)". (Continuing at a Different Address): Remove "linespec" examples. Add reference to "Specify a Location" (The -break-insert Command): Rewrite. Add anchor. Add reference to appropriate manual section discussing locations. (The -dprintf-insert Command): Refer to -break-insert for specification of 'location'. gdb/testsuite/ChangeLog: * gdb.base/help.exp: Update help_breakpoint_text. |
||
|
00e52e5376 |
Explicit locations: introduce explicit locations
This patch add support for explicit locations and switches many linespec locations to this new location type. This patch also converts all linespec locations entered by the user to an explicit representation internally (thus bypassing the linespec parser when resetting the breakpoint). This patch does not introduce any user-visible changes. gdb/ChangeLog: * break-catch-throw.c (re_set_exception_catchpoint): Convert linespec into explicit location. * breakpoint.c (create_overlay_breakpoint) (create_longjmp_master_breakpoint) (create_std_terminate_master_breakpoint) (create_exception_master_breakpoint): Convert linespec into explicit location. (update_static_tracepoint): Convert linespec into explicit location. * linespec.c (enum offset_relative_sign, struct line_offset): Move location.h. (struct linespec) <expression, expr_pc, source_filename> <function_name, label_name, line_offset>: Replace with ... <explicit>: ... this. <is_linespec>: New member. (PARSER_EXPLICIT): New accessor macro. (undefined_label_error): New function. (source_file_not_found_error): New function. (linespec_parse_basic): The parser result is now an explicit location. Use PARSER_EXPLICIT to access it. Use undefined_label_error. (canonicalize_linespec): Convert canonical linespec into explicit location. Move string representation of location to explicit_location_to_linespec and use it and explicit_location_to_string to save string representations of the canonical location. (create_sals_line_offset, convert_linespec_to_sals): `ls' contains an explicit location. Update all references. (convert_explicit_location_to_sals): New function. (parse_linespec): Use PARSER_EXPLICIT to access the parser result's explicit location. (linespec_state_constructor): Initialize is_linespec. Use PARSER_EXPLICIT. (linespec_parser_delete): Use PARSER_EXPLICIT to access the parser's result. (event_location_to_sals): For linespec locations, set is_linespec. Handle explicit locations. (decode_objc): 'ls' contains an explicit location now. Update all references. (symtabs_from_filename): Use source_file_not_found_error. * location.c (struct event_location.u) <explicit>: New member. (initialize_explicit_location): New function. (initialize_event_location): Initialize explicit locations. (new_explicit_location, get_explicit_location) (get_explicit_location_const): New functions. (explicit_to_string_internal): New function; most of contents moved from canonicalize_linespec. (explicit_location_to_string): New function. (explicit_location_to_linespec): New function. (copy_event_location, delete_event_location) (event_location_to_string_const, event_location_empty_p): Handle explicit locations. * location.h (enum offset_relative_sign, struct line_offset): Move here from linespec.h. (enum event_location_type): Add EXPLICIT_LOCATION. (struct explicit_location): New structure. (explicit_location_to_string): Declare. (explicit_location_to_linespec): Declare. (new_explicit_location, get_explicit_locationp (get_explicit_location_const, initialize_explicit_location): Declare. |
||
|
5b56227bdc |
Explicit locations: introduce probe locations
This patch adds support for probe locations and converts existing probe linespec locations to the new location type. gdb/ChangeLog: * break-catch-throw.c (re_set_exception_catchpoint): Convert linespec for stap probe to probe location. * breakpoint.c (create_longjmp_master_breakpoint) (create_exception_master_breakpoint): Likewise. (break_command_1): Remove local variable `arg_cp'. Check location type to set appropriate breakpoint ops methods. (trace_command): Likewise. * linespec.c (event_location_to_sals): Assert on probe locations. * location.c (EL_PROBE): Add macro definition. (new_probe_location, get_probe_location): New functions. (copy_event_location, delete_event_location, event_location_to_string) (string_to_event_location, event_location_empty_p): Handle probe locations. * location.h (enum event_location_type): Add PROBE_LOCATION. (new_probe_location, get_probe_location): Declare. * probe.c (parse_probes): Assert that LOCATION is a probe location. Convert linespec into probe location. |
||
|
a06efdd6ef |
Explicit locations: introduce address locations
This patch adds support for address locations, of the form "*ADDR". [Support for address linespecs has been removed/replaced by this "new" location type.] This patch also converts any existing address locations from its previous linespec type. gdb/ChangeLog: * breakpoint.c (create_thread_event_breakpoint, init_breakpoint_sal): Convert linespec to address location. * linespec.c (canonicalize_linespec): Do not handle address locations here. (convert_address_location_to_sals): New function; contents moved from ... (convert_linespc_to_sals): ... here. (parse_linespec): Remove address locations from linespec grammar. Remove handling of address locations. (linespec_lex_to_end): Remove handling of address linespecs. (event_location_to_sals): Handle ADDRESS_LOCATION. (linespec_expression_to_pc): Export. * linespec.h (linespec_expression_to_pc): Add declaration. * location.c (struct event_location.u) <address>: New member. (new_address_location, get_address_location): New functions. (copy_event_location, delete_event_location, event_location_to_string) (string_to_event_location, event_location_empty_p): Handle address locations. * location.h (enum event_location_type): Add ADDRESS_LOCATION. (new_address_location, get_address_location): Declare. * python/py-finishbreakpoint.c (bpfinishpy_init): Convert linespec to address location. * spu-tdep.c (spu_catch_start): Likewise. |
||
|
f00aae0f7b |
Explicit locations: use new location API
This patch converts the code base to use the new struct event_location API being introduced. This patch preserves the current functionality and adds no new features. The "big picture" API usage introduced by this patch may be illustrated with a simple exmaple. Where previously developers would write: void my_command (char *arg, int from_tty) { create_breakpoint (..., arg, ...); ... } one now uses: void my_command (char *arg, int from_tty) { struct event_locaiton *location; struct cleanup *back_to; location = string_to_event_locaiton (&arg, ...); back_to = make_cleanup_delete_event_location (location); create_breakpoint (..., location, ...); do_cleanups (back_to); } Linespec-decoding functions (now called location-decoding) such as decode_line_full no longer skip argument pointers over processed input. That functionality has been moved into string_to_event_location as demonstrated above. gdb/ChangeLog * ax-gdb.c: Include location.h. (agent_command_1) Use linespec location instead of address string. * break-catch-throw.c: Include location.h. (re_set_exception_catchpoint): Use linespec locations instead of address strings. * breakpoint.c: Include location.h. (create_overlay_event_breakpoint, create_longjmp_master_breakpoint) (create_std_terminate_master_breakpoint) (create_exception_master_breakpoint, update_breakpoints_after_exec): Use linespec location instead of address string. (print_breakpoint_location): Use locations and event_location_to_string. Print extra_string for pending locations for non-MI streams. (print_one_breakpoint_location): Use locations and event_location_to_string. (init_raw_breakpoint_without_location): Initialize b->location. (create_thread_event_breakpoint): Use linespec location instead of address string. (init_breakpoint_sal): Likewise. Only save extra_string if it is non-NULL and not the empty string. Use event_location_to_string instead of `addr_string'. Constify `p' and `endp'. Use skip_spaces_const/skip_space_const instead of non-const versions. Copy the location into the breakpoint. If LOCATION is NULL, save the breakpoint address as a linespec location instead of an address string. (create_breakpoint_sal): Change `addr_string' parameter to a struct event_location. All uses updated. (create_breakpoints_sal): Likewise for local variable `addr_string'. (parse_breakpoint_sals): Use locations instead of address strings. Remove check for empty linespec with conditional. Refactor. (decode_static_tracepoint_spec): Make argument const and update function. (create_breakpoint): Change `arg' to a struct event_location and rename. Remove `copy_arg' and `addr_start'. If EXTRA_STRING is empty, set it to NULL. Don't populate `canonical' for pending breakpoints. Pass `extra_string' to find_condition_and_thread. Clear `extra_string' if `rest' was NULL. Do not error with "garbage after location" if setting a dprintf breakpoint. Copy the location into the breakpoint instead of an address string. (break_command_1): Use string_to_event_location and pass this to create_breakpoint instead of an address string. Check against `arg_cp' for a probe linespec. (dprintf_command): Use string_to_event_location and pass this to create_breakpoint instead of an address string. Throw an exception if no format string was specified. (print_recreate_ranged_breakpoint): Use event_location_to_string instead of address strings. (break_range_command, until_break_command) (init_ada_exception_breakpoint): Use locations instead of address strings. (say_where): Print out extra_string for pending locations. (base_breakpoint_dtor): Delete `location' and `location_range_end' of the breakpoint. (base_breakpoint_create_sals_from_location): Use struct event_location instead of address string. Remove `addr_start' and `copy_arg' parameters. (base_breakpoint_decode_location): Use struct event_location instead of address string. (bkpt_re_set): Use locations instead of address strings. Use event_location_empty_p to check for unset location. (bkpt_print_recreate): Use event_location_to_string instead of an address string. Print out extra_string for pending locations. (bkpt_create_sals_from_location, bkpt_decode_location) (bkpt_probe_create_sals_from_location): Use struct event_location instead of address string. (bkpt_probe_decode_location): Use struct event_location instead of address string. (tracepoint_print_recreate): Use event_location_to_string to recreate the tracepoint. (tracepoint_create_sals_from_location, tracepoint_decode_location) (tracepoint_probe_create_sals_from_location) (tracepoint_probe_decode_location): Use struct event_location instead of address string. (dprintf_print_recreate): Use event_location_to_string to recreate the dprintf. (dprintf_re_set): Remove check for valid/missing format string. (strace_marker_create_sals_from_location) (strace_marker_create_breakpoints_sal, strace_marker_decode_location) (update_static_tracepoint): Use struct event_location instead of address string. (location_to_sals): Likewise. Pass `extra_string' to find_condition_and_thread. For newly resolved pending breakpoint locations, clear the location's string representation. Assert that the breakpoint's condition string is NULL when condition_not_parsed. (breakpoint_re_set_default, create_sals_from_location_default) (decode_location_default, trace_command, ftrace_command) (strace_command, create_tracepoint_from_upload): Use locations instead of address strings. * breakpoint.h (struct breakpoint_ops) <create_sals_from_location>: Use struct event_location instead of address string. Update all uses. <decode_location>: Likewise. (struct breakpoint) <addr_string>: Change to struct event_location and rename `location'. <addr_string_range_end>: Change to struct event_location and rename `location_range_end'. (create_breakpoint): Use struct event_location instead of address string. * cli/cli-cmds.c: Include location.h. (edit_command, list_command): Use locations instead of address strings. * elfread.c: Include location.h. (elf_gnu_ifunc_resolver_return_stop): Use event_location_to_string. * guile/scm-breakpoint.c: Include location.h. (bpscm_print_breakpoint_smob): Use event_location_to_string. (gdbscm_register_breakpoint): Use locations instead of address strings. * linespec.c: Include location.h. (struct ls_parser) <stream>: Change to const char *. (PARSER_STREAM): Update. (lionespec_lexer_lex_keyword): According to find_condition_and_thread, keywords must be followed by whitespace. (canonicalize_linespec): Save a linespec location into `canonical'. Save a canonical linespec into `canonical'. (parse_linespec): Change `argptr' to const char * and rename `arg'. All uses updated. Update function description. (linespec_parser_new): Initialize `parser'. Update initialization of parsing stream. (event_location_to_sals): New function. (decode_line_full): Change `argptr' to a struct event_location and rename it `location'. Use locations instead of address strings. Call event_location_to_sals instead of parse_linespec. (decode_line_1): Likewise. (decode_line_with_current_source, decode_line_with_last_displayed) Use locations instead of address strings. (decode_objc): Likewise. Change `argptr' to const char * and rename `arg'. (destroy_linespec_result): Delete the linespec result's location instead of freeing the address string. * linespec.h (struct linespec_result) <addr_string>: Change to struct event_location and rename to ... <location>: ... this. (decode_line_1, decode_line_full): Change `argptr' to struct event_location. All callers updated. * mi/mi-cmd-break.c: Include language.h, location.h, and linespec.h. (mi_cmd_break_insert_1): Use locations instead of address strings. Throw an error if there was "garbage" at the end of the specified linespec. * probe.c: Include location.h. (parse_probes): Change `argptr' to struct event_location. Use event locations instead of address strings. * probe.h (parse_probes): Change `argptr' to struct event_location. * python/py-breakpoint.c: Include location.h. (bppy_get_location): Constify local variable `str'. Use event_location_to_string. (bppy_init): Use locations instead of address strings. * python/py-finishbreakpoint.c: Include location.h. (bpfinishpy_init): Remove local variable `addr_str'. Use locations instead of address strings. * python/python.c: Include location.h. (gdbpy_decode_line): Use locations instead of address strings. * remote.c: Include location.h. (remote_download_tracepoint): Use locations instead of address strings. * spu-tdep.c: Include location.h. (spu_catch_start): Remove local variable `buf'. Use locations instead of address strings. * tracepoint.c: Include location.h. (scope_info): Use locations instead of address strings. (encode_source_string): Constify parameter `src'. * tracepoint.h (encode_source_string): Likewise. gdb/testsuite/ChangeLog * gdb.base/dprintf-pending.exp: Update dprintf "without format" test. Add tests for missing ",FMT" and ",". |
||
|
5f700d83f7 |
Explicit locations: rename "address string"/"addr_string" to "location"
This patch renames all occurrances of "addr_string" and "address string" in the breakpoint/linespec APIs. This will emphasize the change from address strings used in setting breakpoints (et al) to the new locations-based API introduced in subsequent patches. gdb/ChangeLog: * breakpoint.h (struct breakpoint_ops) <create_sals_from_address>: Renamed to create_sals_from_location. <decode_linespec>: Renamed to decode_location. Update all callers. * breakpoint.c (create_sals_from_address_default): Renamed to ... (create_sals_from_location_default): ... this. (addr_string_to_sals): Renamed to ... (location_to_sals): ... this. (decode_linespec_default): Renamed to ... (decode_location_default): ... this. (base_breakpoint_create_sals_from_address): Renamed to ... (base_breakpoint_create_sals_from_location): ... this. (bkpt_create_sals_from_address): Renamed to ... (bkpt_create_sals_from_location): ... this. (bkpt_decode_linespec): Renamed to ... (bkpt_decode_location): ... this. (bkpt_probe_create_sals_from_address): Renamed to ... (bkpt_probe_create_sals_from_location): ... this. (tracepoint_create_sals_from_address): Renamed to ... (tracepoint_create_sals_from_location): ... this. (tracepoint_decode_linespec): Renamed to ... (tracepoint_decode_location): ... this. (tracepoint_probe_create_sals_from_address): Renamed to ... (tracepoint_probe_create_sals_from_location): ... this. (tracepoint_probe_decode_linespec): Renamed to ... (tracepoint_probe_decode_location): ... this. (strace_marker_create_sals_from_address): Renamed to ... (strace_marker_create_sals_from_location): ... this. (decode_linespec_default): Renamed to ... (decode_location_default): ... this. |
||
|
fbea99ea8a |
Implement all-stop on top of a target running non-stop mode
This finally implements user-visible all-stop mode running with the target_ops backend always in non-stop mode. This is a stepping stone towards finer-grained control of threads, being able to do interesting things like thread groups, associating groups with breakpoints, etc. From the user's perspective, all-stop mode is really just a special case of being able to stop and resume specific sets of threads, so it makes sense to do this step first. With this, even in all-stop, the target is no longer in charge of stopping all threads before reporting an event to the core -- the core takes care of it when it sees fit. For example, when "next"- or "step"-ing, we can avoid stopping and resuming all threads at each internal single-step, and instead only stop all threads when we're about to present the stop to the user. The implementation is almost straight forward, as the heavy lifting has been done already in previous patches. Basically, we replace checks for "set non-stop on/off" (the non_stop global), with calls to a new target_is_non_stop_p function. In a few places, if "set non-stop off", we stop all threads explicitly, and in a few other places we resume all threads explicitly, making use of existing methods that were added for teaching non-stop to step over breakpoints without displaced stepping. This adds a new "maint set target-non-stop on/off/auto" knob that allows both disabling the feature if we find problems, and force-enable it for development (useful when teaching a target about this. The default is "auto", which means the feature is enabled if a new target method says it should be enabled. The patch implements the method in linux-nat.c, just for illustration, because it still returns false. We'll need a few follow up fixes before turning it on by default. This is a separate target method from indicating regular non-stop support, because e.g., while e.g., native linux-nat.c is close to regression free with all-stop-non-stop (with following patches will fixing the remaining regressions), remote.c+gdbserver will still need more fixing, even though it supports "set non-stop on". Tested on x86_64 Fedora 20, native, with and without "set displaced off", and with and without "maint set target-non-stop on"; and also against gdbserver. gdb/ChangeLog: 2015-08-07 Pedro Alves <palves@redhat.com> * NEWS: Mention "maint set/show target-non-stop". * breakpoint.c (update_global_location_list): Check target_is_non_stop_p instead of non_stop. * infcmd.c (attach_command_post_wait, attach_command): Likewise. * infrun.c (show_can_use_displaced_stepping) (can_use_displaced_stepping_p, start_step_over_inferior): Likewise. (internal_resume_ptid): New function. (resume): Use it. (proceed): Check target_is_non_stop_p instead of non_stop. If in all-stop mode but the target is always in non-stop mode, start all the other threads that are implicitly resumed too. (for_each_just_stopped_thread, fetch_inferior_event) (adjust_pc_after_break, stop_all_threads): Check target_is_non_stop_p instead of non_stop. (handle_inferior_event): Likewise. Handle detach-fork in all-stop with the target always in non-stop mode. (handle_signal_stop) <random signal>: Check target_is_non_stop_p instead of non_stop. (switch_back_to_stepped_thread): Check target_is_non_stop_p instead of non_stop. (keep_going_stepped_thread): Use internal_resume_ptid. (stop_waiting): If in all-stop mode, and the target is in non-stop mode, stop all threads. (keep_going_pass): Likewise, when starting a new in-line step-over sequence. * linux-nat.c (get_pending_status, select_event_lwp) (linux_nat_filter_event, linux_nat_wait_1, linux_nat_wait): Check target_is_non_stop_p instead of non_stop. (linux_nat_always_non_stop_p): New function. (linux_nat_stop): Check target_is_non_stop_p instead of non_stop. (linux_nat_add_target): Install linux_nat_always_non_stop_p. * target-delegates.c: Regenerate. * target.c (target_is_non_stop_p): New function. (target_non_stop_enabled, target_non_stop_enabled_1): New globals. (maint_set_target_non_stop_command) (maint_show_target_non_stop_command): New functions. (_initilize_target): Install "maint set/show target-non-stop" commands. * target.h (struct target_ops) <to_always_non_stop_p>: New field. (target_non_stop_enabled): New declaration. (target_is_non_stop_p): New declaration. gdb/doc/ChangeLog: 2015-08-07 Pedro Alves <palves@redhat.com> * gdb.texinfo (Maintenance Commands): Document "maint set/show target-non-stop". |
||
|
372316f128 |
Teach non-stop to do in-line step-overs (stop all, step, restart)
That is, step past breakpoints by: - pausing all threads - removing breakpoint at PC - single-step - reinsert breakpoint - restart threads similarly to all-stop (with displaced stepping disabled). This allows non-stop to work on targets/architectures without displaced stepping support. That is, it makes displaced stepping an optimization instead of a requirement. For example, in principle, all GNU/Linux ports support non-stop mode at the target_ops level, but not all corresponding gdbarch's implement displaced stepping. This should make non-stop work for all (albeit, not as efficiently). And then there are scenarios where even if the architecture supports displaced stepping, we can't use it, because we e.g., don't find a usable address to use as displaced step scratch pad. It should also fix stepping past watchpoints on targets that have non-continuable watchpoints in non-stop mode (e.g., PPC, untested). Running the instruction out of line in the displaced stepping scratch pad doesn't help that case, as the copied instruction reads/writes the same watched memory... We can fix that too by teaching GDB to only remove the watchpoint from the thread that we want to move past the watchpoint (currently, removing a watchpoint always removes it from all threads), but again, that can be considered an optimization; not all targets would support it. For those familiar with the gdb and gdbserver Linux target_ops backends, the implementation should look similar, except it is done on the core side. When we pause threads, we may find they stop with an interesting event that should be handled later when the thread is re-resumed, thus we store such events in the thread object, and mark the event as pending. We should only consume pending events if the thread is indeed resumed, thus we add a new "resumed" flag to the thread object. At a later stage, we might add new target methods to accelerate some of this, like "pause all threads", with corresponding RSP packets, but we'd still need a fallback method for remote targets that don't support such packets, so, again, that can be deferred as optimization. My _real_ motivation here is making it possible to reimplement all-stop mode on top of the target always working on non-stop mode, so that e.g., we can send RSP packets to a remote target even while the target is running -- can't do that in the all-stop RSP variant, by design). Tested on x86_64 Fedora 20, with and without "set displaced off" forced. The latter forces the new code paths whenever GDB needs to step past a breakpoint. gdb/ChangeLog: 2015-08-07 Pedro Alves <pedro@codesourcery.com> * breakpoint.c (breakpoints_should_be_inserted_now): If any thread has a pending status, return true. * gdbthread.h: Include target/waitstatus.h. (struct thread_suspend_state) <stop_reason, waitstatus_pending_p, stop_pc>: New fields. (struct thread_info) <resumed>: New field. (set_resumed): Declare. * infrun.c: Include "event-loop.h". (infrun_async_inferior_event_token, infrun_is_async): New globals. (infrun_async): New function. (clear_step_over_info): Add debug output. (displaced_step_in_progress_any_inferior): New function. (displaced_step_fixup): New returns int. (start_step_over): Handle in-line step-overs too. Assert the thread is marked resumed. (resume_cleanups): Clear the thread's resumed flag. (resume): Set the thread's resumed flag. Return early if the thread has a pending status. Allow stepping a breakpoint with no signal. (proceed): Adjust to check 'resumed' instead of 'executing'. (clear_proceed_status_thread): If the thread has a pending status, and that status is a finished step, discard the pending status. (clear_proceed_status): Don't clear step_over_info here. (random_pending_event_thread, do_target_wait): New functions. (prepare_for_detach, wait_for_inferior, fetch_inferior_event): Use do_target_wait. (wait_one): New function. (THREAD_STOPPED_BY): New macro. (thread_stopped_by_watchpoint, thread_stopped_by_sw_breakpoint) (thread_stopped_by_hw_breakpoint): New functions. (switch_to_thread_cleanup, save_waitstatus, stop_all_threads): New functions. (handle_inferior_event): Also call set_resumed(false) on all threads implicitly stopped by the event. (restart_threads, resumed_thread_with_pending_status): New functions. (finish_step_over): If we were doing an in-line step-over before, and no longer are after trying to start a new step-over, restart all threads. If we have multiple threads with pending events, save the current event and go through the event loop again. (handle_signal_stop): Return early if finish_step_over returns false. <random signal>: If we get a signal while stepping over a breakpoint in-line in non-stop mode, restart all threads. Clear step_over_info before delivering the signal. (keep_going_stepped_thread): Use internal_error instead of gdb_assert. Mark the thread as resumed. (keep_going_pass_signal): Assert the thread isn't already resumed. If some other thread is doing an in-line step-over, defer the resume. If we just started a new in-line step-over, stop all threads. Don't clear step_over_info. (infrun_async_inferior_event_handler): New function. (_initialize_infrun): Create async event handler with infrun_async_inferior_event_handler as callback. (infrun_async): New declaration. * target.c (target_async): New function. * target.h (target_async): Declare macro and readd as function declaration. * target/waitstatus.h (enum target_stop_reason) <TARGET_STOPPED_BY_SINGLE_STEP>: New value. * thread.c (new_thread): Clear the new waitstatus field. (set_resumed): New function. |
||
|
0a39bb3218 |
stepping is disturbed by setjmp/longjmp | try/catch in other threads
At https://sourceware.org/ml/gdb-patches/2015-08/msg00097.html, Joel observed that trying to next/step a program on GNU/Linux sometimes results in the following failed assertion: % gdb -q .obj/gprof/main (gdb) start (gdb) n (gdb) step [...]/infrun.c:2391: internal-error: resume: Assertion `sig != GDB_SIGNAL_0' failed. What happened is that, during the "next" operation, GDB hit a longjmp/exception/step-resume breakpoint but failed to see that this breakpoint was set for a different thread than the one being stepped. Joel's detailed analysis follows: More precisely, at the end of the "start" command, we are stopped at the start of function Main in main.adb; there are 4 threads in total, and we are in the main thread (which is thread 1): (gdb) info thread Id Target Id Frame 4 Thread 0xb7a56ba0 (LWP 28379) 0xffffe410 in __kernel_vsyscall () 3 Thread 0xb7c5aba0 (LWP 28378) 0xffffe410 in __kernel_vsyscall () 2 Thread 0xb7e5eba0 (LWP 28377) 0xffffe410 in __kernel_vsyscall () * 1 Thread 0xb7ea18c0 (LWP 28370) main () at /[...]/main.adb:57 All the logs below reference Thread ID/LWP, but it'll be easier to talk about the threads by GDB thread number. For instance, thread 1 is LWP 28370 while thread 3 is LWP 28378. So, the explanations below translate the LWPs into thread numbers. Back to what happens while we are trying to "next' our program: (gdb) n infrun: clear_proceed_status_thread (Thread 0xb7a56ba0 (LWP 28379)) infrun: clear_proceed_status_thread (Thread 0xb7c5aba0 (LWP 28378)) infrun: clear_proceed_status_thread (Thread 0xb7e5eba0 (LWP 28377)) infrun: clear_proceed_status_thread (Thread 0xb7ea18c0 (LWP 28370)) infrun: proceed (addr=0xffffffff, signal=GDB_SIGNAL_DEFAULT) infrun: resume (step=1, signal=GDB_SIGNAL_0), trap_expected=0, current thread [Thread 0xb7ea18c0 (LWP 28370)] at 0x805451e infrun: target_wait (-1.0.0, status) = infrun: 28370.28370.0 [Thread 0xb7ea18c0 (LWP 28370)], infrun: status->kind = stopped, signal = GDB_SIGNAL_TRAP infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x8054523 We've resumed thread 1 (LWP 28370), and received in return a signal that the same thread stopped slightly further. It's still in the range of instructions for the line of source we started the "next" from, as evidenced by the following trace... infrun: stepping inside range [0x805451e-0x8054531] ... and thus, we decide to continue stepping the same thread: infrun: resume (step=1, signal=GDB_SIGNAL_0), trap_expected=0, current thread [Thread 0xb7ea18c0 (LWP 28370)] at 0x8054523 infrun: prepare_to_wait That's when we get an event from a different thread (thread 3)... infrun: target_wait (-1.0.0, status) = infrun: 28370.28378.0 [Thread 0xb7c5aba0 (LWP 28378)], infrun: status->kind = stopped, signal = GDB_SIGNAL_TRAP infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x80782d0 infrun: context switch infrun: Switching context from Thread 0xb7ea18c0 (LWP 28370) to Thread 0xb7c5aba0 (LWP 28378) ... which we find to be at the address where we set a breakpoint on "the unwinder debug hook" (namely "_Unwind_DebugHook"). But GDB fails to notice that the breakpoint was inserted for thread 1 only, and so decides to handle it as... infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME ... and inserts a breakpoint at the corresponding resume address, as evidenced by this the next log: infrun: exception resume at 80542a2 That breakpoint seems innocent right now, but will play a role fairly quickly. But for now, GDB has inserted the exception-resume breakpoint, and needs to single-step thread 3 past the breakpoint it just hit. Thus, it temporarily disables the exception breakpoint, and requests a step of that thread: infrun: skipping breakpoint: stepping past insn at: 0x80782d0 infrun: skipping breakpoint: stepping past insn at: 0x80782d0 infrun: skipping breakpoint: stepping past insn at: 0x80782d0 infrun: resume (step=1, signal=GDB_SIGNAL_0), trap_expected=1, current thread [Thread 0xb7c5aba0 (LWP 28378)] at 0x80782d0 infrun: prepare_to_wait We then get a notification, still from thread 3, that it's now past that breakpoint... infrun: prepare_to_wait infrun: target_wait (-1.0.0, status) = infrun: 28370.28378.0 [Thread 0xb7c5aba0 (LWP 28378)], infrun: status->kind = stopped, signal = GDB_SIGNAL_TRAP infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x8078424 ... so we can resume what we were doing before, which is single-stepping thread 1 until we get to a new line of code: infrun: switching back to stepped thread infrun: Switching context from Thread 0xb7c5aba0 (LWP 28378) to Thread 0xb7ea18c0 (LWP 28370) infrun: expected thread still hasn't advanced infrun: resume (step=1, signal=GDB_SIGNAL_0), trap_expected=0, current thread [Thread 0xb7ea18c0 (LWP 28370)] at 0x8054523 The "resume" log above shows that we're resuming thread 1 from where we left off (0x8054523). We get one more stop at 0x8054529, which is still inside our stepping range so we go again. That's when we get the following event, from thread 3: infrun: prepare_to_wait infrun: target_wait (-1.0.0, status) = infrun: 28370.28378.0 [Thread 0xb7c5aba0 (LWP 28378)], infrun: status->kind = stopped, signal = GDB_SIGNAL_TRAP infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x80542a2 Now the stop_pc address is interesting, because it's the address of "exception resume" breakpoint... infrun: context switch infrun: Switching context from Thread 0xb7ea18c0 (LWP 28370) to Thread 0xb7c5aba0 (LWP 28378) infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME ... and since that location is at a different line of code, this is where it decides the "next" operation should stop: infrun: stop_waiting [Switching to Thread 0xb7c5aba0 (LWP 28378)] 0x080542a2 in inte_tache_rt.ttache_rt ( <_task>=0x80968ec <inte_tache_rt_inst.tache2>) at /[...]/inte_tache_rt.adb:54 54 end loop; However, what GDB should have noticed earlier that the exception breakpoint we hit was for a different thread, thus should have single-stepped that thread out of the breakpoint _without_ inserting the exception-return breakpoint, and then resumed the single-stepping of the initial thread (thread 1) until that thread stepped out of its stepping range. This is what this patch does, and after applying it, GDB now correctly stops on the next line of code. The patch adds a C++ test that exercises this, both for setjmp/longjmp and exception breakpoints. With an unpatched GDB it shows: (gdb) next [Switching to Thread 22445.22455] thread_try_catch (arg=0x0) at /home/pedro/gdb/mygit/build/../src/gdb/testsuite/gdb.threads/next-other-thr-longjmp.c:59 59 catch (...) (gdb) FAIL: gdb.threads/next-other-thr-longjmp.exp: next to line 1 next /home/pedro/gdb/mygit/build/../src/gdb/infrun.c:4865: internal-error: process_event_stop_test: Assertion `ecs->event_thread->control.exception_resume_breakpoint != NULL' fa iled. A problem internal to GDB has been detected, further debugging may prove unreliable. Quit this debugging session? (y or n) FAIL: gdb.threads/next-other-thr-longjmp.exp: next to line 2 (GDB internal error) Resyncing due to internal error. n Tested on x86_64-linux, no regressions. gdb/ChangeLog: 2015-08-05 Pedro Alves <palves@redhat.com> Joel Brobecker <brobecker@adacore.com> * breakpoint.c (bpstat_what) <bp_longjmp, bp_longjmp_call_dummy> <bp_exception, bp_longjmp_resume, bp_exception_resume>: Handle the case where BS->STOP is not set. gdb/testsuite/ChangeLog: 2015-08-05 Pedro Alves <palves@redhat.com> * gdb.threads/next-while-other-thread-longjmps.c: New file. * gdb.threads/next-while-other-thread-longjmps.exp: New file. |
||
|
f486487f55 |
Mostly trivial enum fixes
This is a patch I extracted from Pedro's C++ branch. It contains the most trivial enum fixes, where an integer type/value was used instead of the appropriate enum type/value. It fixes many C++ errors, since in C++ you can't mix integers and enums implicitely. Regardless of the C++ conversion, I think this is a good cleanup to make use of the appropriate enum types. Regression-tested on native x86_64. gdb/ChangeLog: * aarch64-linux-nat.c (aarch64_linux_can_use_hw_breakpoint): Use enum type or value instead of integer. (aarch64_linux_insert_watchpoint): Likewise. (aarch64_linux_remove_watchpoint): Likewise. * ada-lang.c (ada_op_print_tab): Likewise. * amd64-linux-tdep.c (amd64_canonicalize_syscall): Likewise. (amd64_linux_syscall_record_common): Likewise. * arch-utils.c (target_byte_order_user): Likewise. (default_byte_order): Likewise. * arm-linux-nat.c (arm_linux_can_use_hw_breakpoint): Likewise. (arm_linux_get_hwbp_type): Likewise. (arm_linux_hw_watchpoint_initialize): Likewise. (arm_linux_insert_watchpoint): Likewise. * arm-linux-tdep.c (arm_canonicalize_syscall): Likewise. (arm_linux_syscall_record): Likewise. * breakpoint.c (update_watchpoint): Likewise. (breakpoint_here_p): Likewise. (bpstat_print): Likewise. (enable_breakpoint_disp): Likewise. * c-lang.c (c_op_print_tab): Likewise. * cli/cli-decode.c (add_info_alias): Likewise. * d-lang.c (d_op_print_tab): Likewise. * eval.c (evaluate_subexp_standard): Likewise. * f-exp.y (dot_ops): Likewise. (f77_keywords): Likewise. * f-lang.c (f_op_print_tab): Likewise. * go-lang.c (go_op_print_tab): Likewise. * guile/scm-breakpoint.c (gdbscm_make_breakpoint): Likewise. * guile/scm-cmd.c (gdbscm_make_command): Likewise. * guile/scm-param.c (gdbscm_make_parameter): Likewise. * guile/scm-pretty-print.c (gdbscm_apply_val_pretty_printer): Likewise. * guile/scm-string.c (struct scm_to_stringn_data): Likewise. (struct scm_from_stringn_data): Likewise. * i386-linux-tdep.c (i386_canonicalize_syscall): Likewise. * ia64-linux-nat.c (ia64_linux_insert_watchpoint): Likewise. (ia64_linux_remove_watchpoint): Likewise. (ia64_linux_can_use_hw_breakpoint): Likewise. * infrun.c (print_stop_event): Likewise. * jv-lang.c (java_op_print_tab): Likewise. * linux-nat.c (linux_proc_xfer_partial): Likewise. * linux-nat.h (struct lwp_info): Likewise. * linux-thread-db.c (enable_thread_event): Likewise. * m2-lang.c (m2_op_print_tab): Likewise. * mi/mi-cmd-stack.c (mi_cmd_stack_list_locals): Likewise. (mi_cmd_stack_list_variables): Likewise. * mi/mi-main.c (mi_cmd_trace_frame_collected): Likewise. * mi/mi-out.c (mi_table_begin): Likewise. (mi_table_header): Likewise. * mips-linux-nat.c (mips_linux_can_use_hw_breakpoint): Likewise. (mips_linux_insert_watchpoint): Likewise. (mips_linux_remove_watchpoint): Likewise. * nat/mips-linux-watch.c (mips_linux_watch_type_to_irw): Likewise. * nat/mips-linux-watch.h (struct mips_watchpoint): Likewise. (mips_linux_watch_type_to_irw): Likewise. * nto-procfs.c (procfs_can_use_hw_breakpoint): Likewise. (procfs_insert_hw_watchpoint): Likewise. (procfs_remove_hw_watchpoint): Likewise. (procfs_hw_watchpoint): Likewise. (procfs_can_use_hw_breakpoint): Likewise. (procfs_remove_hw_watchpoint): Likewise. (procfs_insert_hw_watchpoint): Likewise. * p-lang.c (pascal_op_print_tab): Likewise. * ppc-linux-nat.c (ppc_linux_can_use_hw_breakpoint): Likewise. * ppc-linux-tdep.c (ppu2spu_unwind_register): Likewise. * ppc-sysv-tdep.c (get_decimal_float_return_value): Likewise. * procfs.c (procfs_can_use_hw_breakpoint): Likewise. (procfs_insert_watchpoint): Likewise. (procfs_remove_watchpoint): Likewise. * psymtab.c (recursively_search_psymtabs): Likewise. * remote-m32r-sdi.c (m32r_can_use_hw_watchpoint): Likewise. (m32r_insert_watchpoint): Likewise. * remote-mips.c (mips_can_use_watchpoint): Likewise. (mips_insert_watchpoint): Likewise. (mips_remove_watchpoint): Likewise. * remote.c (watchpoint_to_Z_packet): Likewise. (remote_insert_watchpoint): Likewise. (remote_remove_watchpoint): Likewise. (remote_check_watch_resources): Likewise. * s390-linux-nat.c (s390_insert_watchpoint): Likewise. (s390_remove_watchpoint): Likewise. (s390_can_use_hw_breakpoint): Likewise. * s390-linux-tdep.c (s390_gdbarch_init): Likewise. * spu-linux-nat.c (spu_can_use_hw_breakpoint): Likewise. * target.h (struct target_ops): Likewise. * tilegx-tdep.c (tilegx_analyze_prologue): Likewise. * ui-out.c (struct ui_out_hdr): Likewise. (append_header_to_list): Likewise. (get_next_header): Likewise. (verify_field): Likewise. (ui_out_begin): Likewise. (ui_out_field_int): Likewise. (ui_out_field_fmt_int): Likewise. (ui_out_field_skip): Likewise. (ui_out_field_string): Likewise. (ui_out_field_fmt): Likewise. * varobj.c (new_variable): Likewise. * x86-nat.c (x86_insert_watchpoint): Likewise. (x86_remove_watchpoint): Likewise. (x86_can_use_hw_breakpoint): Likewise. * xtensa-tdep.h (struct gdbarch_tdep): Likewise. * inflow.c (enum gdb_has_a_terminal_flag_enum): Add name to previously anonymous enumeration type.. * linux-record.h (enum gdb_syscall): Add gdb_sys_no_syscall value. * target-debug.h (target_debug_print_enum_target_hw_bp_type): New. (target_debug_print_enum_bptype): New. * target-delegates.c: Regenerate. |
||
|
6b940e6a06 |
Remove isize output argument from fast_tracepoint_valid_at
This patch removes the isize output argument from the fast_tracepoint_valid_at gdbarch hook. It was used to return the size of the instruction that needs to be replaced when installing a fast tracepoint. Instead of getting this value from the fast_tracepoint_valid_at hook, we can call the gdb_insn_length function. If we do not do this, then architectures which do not have a restriction on where to install the fast tracepoint will send uninitialized memory off to GDBserver. See remote_download_tracepoint: ~~~ int isize; if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (), tpaddr, &isize, NULL)) xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x", isize); ~~~ The default implementation of fast_tracepoint_valid_at will not set isize resulting in uninitialized memory being sent. Later on, GDBserver could use this information to compute a jump offset. gdb/ChangeLog: * arch-utils.c (default_fast_tracepoint_valid_at): Remove unused isize argument. * arch-utils.h (default_fast_tracepoint_valid_at): Likewise. * breakpoint.c (check_fast_tracepoint_sals): Adjust call to gdbarch_fast_tracepoint_valid_at. * gdbarch.sh (fast_tracepoint_valid_at): Remove isize argument. * gdbarch.h: Regenerate. * gdbarch.c: Regenerate. * i386-tdep.c (i386_fast_tracepoint_valid_at): Remove isize argument. Do not set it. * remote.c (remote_download_tracepoint): Adjust call to gdbarch_fast_tracepoint_valid_at. Call gdb_insn_length to get the instruction length. |
||
|
66c4b3e8a6 |
Fix problems with finishing a dummy function call on simulators.
This fixes regressions introduced with the original change to not consider permanent breakpoints always inserted: |
||
|
6ae8866180 |
Fix problems with finishing a dummy function call on simulators.
Some simulators don't handle permanent breakpoints properly and will sometimes terminate when hitting such a breakpoint instruction or have unwanted effects. When a permanent breakpoint is inserted, GDB will not attempt to insert other breakpoint locations on top of it, leading to the problem described above. By not marking permanent breakpoint locations as inserted, we allow the insertion of breakpoint locations on top of the permanent ones, preventing the simulators from running into that situation. gdb/ChangeLog: 2015-06-17 Luis Machado <lgustavo@codesourcery.com> * breakpoint.c (add_location_to_breakpoint): Don't mark permanent locations as inserted. Update and expand comment about permanent locations. (bp_loc_is_permanent): Don't return 0 for bp_call_dummy. Move comment to add_location_to_breakpoint. (update_global_location_list): Don't error out if a permanent breakpoint is not marked inserted. Don't error out if a non-permanent breakpoint location is inserted on top of a permanent breakpoint. |
||
|
da4616f69f |
Remove unused function make_breakpoint_permanent.
make_breakpoint_permanent is no longer used anywhere and can be safely removed. gdb/ChangeLog: 2015-06-17 Luis Machado <lgustavo@codesourcery.com> * breakpoint.c (make_breakpoint_permanent): Remove unused function. * breakpoint.h (make_breakpoint_permanent): Remove declaration. |
||
|
98aa42ee02 |
Fix MI dprintf-insert not printing on a resolved pending location.
This patch fixes the "Format string required" error when trying to print a dprintf on a now resolved, pending location when set via the MI interface even if the format string is entered correctly. This patch also adds a test case to check that issue called mi-dprintf-pending.exp. gdb/ChangeLog: PR breakpoints/16465 * breakpoint.c (create_breakpoint): Save extra_string for pending breakpoints. gdb/testsuite/ChangeLog: PR breakpoints/16465 * gdb.mi/mi-dprintf-pending.c: New file. * gdb.mi/mi-dprintf-pending.exp: New test. * gdb.mi/mi-dprintf-pendshr.c: New file. |
||
|
c9cf6e20c6 |
Rename in_function_epilogue_p to stack_frame_destroyed_p
We concluded that gdbarch_in_function_epilogue_p is misnamed, since it returns true if the given PC is one instruction after the one that destroyed the stack (which isn't necessarily inside an epilogue), therefore it should be renamed to stack_frame_destroyed_p. I also took the liberty of renaming the arch-specific implementations to *_stack_frame_destroyed_p as well for consistency. gdb: 2015-05-26 Martin Galvan <martin.galvan@tallertechnologies.com> * amd64-tdep.c: Replace in_function_epilogue_p with stack_frame_destroyed_p throughout. * arch-utils.c: Ditto. * arch-utils.h: Ditto. * arm-tdep.c: Ditto. * breakpoint.c: Ditto. * gdbarch.sh: Ditto. * hppa-tdep.c: Ditto. * i386-tdep.c: Ditto. * mips-tdep.c: Ditto. * nios2-tdep.c: Ditto. * rs6000-tdep.c: Ditto. * s390-linux-tdep.c: Ditto. * score-tdep.c: Ditto. * sh-tdep.c: Ditto. * sparc-tdep.c: Ditto. * sparc-tdep.h: Ditto. * sparc64-tdep.c: Ditto. * spu-tdep.c: Ditto. * tic6x-tdep.c: Ditto. * tilegx-tdep.c: Ditto. * xstormy16-tdep.c: Ditto. * gdbarch.c, gdbarch.h: Re-generated. |
||
|
e31d7699a0 |
Remove duplicated xmalloc in update_dprintf_command_list
Code in update_dprintf_command_list performed a duplicated memory allocation which caused an obvious memory leak. This removes the duplication. gdb/ 2015-04-19 Gabriel Krisman Bertazi <gabriel@krisman.be> * breakpoint.c (update_dprintf_command_list): Remove duplicated xmalloc. |
||
|
4f45d44599 |
Remove --xdb
Pedro Alves: The commands that enables aren't even documented in the manual. Judging from that, I assume that only wdb users would ever really be using the --xdb switch. I think it's time to drop "support" for the --xdb switch too. I looked through the commands that that exposes, the only that looked potentially interesting was "go", but then it's just an alias for "tbreak+jump", which can easily be done with "define go...end". I'd rather free up the "go" name for something potentially more interesting (either run control, or maybe even unrelated, e.g., for golang). gdb/ChangeLog 2015-04-11 Jan Kratochvil <jan.kratochvil@redhat.com> * NEWS (Changes since GDB 7.9): Add removed -xdb. * breakpoint.c (command_line_is_silent): Remove xdb_commands conditional. (_initialize_breakpoint): Remove xdb_commands for bc, ab, sb, db, ba and lb. * cli/cli-cmds.c (_initialize_cli_cmds): Remove xdb_commands for v and va. * cli/cli-decode.c (find_command_name_length): Remove xdb_commands conditional. * defs.h (xdb_commands): Remove declaration. * f-valprint.c (_initialize_f_valprint): Remove xdb_commands for lc. * guile/scm-cmd.c (command_classes): Remove xdb from comment. * infcmd.c (run_no_args_command, go_command): Remove. (_initialize_infcmd): Remove xdb_commands for S, go, g, R and lr. * infrun.c (xdb_handle_command): Remove. (_initialize_infrun): Remove xdb_commands for lz and z. * main.c (xdb_commands): Remove variable. (captured_main): Remove "xdb" from long_options. (print_gdb_help): Remove --xdb from help. * python/py-cmd.c (gdbpy_initialize_commands): Remove xdb from comment. * source.c (_initialize_source): Remove xdb_commands for D, ld, / and ?. * stack.c (backtrace_full_command, args_plus_locals_info) (current_frame_command): Remove. (_initialize_stack): Remove xdb_commands for t, T and l. * symtab.c (_initialize_symtab): Remove xdb_commands for lf and lg. * thread.c (_initialize_thread): Remove xdb_commands condition. * tui/tui-layout.c (tui_toggle_layout_command) (tui_toggle_split_layout_command, tui_handle_xdb_layout): Remove. (_initialize_tui_layout): Remove xdb_commands for td and ts. * tui/tui-regs.c (tui_scroll_regs_forward_command) (tui_scroll_regs_backward_command): Remove. (_initialize_tui_regs): Remove xdb_commands for fr, gr, sr, +r and -r. * tui/tui-win.c (tui_xdb_set_win_height_command): Remove. (_initialize_tui_win): Remove xdb_commands for U and w. * utils.c (pagination_on_command, pagination_off_command): Remove. (initialize_utils): Remove xdb_commands for am and sm. gdb/doc/ChangeLog 2015-04-11 Jan Kratochvil <jan.kratochvil@redhat.com> * gdb.texinfo (Mode Options): Remove -xdb. |
||
|
64ce06e4cd |
Remove 'step' parameters from 'proceed' and 'resume'
The "step" parameters of 'proceed' and 'resume' aren't really useful as indication of whether run control wants to single-step the target, as that information must already be retrievable from currently_stepping. In fact, if currently_stepping disagrees with whether we single-stepped the target, then things break. Thus instead of having the same information in two places, this patch removes those parameters. Setting 'step_start_function' is the only user of proceed's 'step' argument, other than passing the 'step' argument down to 'resume' and debug log output. Move that instead to set_step_frame, where we already set other related fields. clear_proceed_status keeps its "step" parameter for now because it needs to know which set of threads should have their state cleared, and is called before the "stepping_command" flag is set. Tested on x86_64 Fedora 20, native and gdbserver. gdb/ChangeLog: 2015-03-24 Pedro Alves <palves@redhat.com> * breakpoint.c (until_break_command): Adjust call to proceed. * gdbthread.h (struct thread_control_state) <stepping_command>: New field. * infcall.c (run_inferior_call): Adjust call to proceed. * infcmd.c (run_command_1, proceed_thread_callback, continue_1): Adjust calls to proceed. (set_step_frame): Set the current thread's step_start_function here. (step_once): Adjust calls to proceed. (jump_command, signal_command, until_next_command) (finish_backward, finish_forward, proceed_after_attach_callback) (attach_command_post_wait): Adjust calls to proceed. * infrun.c (proceed_after_vfork_done): Adjust call to proceed. (do_target_resume): New function, factored out from ... (resume): ... here. Remove 'step' parameter. Instead, check currently_stepping to determine whether the thread should be single-stepped. (proceed): Remove 'step' parameter and don't set the thread's step_start_function here. Adjust call to 'resume'. (handle_inferior_event): Adjust calls to 'resume'. (switch_back_to_stepped_thread): Use do_target_resume instead of 'resume'. (keep_going): Adjust calls to 'resume'. * infrun.h (proceed): Remove 'step' parameter. (resume): Likewise. * windows-nat.c (do_initial_windows_stuff): Adjust call to 'resume'. * mi/mi-main.c (proceed_thread): Adjust call to 'proceed'. |
||
|
1563054901 |
Fix breakpoint thread condition missing with mi and a pending breakpoint.
When setting a pending breakpoint with a thread condition while using the mi interface, the thread condition would be lost by gdb when the breakpoint was resolved. This patch fixes this behavior by setting the thread condition properly in the mi case. Also, this patch modifies the mi-pending test case to test for this issue and removes some unneeded code in the testcase and dependency on stdio. gdb/Changelog: PR breakpoints/16466 * breakpoint.c (create_breakpoint): Set thread on breakpoint struct. gdb/testsuite/ChangeLog: PR breakpoints/16466 * gdb.mi/Makefile.in: Add mi-pendshr2.sl to cleanup. * gdb.mi/mi-pending.c (thread_func): New function. (int main): Add threading support required. * gdb.mi/mi-pending.exp: Add tests for this issue. * gdb.mi/mi-pendshr.c (pendfunc1): Remove stdio dependency. (pendfunc2): Remove stdio dependency. * gdb.mi/mi-pendshr2.c: New file. |
||
|
0578b14e99 |
Expand keyword lexing intelligence in the linespec parser.
This patch changes the heuristic the linespec lexer uses to detect a keyword in the input stream. Currently, the heuristic is: a word is a keyword if it 1) points to a string that is a keyword 2) is followed by a non-identifier character This is strictly more correct than using whitespace. For example, it allows constructs such as "break foo if(i == 1)". However, find_condition_and_thread in breakpoint.c does not support this expanded usage. It requires whitespace to follow the keyword. The proposed new heuristic is: a word is a keyword if it 1) points to a string that is a keyword 2) is followed by whitespace 3) is not followed by another keyword string followed by whitespace This additional complexity allows constructs such as "break thread thread 3" and "break thread 3". In the former case, the actual location is a symbol named "thread" to be set on thread #3. In the later case, the location is NULL, i.e., the default location, to be set on thread #3. In order to pass all the new tests added here, I've also had to add a new feature to parse_breakpoint_sals, which expands recognition of the default location to keywords other than "if", which is the only keyword currently permitted with the default (NULL) location, but there is no reason to exclude other keywords. Consequently, it will be possible to use "break thread 1" or "break task 1". In addition to all of this, it is now possible to remove the keyword_ok state from the linespec parser. gdb/ChangeLog * breakpoint.c (parse_breakpoint_sals): Use linespec_lexer_lex_keyword to ascertain if the user specified a NULL location. * linespec.c [IF_KEYWORD_INDEX]: Define. (linespec_lexer_lex_keyword): Export. (struct ls_parser) <keyword_ok>: Remove. A keyword is only a keyword if not followed by another keyword. (linespec_lexer_lex_one): Remove keyword_ok handling. Add comment explaining why the parsing stream is not advanced when a keyword is seen. (parse_linespec): Remove parser->keyword_ok. * linespec.h (linespec_lexer_lex_keyword): Add declaration. gdb/testsuite/ChangeLog * gdb.linespec/keywords.c: New file. * gdb.linespec/keywords.exp: New file. |
||
|
7a26bd4d83 |
constify set_breakpoint_condition
gdb: 2015-03-20 Pedro Alves <palves@redhat.com> * breakpoint.c (set_breakpoint_condition): Make argument "exp" const. * breakpoint.h (set_breakpoint_condition): Update declaration. |
||
|
10304ef3e8 |
Create gdb/break-catch-syscall.c
This commits cleans up the gdb/breakpoint.c file and moves everything that is related to the 'catch syscall' command to the new file gdb/break-catch-syscall.c. This is just code movement, and the only new part is the adjustment needed on 'catching_syscall_number' to use the new 'breakpoint_find_if' function insted of relying on the ALL_BREAKPOINTS macro. Tested by running the 'gdb.base/catch-syscall.exp' testcase. gdb/ChangeLog: 2015-03-11 Sergio Durigan Junior <sergiodj@redhat.com> * Makefile.in (SFILES): New source break-catch-syscall.c. (COMMON_OBS): New object break-catch-syscall.o. * break-catch-syscall.c: New file. * breakpoint.c: Remove inclusion of "xml-syscall.h". (syscall_catchpoint_p): Move declaration to break-catch-syscall.c (struct syscall_catchpoint): Likewise. (dtor_catch_syscall): Likewise. (catch_syscall_inferior_data): Likewise. (struct catch_syscall_inferior_data): Likewise. (get_catch_syscall_inferior_data): Likewise. (catch_syscall_inferior_data_cleanup): Likewise. (insert_catch_syscall): Likewise. (remove_catch_syscall): Likewise. (breakpoint_hit_catch_syscall): Likewise. (print_it_catch_syscall): Likewise. (print_one_catch_syscall): Likewise. (print_mention_catch_syscall): Likewise. (print_recreate_catch_syscall): Likewise. (catch_syscall_breakpoint_ops): Likewise. (syscall_catchpoint_p): Likewise. (create_syscall_event_catchpoint): Likewise. (catch_syscall_split_args): Likewise. (catch_syscall_command_1): Likewise. (is_syscall_catchpoint_enabled): Likewise. (catch_syscall_enabled): Likewise. (catching_syscall_number): Likewise. (catch_syscall_completer): Likewise. (clear_syscall_counts): Likewise. (initialize_breakpoint_ops): Move initialization of syscall catchpoints to break-catch-syscall.c. (_initialize_breakpoint): Move code related to syscall catchpoints to break-catch-syscall.c. |
||
|
badd37cec8 |
Implement breakpoint_find_if
This commit implements the 'breakpoint_find_if' function, which allows code external to gdb/breakpoint.c to iterate through the list of 'struct breakpoint *'. This is needed in order to create the 'gdb/break-catch-syscall.c' file, because one of its functions (catching_syscall_number) needs to do this iteration. My first thought was to share the ALL_BREAKPOINTS* macros on gdb/breakpoint.h, but they use a global variable local to gdb/breakpoint.c, and I did not want to share that variable. So, in order to keep the minimal separation, I decided to implement this way of iterating through the existing 'struct breakpoint *'. This function was based on BFD's bfd_sections_find_if. If the user-provided function returns 0, the iteration proceeds. Otherwise, the iteration stops and the function returns the 'struct breakpoint *' that is being processed. This means that the return value of this function can be either NULL or a pointer to a 'struct breakpoint'. gdb/ChangeLog: 2015-03-11 Sergio Durigan Junior <sergiodj@redhat.com> * breakpoint.c (breakpoint_find_if): New function. * breakpoint.h (breakpoint_find_if): New prototype. |
||
|
6c63c96a22 |
more making TRY/CATCH callers look more like real C++ try/catch blocks
All these were caught by actually making TRY/CATCH use try/catch behind the scenes, which then resulted in the build failing (on x86_64 Fedora 20) because there was code between the try and catch blocks. gdb/ChangeLog: 2015-03-07 Pedro Alves <palves@redhat.com> * breakpoint.c (save_breakpoints): Adjust to avoid code between TRY and CATCH. * gdbtypes.c (safe_parse_type): Remove empty line. (types_deeply_equal): * guile/scm-frame.c (gdbscm_frame_name): * linux-thread-db.c (find_new_threads_once): * python/py-breakpoint.c (bppy_get_commands): * record-btrace.c (record_btrace_insert_breakpoint) (record_btrace_remove_breakpoint, record_btrace_start_replaying) (record_btrace_start_replaying): Adjust to avoid code between TRY and CATCH. |
||
|
492d29ea1c |
Split TRY_CATCH into TRY + CATCH
This patch splits the TRY_CATCH macro into three, so that we go from this: ~~~ volatile gdb_exception ex; TRY_CATCH (ex, RETURN_MASK_ERROR) { } if (ex.reason < 0) { } ~~~ to this: ~~~ TRY { } CATCH (ex, RETURN_MASK_ERROR) { } END_CATCH ~~~ Thus, we'll be getting rid of the local volatile exception object, and declaring the caught exception in the catch block. This allows reimplementing TRY/CATCH in terms of C++ exceptions when building in C++ mode, while still allowing to build GDB in C mode (using setjmp/longjmp), as a transition step. TBC, after this patch, is it _not_ valid to have code between the TRY and the CATCH blocks, like: TRY { } // some code here. CATCH (ex, RETURN_MASK_ERROR) { } END_CATCH Just like it isn't valid to do that with C++'s native try/catch. By switching to creating the exception object inside the CATCH block scope, we can get rid of all the explicitly allocated volatile exception objects all over the tree, and map the CATCH block more directly to C++'s catch blocks. The majority of the TRY_CATCH -> TRY+CATCH+END_CATCH conversion was done with a script, rerun from scratch at every rebase, no manual editing involved. After the mechanical conversion, a few places needed manual intervention, to fix preexisting cases where we were using the exception object outside of the TRY_CATCH block, and cases where we were using "else" after a 'if (ex.reason) < 0)' [a CATCH after this patch]. The result was folded into this patch so that GDB still builds at each incremental step. END_CATCH is necessary for two reasons: First, because we name the exception object in the CATCH block, which requires creating a scope, which in turn must be closed somewhere. Declaring the exception variable in the initializer field of a for block, like: #define CATCH(EXCEPTION, mask) \ for (struct gdb_exception EXCEPTION; \ exceptions_state_mc_catch (&EXCEPTION, MASK); \ EXCEPTION = exception_none) would avoid needing END_CATCH, but alas, in C mode, we build with C90, which doesn't allow mixed declarations and code. Second, because when TRY/CATCH are wired to real C++ try/catch, as long as we need to handle cleanup chains, even if there's no CATCH block that wants to catch the exception, we need for stop at every frame in the unwind chain and run cleanups, then rethrow. That will be done in END_CATCH. After we require C++, we'll still need TRY/CATCH/END_CATCH until cleanups are completely phased out -- TRY/CATCH in C++ mode will save/restore the current cleanup chain, like in C mode, and END_CATCH catches otherwise uncaugh exceptions, runs cleanups and rethrows, so that C++ cleanups and exceptions can coexist. IMO, this still makes the TRY/CATCH code look a bit more like a newcomer would expect, so IMO worth it even if we weren't considering C++. gdb/ChangeLog. 2015-03-07 Pedro Alves <palves@redhat.com> * common/common-exceptions.c (struct catcher) <exception>: No longer a pointer to volatile exception. Now an exception value. <mask>: Delete field. (exceptions_state_mc_init): Remove all parameters. Adjust. (exceptions_state_mc): No longer pop the catcher here. (exceptions_state_mc_catch): New function. (throw_exception): Adjust. * common/common-exceptions.h (exceptions_state_mc_init): Remove all parameters. (exceptions_state_mc_catch): Declare. (TRY_CATCH): Rename to ... (TRY): ... this. Remove EXCEPTION and MASK parameters. (CATCH, END_CATCH): New. All callers adjusted. gdb/gdbserver/ChangeLog: 2015-03-07 Pedro Alves <palves@redhat.com> Adjust all callers of TRY_CATCH to use TRY/CATCH/END_CATCH instead. |
||
|
61012eef84 |
New common function "startswith"
This commit introduces a new inline common function "startswith" which takes two string arguments and returns nonzero if the first string starts with the second. It also updates the 295 places where this logic was written out longhand to use the new function. gdb/ChangeLog: * common/common-utils.h (startswith): New inline function. All places where this logic was used updated to use the above. |
||
|
1cf4d9513a |
Teach GDB about targets that can tell whether a trap is a breakpoint event
The moribund locations heuristics are problematic. This patch teaches
GDB about targets that can reliably tell whether a trap was caused by
a software or hardware breakpoint, and thus don't need moribund
locations, thus bypassing all the problems that mechanism has.
The non-stop-fair-events.exp test is frequently failing currently.
E.g., see https://sourceware.org/ml/gdb-testers/2015-q1/msg03148.html.
The root cause is a fundamental problem with moribund locations. For
example, the stepped_breakpoint logic added by
|
||
|
d4777acbc9 |
New probe type: DTrace USDT probes.
This patch adds a new type of probe to GDB: the DTrace USDT probes. The new type is added by providing functions implementing all the entries of the `probe_ops' structure defined in `probe.h'. The implementation is self-contained and does not depend on DTrace source code in any way. gdb/ChangeLog: 2015-02-7 Jose E. Marchesi <jose.marchesi@oracle.com> * breakpoint.c (BREAK_ARGS_HELP): Help string updated to mention the -probe-dtrace new vpossible value for PROBE_MODIFIER. * configure.ac (CONFIG_OBS): dtrace-probe.o added if BFD can handle ELF files. * Makefile.in (SFILES): dtrace-probe.c added. * configure: Regenerate. * dtrace-probe.c: New file. (SHT_SUNW_dof): New constant. (dtrace_probe_type): New enum. (dtrace_probe_arg): New struct. (dtrace_probe_arg_s): New typedef. (struct dtrace_probe_enabler): New struct. (dtrace_probe_enabler_s): New typedef. (dtrace_probe): New struct. (dtrace_probe_is_linespec): New function. (dtrace_dof_sect_type): New enum. (dtrace_dof_dofh_ident): Likewise. (dtrace_dof_encoding): Likewise. (DTRACE_DOF_ENCODE_LSB): Likewise. (DTRACE_DOF_ENCODE_MSB): Likewise. (dtrace_dof_hdr): New struct. (dtrace_dof_sect): Likewise. (dtrace_dof_provider): Likewise. (dtrace_dof_probe): Likewise. (DOF_UINT): New macro. (DTRACE_DOF_PTR): Likewise. (DTRACE_DOF_SECT): Likewise. (dtrace_process_dof_probe): New function. (dtrace_process_dof): Likewise. (dtrace_build_arg_exprs): Likewise. (dtrace_get_arg): Likewise. (dtrace_get_probes): Likewise. (dtrace_get_probe_argument_count): Likewise. (dtrace_can_evaluate_probe_arguments): Likewise. (dtrace_evaluate_probe_argument): Likewise. (dtrace_compile_to_ax): Likewise. (dtrace_probe_destroy): Likewise. (dtrace_gen_info_probes_table_header): Likewise. (dtrace_gen_info_probes_table_values): Likewise. (dtrace_probe_is_enabled): Likewise. (dtrace_probe_ops): New variable. (info_probes_dtrace_command): New function. (_initialize_dtrace_probe): Likewise. (dtrace_type_name): Likewise. |
||
|
e36122e9d7 |
Fix redefinition errors in C++ mode
In C, we can forward declare static structure instances. That doesn't work in C++ though. C++ treats these as definitions. So then the compiler complains about symbol redefinition, like: src/gdb/elfread.c:1569:29: error: redefinition of ‘const sym_fns elf_sym_fns_lazy_psyms’ src/gdb/elfread.c:53:29: error: ‘const sym_fns elf_sym_fns_lazy_psyms’ previously declared here The intent of static here is naturally to avoid making these objects visible outside the compilation unit. The equivalent in C++ would be to instead define the objects in the anonymous namespace. But given that it's desirable to leave the codebase compiling as both C and C++ for a while, this just makes the objects extern. (base_breakpoint_ops is already declared in breakpoint.h, so we can just remove the forward declare from breakpoint.c) gdb/ChangeLog: 2015-02-11 Tom Tromey <tromey@redhat.com> Pedro Alves <palves@redhat.com> * breakpoint.c (base_breakpoint_ops): Delete. * dwarf2loc.c (dwarf_expr_ctx_funcs): Make extern. * elfread.c (elf_sym_fns_gdb_index, elf_sym_fns_lazy_psyms): Make extern. * guile/guile.c (guile_extension_script_ops, guile_extension_ops): Make extern. * ppcnbsd-tdep.c (ppcnbsd2_sigtramp): Make extern. * python/py-arch.c (arch_object_type): Make extern. * python/py-block.c (block_syms_iterator_object_type): Make extern. * python/py-bpevent.c (breakpoint_event_object_type): Make extern. * python/py-cmd.c (cmdpy_object_type): Make extern. * python/py-continueevent.c (continue_event_object_type) * python/py-event.h (GDBPY_NEW_EVENT_TYPE): Remove 'qual' parameter. Update all callers. * python/py-evtregistry.c (eventregistry_object_type): Make extern. * python/py-exitedevent.c (exited_event_object_type): Make extern. * python/py-finishbreakpoint.c (finish_breakpoint_object_type): Make extern. * python/py-function.c (fnpy_object_type): Make extern. * python/py-inferior.c (inferior_object_type, membuf_object_type): Make extern. * python/py-infevents.c (call_pre_event_object_type) (inferior_call_post_event_object_type). (memory_changed_event_object_type): Make extern. * python/py-infthread.c (thread_object_type): Make extern. * python/py-lazy-string.c (lazy_string_object_type): Make extern. * python/py-linetable.c (linetable_entry_object_type) (linetable_object_type, ltpy_iterator_object_type): Make extern. * python/py-newobjfileevent.c (new_objfile_event_object_type) (clear_objfiles_event_object_type): Make extern. * python/py-objfile.c (objfile_object_type): Make extern. * python/py-param.c (parmpy_object_type): Make extern. * python/py-progspace.c (pspace_object_type): Make extern. * python/py-signalevent.c (signal_event_object_type): Make extern. * python/py-symtab.c (symtab_object_type, sal_object_type): Make extern. * python/py-type.c (type_object_type, field_object_type) (type_iterator_object_type): Make extern. * python/python.c (python_extension_script_ops) (python_extension_ops): Make extern. * stap-probe.c (stap_probe_ops): Make extern. |
||
|
b9d6130764 |
"enable count" user input error handling (PR gdb/15678)
Typing "enable count" by itself crashes GDB. Also, if you omit the breakpoint number/range, the error message is not very clear: (gdb) enable count 2 warning: bad breakpoint number at or near '' (gdb) enable count Segmentation fault (core dumped) With this patch, the error messages are slightly more helpful: (gdb) enable count 2 Argument required (one or more breakpoint numbers). (gdb) enable count Argument required (hit count). gdb/ChangeLog: PR gdb/15678 * breakpoint.c (map_breakpoint_numbers): Check for empty args string. (enable_count_command): Check args for NULL value. gdb/testsuite/ChangeLog: PR gdb/15678 * gdb.base/ena-dis-br.exp: Test "enable count" for bad user input. |
||
|
5589af0e66 |
PR17525 - breakpoint commands not executed when program run from -x script
Executing a gdb script that runs the inferior (from the command line with -x), and has it hit breakpoints with breakpoint commands that themselves run the target, is currently broken on async targets (Linux, remote). While we're executing a command list or a script, we force the interpreter to be sync, which results in some functions nesting an event loop and waiting for the target to stop, instead of returning immediately and having the top level event loop handle the stop. The issue with this bug is simply that bpstat_do_actions misses checking whether the interpreter is sync. When we get here, in the case of executing a script (or, when the interpreter is sync), the program has already advanced to the next breakpoint, through maybe_wait_sync_command_done. We need to process its breakpoints immediately, just like with a sync target. Tested on x86_64 Fedora 20. gdb/ 2015-01-14 Pedro Alves <palves@redhat.com> PR gdb/17525 * breakpoint.c: Include "interps.h". (bpstat_do_actions_1): Also check whether the interpreter is async. gdb/testsuite/ 2015-01-14 Pedro Alves <palves@redhat.com> Joel Brobecker <brobecker@adacore.com> PR gdb/17525 * gdb.base/bp-cmds-execution-x-script.c: New file. * gdb.base/bp-cmds-execution-x-script.exp: New file. * gdb.base/bp-cmds-execution-x-script.gdb: New file. |
||
|
9c02b52532 |
linux-nat.c: better starvation avoidance, handle non-stop mode too
Running the testsuite with a series that reimplements user-visible
all-stop behavior on top of a target running in non-stop mode revealed
problems related to event starvation avoidance.
For example, I see
gdb.threads/signal-while-stepping-over-bp-other-thread.exp failing.
What happens is that GDB core never gets to see the signal event. It
ends up processing the events for the same threads over an over,
because Linux's waitpid(-1, ...) returns that first task in the task
list that has an event, starving threads on the tail of the task list.
So I wrote a non-stop mode test originally inspired by
signal-while-stepping-over-bp-other-thread.exp, to stress this
independently of all-stop on top of non-stop. Fixing it required the
changes described below. The test will be added in a following
commit.
1) linux-nat.c has code in place that picks an event LWP at random out
of all that have had events. This is because on the kernel side,
"waitpid(-1, ...)" just walks the task list linearly looking for the
first that had an event. But, this code is currently only used in
all-stop mode. So with a multi-threaded program that has multiple
events triggering debug events in parallel, GDB ends up starving some
threads.
To make the event randomization work in non-stop mode too, the patch
makes us pull out all the already pending events on the kernel side,
with waitpid, before deciding which LWP to report to the core.
There's some code in linux_wait that takes care of leaving events
pending if they were for LWPs the caller is not interested in. The
patch moves that to linux_nat_filter_event, so that we only have one
place that leaves events pending. With that in place, conceptually,
the flow is simpler and more normalized:
#1 - walk the LWP list looking for an LWP with a pending event to report.
#2 - if no pending event, pull events out of the kernel, and store
them in the LWP structures as pending.
#3- goto #1.
2) Then, currently the event randomization code only considers SIGTRAP
(or trap-like) events. That means that if e.g., have have multiple
threads stepping in parallel that hit a breakpoint that needs stepping
over, and one gets a signal, the signal may end up never getting
processed, because GDB will always be giving priority to the SIGTRAPs.
The patch fixes this by making the randomization code consider all
kinds of pending events.
3) If multiple threads hit a breakpoint, we report one of those, and
"cancel" the others. Cancelling means decrementing the PC, and
discarding the event. If the next time the LWP is resumed the
breakpoint is still installed, the LWP should hit it again, and we'll
report the hit then. The problem I found is that this delays threads
from advancing too much, with the kernel potentially ending up
scheduling the same threads over and over, and others not advancing.
So the patch switches away from cancelling the breakpoints, and
instead remembering that the LWP had stopped for a breakpoint. If on
resume the breakpoint is still installed, we report it. If it's no
longer installed, we discard the pending event then. This is actually
how GDBserver used to handle this before
|
||
|
f7ce857f51 |
cleanup and speed up (software_)breakpoint_inserted_here_p
Factor out common code, and use the more efficient ALL_BP_LOCATIONS_AT_ADDR. gdb/ 2015-01-09 Pedro Alves <palves@redhat.com> * breakpoint.c (bp_location_inserted_here_p): New function, factored out from ... (breakpoint_inserted_here_p): ... here. Use ALL_BP_LOCATIONS_AT_ADDR. (software_breakpoint_inserted_here_p): Use bp_location_inserted_here_p and ALL_BP_LOCATIONS_AT_ADDR. |
||
|
32d0add0a6 |
Update year range in copyright notice of all files owned by the GDB project.
gdb/ChangeLog: Update year range in copyright notice of all files. |
||
|
fc1269757f |
Only leave dprintf inserted if it is marked as persistent (PR breakpoints/17012)
On Linux native, if dprintfs are inserted when detaching, they are left in the inferior which causes it to crash from a SIGTRAP. It also happens with dprintfs on remote targets, when set disconnected-dprintf is off. The rationale of the line modified by the patch was to leave dprintfs inserted in order to support disconnected dprintfs. However, not all dprintfs are persistent. Also, there's no reason other kinds of breakpoints can't be persistent either. So this replaces the bp_dprintf check with a check on whether the location is persistent. bl->target_info.persist will be 1 only if disconnected-dprintf is on and we are debugging a remote target. On native, it will always be 0, regardless of the value of disconnected-dprintf. This makes sense, since disconnected dprintfs are not supported by the native target. One issue about the test is that it does not pass when using --target_board=native-extended-gdbserver, partly due to bug 17302 [1]. One quick hack I tried for this was to add a useless "next" between the call to getpid() and detach, which avoids the bug. There is still one case where the test fails, and that is with: - breakpoint always-inserted on - dprintf-style agent - disconnected-dprintf on What happens is that my detach does not actually detach the process, because some persistent commands (the disconnected dprintf) is present. However since gdbserver is ran with --once, when gdb disconnects, gdbserver goes down and takes with it all the processes it spawned and that are still under its control (which includes my test process). When the test checks if the test process is still alive, it obvisouly fails. Investigating about that led me to ask a question on the ML [2] about the behavior of detach. Until the remote case is sorted out, the problematic test is marked as KFAIL. [1] https://sourceware.org/bugzilla/show_bug.cgi?id=17302 [2] https://sourceware.org/ml/gdb/2014-08/msg00115.html gdb/Changelog: PR breakpoints/17012 * breakpoint.c (remove_breakpoints_pid): Skip removing breakpoint if it is marked as persistent. gdb/testsuite/ChangeLog: PR breakpoints/17012 * gdb.base/dprintf-detach.c: New file. * gdb.base/dprintf-detach.exp: New file. |
||
|
e8af5d7a5c |
Always consider infcall breakpoints as non-permanent.
A recent change...
commit
|
||
|
458c8db89f |
Partial fix for PR breakpoints/10737: Make syscall info be per-arch instead of global
This patch intends to partially fix PR breakpoints/10737, which is about making the syscall information (for the "catch syscall" command) be per-arch, instead of global. This is not a full fix because of the other issues pointed by Pedro here: <https://sourceware.org/bugzilla/show_bug.cgi?id=10737#c5> However, I consider it a good step towards the real fix. It will also help me fix <https://sourceware.org/bugzilla/show_bug.cgi?id=17402>. What this patch does, basically, is move the "syscalls_info" struct to gdbarch. Currently, the syscall information is stored in a global variable inside gdb/xml-syscall.c, which means that there is no easy way to correlate this info with the current target or architecture being used, for example. This causes strange behaviors, because the syscall info is not re-read when the arch changes. For example, if you put a syscall catchpoint in syscall 5 on i386 (syscall open), and then load a x86_64 program on GDB and put the same syscall 5 there (fstat on x86_64), you will still see that GDB tells you that it is catching "open", even though it is not. With this patch, GDB correctly says that it will be catching fstat syscalls. (gdb) set architecture i386 The target architecture is assumed to be i386 (gdb) catch syscall 5 Catchpoint 1 (syscall 'open' [5]) (gdb) set architecture i386:x86-64 The target architecture is assumed to be i386:x86-64 (gdb) catch syscall 5 Catchpoint 2 (syscall 'open' [5]) But with the patch: (gdb) set architecture i386 The target architecture is assumed to be i386 (gdb) catch syscall 5 Catchpoint 1 (syscall 'open' [5]) (gdb) set architecture i386:x86-64 The target architecture is assumed to be i386:x86-64 (gdb) catch syscall 5 Catchpoint 2 (syscall 'fstat' [5]) As I said, there are still some problems on the "catch syscall" mechanism, because (for example) the user should be able to "catch syscall open" on i386, and then expect "open" to be caught also on x86_64. Currently, it doesn't work. I intend to work on this later. gdb/ 2014-11-20 Sergio Durigan Junior <sergiodj@redhat.com> PR breakpoints/10737 * amd64-linux-tdep.c (amd64_linux_init_abi_common): Adjust call to set_xml_syscall_file_name to provide gdbarch. * arm-linux-tdep.c (arm_linux_init_abi): Likewise. * bfin-linux-tdep.c (bfin_linux_init_abi): Likewise. * breakpoint.c (print_it_catch_syscall): Adjust call to get_syscall_by_number to provide gdbarch. (print_one_catch_syscall): Likewise. (print_mention_catch_syscall): Likewise. (print_recreate_catch_syscall): Likewise. (catch_syscall_split_args): Adjust calls to get_syscall_by_number and get_syscall_by_name to provide gdbarch. (catch_syscall_completer): Adjust call to get_syscall_names to provide gdbarch. * gdbarch.c: Regenerate. * gdbarch.h: Likewise. * gdbarch.sh: Forward declare "struct syscalls_info". (xml_syscall_file): New variable. (syscalls_info): Likewise. * i386-linux-tdep.c (i386_linux_init_abi): Adjust call to set_xml_syscall_file_name to provide gdbarch. * mips-linux-tdep.c (mips_linux_init_abi): Likewise. * ppc-linux-tdep.c (ppc_linux_init_abi): Likewise. * s390-linux-tdep.c (s390_gdbarch_init): Likewise. * sparc-linux-tdep.c (sparc32_linux_init_abi): Likewise. * sparc64-linux-tdep.c (sparc64_linux_init_abi): Likewise. * xml-syscall.c: Include gdbarch.h. (set_xml_syscall_file_name): Accept gdbarch parameter. (get_syscall_by_number): Likewise. (get_syscall_by_name): Likewise. (get_syscall_names): Likewise. (my_gdb_datadir): Delete global variable. (struct syscalls_info) <my_gdb_datadir>: New variable. (struct syscalls_info) <sysinfo>: Rename variable to "syscalls_info". (sysinfo): Delete global variable. (have_initialized_sysinfo): Likewise. (xml_syscall_file): Likewise. (sysinfo_free_syscalls_desc): Rename to... (syscalls_info_free_syscalls_desc): ... this. (free_syscalls_info): Rename "sysinfo" to "syscalls_info". Adjust code to the new layout of "struct syscalls_info". (make_cleanup_free_syscalls_info): Rename parameter "sysinfo" to "syscalls_info". (syscall_create_syscall_desc): Likewise. (syscall_start_syscall): Likewise. (syscall_parse_xml): Likewise. (xml_init_syscalls_info): Likewise. Drop "const" from return value. (init_sysinfo): Rename to... (init_syscalls_info): ...this. Add gdbarch as a parameter. Adjust function to deal with gdbarch. (xml_get_syscall_number): Delete parameter sysinfo. Accept gdbarch as a parameter. Adjust code. (xml_get_syscall_name): Likewise. (xml_list_of_syscalls): Likewise. (set_xml_syscall_file_name): Accept gdbarch as parameter. (get_syscall_by_number): Likewise. (get_syscall_by_name): Likewise. (get_syscall_names): Likewise. * xml-syscall.h (set_xml_syscall_file_name): Likewise. (get_syscall_by_number): Likewise. (get_syscall_by_name): Likewise. (get_syscall_names): Likewise. gdb/testsuite/ 2014-11-20 Sergio Durigan Junior <sergiodj@redhat.com> PR breakpoints/10737 * gdb.base/catch-syscall.exp (do_syscall_tests): Call test_catch_syscall_multi_arch. (test_catch_syscall_multi_arch): New function. |
||
|
43f3e411c4 |
Split struct symtab into two: struct symtab and compunit_symtab.
Currently "symtabs" in gdb are stored as a single linked list of struct symtab that contains both symbol symtabs (the blockvectors) and file symtabs (the linetables). This has led to confusion, bugs, and performance issues. This patch is conceptually very simple: split struct symtab into two pieces: one part containing things common across the entire compilation unit, and one part containing things specific to each source file. Example. For the case of a program built out of these files: foo.c foo1.h foo2.h bar.c foo1.h bar.h Today we have a single list of struct symtabs: objfile -> foo.c -> foo1.h -> foo2.h -> bar.c -> foo1.h -> bar.h -> NULL where "->" means the "next" pointer in struct symtab. With this patch, that turns into: objfile -> foo.c(cu) -> bar.c(cu) -> NULL | | v v foo.c bar.c | | v v foo1.h foo1.h | | v v foo2.h bar.h | | v v NULL NULL where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects, and the files foo.c, etc. are struct symtab objects. So now, for example, when we want to iterate over all blockvectors we can now just iterate over the compunit_symtab list. Plus a lot of the data that was either unused or replicated for each symtab in a compilation unit now lives in struct compunit_symtab. E.g., the objfile pointer, the producer string, etc. I thought of moving "language" out of struct symtab but there is logic to try to compute the language based on previously seen files, and I think that's best left as is for now. With my standard monster benchmark with -readnow (which I can't actually do, but based on my calculations), whereas today the list requires 77MB to store all the struct symtabs, it now only requires 37MB. A modest space savings given the gigabytes needed for all the debug info, etc. Still, it's nice. Plus, whereas today we create a copy of dirname for each source file symtab in a compilation unit, we now only create one for the compunit. So this patch is basically just a data structure reorg, I don't expect significant performance improvements from it. Notes: 1) A followup patch can do a similar split for struct partial_symtab. I have left that until after I get the changes I want in to better utilize .gdb_index (it may affect how we do partial syms). 2) Another followup patch *could* rename struct symtab. The term "symtab" is ambiguous and has been a source of confusion. In this patch I'm leaving it alone, calling it the "historical" name of "filetabs", which is what they are now: just the file-name + line-table. gdb/ChangeLog: Split struct symtab into two: struct symtab and compunit_symtab. * amd64-tdep.c (amd64_skip_xmm_prologue): Fetch producer from compunit. * block.c (blockvector_for_pc_sect): Change "struct symtab *" argument to "struct compunit_symtab *". All callers updated. (set_block_compunit_symtab): Renamed from set_block_symtab. Change "struct symtab *" argument to "struct compunit_symtab *". All callers updated. (get_block_compunit_symtab): Renamed from get_block_symtab. Change result to "struct compunit_symtab *". All callers updated. (find_iterator_compunit_symtab): Renamed from find_iterator_symtab. Change result to "struct compunit_symtab *". All callers updated. * block.h (struct global_block) <compunit_symtab>: Renamed from symtab. hange type to "struct compunit_symtab *". All uses updated. (struct block_iterator) <d.compunit_symtab>: Renamed from "d.symtab". Change type to "struct compunit_symtab *". All uses updated. * buildsym.c (struct buildsym_compunit): New struct. (subfiles, buildsym_compdir, buildsym_objfile, main_subfile): Delete. (buildsym_compunit): New static global. (finish_block_internal): Update to fetch objfile from buildsym_compunit. (make_blockvector): Delete objfile argument. (start_subfile): Rewrite to use buildsym_compunit. Don't initialize debugformat, producer. (start_buildsym_compunit): New function. (free_buildsym_compunit): Renamed from free_subfiles_list. All callers updated. (patch_subfile_names): Rewrite to use buildsym_compunit. (get_compunit_symtab): New function. (get_macro_table): Delete argument comp_dir. All callers updated. (start_symtab): Change result to "struct compunit_symtab *". All callers updated. Create the subfile of the main source file. (watch_main_source_file_lossage): Rewrite to use buildsym_compunit. (reset_symtab_globals): Update. (end_symtab_get_static_block): Update to use buildsym_compunit. (end_symtab_without_blockvector): Rewrite. (end_symtab_with_blockvector): Change result to "struct compunit_symtab *". All callers updated. Update to use buildsym_compunit. Don't set symtab->dirname, instead set it in the compunit. Explicitly make sure main symtab is first in its list. Set debugformat, producer, blockvector, block_line_section, and macrotable in the compunit. (end_symtab_from_static_block): Change result to "struct compunit_symtab *". All callers updated. (end_symtab, end_expandable_symtab): Ditto. (set_missing_symtab): Change symtab argument to "struct compunit_symtab *". All callers updated. (augment_type_symtab): Ditto. (record_debugformat): Update to use buildsym_compunit. (record_producer): Update to use buildsym_compunit. * buildsym.h (struct subfile) <dirname>: Delete. <producer, debugformat>: Delete. <buildsym_compunit>: New member. (get_compunit_symtab): Declare. * dwarf2read.c (struct type_unit_group) <compunit_symtab>: Renamed from primary_symtab. Change type to "struct compunit_symtab *". All uses updated. (dwarf2_start_symtab): Change result to "struct compunit_symtab *". All callers updated. (dwarf_decode_macros): Delete comp_dir argument. All callers updated. (struct dwarf2_per_cu_quick_data) <compunit_symtab>: Renamed from symtab. Change type to "struct compunit_symtab *". All uses updated. (dw2_instantiate_symtab): Change result to "struct compunit_symtab *". All callers updated. (dw2_find_last_source_symtab): Ditto. (dw2_lookup_symbol): Ditto. (recursively_find_pc_sect_compunit_symtab): Renamed from recursively_find_pc_sect_symtab. Change result to "struct compunit_symtab *". All callers updated. (dw2_find_pc_sect_compunit_symtab): Renamed from dw2_find_pc_sect_symtab. Change result to "struct compunit_symtab *". All callers updated. (get_compunit_symtab): Renamed from get_symtab. Change result to "struct compunit_symtab *". All callers updated. (recursively_compute_inclusions): Change type of immediate_parent argument to "struct compunit_symtab *". All callers updated. (compute_compunit_symtab_includes): Renamed from compute_symtab_includes. All callers updated. Rewrite to compute includes of compunit_symtabs and not symtabs. (process_full_comp_unit): Update to work with struct compunit_symtab. (process_full_type_unit): Ditto. (dwarf_decode_lines_1): Delete argument comp_dir. All callers updated. (dwarf_decode_lines): Remove special case handling of main subfile. (macro_start_file): Delete argument comp_dir. All callers updated. (dwarf_decode_macro_bytes): Ditto. * guile/scm-block.c (bkscm_print_block_syms_progress_smob): Update to use struct compunit_symtab. * i386-tdep.c (i386_skip_prologue): Fetch producer from compunit. * jit.c (finalize_symtab): Build compunit_symtab. * jv-lang.c (get_java_class_symtab): Change result to "struct compunit_symtab *". All callers updated. * macroscope.c (sal_macro_scope): Fetch macro table from compunit. * macrotab.c (struct macro_table) <compunit_symtab>: Renamed from comp_dir. Change type to "struct compunit_symtab *". All uses updated. (new_macro_table): Change comp_dir argument to cust, "struct compunit_symtab *". All callers updated. * maint.c (struct cmd_stats) <nr_compunit_symtabs>: Renamed from nr_primary_symtabs. All uses updated. (count_symtabs_and_blocks): Update to handle compunits. (report_command_stats): Update output, "primary symtabs" renamed to "compunits". * mdebugread.c (new_symtab): Change result to "struct compunit_symtab *". All callers updated. (parse_procedure): Change type of search_symtab argument to "struct compunit_symtab *". All callers updated. * objfiles.c (objfile_relocate1): Loop over blockvectors in a separate loop. * objfiles.h (struct objfile) <compunit_symtabs>: Renamed from symtabs. Change type to "struct compunit_symtab *". All uses updated. (ALL_OBJFILE_FILETABS): Renamed from ALL_OBJFILE_SYMTABS. All uses updated. (ALL_OBJFILE_COMPUNITS): Renamed from ALL_OBJFILE_PRIMARY_SYMTABS. All uses updated. (ALL_FILETABS): Renamed from ALL_SYMTABS. All uses updated. (ALL_COMPUNITS): Renamed from ALL_PRIMARY_SYMTABS. All uses updated. * psympriv.h (struct partial_symtab) <compunit_symtab>: Renamed from symtab. Change type to "struct compunit_symtab *". All uses updated. * psymtab.c (psymtab_to_symtab): Change result type to "struct compunit_symtab *". All callers updated. (find_pc_sect_compunit_symtab_from_partial): Renamed from find_pc_sect_symtab_from_partial. Change result type to "struct compunit_symtab *". All callers updated. (lookup_symbol_aux_psymtabs): Change result type to "struct compunit_symtab *". All callers updated. (find_last_source_symtab_from_partial): Ditto. * python/py-symtab.c (stpy_get_producer): Fetch producer from compunit. * source.c (forget_cached_source_info_for_objfile): Fetch debugformat and macro_table from compunit. * symfile-debug.c (debug_qf_find_last_source_symtab): Change result type to "struct compunit_symtab *". All callers updated. (debug_qf_lookup_symbol): Ditto. (debug_qf_find_pc_sect_compunit_symtab): Renamed from debug_qf_find_pc_sect_symtab, change result type to "struct compunit_symtab *". All callers updated. * symfile.c (allocate_symtab): Delete objfile argument. New argument cust. (allocate_compunit_symtab): New function. (add_compunit_symtab_to_objfile): New function. * symfile.h (struct quick_symbol_functions) <lookup_symbol>: Change result type to "struct compunit_symtab *". All uses updated. <find_pc_sect_compunit_symtab>: Renamed from find_pc_sect_symtab. Change result type to "struct compunit_symtab *". All uses updated. * symmisc.c (print_objfile_statistics): Compute blockvector count in separate loop. (dump_symtab_1): Update test for primary source symtab. (maintenance_info_symtabs): Update to handle compunit symtabs. (maintenance_check_symtabs): Ditto. * symtab.c (set_primary_symtab): Delete. (compunit_primary_filetab): New function. (compunit_language): New function. (iterate_over_some_symtabs): Change type of arguments "first", "after_last" to "struct compunit_symtab *". All callers updated. Update to loop over symtabs in each compunit. (error_in_psymtab_expansion): Rename symtab argument to cust, and change type to "struct compunit_symtab *". All callers updated. (find_pc_sect_compunit_symtab): Renamed from find_pc_sect_symtab. Change result type to "struct compunit_symtab *". All callers updated. (find_pc_compunit_symtab): Renamed from find_pc_symtab. Change result type to "struct compunit_symtab *". All callers updated. (find_pc_sect_line): Only loop over symtabs within selected compunit instead of all symtabs in the objfile. * symtab.h (struct symtab) <blockvector>: Moved to compunit_symtab. <compunit_symtab> New member. <block_line_section>: Moved to compunit_symtab. <locations_valid>: Ditto. <epilogue_unwind_valid>: Ditto. <macro_table>: Ditto. <dirname>: Ditto. <debugformat>: Ditto. <producer>: Ditto. <objfile>: Ditto. <call_site_htab>: Ditto. <includes>: Ditto. <user>: Ditto. <primary>: Delete (SYMTAB_COMPUNIT): New macro. (SYMTAB_BLOCKVECTOR): Update definition. (SYMTAB_OBJFILE): Update definition. (SYMTAB_DIRNAME): Update definition. (struct compunit_symtab): New type. Common members among all source symtabs within a compilation unit moved here. All uses updated. (COMPUNIT_OBJFILE): New macro. (COMPUNIT_FILETABS): New macro. (COMPUNIT_DEBUGFORMAT): New macro. (COMPUNIT_PRODUCER): New macro. (COMPUNIT_DIRNAME): New macro. (COMPUNIT_BLOCKVECTOR): New macro. (COMPUNIT_BLOCK_LINE_SECTION): New macro. (COMPUNIT_LOCATIONS_VALID): New macro. (COMPUNIT_EPILOGUE_UNWIND_VALID): New macro. (COMPUNIT_CALL_SITE_HTAB): New macro. (COMPUNIT_MACRO_TABLE): New macro. (ALL_COMPUNIT_FILETABS): New macro. (compunit_symtab_ptr): New typedef. (DEF_VEC_P (compunit_symtab_ptr)): New vector type. gdb/testsuite/ChangeLog: * gdb.base/maint.exp: Update expected output. |
||
|
eb822aa6d0 |
SYMTAB_OBJFILE: New macro.
gdb/ChangeLog: * symtab.h (SYMTAB_OBJFILE): New macro. All uses of member symtab.objfile updated to use it. |
||
|
1a853c5224 |
make "permanent breakpoints" per location and disableable
"permanent"-ness is currently a property of the breakpoint. But, it should actually be an implementation detail of a _location_. Consider this bit in infrun.c: /* Normally, by the time we reach `resume', the breakpoints are either removed or inserted, as appropriate. The exception is if we're sitting at a permanent breakpoint; we need to step over it, but permanent breakpoints can't be removed. So we have to test for it here. */ if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here) { if (gdbarch_skip_permanent_breakpoint_p (gdbarch)) gdbarch_skip_permanent_breakpoint (gdbarch, regcache); else error (_("\ The program is stopped at a permanent breakpoint, but GDB does not know\n\ how to step past a permanent breakpoint on this architecture. Try using\n\ a command like `return' or `jump' to continue execution.")); } This will wrongly skip a non-breakpoint instruction if we have a multiple location breakpoint where the whole breakpoint was set to "permanent" because one of the locations happened to be permanent, even if the one GDB is resuming from is not. Related, because the permanent breakpoints are only marked as such in init_breakpoint_sal, we currently miss marking momentary breakpoints as permanent. A test added by a following patch trips on that. Making permanent-ness be per-location, and marking locations as such in add_location_to_breakpoint, the natural place to do this, fixes this issue... ... and then exposes a latent issue with mark_breakpoints_out. It's clearing the inserted flag of permanent breakpoints. This results in assertions failing like this: Breakpoint 1, main () at testsuite/gdb.base/callexit.c:32 32 return 0; (gdb) call callexit() [Inferior 1 (process 15849) exited normally] gdb/breakpoint.c:12854: internal-error: allegedly permanent breakpoint is not actually inserted A problem internal to GDB has been detected, further debugging may prove unreliable. The call dummy breakpoint, which is a momentary breakpoint, is set on top of a manually inserted breakpoint instruction, and so is now rightfully marked as a permanent breakpoint. See "Write a legitimate instruction at the point where the infcall breakpoint is going to be inserted." comment in infcall.c. Re. make_breakpoint_permanent. That's only called by solib-pa64.c. Permanent breakpoints were actually originally invented for HP-UX [1]. I believe that that call (the only one in the tree) is unnecessary nowadays, given that nowadays the core breakpoints code analyzes the instruction under the breakpoint to automatically detect whether it's setting a breakpoint on top of a breakpoint instruction in the program. I know close to nothing about HP-PA/HP-UX, though. [1] https://sourceware.org/ml/gdb-patches/1999-q3/msg00245.html, and https://sourceware.org/ml/gdb-patches/1999-q3/msg00242.html In addition to the per-location issue, "permanent breakpoints" are currently always displayed as enabled=='n': (gdb) b main Breakpoint 3 at 0x40053c: file ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S, line 29. (gdb) info breakpoints Num Type Disp Enb Address What 3 breakpoint keep n 0x000000000040053c ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S:29 But OTOH they're always enabled; there's no way to disable them... In turn, this means that if one adds commands to such a breakpoint, they're _always_ run: (gdb) start Starting program: /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.arch/i386-permbkpt ... Temporary breakpoint 1, main () at ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S:29 29 int3 (gdb) b main Breakpoint 2 at 0x40053c: file ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S, line 29. (gdb) info breakpoints Num Type Disp Enb Address What 2 breakpoint keep n 0x000000000040053c ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S:29 (gdb) commands Type commands for breakpoint(s) 2, one per line. End with a line saying just "end". >echo "hello!" >end (gdb) disable 2 (gdb) start The program being debugged has been started already. Start it from the beginning? (y or n) y Temporary breakpoint 3 at 0x40053c: file ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S, line 29. Starting program: /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.arch/i386-permbkpt Breakpoint 2, main () at ../../../src/gdb/testsuite/gdb.arch/i386-permbkpt.S:29 29 int3 "hello!"(gdb) IMO, one should be able to disable such a breakpoint, and GDB should then behave just like if the user hadn't created the breakpoint in the first place (that is, report a SIGTRAP). By making permanent-ness a property of the location, and eliminating the bp_permanent enum enable_state state ends up fixing that as well. No tests are added for these changes yet; they'll be added in a follow up patch, as skipping permanent breakpoints is currently broken and trips on an assertion in infrun. Tested on x86_64 Fedora 20, native and gdbserver. gdb/ChangeLog: 2014-11-12 Pedro Alves <palves@redhat.com> Mark locations as permanent, not the whole breakpoint. * breakpoint.c (remove_breakpoint_1, remove_breakpoint): Adjust. (mark_breakpoints_out): Don't mark permanent breakpoints as uninserted. (breakpoint_init_inferior): Use mark_breakpoints_out. (breakpoint_here_p): Adjust. (bpstat_stop_status, describe_other_breakpoints): Remove handling of permanent breakpoints. (make_breakpoint_permanent): Mark each location as permanent, instead of marking the breakpoint. (add_location_to_breakpoint): If the location is permanent, mark it as such, and as inserted. (init_breakpoint_sal): Don't make the breakpoint permanent here. (bp_location_compare, update_global_location_list): Adjust. (update_breakpoint_locations): Don't make the breakpoint permanent here. (disable_breakpoint, enable_breakpoint_disp): Don't skip permanent breakpoints. * breakpoint.h (enum enable_state) <bp_permanent>: Delete field. (struct bp_location) <permanent>: New field. * guile/scm-breakpoint.c (bpscm_enable_state_to_string): Remove reference to bp_permanent. |
||
|
441ef17f09 |
garbage collect gdb/breakpoint.c:breakpoint_thread_match
Used to be necessary for the thread-hop code, but that's gone now. Nothing uses this anymore. gdb/ 2014-11-04 Pedro Alves <palves@redhat.com> * breakpoint.c (breakpoint_thread_match): Delete function. * breakpoint.h (breakpoint_thread_match): Delete declaration. |
||
|
34b7e8a6ad |
Make single-step breakpoints be per-thread
This patch finally makes each thread have its own set of single-step breakpoints. This paves the way to have multiple threads software single-stepping, though this patch doesn't flip that switch on yet. That'll be done on a subsequent patch. gdb/ 2014-10-15 Pedro Alves <palves@redhat.com> * breakpoint.c (single_step_breakpoints): Delete global. (insert_single_step_breakpoint): Adjust to store the breakpoint pointer in the current thread. (single_step_breakpoints_inserted, remove_single_step_breakpoints) (cancel_single_step_breakpoints): Delete functions. (breakpoint_has_location_inserted_here): Make extern. (single_step_breakpoint_inserted_here_p): Adjust to walk the breakpoint list. * breakpoint.h (breakpoint_has_location_inserted_here): New declaration. (single_step_breakpoints_inserted, remove_single_step_breakpoints) (cancel_single_step_breakpoints): Remove declarations. * gdbthread.h (struct thread_control_state) <single_step_breakpoints>: New field. (delete_single_step_breakpoints) (thread_has_single_step_breakpoints_set) (thread_has_single_step_breakpoint_here): New declarations. * infrun.c (follow_exec): Also clear the single-step breakpoints. (singlestep_breakpoints_inserted_p, singlestep_ptid) (singlestep_pc): Delete globals. (infrun_thread_ptid_changed): Remove references to removed globals. (resume_cleanups): Delete the current thread's single-step breakpoints. (maybe_software_singlestep): Remove references to removed globals. (resume): Adjust to use thread_has_single_step_breakpoints_set and delete_single_step_breakpoints. (init_wait_for_inferior): Remove references to removed globals. (delete_thread_infrun_breakpoints): Delete the thread's single-step breakpoints too. (delete_just_stopped_threads_infrun_breakpoints): Don't delete single-step breakpoints here. (delete_stopped_threads_single_step_breakpoints): New function. (adjust_pc_after_break): Adjust to use thread_has_single_step_breakpoints_set. (handle_inferior_event): Remove references to removed globals. Use delete_stopped_threads_single_step_breakpoints. (handle_signal_stop): Adjust to per-thread single-step breakpoints. Swap test order to do cheaper tests first. (switch_back_to_stepped_thread): Extend debug output. Remove references to removed globals. * record-full.c (record_full_wait_1): Adjust to per-thread single-step breakpoints. * thread.c (delete_single_step_breakpoints) (thread_has_single_step_breakpoints_set) (thread_has_single_step_breakpoint_here): New functions. (clear_thread_inferior_resources): Also delete the thread's single-step breakpoints. |
||
|
a1fd2fa599 |
Remove deprecated_insert_raw_breakpoint and friends
There are no users of deprecated_{insert,remove}_raw_breakpoint left. gdb/ 2014-10-15 Pedro Alves <palves@redhat.com> * breakpoint.c (regular_breakpoint_inserted_here_p): Inline ... (breakpoint_inserted_here_p): ... here. Remove special case for software single-step breakpoints. (find_non_raw_software_breakpoint_inserted_here): Inline ... (software_breakpoint_inserted_here_p): ... here. Remove special case for software single-step breakpoints. (bp_target_info_copy_insertion_state) (deprecated_insert_raw_breakpoint) (deprecated_remove_raw_breakpoint): Delete functions. * breakpoint.h (deprecated_insert_raw_breakpoint) (deprecated_remove_raw_breakpoint): Remove declarations. |
||
|
7c16b83e05 |
Put single-step breakpoints on the bp_location chain
This patch makes single-step breakpoints "real" breakpoints on the global location list. There are several benefits to this: - It removes the currently limitation that only 2 single-step breakpoints can be inserted. See an example here of a discussion around a case that wants more than 2, possibly unbounded: https://sourceware.org/ml/gdb-patches/2014-03/msg00663.html - makes software single-step work on read-only code regions. The logic to convert a software breakpoint to a hardware breakpoint if the memory map says the breakpoint address is in read only memory is in insert_bp_location. Because software single-step breakpoints bypass all that go and straight to target_insert_breakpoint, we can't software single-step over read only memory. This patch removes that limitation, and adds a test that makes sure that works, by forcing a code region to read-only with "mem LOW HIGH ro" and then stepping through that. - Fixes PR breakpoints/9649 This is an assertion failure in insert_single_step_breakpoint in breakpoint.c, because we may leave stale single-step breakpoints behind on error. The tests for stepping through read-only regions exercise the root cause of the bug, which is that we leave single-step breakpoints behind if we fail to insert any single-step breakpoint. Deleting the single-step breakpoints in resume_cleanups, delete_just_stopped_threads_infrun_breakpoints, and fetch_inferior_event fixes this. Without that, we'd no longer hit the assertion, as that code is deleted, but we'd instead run into errors/warnings trying to insert/remove the stale breakpoints on next resume. - Paves the way to have multiple threads software single-stepping at the same time, leaving update_global_location_list to worry about duplicate locations. - Makes the moribund location machinery aware of software single-step breakpoints, paving the way to enable software single-step on non-stop, instead of forcing serialized displaced stepping for all single steps. - It's generaly cleaner. We no longer have to play games with single-step breakpoints inserted at the same address as regular breakpoints, like we recently had to do for 7.8. See this discussion: https://sourceware.org/ml/gdb-patches/2014-06/msg00052.html. Tested on x86_64 Fedora 20, on top of my 'single-step breakpoints on x86' series. gdb/ 2014-10-15 Pedro Alves <palves@redhat.com> PR breakpoints/9649 * breakpoint.c (single_step_breakpoints, single_step_gdbarch): Delete array globals. (single_step_breakpoints): New global. (breakpoint_xfer_memory): Remove special handling for single-step breakpoints. (update_breakpoints_after_exec): Delete bp_single_step breakpoints. (detach_breakpoints): Remove special handling for single-step breakpoints. (breakpoint_init_inferior): Delete bp_single_step breakpoints. (bpstat_stop_status): Add comment. (bpstat_what, bptype_string, print_one_breakpoint_location) (adjust_breakpoint_address, init_bp_location): Handle bp_single_step. (new_single_step_breakpoint): New function. (set_momentary_breakpoint, bkpt_remove_location): Remove special handling for single-step breakpoints. (insert_single_step_breakpoint, single_step_breakpoints_inserted) (remove_single_step_breakpoints, cancel_single_step_breakpoints): Rewrite. (detach_single_step_breakpoints, find_single_step_breakpoint): Delete functions. (breakpoint_has_location_inserted_here): New function. (single_step_breakpoint_inserted_here_p): Rewrite. * breakpoint.h: Remove FIXME. (enum bptype) <bp_single_step>: New enum value. (insert_single_step_breakpoint): Update comment. * infrun.c (resume_cleanups) (delete_step_thread_step_resume_breakpoint): Remove single-step breakpoints. (fetch_inferior_event): Install a cleanup that removes infrun breakpoints. (switch_back_to_stepped_thread) <expect thread advanced also>: Clear step-over info. gdb/testsuite/ 2014-10-15 Pedro Alves <palves@redhat.com> PR breakpoints/9649 * gdb.base/breakpoint-in-ro-region.c (main): Add more instructions. * gdb.base/breakpoint-in-ro-region.exp (probe_target_hardware_step): New procedure. (top level): Probe hardware stepping and hardware breakpoint support. Test stepping through a read-only region, with both "breakpoint auto-hw" on and off and both "always-inserted" on and off. |
||
|
963f9c80cb |
Rewrite non-continuable watchpoints handling
When GDB finds out the target triggered a watchpoint, and the target has non-continuable watchpoints, GDB sets things up to step past the instruction that triggered the watchpoint. This is just like stepping past a breakpoint, but goes through a different mechanism - it resumes only the thread that needs to step past the watchpoint, but also switches a "infwait state" global, that has the effect that the next target_wait only wait for events only from that thread. This forcing of a ptid to pass to target_wait obviously becomes a bottleneck if we ever support stepping past different watchpoints simultaneously (in separate processes). It's also unnecessary -- the target should only return events for threads that have been resumed; if no other thread than the one we're stepping past the watchpoint has been resumed, then those other threads should not report events. If we couldn't assume that, then stepping past regular breakpoints would be broken for not likewise forcing a similar infwait_state. So this patch eliminates infwait_state, and instead teaches keep_going to mark step_over_info in a way that has the breakpoints module skip inserting watchpoints (because we're stepping past one), like it skips breakpoints when we're stepping past one. Tested on: - x86_64 Fedora 20 (continuable watchpoints) - PPC64 Fedora 18 (non-steppable watchpoints) gdb/ 2014-10-15 Pedro Alves <palves@redhat.com> * breakpoint.c (should_be_inserted): Don't insert watchpoints if trying to step past a non-steppable watchpoint. * gdbthread.h (struct thread_info) <stepping_over_watchpoint>: New field. * infrun.c (struct step_over_info): Add new field 'nonsteppable_watchpoint_p' and adjust comments. (set_step_over_info): New 'nonsteppable_watchpoint_p' parameter. Adjust. (clear_step_over_info): Clear nonsteppable_watchpoint_p as well. (stepping_past_nonsteppable_watchpoint): New function. (step_over_info_valid_p): Also return true if stepping past a nonsteppable watchpoint. (proceed): Adjust call to set_step_over_info. Remove reference to init_infwait_state. (init_wait_for_inferior): Remove reference to init_infwait_state. (waiton_ptid): Delete global. (struct execution_control_state) <stepped_after_stopped_by_watchpoint>: Delete field. (wait_for_inferior, fetch_inferior_event): Always pass minus_one_ptid to target_wait. (init_thread_stepping_state): Clear 'stepping_over_watchpoint' field. (init_infwait_state): Delete function. (handle_inferior_event): Remove infwait_state handling. (handle_signal_stop) <watchpoints handling>: Adjust after stepped_after_stopped_by_watchpoint removal. Don't remove breakpoints here nor set infwait_state. Set the thread's stepping_over_watchpoint flag, and call keep_going instead. (keep_going): Handle stepping_over_watchpoint. Adjust set_step_over_info calls. * infrun.h (stepping_past_nonsteppable_watchpoint): Declare function. |
||
|
0ea5cda861 |
Only call {set,clear}_semaphore probe function if they are not NULL
This patch is a response to what I commented on: <https://sourceware.org/ml/gdb-patches/2014-10/msg00046.html> When reviewing Jose's USDT probe support patches. Basically, in his patch he had to create dummy functions for the set_semaphore and the clear_semaphore methods of probe_ops (gdb/probe.h), because those functions were called inconditionally from inside gdb/breakpoint.c and gdb/tracepoint.c. However, the semaphore concept may not apply to all types of probes, and this is the case here: USDT probes do not have semaphores (although SDT probes do). Anyway, this is a simple (almost obvious) patch to guard the call to {set,clear}_semaphore. It does not introduce any regression on a Fedora 20 x86_64. I will apply it in a few days in case there is no comment. gdb/ChangeLog: 2014-10-14 Sergio Durigan Junior <sergiodj@redhat.com> * breakpoint.c (bkpt_probe_insert_location): Call set_semaphore only if it is not NULL. (bkpt_probe_remove_location): Likewise, for clear_semaphore. * probe.h (struct probe_ops) <set_semaphore>: Update comment. (struct probe_ops) <clear_semaphore>: Likewise. * tracepoint.c (start_tracing): Call set_semaphore only if it is not NULL. (stop_tracing): Likewise, for clear_semaphore. |
||
|
99894e1175 |
Fix "save breakpoints" for "disable $bpnum" command.
gdb/ChangeLog 2014-10-12 Miroslav Franc <mfranc@redhat.com> Fix "save breakpoints" for "disable $bpnum" command. * breakpoint.c (save_breakpoints): Add $bpnum for disable. gdb/testsuite/ChangeLog 2014-10-12 Jan Kratochvil <jan.kratochvil@redhat.com> Fix "save breakpoints" for "disable $bpnum" command. * gdb.base/save-bp.c (main): Add label. * gdb.base/save-bp.exp: Add 8th disabled breakpoint. Match it. |